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Abstract

Autonomous cyber physical systems are increasingly common in a wide variety of appli-

cation domains, with a correspondingly wide range of functionalities and types of sensing

and actuation. At the same time, the variety and frequency of cyber attacks is increasing

in correspondence with the increasing popularity and functionality of these systems, from

in-vehicle driver assistance to smart city infrastructure and robotics. These technologies

rely on a variety of sensors, actuating nodes and control communications. Each sensor

adds context by which the autonomous system can better understand its environment,

but each sensor also provides opportunities for attack, as has been observed in a variety

of attacks on different systems. Cyber-physical threats are increasing significantly be-

cause society is increasingly dependent on cyber-physical and Internet of things systems

and devices. Cyber-physical attacks are executed by people with different motivations,

intentional or not.

A robotic vehicle testbed has been built and used as a testbed to develop a methodol-

ogy that is capable of identifying possible threats and their causes. The design of the

robotic vehicle testbed is documented with explanations in terms of its sensors, actuators

and it operates. A key goal has been to develop a methodology that can automatically

characterise the behaviour of the robotic testbed and be able to identify cyber-physical

threats in a real-world environment. This testbed environment has met all the require-

ments for the experimental scenarios that we have identified. A model to observe signal

characteristics, including noise level patterns on sensor data streams and incorporating

this information to characterise normal or abnormal behaviour of a robotic vehicle is in-
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troduced. Following a learning phase, where the vehicle is trained in a non-attack state

on the values that are considered normal, it is then subjected to a series of different cyber

attacks that have physical impact (cyber-physical attacks) and physical attacks that have

cyber impact (physical-cyber attacks). The problem has been approached as a binary

classification problem as to whether the robot is able to self-detect if and when it is under

attack. The experimental results show that the approach is promising for most attacks

that the vehicle is subjected to.
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Chapter 1

Introduction

As vehicles become increasingly networked, intelligent and autonomous, they also become

increasingly attractive targets to cyber attacks. This project has focused on cyber threats

against routine-oriented autonomous robotic vehicles and on producing a capability that

allows these vehicles to self-detect such threats. The project has developed anomaly de-

tection mechanisms that are able to detect and characterise such threats by monitoring

deviations in characteristics belonging to both the cyber and physical data domains. The

scope is on routine missions, where the assumption is that considerable deviations across

both the cyber and physical domains are indicators of potential cyber-physical attacks.

This report describes the methodology followed so that the capability developed can be

installed on any robotic vehicle that supports the Generic Vehicle Architecture [1] and

carries a variety of sensors. A primary requirement addressed in this project is that the

method does not depend on specific sensor types, models or configurations, but is rather

sensor agnostic. By sensor agnostic, we mean that the intrusion detection system does

not consider the physical context of each sensor (i.e. what is measured), but merely as one

more data source. So, it does not need to understand the context or require specific treat-

ment for any data reported by the sensors. This allows the routine-mission oriented system

to learn its environment and form its own understanding based on the data collected and

generate a behaviour profile. The key advantage is that this increases applicability for a
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variety of robotic routine-mission oriented systems or multi-sensor cyber-physical systems.

Secondly, it reduces the integration complexity by requiring standard supervised training

to learn its behaviour profile and additionally it is capable to re-learn its environment

easily if a sensor upgrade has occurred or if there is a necessity to proceed with routine

mission due to a defective or partially working sensor. However, due to the rejection of the

sensor’s contextual information, such a system may potentially show lower performance

than an equivalent that would be designed specifically for one type of environment or

one type of attack. Also, this work focuses on the detection of cyber-physical attacks on

routine-mission oriented robotic systems, therefore is not suitable for non-routine oriented

mission robotic applications which is out of scope of this project.

If an autonomous vehicle is composed of several subsystems for monitoring or control-

ling certain aspects of the whole system, it is expected that these modules will have

to communicate in some way to satisfy the needs of the user. Communication between

sub-systems can be done using a vast variety of technologies that are currently used for

communication within such systems. Whilst we are interested in physical attacks for a

background knowledge base, the research focuses specifically on the types of attack in

which the cyber aspect is involved, for example the transmission of false commands. An

ideal outcome would be that the cyber-physical system can be equipped with the ability

to reason that the probability that a command, sensed scene, operational context etc. is

genuine and has not been tampered with. Just as a human picks up a sense of “something

being wrong’ ahead of actually knowing the full details, a suitably equipped autonomous

system, such as a drone, may be able to detect an anomaly, perhaps relying on a learnt

history of previous events and missions as the basis of the initial arousal of suspicion.

This is particularly the case for autonomous systems that perform routine (hence largely

predictable) tasks. . So, a cyber defence mechanism needs to be able to operate onboard

the autonomous system to allow it to self-detect unpredictable attacks.
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1.1 Autonomous robotic vehicles

Society is becoming increasingly dependent on embedded system environments [2]. The

technologies that are used today are applied in various areas, from a simple implemen-

tation of an embedded system for a specific purpose to fully automated environments

based on the concept of distributed embedded systems. Such systems allow flexibility by

using a modular approach to design and implementation. Some areas of interest using

distributed embedded systems are: Robotics, Military Vehicles and Drones, Consumer

Vehicles, Medical Devices and Supervisory Control and Data Acquisition Systems. They

can be fully or partially automated.

Unmanned ground vehicles (UGV) are used in various application domains and most of

them fulfil unique tasks. It is not possible to identify all vulnerabilities in such systems, as

each system is unique based on its hardware, software and the environment. UGVs have

general requirements and limitations that can lead to exploitable vulnerabilities in the

system. These kinds of vehicles require a certain level of autonomy to operate and most

of them are battery powered to enable electronic system operation. It is also possible

to supply power from mains, using fuel engines or solar power and many other power

sources. Using fuel engines or solar power it is not possible to guarantee the power source

stability and the system must be capable of storing this energy in batteries for use as it

is needed. It should be noted that these types of machines can be powered from external

power sources, but to ensure ability to recover the system may use batteries. Batteries

introduce a potential vulnerability that may be exploited by the attacker. For example

an attacker may use battery exhaustion attack which will drain the batteries or use a

sophisticated attack that may produce voltage fluctuations in the system that will damage

vehicle’s electronics. Denial of Service [3] is also applicable to general autonomous system

domain and such an attack raises an availability threat, making such a system unusable

or disrupting the UGV operation. This type of attack can be accomplished using a

physical or wireless approach. If an attacker uses the wireless approach they can achieve
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this goal by jamming the wireless signals, so the operator will be unable to control the

vehicle. In this case, UGV must be able to identify the attack and try to recover from this

situation appropriately. The work conducted by Vuong et al. has shown that Denial of

Service attacks on the wireless channel can influence a robot’s operation [4], significantly

affecting its physical movement and even causing minute vibrations, which can be picked

up by a purpose-built cyber-physical detection system [5, 6].

A physical attack has certain requirements, such as a physical connection to a system (eg.,

planting a malicious component through a supply chain attack). This can be achieved by

writing random data to the bus potentially activating system components or if commu-

nication protocols are known produce a sophisticated targeted attack that has a certain

aim. In the case of the Controller Area Network (CAN) bus where arbitration is taking

place, it is possible to seize the bus access, by transmitting dominant bits on the bus.

This type of attack will starve out other sub-systems connected to the bus and may lead

to disruption in the system.

All general systems are vulnerable to data mining attacks, where information is gathered

physically or wirelessly without authorisation. It is a great threat to data disclosure,

whether it be encrypted packets that contain control, monitoring, positioning or multi-

media data that can be decrypted by having certain knowledge and resources. In a worst

case scenario physical communication or wireless is unencrypted and by monitoring the

data and evaluating the behaviour of such a system it is possible to distinguish the type

of data being transferred. Such disclosure could lead to classified data leakage and be

used later for a more sophisticated attack that may be driven by specific objectives. One

of the examples would be, that the unmanned robotic vehicle was stolen with a sensitive

information on-board. An attacker can use reverse engineering techniques to get access

to the data or confidential firmwaresoftware packages that are installed on-board. Such

attack is out of scope of this project, but we still do consider such attacks possible.

The usage domain of autonomous UGVs is very broad, as these types of systems can

be used in different environments such as battlefields, rescue zones and many others.
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However, autonomous systems that are designed to work in a battlefield environment can

also be used in a different context, such as surveillance and rescue missions. The Big Dog

robot by Boston Dynamics [7] is designed to walk through a rough-terrain environment

whether it be a building, crash site or a warzone. This robot is mainly used to act as

a mule to carry equipment. There are multipurpose robots as well that can be used in

a different context, for example the Cobra MK3, which is a small UGV that supports

various sensors and actuators that can be changed on demand to transform a bomb

disposal robot into a surveillance robot. There are a variety of threats and attack motives

for such systems and they depend on the environment and context of use. If such systems

are designed to be autonomous, the robot must rely on internal communication and its

logic. The autonomous aspect makes it complicated to ensure self-awareness when they

are used in different environments and contexts. The reason is that the robotic system

such as unmanned aerial vehicle which learnt unique environment (clear sky) and a specific

task through training or operation; may start generate incorrect decision because of the

noise caused by a stormy weather. The flexibility achieved by modular design raises new

threats as each of these modules can be vulnerable or contain malicious code that will

allow an attacker to control the vehicle. As robots can be used in different environments,

often they have unique requirements, in terms of sensors such as GPS, accelerometer and

compass to increase their self-awareness, so that as to be able to identify their position

in a real-world environment and achieve their objectives. If there is a requirement for

collision detection, common approaches are to use ultrasonic, LIDAR [7] or other sensors

that can provide information about the distance between a robot and an object. All

these types of sensors are vulnerable to certain physical threats. For example, ultrasonic

sensors are very unreliable if the environment is noisy; the compass sensor is vulnerable

to materials that can disturb the magnetic field surroundings; LIDAR is often defeated by

mirrors or even paddles of water [8]. Each unique set of sensors on a robot will produce

unique vulnerabilities that will threaten the mission success in a worst case scenario

circumstances. In addition, all these sensors are vulnerable to generic threats such as

Sybil attacks, when the neighbouring nodes have been compromised and their reputation
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will influence attacker’s target node. As the requirements may change over time, there is

a need for robot flexibility and this can be achieved by using a standardised approach to

robot design that would support different types of sensors that would be compatible with

the robot systems.

Beyond ground vehicles, there is growing interest in autonomous vehicles able to operate

in air (Unmanned Aerial Vehicles), water (Unmanned Surface Vehicles) or underwater

(Unmanned Underwater Vehicles). These vehicles are commonly used within the battle-

field environment, but can also be used for recreation, photography, cinematography etc.

One of the examples was shown by Cauchard et al. [9] where researchers studied the use

of personal drones and how they interact with people. They have mentioned variety of

drone applications, such as running with drones, filming or creating flying displays.

1.1.1 Internal vehicular communication

Communication can be carried out using different protocols based on the purpose of

the whole system. The main communication requirement in such systems is reliability,

because these systems will be used over a long period of time and they must be reliable

as certain aspects of the system must be safety-critical. One of the most common types

of communication in vehicular networks is the Controller Area Network (CAN), which

provides reliability, through arbitration based on a message ID. This type of arbitration

will ensure that the message with the highest priority will always be delivered. There are

on-top CAN protocols such as the Time-Triggered Protocol or the MilCAN protocol that

uses an extended 29-bit CAN identifier to provide a source address, allows prioritisation,

reserved fields specifying a function type or data, as well utilising time-triggered protocol

features [10]. By utilising time-triggered protocol features MilCAN allows determinism

[11]. The difference between MilCAN (Time-Driven) and CAN (Event-Driven) is the

deterministic behaviour. This approach resolves the starvation issue i.e. when a faulty

module with the highest priority can take over the bus access by constantly sending

messages and starve out other Electronic Control Units (ECU) in the system. ECU
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is a term used for in-vehicle embedded systems that are responsible for a specific sub-

system. The CAN bus itself can support a maximum bandwidth of 1 Mbps and with

increasing requirements such as x-by-wire technology the bandwidth requirements are

also increased because timing is critical for this type of technology. Due this limitation,

the FlexRay [11] protocol was introduced that improved the bandwidth limitation to 10

Mbps. Even though the bandwidth was increased this protocol is only used for safety-

critical systems because of its expensive integration. To provide multimedia application

support the Media Oriented Systems Transport (MOST) protocol was introduced [12].

This protocol has variable configuration that can provide variable bandwidth up to 150

MBits [13, 14] MOST is not used for ECU communication, as it is more expensive than

FlexRay [11, 15] and has more strict requirements such as fibre-optic cable implementation

[16]. All these reviewed protocols have their advantages and disadvantages such as the

cost of implementation. To make a system more reliable and flexible, the advantages of

these protocols can be merged together and therefore to allow compatibility between these

protocols different bridges were developed [15]. When all sub-systems are interconnected

it is possible to gather information based on the data transmitted by various modules

and represent this information using Health & Usage Monitoring System (HUMS) or

Vetronics Integrity and Management System (VIMS) [17] such systems would reduce

the maintenance cost and user awareness. Systems, such as modern vehicles, unmanned

ground vehicles or unmanned aerial vehicles are heavily dependent on communication

between ECUs, because, for example, a modern vehicle that provides partial automation

to satisfy user needs is using over 70 ECUs on its Internal Network [18, 19]. An ECU

is an embedded system which consists of sensors, actuators and software. Developers

rarely create their own designs for ECU components i.e. Integrated Circuits (IC), Micro

Controller Units (MCU). They assemble ECUs using off-the-shelf hardware and program

them so that the ECU would meet their design specifications and requirements. During the

design or development stage of such complex systems, developers have to prioritise their

needs correctly and, unwisely, security often has low priority. This is partly because cyber

attacks in this context are not as frequent as the ones related to traditional computing



1.1. Autonomous robotic vehicles 8

environments, and partly because the assumption is that access to a vehicle’s internal

network and ECUs is practically difficult, an assumption that has been proven wrong in

multiple research papers and real-world attacks [18].

1.1.2 Securing Vehicles’ Electronics

The flexibility achieved by using a standardised approach to the design of vehicle archi-

tectures, allows data to be gathered on the network and evaluated for different purposes,

including cyber-security. The Vetronics Research Centre has proposed a few strategies on

how to secure autonomous vehicles from cyber attacks [20, 21]. Their approach to secur-

ing autonomous vehicles is to ensure the mission success. Firstly they decrease the chance

of an unauthorised access to the system by integrating authorisation between nodes and

data encryption. They increase the ability of attack detection using Intrusion Detection

Systems (IDS) on certain nodes such as gateways and operating nodes and suggest a

way to maintain essential services that are mission critical if the system was compro-

mised. However there are no solutions provided on how to implement such a system,

only suggestions on strategies and requirements. To ensure structural integrity they have

proposed a system that would be gathering data from different Health and Monitoring

Systems (HUMS) modules that are responsible for safety-critical, automotive, weapons

or other systems [17] to ease maintenance of a vehicle and provide information about the

overall vehicle state and vehicle surroundings to the crew using a user-friendly on-board

interface. This is also a step towards the security of vehicle electronics as this system

takes into account network health, based on that information it is possible to catch spe-

cific anomalies on the network that would enable it to make an assumption if the vehicle

was compromised.
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1.2 Historical examples of cyber-physical attacks against

vehicles

There are a wide variety of known attack methods. They can apply generically to any

autonomous system or be specific to a particular type of system, and may be associated

with a particular application or use-scenario, or a specific sensor or other component. The

complexity of threat modelling for robotic system is due to the application variability

(entertainment, warfare applications, medical applications) of robotic systems and their

operational environment domains such as: air, ground or water surface. Application types

and potential threats will be discussed further in Chapter 2

An attack which is worth mentioning is an incident with RQ-170 UAV that was hijacked

by Iranian Military Forces. The Cyber warfare unit of Iranian Military Forces claims to

have been able to hijack a United States UAV and land it on Iranian territory. Iran has

stated that they were using a sophisticated attack, starting with jamming communication

between the drone and Command and Control Centre and that using GPS spoofing they

were able to land the RQ-170 UAV on their desired territory. If true, this demonstrates

that the autonomy of military unmanned aerial vehicles can be influenced by applying

sophisticated attacks that require certain knowledge and equipment. As such vehicles are

used by military forces, it is expected that this equipment will serve several years before

being discontinued or updated. This introduces new threats as enemy forces can examine

the technology and can find new vulnerabilities that can be exploited later in a battlefield

during a war or other military operation. While this attack has not yet been confirmed

by non-Iranian sources, the concept has been proven extensively, but for civilian UAVs

and civilian ships (and hence for civilian GPS), by the University of Texas at Austin [22].

Another example of aircraft vulnerability exploitation was when Hugo Teso, a computer

security expert asked himself if he was able to hack into an aircraft that are used in a civil

aviation. During the hack at the Box Security Conference 2013 he demonstrated how he

was able to attack a civil aircraft [23]. His attack was focused on a specific Flight Man-
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agement System (FMS) which is installed on a certain aircraft models. Without having

advanced knowledge of aircraft communication, procedures and protocols, he started his

research around this area and was able to gather all necessary information from public

sources. This information included communication protocols, the type of equipment used

and the necessary procedures during the takeoff, flying and landing states. As it was

not possible to gain access to a real aircraft, his decision was to build a virtual test bed

using real equipment that is used on aircraft. He was able to obtain all items that would

allow him to proceed with his experiments. During his presentation at the conference he

suggested various ways of obtaining such equipment, for example: buying equipment from

aviation scrap yards, on the black market and through online shopping. The equipment

was obtained using online auctions and shops. He was able to find a flight management

control computer for $400 and the item description said that it was an add-on for a Mi-

crosoft Flight Simulator, while it actually was real equipment used on aircraft [23]. An

aircraft management system was acquired for $10 in an online auction. This shows that

it is possible to obtain real equipment externally i.e. not using original vendors, who

would possibly ask for licenses or certificates to ensure a buyer’s legitimacy. By using

a reverse engineering approach he was able to gain knowledge about the system, how it

was structured and using this knowledge it was easy to identify the existing weak points

of the system and to exploit them. In the end he created a virtual test bed environment

and was able to demonstrate that when an aircraft activates the auto-pilot function it is

possible to control the aircraft using a desktop PC, laptop or Smart phone [23]. It was

an interesting fact that the equipment he was using supported scripting, so there was

also the possibility to upload a script into the system which could then be triggered by a

specific event, for example GPS coordinates.

The Grand DARPA Challenge in 2007 showed that modern trends in vehicles are going

towards full autonomy [24] and participants have made huge progress [25, 26] when a

challenge required a fully autonomous vehicle to drive in an urban environment and most

of the vehicles were able to successfully finish the challenge. These kinds of challenges

show that a lot of research is going on in this area. Modern vehicles nowadays provide
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various features such as cruise control, automatic parking and many other features that

will allow the driver to relax. By giving control to an automated environment the outcome

will be more efficient i.e. decreasing fuel consumption. This kind of functionality is

achieved through sensor and control unit communication as described earlier. A group

of researchers performed security analysis on modern automobiles and reviewed various

types of attacks which compromised the vehicle [18]. Their test bed was a vehicle that

was built in 2009 with a high number of autonomous features. As they had physical

access to the system they have used different techniques to gather and spoof data. In

conclusion they had enough information to turn on and off different parts of the system,

by spoofing sensor data. Also it was possible to upload malicious code to the memory

which would trigger if certain criteria was met. As an example a script could turn off the

brakes and headlights, when it is dark, rainy and the speed is over 80mph. The malicious

code would be able to delete itself after a crash. These kind of attacks show that if the

person has the motivation, necessary skills and by using a sophisticated approach, it is

possible to compromise any embedded system whether it would be a complex system such

as an aircraft, vehicle or miniature safety-critical systems such as pacemakers or insulin

injectors.

1.2.1 Other Types of Cyber-Physical Attacks

In this section, the embedded systems that are used in various environments such as

robotics, subsystem control, medical equipment and many others will be discussed in-

cluding how these systems can be attacked and what possible motives an attacker can

have to infiltrate such system.

Jerome Radcliffe was a security specialist, diagnosed with type 1 diabetes, who, because

of his health condition, was interested if it was possible to hack into insulin pumps that

maintain the insulin level. He was comparing such a system to an industrial control

system’s supervisory control and data acquisition (SCADA) system. They both monitor

sensor data and control their environment based on this data [27]. During the Black Hat
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2011 conference, he was able to demonstrate that it was actually possible to control these

devices and increase and decrease the insulin injection remotely from 30 meters range. A

year later Barnaby Jack, a computer security expert, made a further step and developed

an exploit to increase the range of the insulin pump hack up to 90m, this was demonstrated

by Stuart McClure at the RSA Security Conference in February 2012 [28]. In October

of 2012, during his presentation at the BreakPoint Security Conference in Melbourne,

he was able to reverse engineer a pacemaker transmitter and stated that he was able to

deliver a deadly electric shock to the person who was using the device [29]. In 2013,

during the Black Hat Conference, he wanted to give a presentation about exploiting these

vulnerabilities without the need for knowing identification numbers, but he was unable to

do so due to his sudden death (due to unrelated cause) a few days before the conference

[30]. The attacks mentioned here were accomplished with the use of wireless technology

as both of these devices were using radio frequency communication and it was possible to

send spoofed packets to the device and control it using this approach. These computer

security experts where driven by curiosity, and were interested in raising concern around

the security of embedded devices, as currently there is little or no security at all which

they successfully demonstrated.

1.3 Research methodology

Cyber-physical research has primarily focused on vulnerabilities found in autonomous sys-

tem’s components. These can be parts of critical national infrastructure [31], unmanned

robotic vehicles subsystems [32]. However, such an approach to this research has limita-

tions because the subsystems may change and the data generated by such systems may

not. Additionally, some system vulnerabilities can be patched and need to be constantly

maintained and severe vulnerabilities have to be patched. This introduces an issue if the

system is at a distant location, it would be complex to maintain [33] because of limited

access. By maintaining such systems in a timely manner and performing system patching

on the day when they are released, such an approach may perform better. However such a
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system will still be vulnerable to zero-day attacks. It would be beneficial to have a cyber-

physical attack detection approach that would be capable of learning it’s surroundings

and to be able to adapt.

Our proposal is to assess such systems assuming that the attacks coming from a cyber or

a physical domain, always persist. It is only a matter of time when an attack will take

place, therefore they constantly pose a threat to the system. Such a view of vulnerabili-

ties will introduce dynamic detection concept in such a way that vulnerabilities become

threats that advance from the cyber-physical domain, ignoring the sensor’s contextual

information or their unique role in the system. Assessment of such threats will provide

context information for an autonomous system such as an attack vector and a domain

that possesses the cyber-physical threat. Such information can be used as an input for

decision making mechanisms that have higher control of the system and its environment

and can also be used as a supplementary state of the art methodology [34, 35, 36] that is

capable of raising system self-awareness.

1.3.1 Aim

Autonomic computing is currently being integrated into a variety of everyday systems.

These systems are controlled by an assortment of complex components and are applicable

to a number of different areas such as: industrial automation, emerging smart home

systems, unmanned ground vehicles, drones and many others. However, the increased

use of such systems has also created an increase in the potential threats from adversaries

who will seize any new attack opportunity. These threats can come from both the cyber

and the physical domain, and this also includes cyber attacks with intentional physical

damage to the system (cyber-physical attacks [8]). As the threats from this new area are

still emerging and rapidly evolving, these systems require smart and adaptive security

systems that are capable of detecting new threats. In this context, knowledge-based

countermeasures that rely on learning the signatures of already known attacks can be

impractical. Hence, there is a need for an anomaly-based (also referred to as behaviour-
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based [37]) cyber-physical detection approach.

For this purpose, we have developed a robotic vehicle testbed that uses industry recognised

communication standards, based on generic vehicle architecture (GVA) with a number of

actuators and sensors on-board. Instrumentation data is used for autonomous learning

and calibration and to monitor the behaviour of the robotic vehicle testbed. A main

requirement of such a model is applicability across a variety of systems and sensor config-

urations, and to be able to adapt to a variety of systems and environments autonomously.

It also needs to be light-weight, so as not to affect the operational capabilities of the

vehicle.

1.3.2 Scope

The scope of this project is within the realm of small autonomous vehicles undertaking

routine tasks, such as deployable surveillance systems, observation posts or guard and

patrol-oriented vehicles. A key challenge is that such systems are usually deployed in an

open environment exposed to a variety of cyber-physical threats that need to be moni-

tored. Usually, such systems are powered by a limited power supply (fuel, batteries) and

are constrained in terms of available computational power. Therefore, it is beneficial to

develop a power-efficient anomaly detection approach that uses behaviour characterisa-

tion by monitoring available instrumentation. The behaviour characterisation is reviewed

as a supplementary anomaly detection approach that is capable to classify behaviour and

identify the threat domain (cyber or physical) when the testbed is under cyber or physical

attack.

Naturally, a large number of cyber attacks can be relatively reliably prevented by using

encryption. Of course, encryption can fail in several cases, for example when there is an

error in an implementation, a weak process for generating and sharing keys between the

parties involved, or simply bypassing it completely physically or using deception against

the user. Also, in many cases, encryption is simply impractical because of the extra

processing and energy requirements. Hence, it is important to have a mechanism for
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detecting attacks that have not been prevented. The focus of this project is the detection

of physical-cyber and cyber-physical attacks which require monitoring features from both

domains. The assumption made is that the robotic system has no encryption or that

encryption has been compromised, as is customary in areas that involved interdependent

computer networks [38]. Also, it is a long-established principle in cryptography that

“The enemy knows the system being used”, which has been reformulated also as “It is

pessimistic and hence safe, but in the long run realistic, since one must expect his system

to be formed out eventually. Thus, even when an entirely new system is devised, so that

the enemy cannot assign any a priori probability to it without discovering it himself, one

must still live with the expectation of his eventual knowledge” [39].

The robotic vehicle that has been developed carries a variety of sensors and all experi-

ments that have been conducted have been tested with the sensors and actuators that the

robotic system has on-board. Sensor configuration other than the testbed may demon-

strate different results to what is then presented in this document. The data on the robotic

testbed has been collected on the external ZigBee network as well as on the internal CAN

bus. Communication between the nodes is evaluated as a data message consisting of up to

8 bytes maximum. However, with these limitations in its current state the methodology

should be potentially transferable to commercial products, especially if compatible with

generic vehicle architecture.

1.3.3 Objectives

We have set a series of steps that we are going through during the lifetime of this project

that enable the development of a mechanism for improving the cyber security of au-

tonomous robotic vehicles and reducing the risk of a disastrous physical impact from such

systems. The key objectives are:

1. Familiarisation with cyber attacks which are applicable to cyber-physical robotic

systems.
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2. Identification of standard test scenarios that can be used on the robotic testbed.

3. Development of a modular robotic vehicle testbed with current industrially relevant

technology that enables the gathering of data during the normal operation and

during the attack scenarios.

4. Collection and monitoring of data produced by the robotic platform and identifica-

tion of common indicators of different types of attack, through experiments using

the identified scenarios.

5. Development of a mechanism able to evaluate a cyber attack threat through its

impact and to identify it during standard test scenarios.

6. Critical evaluation of the extent to which the mechanism facilitates autonomous

detection of attacks in real-time.

1.3.4 Research questions

This project is concerned with the cyber-security of autonomous vehicles. The research

society is working towards cyber-security improvement using various paths, whether it

would be detection of cyber attacks, resilience while under cyber attack or recovery from

a cyber attack. This work has combined all these approaches and developed an autonomic

mechanism to detect, in real-time, the occurrence of a cyber attack, to evaluate the impact

of the attack and also evaluate the potential threat prior to the attack. The main research

questions are:

1. What is required for a cyber attack against an autonomous vehicle to take place?

2. How can a cyber attack be detected?

3. How can a cyber-physical robotic system evaluate a cyber threat?

4. Is it possible for a cyber-physical robotic system to self-detect a potential cyber-

threat and the potential impact of a cyber attack?
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In Chapter 1 we have discussed the introduction of this project, the necessity of cyber-

security concepts adaptation to robotic vehicles, there are many robotic vehicle applica-

tions that operate in a variety of environments. A malicious activity towards such systems

i.e. cyber or physical attack, may have a negative impact on the real-world environment.

Further in Chapter 2 a reader will find the Literature Review where we will discuss the

research pertaining to his field. The key focus in this chapter will be on the cyber-physical

threats to robotics vehicles and their existing vulnerabilities, which will enable us to de-

termine what kind of features need to be taken into account to detect a cyber or physical

attack on the vehicular system. The counter-measures for such attacks will be reviewed

considering signature and anomaly based intrusion detection systems. The robotic vehi-

cle testbed which has been developed for the purpose of this project will be discussed in

Chapter 3. In Chapter 4 a reader will find details on the approach for anomaly-based

detection of cyber-physical threats and the methodology of the approach. As a start-

ing point this chapter will cover the experimental environment and its unique features

in regards to behaviour definition. The cyber-physical and physical-cyber attacks that

have taken place during the experiments with the robotic vehicle testbed are discussed.

This chapter also contains the initial results that allowed the conceptual idea of detect-

ing anomalous behaviour using an anomaly-based approach to evolve. This evolution is

demonstrated from bottom up, starting by a discussion of the behaviour formation, lead-

ing to the development of heuristic binary classification approach and it being summarised

by evaluation of the results. This leads to an improvement where weights are introduced

to the heuristic binary classification that show a detection rate improvement. The further

discussion in Chapter 4 is on the integration of the real-time heuristic binary classification

into the robotic vehicle testbed, firstly through an emulation of the real-time detection

where data from the sensors was fed one-by-one (emulating real-time) showed real-time

detection feasibility which has led to an integration of a real-time defence mechanism on

the robotic vehicle testbed. The end of the chapter demonstrates the integration of the

heuristic binary classification approach and the Bayesian networks as a demonstration

of the interoperability of the proposed methodology with other available techniques. In
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Chapter 5 we will summarise this 3-year project referring to our defined aims and objec-

tives, with a discussion of achievements and the results followed by the suggestions for

the future work.



Chapter 2

Literature Review

Cyber security in cyber-physical systems and especially vehicles is a relatively new area

of study. Relevant research has focused primarily on proof-of-concept attacks [40] on the

integrity of sensing and actuation or the availability of communications. In most cases,

the proposed defence is limited to survivability and resilience through redundancy [20] or

prevention through authentication and encrypted communication [41]. However, this is

an overly optimistic approach, as attacks, especially zero-day attacks, do go through and

need to be detected. So, the focus here is on the intrusion detection techniques designed

specifically for mobile cyber-physical systems and robotic vehicles. Depending on its

architecture and application, a robotic vehicle may be able to benefit from communication

with other agents (multi-agent) or may need to rely solely on its own sensing capabilities

and monitoring processes (single-agent) [6].

A common approach is the multi-agent architecture approach, which focuses on coordina-

tion between different agents such as cooperation between vehicles using vehicle-to-vehicle

technology [42] or within the context of a swarm of robots [43]. Communication between

agents is an important feature in multi-agent architectures Urdiales et al. [44] have eval-

uated the performance of robotic position self-deployment algorithms and have studied

the mobile wireless sensor network concept that can be used for robotic applications.

This is because the external communication is a crucial monitoring feature that can be

19
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used in an intrusion detection system with a multi-agent architecture and may allow to

detect one agent’s suspicious actions, reports, configuration or location. The detection

criteria may include consistency with the laws of physics (e.g., whether velocity values

measured are physically possible or the location is consistent with the velocity measured

[8]), consistency with the sensor measurements reported by neighbouring agents [45], dy-

namic voting algorithms for security [46], reputation or consensus based [47]. Most of

these approaches and detection criteria become impractical in single-agent systems, such

as the single semi-autonomous robotic systems without the opportunity to coordinate

with other nodes. This demonstrates that the focus has to shift towards identification

of relevant characteristics that can be measured by system’s sensing capabilities. Such

sensing capabilities may stand as a standalone sensor which report raw values on the bus

or it may be a sub-system such as LiDAR which does the processing on-board and reports

of an outcome to the system with the results [48].

In some application domains, there are various sub-systems that are specified at govern-

mental level, such as the European Union legislation requiring vehicle manufacturers in

the European Union to integrate Tyre-Pressure Monitoring System (TPMS) on vehicles

(“Commission regulation (EU) No 523/2012 of 20 June 2012”). Based on the nature of

such monitoring sub-systems, such sub-systems normally have to be wireless. This intro-

duces an attack vector that potentially allows attackers to spoof these sub-systems’ sensor

readings. One of the potential scenarios could be that car thieves can follow an expensive

vehicle on the highway during night, spoof TPMS sensor values, and cause the driver to

stop to change a tyre as an example. Megalingam et al. [49] have noted that in most

cases TPMS sensor communication works on 433 Mhz wireless frequencies and propose

other wireless communication technologies to be used with more mature security solu-

tions, such as ZigBee communication. Yun et al. [50] see potential in ZigBee technology

and suggest to use ZigBee communication for other sub-systems that will incorporate var-

ious in-vehicle sub-systems into wireless sensor network. ZigBee communication protocol

is commonly used in wireless sensor networks as it covers the low power requirements of

nodes in adverse conditions [51]. This demonstrates the need for the development of re-
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source efficient systems, in terms of in-vehicle architecture it will slightly reduce the power

consumption of vehicle’s sub-system therefore reducing the emission of carbon monoxide

in vehicles. For this reason, Bluetooth is also commonly proposed [52]. Regardless of

the specific protocol chosen followed, the issue is that they all may feature flaws (in their

design or their implementation), which have been demonstrated extensively. This means

that when cyber-physical systems or a part of such systems are being developed using

technologies that are proven to be vulnerable, developers need to take into account the

security by design. This issue has been raised in a number of publications for a variety of

cyber-physical systems such as Bonaci et al. [53], who have proposed recommendations

to be taken into account when developing tele-operated surgical robots, Koscher et al.

[40] who have shown a variety of vulnerabilities in existing modern production cars and

Wolf et al. [41], who have provided several recommendations that should be taken during

the design stage of vehicles. There are a variety of attacks and attack vectors that can

be applicable to specific sensors or sophisticated attacks using a sequence of attacks that

can lead to malicious system behaviour.

2.1 Cyber threats to vehicles

An attacker’s intentions can massively vary based on their motivation, from financial gain

and system destruction, to cyber-warfare or even just curiosity and research. As a result,

attacks can also differ considerably in terms of aim, but also in terms of system appli-

cation and configuration, when the impact is an unmanned military vehicle, a driverless

car, a surveillance robot or a search-and-rescue robotic vehicle. Looking at the problem

from the perspective of the threat imposed to a system, Holm et al. [54] approach the

attacker as an object with certain attributes, such as skills and available time to penetrate

the target system, and conclude that the likelihood of a successful attack depends more

than anything on time and effort spent, especially in preparatory stages for information

gathering about the technical specifications of a system and fingerprinting the network to

identify possible attack vectors. Spending indeed over two years of research with multiple
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highly skilled researchers, an interdisciplinary research group [40] were able to identify

valid message IDs on the CAN bus of a modern car and then a variety of flaws, which

allowed access to the CAN bus, so as to utilise the identified IDs. Of course, the attack

was possible because cars do not have countermeasures specific to such attacks (which are

called fuzzing attacks). For detecting such a fuzzing attack, one could monitor network

features, because it affects communication and the impact will be on network utilisation

and data/communication integrity (Fuzzing tries to identify the functional ID’s by send-

ing random packets on the CAN bus). The large ratio of corrupted data introduced is also

highly indicative of the fuzzing attack, as commands are sent to/from non-existing IDs,

and data values exceed the expected range of values, exhibiting invalid message formats

or lengths etc.

Therefore, there is a need to identify what possible threats can exist for a special type

of system, as various resources can be used to destabilise an autonomous system. First

thought would be to use existing threat models for such systems, but due to industry

specificity very few would be applicable. McCarthy et al. [55] have produced a technical

report for the U.S. Department of Transportation with their findings and suggestions

on the potential security threats in modern automobiles. They state that the existing

threat models are uniquely designed for a specific industry and not always are applicable

to automobiles, therefore a hybrid can be used to make threat model more precise and

applicable for modern vehicles. To show the need for a threat model that could be

applicable to cyber-physical systems, few attack scenarios can be thought of. For instance,

consider a robotic system used in a medical environment to move in corridors and dispense

medicine to the patients. An attack aim is to cause a system to deliver the wrong medicine

to the patient. Another examples could be where an attack against a parcel delivery drone

is carried out and could have different aims, e.g. to steal the parcel, hijack the delivery

drone or if not plain curiosity motive. So, there are various factors that create different

threats, driven by different motives. Hamad et al. [56] have made an attempt to classify

attacker profiles in their threat model that are applicable to the vehicles. They emphasise

attack profile motivations such as fun or vandalism, unsophisticated attackers that use
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pre-existing tools without the back round knowledge or possible outcomes caused by such

attack. The outcome may vary as well based on the motivation. Abomhara et al. [57]

have done thorough research on intruder motivations and their structures. The work

was evaluating cyber security in the Internet of Things domain looking at the variety

of vulnerabilities, threats, attacks, intruders and their motivations. They have classified

possible attackers into certain groups such as: individuals, organised groups, intelligence

agencies. These attacker groups can have different motivations and their own motives for

financial gain, reconnaissance, cyber-warfare or even cyber-terrorism. From the literature

it is eligible to come to a conclusion that will suggest that cyber threats always persist

for the robotic systems, and the probability of a successful attack will increase in time as

was suggested by Holm et al. [54].

This led us to a concept where the robotic system is always exposed to a variety of threats

in time. We have produced a diagram to visualise the concept and the diagram is shown

in Figure 2.1 . The threats are accumulated as the time goes by, potentially increasing

the impact of an attack. This might not be a case when the system is well maintained

and being patched as new vulnerabilities are published.

Figure 2.1: Threat model used for threat to impact analysis

Figure 2.1 shows a proposed threat model, where the main weighting factors of a threat

are: Attack Motivation, Technology Knowledge, Type of Attack and Resource availability.

Threat in this context is seen as an object that has attributes and they have relationships.

Initially threat to the system will increase if an attack will be motivated by some means to
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compromise the system. The threat will increase as well based on the attacker’s knowledge

of the subject and his skill set. Motivation and knowledge have two way relationship where

the outcome will affect either the motivation or their knowledge about the system. This

leads to an assumption that an attacker will attack a system using known vulnerabilities

to identify whether the system is vulnerable to that attack or not. This may lead to an

outcome which may succeed or fail. Failure updates the attacker’s knowledge about the

system, which therefore will affect his motivation where he might decide to stop attacking

the system or will accept it as a challenge and will perform additional attacks identifying

system vulnerabilities.

As was mentioned by Rid et al. [58], we need to take into account the structure of an

attacker and their available resources. This means that an attacker can be an individual

person with research motivations, as well as an intelligence agency which has reconnais-

sance mission task during cyber warfare and access to number of cyber security engineers

which accumulate knowledge and motivation. We need to take into account the type of

an attack, in this model it is used as an attack vector or an attack access point, the im-

portance of this has been mentioned in Hamad et al. [56] work. This can be either access

to wired or wireless communication medium, physical access or remote access. One of the

examples would be that the malicious node was planted during system development, this

opens an opportunity for an attacker to access the communication medium such as CAN

bus and execute denial of service attack using single CAN frame disruption as was shown

by Cho et al. [59].

This could lead to a sleep-deprivation attack that can be executed using a variety of

techniques. For example, Chan et al. [60] propose to trigger modules using communication

protocol specifics or malicious software, so as to exhaust the energy available to them.

The key indications here are power consumption, network utilisation. An infected module

or several modules will transmit unnecessary data on the network and could manipulate

actuators to increase power consumption [61]. The power drainage would increase and

may show a detectable trend.



2.1. Cyber threats to vehicles 25

The opportunity of planting malicious nodes during system development has higher com-

plexity and is called a supply chain attack as it requires the involvement or exploitation

of manufacturers or suppliers of the equipment [62, 63]. Malicious software can be pre-

loaded into the firmware which will activate a logical bomb or trigger the program based

on pre-defined circumstances. Mo et al. [64] have analysed the impact of such attacks for

smart grid infrastructures. The danger of such an attack is that the equipment is initially

installed on an autonomous system and usually it will not disclose itself until a certain

point in time, or a specific trigger-event occurs. In terms of autonomous robots the pos-

sible indications of such an attack would be a change of behaviour, power consumption

or network utilisation. A sudden change in behaviour could lead to identification through

the detection of a periodic increase in power consumption and network utilisation when

malicious hardware is transmitting data periodically to expose sensitive information. Very

little research has been done in this area, however an increase in the level of autonomy in

the system or an increase in the number of electronic components, increase the possibility

of such a threat [65].

Another form of attack is when the communication link is hijacked without the system

realising, called a relay attack. Such attack can be applicable to autonomous vehicles as

well as semi-autonomous or remote vehicles [66]. Attacker can intercept communication

without system components noticing, some indications can be a sudden change in data

transmission timing. If this attack takes place it would be possible to notice a difference

in the data transmission arrival time [67].

For cyber-physical systems, a new attack vector is created, called sensor-based data in-

jection [8]. It is a type of physical domain attack where an attacker targets a vehicle’s

sensors and tries to generate false information. An example is when a robotic vehicle

operates in a partially anechoic environment (e.g. bushes), and is relying on ultrasonic

sensors. A sensor would generate data that the path is clear when in reality it would not

be, for example the ultrasonic pulse transmitted could be absorbed by a path-obstructing

object. Also Kho et al. [68] have mentioned that ultrasonic sensors have their disadvan-

tages and can be affected by the weather as well as other sounds can interfere with the
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ultrasonic response. In case if a magnetic compass is used for navigation it is possible

to attack this sensor using magnetic material, as an example placing a magnet near the

sensor, which would cause it to generate false bearing information. More sophisticated

approaches have been used as well by Petit et al. [69], who have shown that it is possible

to attack a drivereless car’s LiDAR system by generating an overwhelming number pulses

of the same frequency. This will force the LiDAR system to detect multiple objects that

do not exist or miss the ones that do, because it is forced to reach its signal processing

capacity (in a form of LIDAR equivalent of the denial of service attack experienced in

computer networks). Such attack disrupts main navigation units and is a threat to any

type of LIDAR-dependent autonomous system, such as Google’s driverless car.

In contrast to sensor-based false data injection attacks, there is considerable work in the

area of communication-based false data injection attacks. A variety of approaches can be

used, such as node hijack, relay hijacking or introducing a rogue node into the network.

In all cases, this type of attack aims to generate falsified data and usually to broadcast

it on the network. Based on the approach used there are some common factors that are

affected by this attack, as it is one of the common cyber attacks for cyber-physical systems

and it can be applied to a variety of applications from autonomous vehicles, smart grids,

smart homes or Internet of Things devices [70]. One common countermeasure proposed is

to apply reputation based techniques for autonomous robots [71], or detecting false data

injection attacks using voting algorithms in wireless sensor networks [72] and at a larger

scale in smart grids [73, 74]. The main monitoring features are the network utilisation,

data integrity and inconsistency. When this attack takes place there can be a noticeable

increase in network traffic, including repetitive data transmissions. The data received from

a node will have to be validated against expectations based on the long-term history, as

this data might not have a sudden effect (stealthy data injection attack [75]; however in

the long-run it might have a major effect such as a misguided path. The most common

cyber attack on majority of the system is a Denial of Service attack is used to disrupt

communication internally or externally which will have an effect on network availability

[76]. Recently it was shown that it can have other indications of an attack rather than
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be fully network communication based. Some of the indications are network utilisation

[77, 78] or availability [79], CPU load [80], and physical event detection (e.g. halting or

signs of chassis vibration) [4].

Communication jamming [81, 82, 83, 84] is an additional attack that is applicable to mo-

bile robotic systems such as autonomous, semi-autonomous or remote unmanned aerial

vehicles or unmanned ground vehicles. This attack is used to disrupt communication

between one autonomous device and other nodes within the system. The key factors are

network availability loss. This attack impacts on the physical domain so it will not be

possible to communicate with the autonomous system as communication will be unavail-

able. To increase survivability of a system it needs to have a mechanism that will cause

it to leave the jammed area.

Another attacks are GPS jamming attack [85, 86, 87]. This is highly noticeable as the

majority of systems that rely on GPS would be able to identify that a GPS signal has been

lost. If an autonomous vehicle is operating indoors or in other GPS-denied environments,

it may not be possible to identify whether the signal has been lost due to the environment

or due to an attack. However, it is possible to take several factors into consideration, in-

cluding the GPS signal strength and GPS data inconsistency. A GPS spoofing/meaconing

[88, 89] attack is where an attacker has an ability to fake a GPS signal [22], or transmit

delayed GPS signals to disrupt navigation of an autonomous vehicle. It is complicated

to identify such an attack as they both will qualify as legitimate from a systems point

of view. Detection features can be identified by monitoring GPS signal strength, signal

noise and data inconsistency. By keeping a history of GPS data it would be possible to

analyse the data and identify the expected position. It is noticeable that autonomous

systems are exposed to variety of threats that may allow an attacker to hijack a UAV [90]

or a yacht, where University of Austin researchers [91] have successfully demonstrated an

attack which forced a large yacht to change its course. The existing mitigation techniques

for such attacks are discussed in Section 2.3 where we review existing detection and re-

silience methodologies that are applicable to autonomous and semi-autonomous vehicles.

The summary of the attacks is shown in Table 2.1.
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Table 2.1: Summary of the attacks
Reference Attack Impact

[59, 76, 78, 77, 79, 80, 4] Communication Denial Of Service Lack of availability in communication
[81, 82, 83, 84] Communication Jamming Lack of availability in communication
[66, 67] Malicious Relay Information disclosure
[85, 86, 87] GPS Jamming Disruption of autonomous navigation
[88, 89, 22, 90, 91] GPS Spoofing/Meaconing Hijacking/Disruption of autonomous navigation
[62, 63] Supply-Chain Various, Logic bomb
[60] Sleep-Deprivation Battery exhaustion
[61] Rogue Node Various, Logic bomb
[70, 71, 72, 77, 74, 75] False Data Injection Various, sub-system operation disruption
[8, 69] Sensory Channel Attack Various sensor-dependent

2.2 Cyber and physical features

Here, by cyber features, we refer to characteristics relating to a cyber-physical system’s

networking and computation processes, and by physical features, we refer to characteris-

tics relating to the physical operation of the system, as captured by sensors [8]. Unlike

traditional computing environments, where intrusion detection is limited to monitoring

cyber features, relating to only data communication and processing, cyber-physical sys-

tems present the opportunity of also using features relating to the physical operation

of the system. For example, Vuong et al. [5] have shown that while monitoring solely

physical features cannot be a reliable method for detecting attacks, if used in conjunction

with cyber features, they can noticeably increase detection accuracy and reduce detection

latency.

Madan et al. [92] have carried out research on the cyber threats that are applicable to

unmanned autonomous systems. They have identified multiple vectors that are under

a threat such as Malicious software, Communication jamming, Information theft and

multiple other threat vectors. The variability of attack vectors creates a cyber threat

domain that allows an attacker to use sophisticated multiple-attack approach to achieve

malicious goals.

As an autonomous system which can learn from the data, it is necessary to ensure attack-

free environment, because at this stage system is vulnerable to variety of attack that may

impact overall operational performance. If an attacker is able to inject false data during
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robotic vehicle operation learning it may have delayed impact, even introducing slight

variation may have damaging impact on the actuators. The example would be when

Stuxnet worm was slightly modifying speed of the turbines which lead to their failure

[93], therefore the system may malfunction when placed in a real-world environment if

such an attack occurred. The cyber and physical features may demonstrate benefits in

terms of an increase of a situational awareness, secondly access to such features may allow

intelligent mechanisms to indirectly infer information from multiple sensors, for example

in a situation when a compass has failed on the ground robotic vehicle and the robotic

vehicle has to return to its start location, assuming that the vehicle knows its mission-start

pointing direction, the path can be inferred from the information such as wheel position

and motor speed [94].

2.2.1 Cyber features

Naturally, cyber attacks leave cyber traces, e.g. by causing a change in the processing,

the network traffic etc. So, it is crucial to monitor various cyber features because they

allow for improve situational awareness of the robotic system. In fact, this is the natural

approach used in almost all intrusion detection systems, whether for traditional computing

systems [3] or for cyber-physical systems [95]. Examples of cyber features include statistics

about the network traffic, such as network packet headers or content, processing, disk

and memory utilisation, etc. These can be measured against different environmental

conditions, the state of a mission and the performance of the vehicle at a given point in

time, to uncover evidence of a cyber attack affecting its ability to complete its mission.

2.2.2 Physical features

The physical features such as power consumption, wheel speed, chassis vibration [5, 8],

may improve the vehicle’s situational threat awareness. Additionally these features may

be used to map the decisions made by an operator or a decision making mechanism of
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an autonomous vehicle. Monitoring such features over a period of time while robotic

vehicle is in operation, it is possible to learn the patterns [96] that may allow to identify

particular decisions and can be used in an intrusion detection mechanisms. For mobile

robotic systems it is beneficial to monitor their position [45]. The summary of relevant

cyber and physical features can be found in the Table 2.2, the researched involved in

producing this table is a part of our contribution to Vuong et al. publication [6].

Table 2.2: Intrusion detection approaches and their cyber-physical input features of the
robotic cyber-physical systems

Ref. Type Comms Attack Types Input Features Detection approach

[45, 37, 46] Mobile CPS Wireless
Bad Command Injection,

Node Hijack

Position,
Battery Exhaustion Rate

Nodes Compromised

Dynamic IDS Voting,
Positional Discontinuity,

Enviroconsistency

[97]
Multi-Robot

System
Wireless Misbehaviour

Node Reputation,
Behaviour score,

Distance Estimation

Clustered Monitoring,
Voting

[53]
Robotic

Surgery System
Wired

Intent Modification,
Control Hijack

Motor Performance,
Network Performance

Recommendations
for Network Monitoring

[43]
Multi-Robot

System
Wireless

Denial Of
Service

Lack of
Connectivity

Network Monitoring

[4]

Remote-
controlled

Robot
Wired

Denial Of
Service

Motor Performance,
Network Peformance

Rule-based

[71, 47]
Multi-Robot

System
Wireless

Node Failure,
Node Misbehaviour

Network Performance,
Behaviour Score,
Node Reputation,
Neighbour State,

Neighbour Actions,
System Configuration,

Agent Position

Reputation Based,
Consensus Based,

Set-Valued Consensus

2.3 Cyber-physical intrusion detection

To prevent attackers from achieving their goals, a variety of intrusion detection techniques

have been proposed by researchers. Han et al. [98] have reviewed the challenges that may

arise while developing an intrusion detection mechanism, one of the challenges that they

mention is the complexity of the system’s architecture. Various applications, sensors or

actuators may introduce threat to the system, this therefore requires contextual knowl-

edge of the application. If context is being used as a monitoring feature, this reduces

the adaptability of the intrusion detection technique due to the system uniqueness and

variability of the sensor configuration, therefore intrusion detection techniques commonly

are application specific taking into account the contextual environment.
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Research in cyber attack resilience for such systems, has focused on detection using a

variety of techniques such as anomaly detection based on rule specification [37] where the

state is being defined using pre-defined system functionality. The approach by Vuong et al.

[4] shows that it is highly beneficial to monitor not only cyber but also physical features to

identify cyber attacks [6], for instance to reduce the false positive rate of detection and the

detection latency [5]. Various voting algorithms [46] where system nodes are interacting

with each other to identify an attack based on behaviour rule specifications have also been

proposed. A similar approach has been used by [47], where robotic multi-agents have a

reputation based on their observations and try to reach a consensus regarding misbehaving

robotic agents. Most researchers agree that a cyber-physical system’s security has to

be improved at the design stage and for this reason propose the use of more secure

communication [99] or the integration of gateway firewalls [41].

Another point of view is to evaluate mission success threats based on the risk of failure.

For instance, Orojloo et al. have developed a method for evaluation of the security of

cyber-physical systems [100] by measuring the mean time to system security failure with

regards to system components and different types of cyber attacks. Majed et al. [101]

have proposed a framework for evaluating cyber threat exposure for energy smart-grids

by using attack trees and attack-graphs. A variety of reliability [102] and survivability

[103] models have also been proposed for cyber threat evaluation.

Yampolskiy et al. proposed a language describing attacks on cyber-physical systems

[104]. This language would enable the impact of certain attacks applicable to specific

systems to be described. When it comes to threat analysis, there is little research done

on quantification of threats. One example from Sandia National Laboratories [105] uses

a threat-driven approach for cyber security evaluation of organisations. Some aspects

of their findings can be taken into account when a cyber-physical system is evaluated.

The majority of these approaches and frameworks take into account an attack based on

methods, conditions and impacts.

While very mature for conventional computer systems, the area of intrusion detection is
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relatively new in the area of cyber-physical systems, such as vehicles and mobile robots.

A relatively common approach is to use a human expert to first specify the safe and

unsafe states of the vehicle and determine a large number of rules that cover all potential

states, in what is known as behaviour-specification intrusion detection [37]. Rules can

also be determined through a more automated learning phase without the involvement

of a human expert: The vehicle is subjected to a series of different attacks, observing

their impact and training a machine learning system to recognise these. Examples of such

supervised learning approaches for the detection of attacks against robotic vehicles can be

found in [4, 6, 5], where the rules are formed by a decision tree, which takes into account

both cyber and physical features.

When a vehicle does not operate in isolation, but belongs to a team of vehicles, which can

make similar observations about their environment and each other, intrusion detection

can be based on the identification of misbehaviour of one of the members of the team.

There, reputation-based approaches [47] and voting algorithms [46] can prove very useful.

For instance, if one vehicle veers off the predefined route or reports very different sensor

data, this can be considered as an indication that it may have been compromised..

In most research presented above, researchers have taken into account attack charac-

teristics as input to identify anomalous behaviour. In other words, the type of attack is

pre-defined. This limits the practicality and likely effectiveness of a protection mechanism

to attacks that have already occurred and are known to the system at hand. Such pro-

tection mechanisms are called signature or knowledge-based and are capable of achieving

high level accuracy [106] with low amount of false-positives. The benefits of such ap-

proach are applicable to systems which are well maintained and the signature knowledge

is updated frequently as attacks can evolve and variety of attack vectors can be exploited.

However, these assumptions do not hold in most operational environments applicable to

cyber-physical systems, such as robotic vehicles, whether autonomous or not. Assuming

that a new attack will look like one that has been seen before is reasonable for conven-

tional computer networks, where millions of variations of the same attacks can be seen

in the same year. For cyber-physical systems, this is less so, because attacks are less
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common and have very different impact depending on the type of system targeted. As

a result, knowledge-based approaches, where the vehicle is trained to see specific attacks

perform poorly when they encounter new types of attack. At the same time, assuming

that a robotic vehicle will belong to a team, where group observation can help spot signs

of cyber compromise can be unrealistic in many operational environments

Researchers have experimented with methods for detecting anomalies, but usually only

for a particular aspect of a vehicle’s operation. An example for aircraft is the detection

of false automatic dependent surveillance-broadcast (ADS-B) messages, used by aircraft

to broadcast their position to other aircraft and to air traffic control. Strohmeier et al.

[107] achieve detection by monitoring statistics regarding the received signal strength

(RSS), as it is assumed that false signals would be coming from the ground and thus

would have different RSS than signals coming from the aircraft. A similar logic can

be followed to protect autonomous vehicles that rely on GPS signals, as, coming from

satellites, legitimate GPS signals are naturally much weaker than spoofed signals that

would come from a terrestrial source [108].

The authors of [109] have carried out a survey on intrusion detection and have mentioned

that the mobile nodes tend to be connected to wireless ad-hoc networks and suggests

using anomaly detection IDS on-board rather signature-based that tend to be integrated

on wired systems. Mitchell et al. [110] have proposed a specification based intrusion

detection approach for unmanned aircraft vehicles, where they transformed rules in to

states as features of the unmanned vehicle saying that if the system violates safe-states

it will be treated as an abnormal state behaviour. However, specification or rule-based

detection mechanisms act as certain limitations of variables such as states, sensor read-

ings or any other contexts. This leads us to a list of generic primitive intrusion detection

(which don’t take context into account) types which are: signature and anomaly based

[111]. To learn the context automatically, a variety of techniques can be used for ex-

ample using Neural Networks. Alheeti et al.[112] have proposed a hybrid methodology

for connected driverless cars that monitor the network and extract key features from the

data using proportional overlapping score. This has been tested on the Kyoto benchmark
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dataset which was gathered by honeypots and classified using a variety of methodologies.

Their findings show the necessity to use only the key features that will be a feed into an

Artificial Neural Network, their results showing an intrusion detection accuracy increase

by reducing the features that might be unrelated. Ali et al. [113] have followed their work

and used a combination of Forward-Feed Neural Networks (FFNN) and Support Vector

Machines (SVM) to form a behaviour that can be normal or abnormal, this research is

also focused on Vehicle Architecture Network (VANET) monitoring. They propose a re-

sponse mechanism to a grey hole and rushing attacks that will force vehicle to go in to safe

mode which will monitor the traffic on VANET so the vehicle would be able to identify

legitimate traffic.

Interestingly, there is also on-going research on intrusion detection system for the in-

vehicle network. Waszecki et al. [114] have proposed monitoring internal network traffic

using a simple Leaky Bucket approach. In their paper, they have applied this approach

to a single CAN bus feature, which is the frame arrival time, demonstrating that a simple

methodology not requiring vast amounts of resources is capable of detecting malicious

activity on the bus.

Based on the system resource restrictions, other approaches still may apply, such as the

work by Kang et al. [115], who have proposed to use Deep Neural Network (DNN) for

monitoring the CAN bus network and detect malicious activity on the bus. However,

DNNs are computationally heavy as they require a lot of processing power to teach the

neurons from the data, on the resource constraint systems this approach would be unlikely

be integrated. Nevertheless, Loukas et al. [116] have shown that they can indeed be used

if offloaded to a more powerful infrastructure, as long as the network is sufficiently fast.

This can both reduce detection latency and perhaps more importantly also reduce energy

consumption.

A further step was made by Theissler et al. [117], where multiple methodologies were

combined to form a hybrid that would be capable of detecting known and unknown at-

tacks in automotive systems using an ensemble-based anomaly detection approach. They
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have used four Two-Class classifiers which are: Mixture of Gaussians (MOG), Naive

Bayes, Random Forest and SVM. Additionally they have used four One-Class classifiers

which are: Extreme-Value, Mahalanobis, One-Class SVM and a Support Vector Data De-

scription (SVDD). All these classifiers in combination have shown high results for known

faults, as well as to the unknown faults. One-Class SVM has found its uses in cyber threat

identification of autonomous avionic systems [118], where researchers were able to detect

Teardrop, Fuzzing, Port Scan and ARP scan attacks.

2.4 Discussion

It is notable that machine learning is commonly proposed in intrusion detection for vehi-

cles, e.g. driverless vehicles, and also it is important that perception of IDS has gradually

shifted towards behaviour classification whether it would be rule-based [77], consensus-

based [47] or reputation-based [71]. Knowledge-based detection requires too much infor-

mation to be known beforehand, and can be particularly weak in the face of zero-day

threats. Considering that very few attacks have been recorded and studied for cyber-

physical systems, most threats are new threats.

Also notably, most research conducted in the field of cyber-physical intrusion detection

is based on mathematical analysis and simulation without experimentation with real sys-

tems. Arguably, there is a need for testbeds developed to support experimentation with

real attacks on real vehicles, especially autonomous and semi-autonomous vehicles. The

challenge there is not only in the design of the proof of concept ideas, but also in the

implementation given the severe lack of resources expected on such a system. Another

challenge is that monitoring multiple features means that the intrusion detection system

needs to account for the variety of value ranges for each feature. For example, infrared

sensor reports may be ”low, medium, high”, while distance sensor reports may be numeric

values.

In general, it appears that most detection approaches for vehicles are explicitly or im-
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plicitly system-specific. There is a need for an approach that can be applied across a

variety of vehicles, and adapt by learning what is normal for that vehicle, so that it is

also applicable to unknown/future threats. In the next chapters, we present a testbed for

cyber-physical attack experimentation for autonomous vehicles and methods for achieving

this dynamic behaviour-based cyber-physical intrusion detection, whose architecture and

logic does not require knowledge of the design of the system it protects.



Chapter 3

Robotic System Development

3.1 Robotic Testbed

To facilitate a detailed investigation of autonomous techniques to detect cyber-physical

attacks, we have built a richly-instrumented robotic vehicle testbed (Figure 3.1) with a

variety of different sensor types which are representative of those used in deployed systems

in real-world applications. The control system of the testbed comprises an integrated set

of modular embedded systems. It uses a variety of communication protocols that are used

in industry robotics, such as CAN [40], RS-485 [119], WiFi [120] and ZigBee [121, 122].

An overall communication architecture of the robotic vehicle can be seen in Figure 3.4

where all components are combined to illustrate overall testbed design.

Table 3.1: Robotic Testbed Installed Equipment
Feature Purpose
CAN bus Internal communication
ZigBee External communication
WiFi Media streaming
Compass Bearing Navigation correction
Pitch and Roll Angular momentum
Heatsink Temperature Electric load heatsink temperature
Robotic Arm Gripper Picking up objects
DC Motors Movement
Ultrasonic Rangers Collision avoidance

37
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System components produce signals and feedback that is used by other system components

to change overall system behaviour. Several components that are mentioned in Table 3.1

produce instrumentation data which are used as cyber or physical domain indicators

that can help identify a particular behaviour of a system, this will be discussed in detail

in Chapter 4. All sensor data are generalised and are treated as data sources. The

computational processing in the robotic vehicle testbed is distributed across the variety

of embedded processors on the testbed platform.

Figure 3.1: Robotic vehicle testbed

The robotic vehicle testbed consists of multiple computing node types, one of them is the

AVR-CAN development board with a AT90CAN128 micro controller unit, several of which

are used to host specific sensors, additionally a variety of sensing or actuating components

share their processing node. For instance, a single node is responsible for processing

bearing, pitch and roll sensors, whilst other node is responsible for the analogue to digital

conversions. Overall the system contains of six processing nodes, five of which are the
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AVR-CAN development boards that are clocked at 16 MHz, the other type of computing

node is the STK300 Kanda board powered by Atmel ATmega1281 micro controller clocked

at 8 MHz, which is responsible for navigation of the robot.

System components allow the robotic vehicle testbed to undertake a variety of autonomic

tasks, such as navigation based on the logical mission layer that represents a sequence

of steps given to the testbed. The sensors allow the vehicle to navigate autonomously

in an environment using the compass bearing to keep track of the direction, ultrasonic

rangers for collision detection and avoidance, and pitch and roll sensors to make direction

corrections and inform the system about the environment volatility. Additionally, the

system uses an informative meta-data sensor that measures the temperature of the heat

sink connected to the on-board voltage regulators which supply power to the camera

and the robotic arm. In this way, the system is able to determine if these heavy-current-

drawing system components are in use. These sensors and additional meta-data extraction

allow automatic characterisation of the behaviour of the robotic testbed vehicle whilst in

operation.

To gather the data for off-line analysis, we use an external workstation. The sensor

data from the testbed is collected and is stored in a knowledge base on the operator’s

workstation, however the sensor data which is being transmitted on the internal network

is stored on the Raspberry Pi Flash memory. The external communication between the

workstation and the robotic testbed vehicle is achieved through using a dedicated ZigBee

network. The ZigBee connection also allows us to transmit commands to the testbed (e.g.

to initiate missions). The main advantage of ZigBee technology is that it provides a low

power communication capabilities and provides various network topologies such as star

topology and allows to use peer-to-peer communication, provides data rates up to 250

KB/s [123] and it is commonly used for wireless sensor networks [124] or robotics[121].

The camera is a self-contained unit; its audio and video feed is streamed using a standard

WiFi communication protocol. An overview of high-level communication architecture

between the workstation and the robotic testbed vehicle can be seen in Figure 3.2.
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Figure 3.2: High-level communication

A variety of commands can be sent to the robotic vehicle as simple navigation com-

mands, camera or robotic arm control commands. Additionally, the vehicle supports

more complex mission task uploads. The command transmission is a one-way communi-

cation functionality, commands are only being executed if they are received from verified

ZigBee network node and are in a correct format. The robotic vehicle testbed does not

send any commands to any external nodes within the ZigBee network. The testbed will

periodically report its instrumentation data to a verified connected workstation. The

instrumentation report periodicity is one second, due to the low bandwidth ZigBee pro-

tocol and unique ZigBee ZE10 module behaviour it is not possible to increase sampling

rate with current equipment configuration. Therefore higher-rate sample aggregation is

performed on-platform on the sensor hosting nodes and a Raspberry Pi.

For the communication between system components internally, the testbed utilises CAN

bus standard. This communication protocol is used commonly as internal communication

channel in vehicles [40, 41]. The CAN bus is used to share overall sensor data from all data
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Figure 3.3: Internal Communication: gateways connect different subsystems

sources, including additional meta-data extracted during data analysis by the processing

nodes. The internal communication architecture is shown in Figure 3.3. If required the

data is re-transmitted to other nodes through gateways and collected at the reporting

node which will transmit data to the workstation when appropriate.

The software structure of the robotic vehicle testbed uses a layered architecture, which

separates the different levels of reasoning from the lowest physical sensor level, represented

by individual embedded nodes performing analogue to digital conversions interpreting sig-

nals into an understandable software language. This is shown in the Figure 3.5 and is

followed by a detailed description of each layer. The next-higher level is the classification

layer where data is analysed using statistical analysis approaches, such as exponential

smoothing to determine the trends in the data. A level higher, we have an autonomous

module controller layer which controls actuating capabilities based on the data received

from the lower layers of the model. The autonomic module controller layer is a set of

autonomic controllers that are carrying out their defined tasks, such as robotic arm move-

ment or navigational control. A mission layer then collects knowledge from autonomic
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controllers and evaluates if the expected mission goal has been achieved. The layered

software approach improves flexibility and maintainability in terms of a robotic vehicle

testbed programming, as it separates central and facilitates modular design. These layers

are implemented as a set of libraries that can be extended further.

Figure 3.4: Robotic Testbed Vehicle: Communication Architecture

In a real-world environment, there is a variety of physical threats to the system that

can be caused by an unknown factors, such as rain which affects the grip with the road,

windy weather that can affect vehicle’s movement or any other environmental factors

that may impact the robotic vehicle. An issue can arise when an attacker will target a

specific sensor to disrupt its activity during the learning process, this will affect an overall

operation of the vehicle at later operational stages. One of the examples would be to

disrupt a compass intentionally during the learning stage such that the robotic vehicle

will learn the disrupted pattern as being “normal”. We minimise this risk by securing our

vehicle from attacks during the learning process.
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3.2 Testbed Design: Physical Architecture

The robotic physical architecture consists of the base, four mecannum wheels that allow a

robot to perform a navigation in all directions including movement to the side [125]. The

base is extended using “Meccano” to increase space for the processing modules, this can

be seen in the Figure 3.1. The ultrasonic sensors are embedded in the base of the robot

which allow to monitor distance from all sides of the robot, additional sensors were added

to the robot as the robot was developed and placed in the appropriate locations. In terms

of actuators, the robot has four motors with a 64:1 gearbox, arm gripper and the camera.

The camera is controlled over the WiFi communication channel by an operator, other

actuators are controlled over the CAN bus or through a set of communication gateways.

The communication between the nodes is carried out using variety of protocols, including

RS-232/RS-485 standards, CAN, I2C/TWI. The details of the sub-systems and communi-

cation protocols are demonstrated in the Figure 3.7. The communication between various

modules is carried out over the CAN bus. In the system each module is responsible for

its task based on their mission role or a specific task. For example, the Motor Controller

Module would control the speed and direction. Other modules sense the environment for

obstacles and measure the environmental humidity and temperature, such context cre-

ates their role in the system. The conceptual idea is that the communication within the

testbed share their information on the bus and modules that depend or interested in that

data are using it.

3.3 Testbed Design: Logical Testbed Architecture

Flexibility and modularity in the testbed is achieved through a development of a concep-

tual logical architecture that can be distributed throughout the system. The idea is to

combine embedded systems and autonomous mechanisms in a layered structure, where

each layer represents a logical role in the software stack. The software stack is shown in
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the Figure 3.5.

Figure 3.5: Robotic Testbed Vehicle Software Architecture

The Physical Connection Layer – is used to show the physical connection between

system components whether it would be a wire or a wireless connection. This layer was

deployed as it can be a source of an attack for example in Cho et al. [59] work they have

demonstrated how an error can be generated by using aggressive interference (i.e. ignoring

CAN protocols and standards) on the CAN network that may force ECU to shutdown.

The Signal2Data Interpretation Layer – is used to express the embedded system

itself. This layer can be a sensor, actuator or a module which consists of multiple sys-

tems. The role of such system in terms of this layer is to convert digital or analogue

data to meaningful data. This layer also takes into account communication protocols as

they are required to be supported by an embedded system to translate the signal into

understandable data that can be used further.

The State Classifier/Collector Layer – is used to collect the data from all sensors

at the specific time to represent a state at “this exact” time. Also this layer covers the

periodic state sampling i.e. data samples from the sensors at the configurable moment in

time will be stored, the number of the data samples will stored as well as a contextual

information about the state which may be used as an indication of an attack or a failure

of the node.

The Situation Monitoring Layer – is used to identify the current situation of the

robotic platform which currently exists i.e. taking into account previous states and iden-
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tifying trends for each sensor. This layer calculation would allow to identify trend in

the data where it would be needed as this data and the state data would be stored in a

database in a system.

The Autonomous Module Controller (AMC) Layer – is responsible for making

overall decisions based on the current situation, making correction to the mission goal

and alter autonomic behaviour of the robot. This layer manages all available controllers,

as an example the Navigation Controller is able to make corrections to the vehicle’s speed,

but only the AMC layer is able to change the direction of the robotic vehicle or make any

other significant changes to current system behaviour.

The Distributed Controller Layer – is used to approach controllers as a structure con-

sisting of multiple controllers. These include: navigational controller which is responsible

for the control of the speed and regulate it based on the encoder feedback, environmen-

tal controller is responsible for obstacle detection i.e. will identify obstacles, measure the

temperature if required by the mission or monitoring battery discharge and possibly make

an independent decision on whether it should proceed with a mission. This information

would be shared with other controllers or actuators that could rely on the controller’s

data. All these controllers operate in parallel because they are distributed throughout

the system.

The Autonomic Behaviour Layer – is used as a rule-set of limitations and restrictions.

As an example during the mission the system should avoid any obstacles within the 50cm

range, or when platform identifies that it cannot exceed certain speed. Autonomous

Module Controller will make a decision, to set maximum speed restriction on the motor

speed, that the platform cannot exceed.

Mission Goal Configuration Layer This layer is used as a mission reference. For

example, it holds information on its patrolling mission such as path, speed, particular

restrictions for a particular step.

To summarise these layers we will briefly discuss them: an embedded system represents a



3.3. Testbed Design: Logical Testbed Architecture 46

physical connection and conversion of analogue or digital signals into meaningful data. A

classification system represents data collection from various sensors and actuators and its

classification in a specific context. An autonomous system represents a decision making

mechanism that takes into account collected data and controls a subject based on its

decision, restriction, mission or limitation. A mission system represents the mission goal

of a series of steps containing certain restrictions and change of behaviour. All these layers

represent their knowledge base of the facts. For example, an embedded system deals with

the physical system data, such as signals or raw data values. A classification system

classifies the data by adding additional context to the data, such as calculating trends,

averages or standard deviation. By performing such operations, the system transforms

original data into a meaningful contextual knowledge. This contextual knowledge is passed

to the higher levels, as there is no need to transmit the whole data set, this reduces

the overhead that needs to be transmitted reducing bandwidth requirements. The data

storage database has records of the instrumentation data and is able to provide access to

all data samples for all layers that request it, however this will increase an overhead if the

data handling is not robust.

The autonomous system deals with data that might be imprecise due to the higher level

of context already being available. To achieve higher level of power efficiency by reducing

processing requirements, the data needs to be transformed into something meaningful

that does not require additional processing. The example of such transformation would

be that the node one has access to the data set and the second node requires only the

mean value from the data set that is owned by the node one. If node one will perform

this calculation and will pass the result to the second node, the second node will have no

knowledge about the amount of samples. In this situation, the second node added the

context to the data and to reduce the knowledge requirement, the data has gone through

prior processing by the node one.
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3.4 Testbed Design: Functional testbed design

Here, we have chosen the Generic Vehicle Architecture style representation for our archi-

tecture [1]. The “Generic Vehicle Architecture” is the UK Ministry of Defence, Defence

Standard 23-09 [126, 127]. This ensures applicability of the approach in a large variety of

autonomous and other vehicles, such as those developed and used by the UK Ministry of

Defence.

Figure 3.6: Robotic Testbed Vehicle: Communication Architecture

The robotic vehicle testbed consists of three main busses. Internal system communication

uses the CAN bus and External communications which is commonly is used in the robotic

industry [121, 122, 40]. The CAN bus will interconnect all modules that are responsi-

ble for the autonomic behaviour of a system. The power system consists of sensors that

monitor the power supply. The sensor system is connected to a bus using different Gate-

ways dependant on the communication technology used by the system. The navigation

Controller is used to monitor and control the motors. The actuation system consists of

available actuators in the system and all connections to the bus are done using a gateway,

as different actuators may require specific communication protocols. The Central Control

unit will be responsible for mission execution, diagnostics and logical decisions and this
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will be described in the next section. As an improvement for our robotic platform we

will implement other wireless technologies that might bring additional attack vectors and

opportunities for intelligence gathering to identify the patterns of an attack.

ZigBee communication is used to supply the operator with instrumentation data. That

is if operators have to make changes to an existing mission, they can send a command,

sequence of commands or upload a mission to the system that is executed on reception.

Video and audio are streamed using a camera that is physically attached to the robotic

testbed. The communication is carried out using a dedicated channel to stream video and

audio feed, received by an operator. The operator is able to use a graphical user interface

to change cameras pan and tilt settings. The detailed architecture is illustrated in Figure

3.4 and 3.8. The power system consists of a monitoring sensor which measures the battery

Figure 3.7: Robotic Testbed Vehicle: Subsystem Communication Architecture

power supply levels. This knowledge can be used as a metric for attack identification, as

described in Chapter 4. All sensors in the system are distributed, and due to specificity

and uniqueness of each sensor or an actuator, they may or may not use the gateway to

access the main bus. The actuation system in the testbed supports a robotic arm using the

RS-232 communication protocol. The navigation controller is responsible for controlling

the vehicle’s speed and movement direction.
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Figure 3.8: Robotic Testbed Vehicle: High-Level Internal Subsystems Overview

3.5 Testbed Design: Behaviour Logic

Mission behaviour from a mission level perspective is illustrated in Figure 3.9. The mission

behaviour entities are defined as follows:

• Mission is a series of steps (e.g. move forward, read distance)

• Step is a series of actions (e.g. move forward avoiding obstacle hit)

• Action relies on sensors and their limitations (e.g. distance readings being limited

to 2 m)

• Sensors contain general attributes and sensor-specific attributes

The Figure 3.9 demonstrates the higher-level generalised logical mission behaviour of a

robotic system, where “Mission” entity has a series of steps, a step may contain series of
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Figure 3.9: Robotic Testbed Vehicle: Generic Mission Logic Behaviour

actions. All actions rely on the sensors that have their own attributes. The sensor specific

attributes are: Reliability factor, Priority and Normality threshold. The reliability factor

is a measurement which describes the reliability of the sensor and its accuracy. The

priority attribute defines the priority of the sensor for the step i.e. the step task is to

move forward enabling obstacle detection feature, the ultrasonic sensor will have high

priority as the step relies on this specific sensor. The normality threshold is the average
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deviation of the sensor.

For example, a basic scenario may be that the robotic vehicle has to scan a two-meter

square area for any obstacles, and if it finds any obstacles it notifies an operator that

attention is required. The operator at the mission level can set coordinates on the map

and enable repetition. So, the mission would be to drive on a square path, each side of a

square being 2 m and report if anything is found within a specific range. This can be split

into two repetitive steps, moving forward and turning, and within the step execution, it

takes into account all related sensors to the mission. This illustrated in Figure 3.10: As a

Figure 3.10: Example of Mission Logic Behaviour
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step consists of several actions, in context of a current mission these actions would require

to sample the range in all directions and actuate the motors controlling speed. From a

sensors perspective, it has certain attributes such as the reliability factor and priority.

For instance, ultrasonic sensors can be unreliable if a surface is made out of anechoic

material or angled (where ultrasonic signal can be deflected), therefore the reliability

factor being lower. Also it might be that the sampling rate can influence reliability.

Higher sampling rate can notice a change much quicker. The priority of a sensor will

be taken into account as well. During the step execution, sensors priority will be taken

into consideration, it might be that one of the sensors will fail, but it will not influence a

mission. So missions success will be unaffected and this sensor will be ignored. If a logical

processor is connected to the system it look for sudden changes, and makes corrections if

necessary, as demonstrated in Figure 3.10. This logical processor is a software based set

of rules which does the decision making based on the sensor readings. A logical processor

has the knowledge from all the sensors available on the system as well as metadata, such

as packet arrival rate.

3.6 Robotic Testbed Conclusion

To summarise, the robotic testbed vehicle has been designed to facilitate a variety of

experiments targeting different data sources and identifying behavioural abnormalities.

Our goal is to develop a methodology that will improve robustness of autonomous ve-

hicles using a sensor-agnostic learning approach where the type of data source does not

matter, as the requirement is to learn the “normal” signal characteristics, including noise

characteristics, generated by the data sources. This robotic vehicle testbed has been

built to conduct experiments for a variety of navigational tasks combined with robotic

arm actuation. Additional sensors can be added to extend evaluation of the behavioural

model.



Chapter 4

Anomaly-based detection of

cyber-physical threats

4.1 Introduction

To provide warnings against cyber attacks on an autonomous system, it is important

to establish the impact that different attacks have on the cyber and physical features

identified in Chapter 2. Our approach here is data-driven based on experiments run

using the testbed described in Chapter 3. This chapter describes the full evolution of

the methodologies that are discussed later in this chapter. The chapter starts with a

discussion of the experiment environment and the design of the attack scenarios, followed

by the initial study. The initial study will discuss our early thoughts, followed by an early

hypothesis testing through the experimentation. A reader will find discussions on the

decisions we have made and why some of the decisions demonstrated to be inconvenient

and required us to re-evaluate our proposed methodology, so a reader will find a mixture

of the latest results with an distinctly defined initial results. In this chapter, we discuss

different versions of the detection mechanisms which are: off-board and on-board, as well

as the offline and real-time detection. The data that has been used for the offline and

real-time on-board detection is different, because the data format is different, but at the

53
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same time the experiment environment and attacks were the same.

The initial experiments were based on a single mission step, where the autonomous vehicle

is tasked with reaching a predetermined destination relying on its sensing capabilities.

This was conducted along a narrow corridor on the fourth floor of the Queen Mary Court

building at the University of Greenwich. The experiment was repeated several times, first

without the presence of any attack, so as to establish what behaviour can be considered

normal for the specific scenario. The assumption here is that a behaviour that differs from

what is known to be normal can be considered as suspicious. This is then followed by

repeating the experiment several times in the presence of three different types of attacks.

These attacks have been chosen based on the literature review, cyber-physical attack

impacts that are demonstrated in the Table 2.1 and throughout the discussion with Dstl.

To represent an internal cyber-physical attack, we chose a highly damaging supply-chain

attack, which included a rogue node located within the internal network of the vehicle.

To represent a physical-cyber attack, we chose a sensory channel attack, where a magnet

was attached externally to the vehicle by an adversary with the purpose of preventing the

testbed from completing it’s mission due to an inability to navigate using the compass. As

representative of an external cyber-physical attack, we have chosen false data injection:

• Internal Cyber-Physical: Rogue Node launching replay attack (Supply-Chain at-

tack)

• External Cyber-Physical: False sensor data injection through external ZigBee com-

munication channel

• Physical-cyber: Sensory Channel Attack (Magnet affecting compass)

For each attack, we have reviewed the impact on different features (See Section 4.4.4)

against the intensity of the particular attack. Note that some attacks disrupt the robot’s

behaviour, while others may not achieve any perceptible impact. The aim here is to

identify those changes in the monitored features, which can help towards the detection of

an attack regardless of its outcome.
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Figure 4.1: The Experiment Environment

4.2 Experiment environment

The experimental scenario selected for this project is a mission in which the robotic vehicle

testbed has a simple navigation task to reach the end of a corridor using its own sensing

capabilities. The complexity of such a mission is not obvious. The uneven stone flooring

of the old corridor has an irregular surface which provides a non-trivial environment, with

slopes and bumps, which lead the robotic vehicle to change direction often regardless of

the existence or impact of any attack. The flooring has a variety of dents and lumps

that affect the testbed movement throughout the experiment and introduce a stochastic

randomness that is used to learn normal deviations. The uniqueness of the flooring

surface disrupts the direction of the vehicle, forcing it to continuously adapt the speed

of its motors and its direction to ensure that it maintains a safe distance from the walls

during the mission. The distance between walls is constant. This enables us to identify
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the behavioural profile of an environment based on the data source information. The

space is a controlled environment that does not change throughout the experiments and

was selected as it exercises all the sensor capabilities of the testbed. The reason that we

have chosen this equipment setup is discussed in Section 3.1.

The corridor is 28 m long and the distance from wall to wall is 2 m and has a set of

inset door openings on either side which allows observation of periodic behaviour in the

ultrasonic distance sensor signals as the vehicle passes by. The space used can be seen in

Figure 4.1.

The initial experiments were each repeated five times to ensure that the collected data

set was representative and these were used for the creation of the initial behavioural

profile. Two further experiments were used to evaluate the initial behavioural profile.

The behavioural profile was built using patterns in the variation and background noise in

the data sources. The focus was on the spikiness of the data variations and the variety

of deviations. The experimental environment facilitates repeatability and contains static

elements that can be used as guideline features during analysis of collected data, but it

also introduces significant stochastic elements which are essential for understanding the

normal levels of noise and variability in sensor signals.

The first step involves the learning phase, where over several runs we collect the learning

data set that will allow us to create a “normal” behavioural profile. The second step is

to evaluate the recognition of a “normal” behaviour profile, as well as the representative

normality value of a signature obtained during the learning phase. A signature character-

istics which are shown in Table 4.8 are applied to each data source (forming data source

profile), a combination of all learnt signatures for each data source will form a “normal”

behaviour profile of a system. This “normal” behaviour profile will be used to monitor

normality of the system. To reduce computational complexity it is possible to observe

system’s normality score without the need to analyse each data source and its behaviour

i.e. monitor an overall anomaly index score for the system, if an anomaly index score has

exceeded the normality range, the system will examine each data source for anomalous
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behaviour and the number of anomalies in its signature characteristics, this will allow

to reduce an overall computational power requirement of the system. This will however

potentially increase the false negative rate.

4.2.1 Normal scenario: Non-attack

The robotic vehicle’s mission is to reach the door at the end of the corridor, while navi-

gating the uneven surface, which forces it to continuously adapt its direction based solely

on its sensing capabilities. For the reference a reader can observe the data from several

sensors in Figure 4.2 during robotic vehicle’s testbed operation.

4.2.2 Cyber-physical attack: Rogue Node

This scenario evaluates a situation where a rogue node has been planted in the system,

typically through the supply chain. After a delay, the rogue node is activated, assuming a

logical bomb approach. When activated, it starts replaying packets that it can access on

the network, as described in Table 4.1. Although based on packet replay, this is effectively

an internal denial of service attack, which aims to overwhelm the internal network and

impede the exchange of messages/commands between the various internal nodes. The

attack was structured such that it would support variability, so a packet amplification

approach is used. The duration of an attack is an attribute that allows us to perform

attack for certain period of time. This attack was extended further with an additional

attribute where we execute attack 2 times i.e. per scenario the rogue node is activated

twice for 25 seconds. For the reference a reader may observe the impact in the Figures

4.5, 4.7.

Intensity Replay Packet Amplification Attack Duration Attack Repetition per Scenario
Low x3.5

25 Seconds
40 Seconds

2 TimesModerate x10
High x85

Table 4.1: Rogue node attack settings
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4.2.3 Physical-cyber attack: Sensory channel attack

Autonomous robotic vehicles rely heavily on the healthy operation of their onboard sen-

sors and associated communications and analysis systems. An adversary can attempt to

exploit the physical weaknesses of the sensing technologies employed to affect the success

of an autonomous vehicle’s mission. The example used here is to physically attach a mag-

net on the vehicle while it is moving. This affects the onboard compass and the associated

steering capability of the vehicle. The magnet is removed 40 seconds later to measure the

differences in the features before, during and after the physical disruption. The impact

of such attack is demonstrated in Figures 4.4, 4.8. This attack has been improved fur-

ther by introducing more structured approach and as an attribute attack we have used

distance between the neodymium magnet and the compass sensor. The complication of

repeatability of such attack is that we are unable to control the magnetic field accurately,

however further study showed that it has a massive impact on the navigation capabilities

which is noticeable by the detection mechanism, however in case where robotic vehicle

does not rely heavily on the sensor, the attack deviations might not be noticed.

4.2.4 Cyber attack: False data injection

In the external packet injection scenario, we have exploited the existence of a Zigbee

link that the legitimate operator uses to communicate with the vehicle. Here, the adver-

sary sends spoofed commands using Killerbee wireless devices [128]. A variety of data

types have been used to measure the cyber-physical impact of the attack on the features

monitored and the details of these experiments are shown in Table 4.2:

Sensor Data Packet Injection

Intensity
Delay between

packets
Duration Type of Data Recipient

Low 1 Second
40

Seconds

Sensor data only
(collected during robotic vehicle testbed development) (1)

(collected during robotic vehicle testbed operation) (2)

Broadcast
Message

Moderate 0.5 Second
High 0.3 Second

Command Data Packet Injection
Low 5 Seconds 40

Seconds
Command data only

(commands are: turn left/right, move forward/backward, stop)
Unicast
MessageHigh 0.5 Second

Table 4.2: External packet injection settings
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The data behaviour during such attacks can be observed in Figures 4.3, 4.6. Further this

attack scenario has been improved to make an attack more realistic, we have captured

the packets whilst the robotic vehicle was undergoing the mission, and these packets have

been replayed at the exact timing in other scenarios, so we would be able to evaluate if

the proposed method is able to detect slight variations in the sensor data.

4.3 Observable experiment results

Using the experimental results, we were able to identify a wide variety of changes across

the cyber-physical plane that can be attributed to each attack. In total, we were able to

gather real-time measurements for 17 distinct features which are noted in Table 4.3, both

physical (sensor-based) and cyber (communication and processing-related). As an initial

Table 4.3: Description of the data sources
Physical Features Cyber Features

Name Abbr. Name Abbr.
Battery Voltage DS2 Packet Arrival Time DS1
Compass Bearing DS3 Action Indicator DS11
Pitch DS4 Sequence Number DS12
Roll DS5 CAN Packet Rate DS13
Front Distance DS6
Back Distance DS7
Left Distance DS8
Right Distance DS9
Temperature DS10
Motor #1 DS14
Motor #2 DS15
Motor #3 DS16
Motor #4 DS17

study we have conducted attack experiments and were observing noticeable results which

are described in Table 4.4. The mission impact has been evaluated as visually observed

robotic vehicle behaviour and has been classified as None, Low, High and High (Failure).

The classification None describes that there was no observable impact on the robotic

vehicle routine-mission task, classification Low defines that there was slight observable
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Cyber attack Intensity
Significant changes across
the cyber-physical plane

Mission Impact

Rogue Node
(Packet Replay)

Low Increased internal network
packet rate (Figure 4.7)
Frequency of spikes
Coinstantaneous spoofed

sensor data from certain
sensors while under attack

None-Low

Rogue Node
(Packet Replay)

Moderate None-Low

Rogue Node
(Packet Replay)

High

Increased internal network
packet rate
Coinstantaneous spoofed

sensor data from majority of
sensors while under attack
(Figure 4.5)
Non-Responsiveness

High (Failure)

Sensory Channel
using Magnet

N/A

Abrupt change of compass
data to a new near-constant
value (Figures 4.4, 4.8)
Coinstantaneous sensor data

after the change
Inconsistency with mission

expectation from other sensors

High (Failure)

External Packet Injection
(Sensor Data)

Low-High

Increased external network
packet quantity
Coinstantaneous spoofed

sensor data from majority of
sensors while under attack
High frequency of spikes
Coinstantaneous sensor data

from certain sensors
Repetitive sensor data
Enviroconsistency from

previous mission knowledge
(Figures 4.3, 4.6)

None-High

External Packet Injection
(Command Data)

Low

Difference between operator’s
and autonomous vehicle’s
measurements of external traffic
Inconsistency with previous

mission knowledge

High (Failure)

External Packet Injection
(Command Data)

High

Significant difference between
operator’s and autonomous
vehicle’s measurements of
external traffic
Power consumption increased
Abrupt variation of actuator data

High (Failure)

Table 4.4: Cyber-Physical Impact Indications

impact such as delays on communication channels, High classification defines that the

robotic vehicle had observable misbehaviour such as disruption of navigation tasks, no-
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ticeable delay in communication, however the robotic vehicle was able to recover. The

High (Failure) classification defines full robotic vehicle disruption such as actuator failure,

unresponsiveness of communication and robotic vehicle was unable to continue its mission

and was unable to recover. As a reference Figure 4.2 can be used as it demonstrates the

ideal data variation during the normal experiment scenario, where y-axis shows the sensor

data and x-axis represents time.

Figure 4.2: Normal scenario run no. 3 sensor data
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As can be seen in the Table 4.4, different attacks produce a variety of unique impact

features. It is beneficial to monitor these and an example would be that during the sensor

packet injection attack the frequency of spikes produced are observed as seen in Figure

4.3. Further analysis of the packet injection attack impact on the signature characteristics

Figure 4.3: Sensor packet injection attack data behaviour

can be found in Table 4.5
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In the case of a physical attack we have noticed that the attack may be detected by

observing the behaviour of the change of the bearing in a sensory channel attack using a

magnet and this can be observed in the Figure 4.4. It is noticeable that during the attack

Figure 4.4: Sensory channel using magnet attack data behaviour

the bearing changed drastically followed by some slight changes and it then stabilised

having nearly coinstantaneous data behaviour. Further analysis in terms of signature

characteristics can be seen in Table 4.6.
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Another interesting fact was noticeable by looking at the data from the Rogue node attack

which is noted in Table 4.4 as it may have significant changes in the data similar to the

sensor packet injection such as frequency of spikes and increased network packet rate

(this can be observed in Figure 4.5. However it showed that by repeating packets on

Figure 4.5: Rogue node attack data behaviour

the internal network the attack increases the spikiness as well as coinstantaneous data

behaviour on certain data sources such as Battery Voltage, Pitch or Roll. This happened

because these data sources have low sampling rates, and because of the high intensity

oversampling of the mechanism that transmits the data to the workstation. The detailed

impact on the signature characteritics can be found in Table 4.7.

Additionally we identified that the command injection attack had constant failure rates,

therefore it was rejected as it has not allowed us to perform multiple repetitive scenarios to
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collect data due to a High (Failure) mission impact. We have evaluated the performance of

the proposed system using a prototype implemented on our autonomous vehicle, against

a number of different incidents, which the robot had not previously been subjected to.

4.3.1 Cyber-physical Attack C1: Replay Packet Injection

In this scenario, data previously collected are replayed with different intensities (1, 2, or

3 packets/s).

Figure 4.6: Impact on the sensors during Replay Packet Injection attack

The attack lasts for 40 s and starts 40 s after the start of the robotic vehicle’s mission.

Its impact on the senor data bearing is shown in Figure 4.6, where x-axis represents

mission time and y-axis represents the data measurement. An interesting input feature

was identified to detect replay packet injection as in the top-right graph represents the

sequence numbers, during normal operation sequence numbers are incremented by 1,

however in this case they are repeated multiple times as the mission time goes forward.
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4.3.2 Cyber-physical Attack C2: Rogue Node

In this experiment, a rogue node is integrated into the system and begins replaying packets

within the internal communication network. The attack has variable intensities and uses

amplification of the packet rate, where it replays each packet that is captured multiple

times. For attack scenario data set each attack is repeated twice using a number of

different amplifications. The experiment (Figure 4.7) includes two iterations of 25 s of

normal operation and 25 s of attack with a low intensity of the replay packet amplification.

Figure 4.7: Impact on the sensors during Rogue Node attack

This particular attack achieves an impact similar in nature to that of a denial of service

attack on a conventional computer system [129], causing a rapid increase in the network

utilisation.
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4.3.3 Physical-cyber Attack P1: Compass manipulation

In this experiment, a magnet is placed close to the compass sensor while it is in operation.

After 40 s of normal operation, the magnet is applied. It is removed after a further 40 s.

Figure 4.8: Impact on the sensors during sensory-channel attack

The impact on the bearing reported can be seen in Figure 4.8. Such a change dramatically

affects the vehicle’s orientation ability. For the other scenarios different distance was

applied between the compass sensor and the magnet. Also in the Figure we can notice

normal variation of the internal communication traffic (bottom-right).

4.3.4 Normal Failure F1: Broken wheel

This experiment occurred unexpectedly, as based on the learnt knowledge there was an

unexpected high number of false-positive alarms during an experiment. Further investi-

gation showed that a mechanical fault had occurred, as the mecanum wheel holder screws

had worked loose due to the vibrations caused by the previous experiments. Figure 4.9
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demonstrates the increased deviation in the bearing during the experiment, as well as the

abrupt changes in the motor feedback. This occurrence was noticed when scenarios were

evaluated based on the learnt knowledge of previous learning scenarios and the fault was

identified during the observation of the robotic testbed vehicle. These runs have been

Figure 4.9: Impact during broken wheel incident

included in our analysis to explain the methodology and also to demonstrate the ability

of this model not only to identify an attack, but also to identify mechanical faults as

well. The fact that our signature method revealed this unexpected issue, validates the

sensor-agnostic approach.

4.4 Forming signature pattern

In this section we will discuss the methodology for normal behaviour identification and

further analysis of the anomaly detection leading to a methodology to achieve further

improvements. One of the key hypotheses tested by the approach followed in this project is

that cyber-physical security for an autonomous vehicle can be achieved by simultaneously
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monitoring digital and physical information regarding its state. Towards this goal, this

report details a set of experiments performed with an autonomous vehicle undertaking a

relatively simple task of navigation in a corridor under normal operation, as well as in the

presence of a variety of cyber-physical attacks against it. These include internal attacks

involving a rogue node implanted through the supply chain, a sensory channel physical-

cyber attack, as well as external cyber-physical attacks based on command injection, both

sensor data and communication based. In our experiments, the robotic vehicle measures

17 different features in real-time. The experimental results indicate several interesting

changes to the real-time values of these features, which in some cases clearly indicate a

specific type of attack.

The methodology used to identify normal behaviour is focused on measuring the vari-

ability of the data sources to enable us to form a reasoned quantifiable value that will

represent normal behaviour. Such an approach allows a robotic system to evaluate its

past and present behaviour to determine if the system is under attack by measuring

anomalies that are coming from the various data sources. It will be demonstrated how

an experimental behaviour model methodology is validated through a set of experimental

results that were gathered in a controlled environment. The identified normal behaviour

definition will be used as a reference to demonstrate how a behaviour pattern model

can be used in cooperation with anomaly detection techniques to improve cyber attack

identification. Anomaly detectors are attached to data sources that are available on the

system to increase the accuracy of anomaly detection within the system. The discussion

here will cover the early approach towards integration of a defence mechanism on the

existing system and on its operation. In the appendices a reader will find the results from

data sources that were used in development of a pattern model and validate the approach

towards the security of autonomous vehicles using behavioural and anomaly detection

approach.
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4.4.1 Attack Detection Methodology

In this section we will evaluate our behaviour model with the set of data that has been

gathered through our experiments and we demonstrate that the behaviour model is ca-

pable of identifying abnormal behaviour.

Attack detection in autonomous systems is a challenging task, as the system is exposed

to a real-world environment where a lot of unknown factors can exist that cannot be

predicted during a mission. So a robotic vehicle has to learn its operational environment

to be able to refer the operational behaviour to normal behaviour. By detecting anomalies

it will decide whether it is an attack or the vehicle’s behaviour is within normal condition

bounds. For autonomous vehicles it is a challenging task to identify an attack, as a

vehicle heavily relies on its sensing capabilities, monitored data and possible threats from

a real-world environment.

Our aim is to use an experimental approach and develop a mechanism that is able to

identify an attack with a high precision rate using anomaly detection techniques and

methodologies. We assume that the system is fault-tolerant, and the only threats are

raised from the cyber-physical domain. Our findings have demonstrated that it is possible

to identify abnormal behaviour by monitoring deviations in real time.

The attack detection approach consists of several stages. The first stage requires the

robotic testbed vehicle to learn its surroundings to identify normal deviations that can be

caused by a real-world environment, gained knowledge is used as a definition of the robotic

vehicle normal behaviour. The next stage required additional validation testing to allow

the system to evaluate itself and identify any anomalies in the signature characteristics

that may arise during normal operation. The number of these anomalies (throughout all

signature characteristics) for a single data source are assigned as an individual “anomaly

allowance” for a specific data source. To improve intrusion detection capabilities of the

IDS, a weight scheme is generated as described in Section 4.6.2. The weights are generated

based on the frequency that anomalies occurr in a certain signature characteristic. For
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example, if the anomaly occurrence is frequent for a specific characteristic, its weight

is reduced. This reduces the impact on the further behaviour formation. The next

stage requires the system to monitor data in real-time and perform statistical analysis

to identify anomalies that can be caused by the environment. If the system recognises a

higher number of anomalies than were identified during the learning stage, the autonomous

vehicle system evaluates monitored data from other data sources. Multiple data sources

are evaluated to identify whether the vehicle operates within normal levels. If multiple

data sources detect greater number of anomalies, such behaviour is classified as abnormal.

4.4.2 Identification of Normal Behaviour

Normal behaviour can be defined in various ways and can have a variety of attributes

included which identifies such behaviour. However with every combination of attributes

the definition of normal behaviour will require additional resources.

To define this normal behaviour we have used an approach that would allow us to quantify

the robotic testbed operation. The focus of our experiments was to have data from

multiple runs of the same scenario, in the controlled environment, where each run can be

unique as the robotic testbed vehicle often changes direction which it then needs to correct.

To do this we have developed an experimental behaviour model based on patterns that

measure deviations (as shown in Figure 4.10) and produce a score for each data source.

This approach will be discussed in more detail in Section 4.4.4. Normal behaviour was

identified by executing the mission steps several times to gather data that would represent

our defined normal behaviour. The aim of these runs was to identify noise levels that are

then used for normal behaviour forming. In real-world environments, autonomous vehicles

can encounter sources of noise that might disrupt the their sensing capabilities, such as

motors disrupting the electromagnetic field that influences the compass readings.
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4.4.3 Behaviour Initial Analysis

At the stage when data is received from data sources, the robotic testbed vehicle has to

learn the environment through the noise levels from the data sources. Data sources have

their own levels of unique operational noise which can be used to identify anomalies, a

system then evaluates trends and normal variability in the data. Figure 4.10 shows how

the data from the data sources is processed to identify normality. The Robotic vehicle has

to reason based on the raw data from the sensors and collect valuable information that

it can use for normal behaviour definition. For the data analysis, we use the following

features:

• Short-term trend analysis

• Long-term trend analysis

• Exponential Smoothing

• Variability

• Deviations

• Spike energy (Area that exceeds defined normality range)

Figure 4.10: Exponential Smoothing and Variability
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Every data source is analysed as a separate entity. As mentioned earlier, the data sources

can have their own unique features which in some cases are better indications of an

attack than others. Here we measure the quality of indicators of various data sources as

an indication of an attack. For example, for temperature it would be common to have an

increasing trend but high variability would be unusual. We aim to classify these unique

features of data sources to form behaviour, that would be analysed in real-time. Heat sink

temperature that we use on our robotic testbed can provide information on the system’s

functionality i.e. on our testbed system, the external heat sink has two voltage regulators

attached that power up the wireless camera and a robotic arm. If these functionalities

are used, the heat sink temperature will increase by dissipating resistance heat because

of the load applied on the voltage regulators. So, in the future, relations can be created

between data sources to identify anomalies in the system.

By analysing the data, we have learnt that the robotic testbed vehicle when exposed to

a real-world environment running multiple experiments, each experiment may produce

abnormal data at a specific moment in time. This leads to the introduction of a concept

where a certain amount of anomalies will be accepted and these anomalies will be used

as an indication of an anomalous behaviour. For example a robotic vehicle knows that

during a mission it may see two abrupt changes within a specified time frame but if the

robotic vehicle encountered more anomalies it will trigger an alarm. One option that

we have used for the analysis was to monitor data deviations using multiple thresholds

i.e. as a baseline we calculate the mean value of the sensor data readings, thereafter we

calculate the standard deviation. If the data deviation exceeds the region between 0.5

of standard deviation and 1 standard deviation this will be identified as a spike in this

region. If the sensor reading deviates more than 1 standard deviation it will be counted

as a spike in another region, these regions are not limited to a specific number and can be

identified autonomously from the data. This allows us to measure the anomalies within

the specific region between the lowest and highest thresholds. Additionally the contextual

information can be extracted if an anomaly exceeds a higher threshold, as we can measure

spike severity level i.e. a glitch in the data might appear which will exceed the region
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and will only appear in 1 data sample, this is counted as low severity level. However if

the data readings exceed the region for the following 10 data samples, then the severity

level will increase. This would allow the system to evaluate the spike and decide whether

it poses a threat to the system. Normal bearing variation from an evaluation scenario is

being shown in Figure 4.11, the spike severity level can be seen from a sensory channel

attack scenario bearing deviations shown in Figure 4.12.

These thresholds can be used as a warning of a threat and for threat classification. It would

be beneficial to identify regions automatically and these would be able to be tuned whilst

the robotic vehicle operates. A reinforced learning approach is more feasible for such a

task as it would be possible to access the knowledge base that will be developed through

a learning stage, and then through the robotic vehicle operation the data sources would

evolve. We have mentioned earlier that during normal operation it would be arduous

Figure 4.11: Normal Behaviour (Bearing Variation)

to avoid glitches in the data that can be caused by a real-world environment. We have

mentioned that measuring the area of the spike would allow the model to identify the

severity of the deviation. By tuning the data source knowledge base, it is possible to
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take such glitches into account and compensate their severity as they are expected to

happen, thus increasing the precision of the identification of the anomalies when in the

presence of a threat. In Figure 4.12, one can observe that the energy of the spike (area

of the spike over the highest threshold) exceeds the spike energy that is found during the

normal evaluation scenario experiment. This demonstrates that the described approach

has the potential to be able to detect an anomaly. Such an approach can be used to

Figure 4.12: Sensory Channel Attack Behaviour (Bearing Variation)

perform the initial analysis allowing us to extract reasoned meta-data that can be used

for instantaneous anomaly detection. All these features that we collect are described in

this section and will be used to identify normal behaviour patterns. The raw data from

the data sources can be found in the appendices to demonstrate to the reader the kind of

observable impact different attacks may have.
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4.4.4 Forming Behaviour Pattern

In the previous section, we have described the features that will be used for a pattern

definition. The experimental pattern model is capable of quantifying our robotic testbed

activity by measuring the features described earlier and producing an activity score. This

score is represented by the deviation coefficients of each reporting node of the system, this

enables a sensor agnostic approach through generalisation of all reporting nodes such as

sensors, sub-systems or received commands. In the initial study all data source anomalies

were treated equally, further when the weighting mechanism was introduced, that has

emphasised anomalies that never been seen, and reduced the value of anomalies that tend

to occur frequently. This has been done as a proof of concept for this approach. The key

feature of the pattern is that it allows performing a calculation on the system, which has

processing power, to determine that the system behaves within the defined normality. The

data source behaviour is represented by the signature which consists of multiple signature

characteristics and is shown in the Table 4.8.

Raw data thresholds are gathered as they demonstrate the minimum and the maximum

values of the data source while the vehicle is undertaking an activity. The combination

of features can produce other features that will enable the identifying the differences.

The difference between raw data and the exponential mean can determine the changes

that can be expected while the robotic vehicle is in operation. We are also interested in

measuring the standard deviation in real-time that will allow the system to develop an

expectation threshold when the defence mechanism is integrated onto the system. The

standard deviation is a key feature that would have a higher weight, as our pattern model

demonstrated that it influences the overall score significantly and is one of the main

features used for anomaly identification. Earlier we have mentioned that we cannot avoid

glitches in the data on an autonomous vehicle as we can’t predict all characteristics of

their operating environment at the design stage. If we increase thresholds we might start

losing key indications of an attack which could lead to a cyber attack going unnoticed.

The pattern model will exploit them as noise in the data source behaviour and use the
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spike indicators for a behaviour definition and in evaluating spike severity.

These indicators will be merged together with the same scenario experiments to help us

identify the key indicators of specific attacks that can then be used in this project. We

will review physical and cyber attacks to make our model more precise. The behaviour

pattern model demonstrated its ability to identify cyber and physical attacks and the

approach that we are using by attaching anomaly detectors to each data source enables

identification of the malfunctioning module, which raises a threat to the mission or func-

tionality. To demonstrate that this model works, we have run multiple activities that

allowed us to gather enough data for analysis. Figure 4.13 shows how normal behaviour

was represented initially using our pattern model, where the bottom part with numbers

represents the mean value for each signature characteristic, on the right the mean of all

signature characteristics is shown.

We have extracted signature characteristics from all sensor readings that our system had.

Initially we have used an average value of all available sensors to see if it is possible to

quantify our overall scenarios. The mean values that were produced were used as an initial

score, the figure demonstrates every run used in the experiment, average values of each

characteristic and the sum of the averages that represents an experiment score. These

values were not normalised at the time of the experiment. In our initial study to define

normal behaviour we have taken five test scenarios under normal conditions to evaluate

our methodology. We have applied the pattern model for the data we have gathered and

produced a score to define normal behaviour.

Figure 4.13: [Initial Study] Evaluation of Pattern Model

When we got the score for our normal behaviour learning set, we have run additional test
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scenarios to evaluate our model. The expectation was that the score will be similar to

other normal behaviour scenarios; this is shown in Figure 4.13 and it has validated our

normal behaviour approach. This table shows the specifics of a robotic vehicle run and

its activity status in a numerical representation including the signature characteristics’

averages used for informative purposes. From a learning set we can learn the thresholds

that we can expect if we enable anomaly detection in the system. As mentioned previously

reinforcement learning would allow the dynamically adjustment of data sources through

a life cycle of a robotic vehicle. Normal behaviour validation allowed us to proceed to

the next step and set up a variety of thresholds that would allow us to identify malicious

data sources due to a physical or a cyber attack. Our testing set allowed us to learn the

number of normal anomalies that are considered as normal behaviour within the system.

Figure 4.14: [Initial Study] Data Anomaly Analysis (Normal Data Set)

The anomaly detection itself uses the actual data and referring to a learnt signature of data

deviation averages. For identification we use the average deviation and the exponential

mean to create a limitation or a spike region. Then we compare the actual data source

to identified deviations and if the actual data exceeds specified limit, they are marked as

anomalies.

We have used our testing set as a learning set, to identify the number of anomalies that

the system will consider a normal condition. As we can see from the Figure 4.14 the

battery signature shows four anomalies in one run, which affects the minimums and the

maximums of the signature characteristics and is due to battery discharge i.e. the battery

voltage is lower than it was during learning data set. The quantity of these anomalies are

treated as an anomaly allowance for this individual data source during the robotic system
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normal operation.

The number of the anomaly allowance is identified automatically from the data and is

assigned to an individual sensor or the data source. In this current case, the battery

voltage feature will have an allowance of four anomalies within the signature space, if the

number of anomalies exceed this limit (four anomalies), the data source will be classified as

having abnormal or malicious behaviour. The anomaly allowance is identified during the

testing stage and is assigned to data sources individually, because different data sources

may have different behaviour. As this behaviour is identified from the data directly, the

anomaly allowance for each data source may vary based on the robotic system operational

environment or sensor type. The same approach is visualised for a different sensor and is

demonstrated in the Figure 4.16.

The system can validate other sensors and if the defence mechanism identifies more than

one malicious data source it can be treated as an attack. Such an approach allows to

identify a malicious data source. When a malicious data source was identified it is pos-

sible to validate the overall system stability and act appropriately by applying resilience

techniques or ignoring the data source as it has no impact on the mission success. How-

ever, this attack mitigation technique has to be aware that if there is a malicious node in

the system that will falsely inject packets pretending to be another node, this may lead

to a problem where an attacker can force the system to ignore a correctly operating node.

Such a sophisticated attack is out of scope of this project, however it is necessary to take

into account such possibilities. In that case additional hardware or software solutions

will have to be installed to resolve such issues. Such as, adding additional diagnostic

solutions to evaluate the data source health or hardware solutions that will manage the

power supply of data source. When the initial normal behaviours were identified in our

initial study, based on the score which is represented by a sum of all deviations in the

system, we performed pattern model validation using the attack scenarios data set. The

resulting scores can be seen in Figure 4.15. It is demonstrated that the pattern model

allowed us to evaluate the attack scenarios and with a high precision rate we can identify a

cyber attack using our pattern model approach. During the normal behaviour evaluation,
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Figure 4.15: [Initial Study]Evaluation of a Pattern Model (Attack Data Set)

we have seen the score of all system deviations which potentially allows to use it as a

reference, additional parameters can be added to this model to tune the sensitivity which

will introduce the range of normality.

Figure 4.15 demonstrates the score of all deviations in the system during the attack

experiments. The scores are much higher than the learnt normal behaviour and the

normality validation experiments. However it was not able to classify abnormal behaviour

in several cases where a rogue node attack was used. This was due to the low impact

on other systems. However it was noticeable that the proof of concept has potential

and was able to classify the experiment runs. The concept is not perfect and there are

cases where it will fail to classify an attack experiment. For example, the compass sensor

reports no deviations from the learnt normality but there is a temperature increase of 10

degrees (acting abnormally). This will raise the score insignificantly allowing abnormal

behaviour of the system to go unnoticed. For this purpose deviation coefficients were used

to normalise the data deviations. The rest of attack scenarios have a significant increase in

the score in respect to the learnt normality score. Additionally from normal experiments

we have identified that at any point in time during the experiments it is possible to notice

multiple data source false-positive classifications and as was mentioned earlier that this

methodology takes into account anomalies that act as monitoring features for detection of

an actual threat. In combination these two approaches, which are to monitor deviations

in the data of a data source and to monitor the number of anomalous data sources will

allow it to evaluate the system behaviour and a potential threat to the system. From

our experiments a variety of attacks showed an increase in multiple features that we were
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collecting, such as variance in sensor data injection attack or the number of spikes in

all attack scenarios. By using both methods which are anomaly detection, based on the

deviations and pattern model, we can tolerate glitch reactions that are caused by the

environment or are randomly generated by the data sources.

4.4.5 Experiment Impact Analysis

In this section, we discuss attack impacts, impact factors and how various data sources can

be used in combination to identify an attack. We had discussed earlier how we evaluated

the normal behaviour of our testbed vehicle using the collected test scenario data set to

identify the normal anomaly levels to identify an attack.

4.4.5.1 False Data Injection Attack

The first attack is a Sensor Data Injection Attack using the external network. In this

scenario an attacker was able to capture packets when the testbed vehicle was going

through a testing stage, while under development. The data that an attacker was able to

capture was:

• Battery Level (Units: mV Range: 0-15000)

• Bearing (Units: Degrees Range: 0-3600)

• Pitch (Units: Degrees Range: -90 - +90)

• Roll (Units: Degrees Range: -90 - +90)

• Ultrasonic Range Meters (Units: cm Range: -1(NaN) - 250)

• Temperature Units: (Degrees Celsius)

While a robotic vehicle is carrying out a mission step, the attacker uses a packet injection

replay attack on the communication channel between the robotic vehicle testbed and the
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operator. Using our pattern model approach for the detection of anomalies, we are able

to identify data sources that are affected, as seen in Figures 4.5, 4.6 and 4.7. Table 4.5

P
acket

A
rrival

R
ate

B
attery

B
earin

g

P
itch

R
oll

U
ltrason

ic
R

an
ger

M
eters

T
em

p
eratu

re

S
eq

u
en

ce
N

u
m

b
ers

In
tern

al
C

om
m

s.
R

ate

M
otors

Raw Data Minimum X X X
Raw Data Maximum X X
Exponential Data Minimum X X X X X
Exponential Data Maximum X X X
Exponential Deviation Minimum
Exponential Deviation Maximum X X X X X X X
Spike Region (0.5*Std >x <1.0*Std) X X X X X X
Spike Region (1.0*Std >x <1.5*Std) X X X X
Spike Region (1.5*Std >x <2.0*Std) X X X X X X
Spike Region (x >2.0*Std) X X X X X

Table 4.5: Sensor Based External Injection Attack Impact

shows that while the robotic vehicle is under a false data injection attack using sensor

data, additional data sources are affected as well. It is observable that the deviations in

some data sources exceed two standard deviations from the learnt data. There is no major

observable impact on the system itself. Even though the mission impact is unnoticeable,

it is clearly shown that the system is capable of detecting anomalies. Such a detection

system can be distributed over the robotic vehicle and an operator’s machine to increase

its ability to detect an attack and react accordingly to a raised mission threat. The key

indications of such an attack would be an increased variance in the data and the spikiness

levels in a manner that is distinctly noticeable in Figure 4.6.

4.4.5.2 Sensory Channel Attack

During the sensory channel attack, the attacker generates invalid data by influencing the

magnetic field that is used by the compass module. This is done using a magnet that is



4.4. Forming signature pattern 83

strong enough to disrupt the magnetic field.
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Table 4.6: Sensory Channel Attack Impact

When the results of a sensory channel attack were evaluated we were able to determine

the affect of an attack on the system. By injecting false data, multiple data sources where

affected allowing us to determine if the vehicle was under attack. All impact indications

for the sensory channel attack experiments can be seen in Table 4.6. A major impact

can be seen on the actuating capabilities of the robotic vehicle due to its autonomy

i.e. magnetic readings were falsely injected through the physical domain and the robotic

vehicle went into recovery mode and was trying to correct itself to follow the specified path.

However due to an attack the vehicle was unable to recover its position correctly. Sensing

redundancy could be used for specific recovery states that are unknown to an attacker

to improve a system’s limitation and resilience to such attacks. One of the improvement

that can be done towards the identification of a compass manipulation attack is thorough

analysis of the deviations that show abrupt changes. An example of such deviations is

shown in Figure 4.12 where the energy of a spike can be analysed to improve anomaly

detection.



4.4. Forming signature pattern 84

4.4.5.3 Rogue Node Replay Attack

To evaluate the rogue node replay attack we have used a number of different intensities.

The impact of an attack can be seen in Table 4.7. Low intensity replay attacks might

have an unnoticeable observable effect; however it can have a long-term impact on the

system itself. Intensity specification can be found in Section 4.2.2. The Stuxnet worm

which infected Iranian SCADA systems was slightly modifying rotational frequencies of

centrifuges which led to the failure of the actuators.

(L)
Low/Moderate

Intensity

(H)
High Intensity incl. (L)
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Exponential Maximum L L
Exponential Deviation Minimum H
Exponential Deviation Maximum L L L
Standard Deviation (Std) H L L L
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Spike Region (1.0*Std >x <1.5*Std) L L L H
Spike Region (1.5*Std >x <2.0*Std) L H H
Spike Region (x >2.0*Std) L H H

Table 4.7: Rogue node replay attack (mixed intensity) impact

A low intensity attack can have a long-term effect on the autonomy logic when various

machine learning techniques are used. From our experiments we have also noticed that

an attack has an effect on the actuators of the robotic testbed vehicle, which could lead

to their failure as they are wearing out the actuators resource. In the case of a high

intensity attack, the robotic vehicle testbed had failed. In this attack scenario we can

notice fewer indications of an attack itself, to improve identification it would be possible

to measure the quantity of allowed anomalies, and if they exceed the normal behaviour
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could be classified as abnormal and treated appropriately.

4.4.6 Detection Methodology Analysis

In this document we have discussed our methodology towards the security of autonomous

vehicles from cyber attacks. We have shown how we approached our experiments, which

types of attack were used to disrupt the autonomous vehicle during its task and in some

cases we have noticed that lower severity impacts sometimes have no influence on the

execution of a mission. However using our approach towards the anomaly detection will

warrant using it for early warning attack identification. Initially the idea was to test the

methodology at an early stage and identify whether the methodology is able to distinguish

normality using our hypothesis of monitoring deviations and changes in the data source

signature characteristics. All the following changes affect the score representation and

the applicability for integration with existing systems.A pattern model treats all indica-

tions that are included, using fixed weights attached. One of our goals was to make the

pattern model more dynamic and adaptable in a way that it will be capable of learning

the environment once. The key indications that we are focusing on, will be monitoring

deviations and the frequency of deviations. In the next section we will discuss the early

stage of the defence mechanism integration.

4.5 Heuristic Binary Classification (HBC)

Detection of cyber threats is an expanding area of study in the embedded systems domain.

The need for cyber security has increased significantly and there are many researchers

currently working towards cyber-physical security of such systems, such as the decision

tree-based approach in [4] using decision trees for anomaly detection, and the behaviour

rule specification in [46]. In this section, we evaluate our robotic testbed system behaviour

by monitoring components with instrumentation installed on the system.
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Several different attack vectors can apply to cyber-physical systems. We divide these

into cyber-physical and physical-cyber. Cyber-physical attacks are attacks in cyberspace

that adversely affect the physical space. For instance, an attacker can target the com-

munication between the system and the operator to disrupt normal system operation. In

an autonomous system, a system’s own autonomy can be used against it to take control

over the autonomous system. Conversely, physical-cyber attacks are the ones performed

in physical space to adversely affect cyberspace [8]. A trivial example would be physical

damage that would make the network unavailable. A non-trivial example would be an

attack consisting of custom laser beams targeting an autonomous vehicle’s LiDAR [32], or

externally generated noise targeting the ultrasonic sensors so as to confuse the vehicle’s

spatial awareness. Such attacks that manipulate the input to sensor systems with the

purpose to affect the operation of a system that depends on them are often referred to as

sensory channel attacks.

Previously, there had been little or no consideration for cyber security during the design

of safety-critical systems, but this is changing since the practical cyber-physical attacks

against vehicles were showcased for the first time a few years ago [18][41]. Ten years ago,

the threat level was significantly lower, but now with the availability of electronic devices

such as Arduino kits and a variety of sensors that can be used for educational purposes,

consumer products and industrial applications are wide spread. With increasing knowl-

edge in this area the threat to such systems increases. An attacker may not necessarily

have the intention of disrupting the system. Motives can vary and the outcomes can range

from small value fluctuations to possible lethal injuries [37]. This shows that there is a

need to secure cyber-physical systems.

4.5.1 Normal Behaviour Definition

Our behavioural model uses a sensor-independent approach, in the sense that the sensor-

signal characterisation is performed without any additional contextual information to

indicate the type of the sensor. Each different type of sensor has its unique output, but
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we are not interested in determining the type of the sensor, but instead we are interested

in learning the signal characteristics under normal operating conditions and thus being

able to automatically determine when an anomalous condition occurs by monitoring data

source signature.

A compass sensor provides a valuable example: due to the limited speed at which the

vehicle can turn, there is a corresponding limit to the rate at which the compass bearing

can be expected to change. The compass bearing will also contain a certain amount of

noise as the vehicle travels over non-perfect surfaces and does not track in a perfect straight

line (there is a detectable “wobble” of typically one to two degrees). These characteristics

can be learnt by examining the signal over a series of test missions, without having to

explicitly know that the sensor is a compass. For simplicity, we demonstrate the impact on

the compass of a cyber-physical disruption using a magnet-based sensory channel attack.

By placing a magnet in the vicinity of the sensor, we cause a variable disruption of the

vehicle’s navigational ability. By so doing, the data stream from the sensor is affected in

two detectable ways. Firstly the sharp change in bearing when the magnet is applied (or

removed), and secondly, in the reduced noise levels since the magnet causes the sensor to

read near-static values (which are anomalous because they are suspiciously “clean”). The

proposed approach enables attack detection without prior knowledge of the attack type.

The compass example is a part of the experimental set used in our evaluation.

We represent the characteristics of sensor signals in a signature format that can be used

to compare expected and actual behaviour in order to detect anomalous events. The

signature comprises a number of features whose values are learnt during the mission

experiments described earlier. The features describe characteristics such as the signal-to-

noise levels, maximum and minimum sensor readings detected, size and frequency of spike

values and rate of change of sensor values. The signature approach facilitates evaluation

of the enviroconsistency [45] of a particular trace. For example, the system may learn

that a particular data source generates data values distributed in the range 100 to 400

with a mean of 200 during normal operation. The new trace can be compared against the

expected behaviour based on these specific characteristics. There is no need to compare
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the raw data directly. The model will determine whether a particular trace represents

normal or abnormal behaviour based on the distance between the trace characteristics

and the corresponding values in the signature.

Table 4.8: Signature Characteristics
Value Type Characteristic Abbreviation

Raw
Minimum
Maximum

SC1
SC2

Exponential Smoothing

Minimum
Maximum

Lowest Difference
Highest Difference

SC3
SC4
SC5
SC6

Deviation Standard Deviation (Std) SC7

Spike Regions

0.5*Std - 1.0*Std
1.0*Std - 1.5*Std
1.5*Std - 2.0*Std

Over 2.0*Std

SC8
SC9
SC10
SC11

Our signature format contains various characteristics, as shown in Table 4.8. Values are

exponentially smoothed to provide a basis for comparing instantaneous values with the

recent trend, thus detecting noise levels and abrupt changes in values which are short

lived are categorised as spikes. A similar concept has been used in a dynamic system in

[130].

4.5.2 Identification of anomalous signals and behaviour

The signatures are constructed during the learning stage to define normal behaviour on a

per-sensor signal stream basis. To capture the range of normal behaviour the experiments

were repeated five times to identify the domain of values where the data sources operate

and their normal deviations. Using such an approach it is possible to classify normal-

ity when the system operates within the normal experiment environment. Currently, we

evaluate the results of test runs off-line after each run, however the learnt-signature based

approach has the potential to be used in real-time, for self-protection of the autonomous

vehicle. In this publication, we review multiple results from seven experiments and dif-

ferent scenarios which are: learning stage, evaluation stage, and physical-cyber compass
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attack scenario.

We use exponential smoothing because it enables dynamic smoothing to be more reactive

or passive by changing the α value. It is a simple and efficient means by which to

follow an unfolding trend in sample values. The equation for exponential smoothing is

Et = Et−1(1− α) + αxt, where E is exponentially smoothed value, t represents the index

in time, x represent value from the sensor and α is the weight assigned to the current

value and 1−α is the weight assigned to the previous exponentially smoothed value. The

technique is efficient in regards to memory and processing and so is well suited for use

in embedded systems as it does not require to store full data set of values and can be

used to analyse rate of change of the data [130]. Each element of a signature comprises

of characteristics that may indicate an anomaly. An operational signature is applied to

a learnt “normal” signature, and this facilitates observation of a data source anomalous

behaviour and reasoning about component behaviour at the higher layers of our software

stack and evaluate the deviations from normality. By observing deviation coefficients

(from the learnt normal characteristics), we form a dynamic behaviour score for the data

source. The issue that we have encountered is that these deviations had to be normalised

in some way, because of the nature of this project the aim is to focus on the routine-

mission robotic systems which have routine tasks, the decision was made that during the

“Learning” stage, the data from the sensors is normalised by using the mean such that

deviation coefficients (dl) during “Learning” stage are provided by dli,j =
xi,t−x̄i

x̄i
, where i

represents a data source and j represents a signature characteristic, xi,t is the sensor value

for a particular i at time t, and x̄i is the mean of the known set of values. This allows us to

offload the “Learning” stage from the robot as it requires to recalculate the mean during

each iteration, but such computation can be done on-board. In real-time, the classifier

has knowledge of the learnt mean (the last calculated known mean) x̄i
0 and calculates the

new (real-time) deviation coefficients (dr) by using x̄i
0 such that dri,j =

xi,t−x̄i
0

x̄i
0 .

The behavioural score (from the signature) can be used to evaluate the level of threat to

the system i.e. the higher the deviation from the learnt normality, the higher the likelihood

of an attack. In the Table 4.9 we can see an improved version of what was discussed in the
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Section 4.4.2, in current case we have used deviation coefficients to normalise data, the

table shows an example analysis of data from a compass bearing sensor. By comparing

signature elements we identify those elements which indicate that an attack might be

present. The deviation extents are weighted and combined to determine the likelihood of

an actual attack, i.e. co-deviation on multiple elements reinforces the attack risk.

Table 4.9: Compass Bearing Behaviour Signature Data
Deviation Coefficient

Characteristic Value Learnt Test Attack
Minimum 167.8 0.0292 0.0148 0.4388(A)
Maximum 194.7 0.0151 0.0128 0.3180(A)
Exponential Minimum 170.9 0.0145 0.0035 0.0995(A)
Exponential Maximum 188.9 0.0083 0.0171(A) 0.3269(A)
Exponential Deviation Minimum 0.0 0.0000 0.0000 0.0000
Exponential Deviation Maximum 10.1 0.2362 0.1289 >1.0000(A)
Standard Deviation (Std) 5.3 0.1094 0.0582 >1.0000(A)
Spike Region (0.5*Std >x <1.0*Std) 55 0.2435 0.3043(A) 0.9348(A)
Spike Region (1.0*Std >x <1.5*Std) 25 0.5632 0.4079 0.8684(A)
Spike Region (1.5*Std >x <2.0*Std) 10 0.5576 0.5455 0.8485(A)
Spike Region (x <2.0*Std) 5 0.4462 0.2308 0.6154(A)
Threat Summary 2.2231 1.7237 17.921

Table 4.9 shows the deviation comparison from a variety of data sets which are a Learn-

ing scenario, Test scenario and Compass bearing attack scenario. By learning we

mean that the vehicle is operated in a series of known missions which exercise the sensor

signals across their normal value ranges. We have mentioned earlier that the learning

happens essentially in two stages which are: “learning” and “testing”. Through learning

we identify the data source behaviour characteristics such as minimum and the maxi-

mum range or how the data tends to change by monitoring spike regions. The Threat

Summary Score is identified when the system has gone through the “testing” stage

and identified number of anomalies and the normal deviation coefficient values, in case

of the data source shown in Table 4.9 for presentation purposes the “testing” scenario

was taken so that the difference in the “learnt” case and the “test” case was the highest.

In its primitive case this defines the range of normality which in a current case would

be the Normality = Abs(2.2231 − 1.7237) = 0.4994, therefore normality range becomes
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1.7237 ≤ Normality ≤ 2.7225. This might increase the number of false-positives in more

stochastic environments, however such approach can be tuned further through the scal-

ing factor and be configured specifically for the system. The scope of this project is to

develop a detection mechanism that will be applicable to routine oriented robotic tasks

with certain amount of randomness in the environment. Following the earlier discussion

concerning the compass sensor, the vehicle can be operated moving over various types of

surfaces to determine the level of noise in the compass sensor signal and also can be made

to turn at various angular rates-of-change in compass sensor values.

By test scenario, we mean that the vehicle is operated (post learning) in a variety of normal

scenarios, with the objective of testing the vehicle’s ability to detect the abnormalities

solely on the basis of finding anomalous conditions where the sensor signals do not conform

to expected learnt behaviour.

By attack scenario, we mean that the vehicle is operated using the same conditions as in

the learning and test scenarios, but during the experiment we place the magnet near the

compass sensor for forty seconds. This is to validate the behavioural profile approach and

determine if the vehicle is able to identify anomalous conditions. To demonstrate this

ability to identify anomalous behaviour the data set of one of the “Attack” scenarios is

used, as can be seen in Figure 4.16.

To calculate the deviation coefficient dli,j for each signature characteristic i and data source

j, a set of learning scenarios is used. Each scenario n provides a different set of values

for the deviation coefficients, which we denote here as dl,ni,j . After we run all scenarios, we

choose for each {i,j} pair the deviation coefficient value for the particular scenario n where

it was the highest among all scenarios. So, dli,j = max
n

(dl,ni,j ). These maximum values are

stored and used as reference for anomaly detection.

We detect an anomaly in terms of sensor signal values as a situation where the signal

deviates significantly from expected (learnt) mean behaviour, as held in the particular

sensor’s signature. We investigate the automated detection of anomalies, based on our

signature approach using, initially a single sensor. The corresponding data values in Figure
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Figure 4.16: Compass bearing behaviour analysis

4.16 are shown in Table 4.9 for one data source using two different scenarios. In Figure

4.16 the deviations are illustrated in a form of radar chart, SCi represents individual

signature characteristic, where SC stands for signature characteristic and i represents

individual characteristic, abbreviation description can be found in the Table 4.8. The

learnt behaviour signature is based on running the identical normal scenario experiment

five times. The absolute value of the registered maximums of all learning data sets is

used as the anomaly limit. To identify the number of acceptable anomalies we have used

our test scenario experiment runs. The data set from these runs is evaluated in regards

to the “Learnt” knowledge to identify the amount of anomalies that exceed the learnt

limit and adapt defence mechanism. This procedure has shown that two anomalies have

been observed in the “Test“ experiment and the threat summary score has been adjusted

accordingly to define the range of normality which was discussed earlier.

The number of anomalies identifiable from an attack scenario data are shown (A) in the

Table 4.9 as well as is illustrated in Figure 4.16. The summary score (behavioural score) is

a sum of all deviation coefficients of signature characteristics, and is used as an indicator
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of a threat to the system. Such score explains the deviation of the data source saying; the

higher the score, the higher the deviation, therefore the higher threat risk to the system.

This is also shown graphically in the Figure 4.16.

Initially all signature characteristics have equal weight and due to the weighting scheme

used, signature elements are significantly out of line with expected values when an attack

occurs and so the robot is able to autonomously identify an attack based on the detection

of anomalies in the sensor data using our methodology. At a level higher, if we will take

into account other data sources we can form a system behavioural profile and identify if

the system is exhibiting normal or abnormal behaviour.

4.5.3 Evaluation of Heuristic Binary Classification

Earlier, we have demonstrated how a single data source is analysed producing the be-

havioural score that can be used at the level higher for surface analysis of the data source.

If the behavioural score is exceeding the normality score, the system will investigate the

lower layer and will identify what is the cause of such a high score. All system data source

signatures operate in the same data domain allowing the system to produce a behavioural

score by combining these signatures together.

In this section, we have reviewed a single data source from multiple experiment scenarios.

At the level higher observation, the system uses the overall behavioural score produced

by all available data sources. Such an approach can decrease the computational power

requirement, however potentially a situation can arise where multiple signature character-

istic readings are abnormal, but cancel each other out. Leading to a threat summary score

which does not indicate a threat. This could mask an actual threat. This can be avoided

by an occasional low-level analysis and by generating an interrupt-based procedures when

an anomaly has been identified within the signature.

As for the system’s final evaluation, it combines the threat summary scores of all data

sources to classify the behaviour profile of a vehicle. The system has access to 17 in-
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strumentation channels from the internal components, which include physical and cyber

features, such as internal communication utilisation, or sensing the physical environment

such as a compass bearing. For each data source a signature is automatically generated.

These signatures can be used in isolation or in combination to determine the presence of

anomalies and thus determine the level of threat.

To summarise our experimental setup, we combine signatures together to form a be-

havioural profile score of the system which can represent the level of threat to the system

during a mission. All data sources have equal weights when combined together producing

a sum of all available data source signature scores. Taking into account the primitive nor-

mality behaviour definition it is defined for each data source as the most severe difference

taken from the “learnt” score and the “testing” scenario score, which for the discussed

scenario is 46.323 ≤ Normality ≤ 62.152, we assume that the “testing” scenario is more

realistic and are using test scenario as a base for a normality range. For the current

experimental setup, we have learnt that the overall average behavioural score from the

learning scenarios was 46.323. This score has been produced by a combination of sig-

nature summary scores from all available data sources during the learning stage. In this

section, the key aspect was made to demonstrate the conceptual idea of a data source

signature approach. The test scenario produced a score of 54.237, we can notice that

the score for the test scenario is higher than the “Learnt” behavioural score which was

learnt using the learning scenarios, through a thorough investigation of the results we have

identified that the number of allowed anomalies has not been exceeded and the overall

higher behavioural score was produced by accumulated anomalies that were classified as

allowed, resulting in a higher behavioural score. The attack scenario has produced a score

of 113.6568, which is considerably higher than the score produced by the learnt and

test scenarios. This shows that the deviations from normality were greatly exceeding the

threshold allowance on multiple data source signatures. The threat score is not limited to

any value and would increase with either more abrupt environment or with the amount

of data sources.

Further improvements have to be made to increase robustness of the described method-
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ology. Currently, we are using sensor characteristic weights that are equally distributed,

thus affecting an overall threat score of a sensor and system itself. Also to make the

system more robust it would be necessary to investigate how correlation affects an overall

behaviour score, as some data sources may have dependencies and these dependencies

would result in an anomalous accumulative behaviour score that was described earlier.

The weighting system has to be enhanced on a data source and signature characteristic

level. One of the solutions is the examination of the spikiness level that can be used to

implement dynamic weighting. One of the examples would be that the values from a

sensor that are continually volatile (e.g., an accelerometer reading when travelling over a

bumpy surface). In such cases, a lower weight would be assigned to the particular sensor

characteristic or a signature characteristic. In this way the system can adapt to changing

environmental contexts. It is less sensitive to noise or spikes when the ambient noise level

or spike frequency is higher.

The work presented here forms part of a wider project to develop techniques for au-

tonomous systems to self-detect attacks. In this section we have presented a sensor-

agnostic learning technique in which a set of sensor-signal characteristics are collectively

represented in a signature for each particular sensor. In terms of detecting attacks, the

system need not know the type of the sensor, but instead looks at characteristics such as

the typical noise levels, the range of data values, the rate of change of data values, the

occurrence of spike values, etc.

The initial signatures are generated in experimental mission scenarios but in the absence of

attacks, the data signals from sensors are therefore realistic in terms of data values, noise

levels, etc. An attack is subsequently detected by observing significant deviations in one

or more signature elements for a specific sensor or across several sensors. This approach

lends itself to dynamic adaptation which enables the anomaly detection thresholds to

be adjusted in line with the environmental volatility, although to date, we have only

addressed this step at the concept level (using static signatures for detection).

The main strengths of our approach are that it can be applied universally across a wide
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range of sensor types without needing manual configuration and that multiple signatures

can be used to enhance the attack discrimination accuracy (facilitated by the standardised

signature representation). In addition it has the potential to operate in a continuous

learning mode in which it will adapt to its environmental conditions over short to medium

time spans, but it will always be sensitive to abrupt changes.

We have developed a custom testbed vehicle in order to evaluate the approach. The

experimental method and some initial results are presented above and illustrate how the

vehicle was able to successfully identify anomalous events which were part of an attack.

Our current findings are very encouraging. Due to the weighting scheme we use, the effects

of significant differences between expected and actual sensor data are amplified and thus

we have achieved a high true-positive rate and simultaneously a low false-positive rate.

The current implementation requires a training phase, during which it builds up be-

havioural signatures based on the sensed data signals. These signatures then form the

basis on which reasoning is performed at several layers in our software stack. The first

layer is concerned with anomaly detection at the level of a sensor, whereas at higher levels

it is possible to gain a picture of the attack status across the entire vehicle.

Further work includes dynamic adjustment of the anomaly threshold, as discussed above

with the intention of removing the need to retrain the vehicle for use in different envi-

ronments, as well as further evaluation on the training algorithm itself to understand the

optimal level of training and to avoid over-training or under-training issues.

Our cyber security approach is to consider the robotic system from the perspective that

the system initially has no knowledge about itself, i.e. a box-in-a-box concept where the

perception of the robotic system is stored in a box with several doors and the outer box

represents the operating environment. The robotic system only observes values coming

in or out and is not able to directly observe the true outside environment. In such a

case, the robotic system’s perception has to make sense to itself, without knowing what is

outside and is entirely based on sensor data and patterns within. In such a scenario the

autonomous system is sensitive to manipulated sensor data and therefore the signature
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based approach has been devised specifically to facilitate discrimination between normal

and abnormal situations, using a combination of learnt mean behaviour, current data

signals and trends in data signals.

4.6 Weighted Heuristic Binary Classification (WHBC)

Vehicular cyber security has traditionally focused on passive attacks and especially on

protecting the confidentiality of communications between vehicles or vehicles and smart

infrastructures. However, over the last few years, autonomous vehicles have become a

routine target for experimental cyber attacks, as demonstrated as early as 2009 by the

University of Washington [18, 131] and in numerous blackhat conferences since then. As

a result, there is a need for protection systems appropriate for active attacks against

an autonomous vehicle’s integrity or availability, and the corresponding impact on its

actuation. Assuming that some attacks do get through regardless of the preventive mea-

sures, one needs to equip a vehicle with a mechanism to detect when this happens and

potentially alert an operator or trigger some automated countermeasure. The focus of

this work is on the real-time detection of the existence of an attack against a robot. We

address both cyber-physical attacks, which are security breaches in cyber space that have

an adverse effect in physical space, and physical-cyber attacks which are the reverse [8].

For this, we have developed an autonomous robotic vehicle with a variety of sensor and

communication technologies typically found in the industry.

To ensure that any solutions developed are highly practical, we have set the following

requirements:

• Detection should be real-time, so as to be able to support rapid and effective coun-

termeasures.

• Detection should be carried out by the vehicle itself, so as to be applicable to

autonomous vehicles with limited or no communication with their human operators.
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• Detection should not rely on the availability of knowledge of previous attacks, so as

to be applicable to unknown attacks too.

We do not rely on attacks on cyber-physical systems being frequent enough to allow for the

gathering of a realistic body of knowledge on their impact. To meet these requirements,

detection should be behaviour-based rather than knowledge-based. To address the above

requirements, we have produced an onboard mechanism that monitors data related to

cyber (communication and computation) and physical (actuation and sensing) features of

the robot in real-time. During the training phase, the robot learns the normal range for

the values of each feature monitored. In actual operation, it tracks the cyber and physical

features that are in an abnormal state (beyond their learnt range) and accordingly reasons

on whether a vehicle is in an attack state or not. The overall emphasis of the mechanism

towards more tolerance for false positives or more tolerance for false negatives is configured

by a sensitivity index, which determines the length of the normal range considered by

the robot. We further improve on the detection accuracy achieved with this approach

by also utilising individual weights for each feature, which are finetuned in a dedicated

configuration phase.

In the previous section, we have presented a first attempt to provide completely sensor-

agnostic and onboard intrusion detection that is applicable to unknown threats and takes

into account both cyber and physical sources. Here, we extend this work considerably

by providing a method to quantify the degree to which a vehicle is likely to be under

attack without relying on a learning phase, and further improve it with a mechanism that

assigns weights to the different data sources. We validate this approach with real-world

experiments involving a variety of normal and attack conditions.

4.6.1 Signature of normal behavioural profile

In [34], we have described how signatures are formed and can be used for anomaly or

threat identification. This learning phase is shown as “L1” in Figure 4.17. It is based on
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an initial signature generation to establish the normal behaviour profile of the sensors on

the system. The data from the sensors is transformed into a generic data source format

that allows the system to reason about them identically. The learning phase forms a

normal behaviour profile based on signature characteristics of each data source and forms

normal behaviour variation that is used during the validation phase.

After the learning phase, dynamically detected values are compared with learnt normal

behavioural profile signatures. The term “anomaly” is used to denote that a signal char-

acteristic has been measured to be outside its expected normal range. The signature is

formed of 11 characteristics which facilitate learning the normal value range limits, as

shown in Table 4.8. Differences and deviations from the standard deviation are called

spikes and these characteristics can be seen in Table 4.8. The validation phase, shown as

“V” in Figure 4.17, classified behaviour based on an overall anomaly index represented

by a number of anomalies in the system.

Figure 4.17: Methodology work flow

Each deviation of a signature characteristic is counted to represent an outgoing level of

threat from the data source. These deviations are summarised to produce an anomaly

index for the data source, this index represents the deviation level.

4.6.2 Anomaly Weighting and Indicator Confidence

To strengthen the detection performance, we have introduced an additional learning phase,

shown as “L2” in Figure 4.17, which tunes the system by assigning weights to sources

according to their likelihood of appearing anomalous in some normal scenarios too. The
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focus of this phase is to learn the number of individual signature characteristic anomalies

that may be encountered in a non-attack condition, arising due to environmental noise.

Figure 4.18: [Initial Study]Matrix of the anomalies identified. Each row corresponds to
a data source and each column to a signal characteristic measured for each source. The
colour coding indicates anomalies

In Figure 4.18, we demonstrate how we summarise anomalies by taking the system data

source signatures from five non-attack situations. Only two experimental run matrices are

shown here for presentation purposes. To reduce the importance of anomalies that tend to

occur in a non-attack environment we calculate the weight of each signature characteristic

anomaly sample w(cij) in the following way: for a number of n scenarios S`, 1 ≤ ` ≤ n, we

take the complement of the mean of each signature characteristic anomaly sample cij(`),

where again i represents a data source and j represents a signature characteristic:

w (cij) = 1− ci,j = 1−
(∑n

`=1 cij(`)
n

)

which produces the weight of an anomaly sample for the signature characteristic. This
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allows the system to derive a more precise score taking into account the anomalies that

tend to be less indicative of an attack as they persist in a non-attack conditions.

The calculated value represents the weight of a signature characteristic. If the system

learns that a particular signature characteristic has a high probability of anomaly occur-

rence in a non-attack mission scenario then the importance of such anomaly is reduced.

This generates a lower anomaly index for the data source’s signature. The sum of all

weighted anomalies generates an overall anomaly index that is used as a reference in the

intrusion detection mechanism. To improve the methodology further we introduce a dy-

namic variable that acts as a controller of the “normality” threshold. The “normality”

variation is formed during the “L2” phase. The overall anomaly index generated from

the non-attack experiments is used as a mean reference and the dynamic variable controls

the variation. This allows the detection mechanism to identify anomalous behaviour in

two cases: when multiple anomalies are detected generating a high overall anomaly index,

as well as when anomalies are not detected, therefore generating a low overall anomaly

index. An overview of a work flow of the intrusion detection mechanism can be seen in

Figure 4.19.

Figure 4.19: Intrusion detection mechanism of the robotic vehicle testbed

When the learnt weights scheme is applied to detected characteristic anomalies in several

attack and mechanical failure experiments, the anomalies that have higher weight are
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accentuated and the importance of anomalies that tend to occur during a non-attack

mission scenario are reduced. This reduces the anomaly score of the system in a non-

attack scenario and ensures the score increases when abnormal circumstances occur on

characteristics that should not otherwise change during non-attack experiments.

Figure 4.20: Matrices of anomalies spotted for each of the incidents in the experiments
(compass manipulation, rogue node, replay packet injection, wheel failure)

In Figure 4.20, we observe 4 different scenarios when the robotic vehicle testbed is in

operation and is under cyber-physical attacks (Replay packet injection and rogue node), a

physical-cyber attack (compass manipulation) or during an unexpected mechanical failure.

The result in each cell is rounded to the nearest whole number for presentation purposes.

The overall anomaly index is derived from a sum of all signature characteristic anomaly

results when the weighting scheme is applied. This index is used by the intrusion detection

system to reason the behaviour of the robotic testbed vehicle at the level of an overall

anomaly index observation, reducing the need to analyse each signature characteristic as

they are updated, thereby reducing computational requirements.

4.6.3 Performance evaluation of the WHBC

Figures 4.20, 4.6, 4.7 and 4.8 show example experimental runs for different cyber and

physical incidents and their impact on the certain cyber and physical data sources used

by the detection mechanism. Green corresponds to a normal state with no noticeable
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impact from an attack. The colour shift to red indicates a higher anomaly occurrence

detection in the set of attack scenarios as well as during the accidental mechanical failure.

For evaluation of the proposed binary classifier in discussed detection mechanism, we have

used widely used performance evaluation technique for machine learning classifiers and

anomaly detection mechanisms[132] or in the cyber security domain for example was used

in performance evaluation of the model for forecasting cyber security incidents [133] or a

model for cybercriminal mining and profiling in social networks[134]. The receiver oper-

ating characteristics (ROC) curves are able to represent false-positive detections against

the true positive, as well as providing contextual information about the sensitivity of the

model. It is possible to identify the optimal sensitivity metric to achieve a certain de-

tection based on the application and the requirements, additionally using an area under

curve (AUC) score it is possible to describe overall detection performance.

An Initial study has shown that classifiers had high detection rates for “Compass Manip-

ulation” and “Packet Injection” attacks, the AUC scores are demonstrated in the Table

4.10. This has demonstrated that the attacks which were designed didn’t have controlled

variability e.g. it was not possible to control the distance between the compass module

and the magnet. Additionally we have not reviewed the scenario where an attacker may

sniff the communication packets in an in-field environment and then replay them. This

has led us to improve our attack scenarios and allowed us to represent more realistic

scenarios by introducing intensification in the attacks.

Table 4.10: [Initial Study] Overall performance based on ROC Area Under Curve for
Compass Manipulation, Packet Injection and Rogue Node attacks

CM PI RN
Signature + Weights 1.0 1.0 0.875
Signature 0.938 1.0 0.521

When the attack scenarios were improved, an additional decision was made to drastically

increase the number of experiment scenarios to reevaluate our findings more accurately.

This has increased the number of “Learning” scenario runs to fifty, the number of “Test”

scenarios which are used to identify the weights were increased to seven. The number
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of “Normal” scenarios that will be evaluated as false-positive detection was increased to

fourteen. The number of each attack scenario was increased to ten giving realistic attack

approaches, summing the attack data set to thirty scenarios. The results are shown in

Figures 4.24, 4.22, 4.23 and the overall attack detection performance in Figure 4.21.

Figure 4.21: Rogue Node Attack ROC Performance

In Figure 4.21 it is shown that the “Signature Only” classifier has a reasonable overall

detection performance and it is able to identify three cyber-physical attacks producing

reasonably low false-positive rate with an AUC score of 0.905. This however was improved

by introducing weights into the model and this is shown as “Signature + Weights” classifier

result, but there is a slight reducution in the detection of normal scenarios with a low

false-positive rate. This is due to the fact that the frequency of anomalous events are

being treated in a such a way that if a sensor is unreliable or produces too much noise on

a specific characteristic, this characteristic will be given little weight as this often occurs

frequently.

Detection accuracy for the physical compass manipulation attack is shown in Figure 4.22,
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demonstrating that the impact of this attack was high and affected multiple data sources,

as they have started showing sporadic behaviour in the sensor readings producing high

deviations from normality and therefore producing a high score that exceeded the allowed

normality threshold score.

Figure 4.22: Compass Manipulation Attack ROC Performance

In a “Replay Packet Injection” attack experiment the physical impact on the vehicle

was low, as the external communication was under attack, and the vehicle relied only

on the internal network communication data. For the testbed vehicle it was an issue to

detect the attack, as it does not monitor external communication. This issue may be

addressed in future work as our project is more concerned about the internal vehicle, as

this part of the system allows a testbed vehicle to be autonomic and enables autonomicity

in the robotic vehicle. As was mentioned earlier in this document the detection can be

done distributively, such that the detection mechanism can be planted on the robotic

system itself as well as on the operator’s machine. This will increase the overall detection

performance of the mechanism. The detection performance with weighing mechanism has
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shown an increase in the detection performance rate of the more realistic scenarios, such

as when an attacker has remote access to the communication medium and replays packets

on the network. The detection performance for “Replay Packet Injection” attack can be

seen in Figure 4.23.

Figure 4.23: Packet Injection Attack ROC Performance

Using the sensor-agnostic approach an issue can arise when deviations are detected in

the data source without any impact on the robotic vehicle testbed, increasing the false-

negative detection rate. Introducing weights in to the detection technique, improved

the detection rate for the rogue node attack as shown in Figure 4.24. This technique

emphasises the anomalies that are not frequently seen in non-attack scenarios.

Referring to our initial study experiments it is noticeable that with an increase of sce-

narios that were used for reevaluation of the methodology, the detection performance

has increased as well. Through out the analysis it has been discovered that the cause

of that was due to the fact that the repeated packets using high intensity were affecting

the robotic vehicle testbed systems and as a result were spoofing sensor readings on the
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internal systems. While low intensity packet amplification has shown low impact on the

internal systems. The detection performance result can be seen in Figure 4.24.

Figure 4.24: Rogue Node Attack ROC Performance

In this section we have presented a sensor-agnostic methodology that is demonstrably

able to run on-board a resource-constrained autonomous vehicle and detect in real-time

attacks, which it has not been exposed to before. We achieve this by learning the normal

ranges for a wide variety of cyber and physical data sources and applying weights to fine

tune their importance for detecting anomalous behavioural profiles. The approach has

shown to be promising for the variety of different (unknown to the vehicle) attacks that

we experimented with, including an unplanned physical failure.

4.7 Real-Time Heuristic Binary Classification

In previous sections we have described our approach to anomaly identification. In this

section we will discuss the issues and the reasons for switching from an offline analysis to
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real-time domain and what kind of issues may arise.

4.7.1 Real-Time Anomaly Identification (Offline)

To simulate the real-time anomaly classifier we have used the same data set we have

collected from an operators workstation. This data set was used in our previous work.

The methodology that we have approached in real-time approach which is different from

out offline detection. The learning phase is done in the same way as it was done in our

previous work. The methodology collects the whole data set without any manipulations

as it comes from an operators workstation and is not using the weights improvement to

keep the data as a discreet object. Based on the user specification the data is collected and

Figure 4.25: Real-Time Normal Behaviour Identification ROC Performance (1 or 2 data
source anomalies are used)

when it has reached the learning limit, it will calculate the signature characteristics for

behaviour characterisation. For the testing phase the methodology will start the testing

phase in the same way as it was done previously, it will evaluate the data severeness in
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terms of deviations and will identify the amount of anomalies that will be used as an

indication of an anomalous behaviour.

When the model has been trained, then the data set samples are fed to the model, with

each sample the signature characteristics are being reevaluated to be tested by the model.

There are several issues that arise in such case is that the signature characteristics will

raise anomalies. This is due to a problem of data starvation, in that the new model that

is being calculated does not have enough samples to generate the model more accurately

the model that will be ompared. Another limitation that this approach will have is that

the false positive rate is increasing, this is due to methodologies used in the heuristic

binary classification signatures are used. One of the examples would be in calculating

the standard deviation. The reason is that if we want to calculate standard deviation

it is preferable to have the whole data set to calculate more precise standard deviation.

If a signature characteristic such as identifying a minimum value limit can be identified

through the sampling of one single variable, in case of standard deviation we are not able

to do it in a precise manner due to the requirement of an array of samples.

Figure 4.26: Real-Time Normal Behaviour Identification ROC Performance (3 or 4 data
source anomalies are used)
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The samples are then fed into the model which will be compared to a learnt model. The

idea is to look at the incoming values taking into account all the previous samples, thus

generating more precise signature for each of the data sources. This can be called as

a warm up process which is applicable to any system that has to initialize itself. This

heat up activity will influence overall performance score when evaluated. To evaluate the

performance we have use ROC as can be seen in Figures 4.25, 4.26 and 4.27. In Figure 4.25

we are able to observe absolute random normal behaviour identification in real-time given

that the model has been tuned as being over-sensitive, and will treat any anomaly as an

abnormal behaviour. However slightly reducing the sensitivity of the model by increasing

allowance of of acceptable anomalies the performance starts to increase. Figure 4.26 shows

a drastic increase producing an AUC score of 0.930, this was the highest score we were

able to observe from our dataset. Increasing the allowance further on, demonstrated that

the normal behaviour detection started to decrease to a point where there is full detection

uncertainty as demonstrated in the Figure 4.27.

Figure 4.27: Real-Time Normal Behaviour Identification ROC Performance (5 or 6 data
source anomalies are used)

This method allowed to identify the balanced number of anomalies that provide best



4.7. Real-Time Heuristic Binary Classification 111

detection rate. This parameter will be used further in this research as it provides better

performance over the others.

4.7.2 Defence Mechanism integration

The first stage of the defence mechanism integration is to gather data on the operator’s

control machine. This is done so as to be able to access additional processing resources

that are not available on a robotic vehicle as it is built with power efficiency in mind. Such

approach would allow trying out experimental approaches in anomaly detection. Following

stage is to integrate defence mechanism on the robotic vehicle testbed, which will allow

cooperating with operator’s machine and improving detectability of attacks. The goal is

to enable cooperation between the operator’s system and the robotic system to improve

anomaly detection and allow autonomous system to analyse data independently. The key

steps of the defence mechanism implementation on the operator’s machine is to support

following functions:

• Learn the operating environment of a robotic testbed vehicle based on received

sensor data

• Collect and store all incoming sensor data in a format to ease analysis

• Support functions such as: Activate/Deactivate Defence Mechanism, Learn

One of the reasons for involvement of an operator’s machine was that during defence

mechanism development we will be able to test experimental approaches, and we will be

able to store knowledge bases for different environments. The defence mechanism was

integrated in to Graphical User Interface. Graphical user interface can be seen in Figure

4.28 where blue light represents learning state.

Graphical user interface gathers all information that we have described earlier in this

document, and will form normal behaviour of the robotic vehicle during learning state.

When anomaly detection mechanism will be activated, application will use two colour
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Figure 4.28: Robotic Testbed User Interface

codes that represent identified anomaly (red) or if no anomalies were found will represent

it using green colour These are shown in the same position as blue ‘learning‘ indication,

which is shown in figure 4.29.

Figure 4.29: Normal and Abnormal Behaviour Colour Codes

Software is being developed as a library that will allow identification of anomalies and

will introduce an early warning system on the operator’s workstation. Additionally in the
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vehicle’s control software it is possible to monitor data source readings and observe the

anomalies in real-time, example of one of the motors behaving anomalous can bee seen in

Figure 4.30.

Figure 4.30: Anomaly identified in data source monitoring window

Detection mechanism on an robotic vehicle testbed was developed and integrated on

the Raspberry Pi 1 Model B. This embedded system has been chosen as it provides C

libraries is resource efficient and the code developed in C can be ported on an Atmel

ATMega micro controller, however porting the code to a different platform is out of the

scope of this project is to develop a prototype that will be able to detect cyber-physical

threats on an embedded system which will be on-board of the vehicle. The embedded

version works such that it feeds the data from the CAN bus directly to the classifier

which goes through three stages: Learning using specified number of samples from the

CAN bus, afterwards it evaluates the data using specified number of data samples to learn

the amount of anomalies that will be treated as noise or the environmental glitch, then

the mechanism will proceed to detection.

From the Figure 4.31 it is observable how this defence mechanism operates, for presen-

tation purposes to run the mechanism (which can provide the output in a user readable

format) we have used a bash shell script which calls a init.sh script and a run.sh and
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Figure 4.31: Defence mechanism operation on the Raspberry Pi 1

reinitialise Ethernet and wireless interfaces due to an issue where an initialisation of CAN

interface would corrupt the configuration of these communication interfaces, code listings

can be found in Figure 4.32.

Figure 4.32: Code listings for scripts: start blind.sh, init.sh and run.sh

The defence mechanism stores ID of a message and treats it as a generic data source,

however certain protocol specific features need to be provided for defence mechanism to

operate such as if there are different sensors sharing the same ID and message then they
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are categorised as different types. In our prototype version we use defined types or if the

protocol specifics were not defined it will use 32-bits as a data source value. Anomalies

that are mentioned in the Figure 4.31 are in a binary format representing signature char-

acteristics which are mentioned in the Table 4.8. Then the defence mechanism calculates

total of anomalies from the incoming data and compares to a number that was learnt dur-

ing the testing stage and makes a decision whether data source is anomalous or not. The

final decision is made based on the learnt knowledge of the system. During the testing

stage the defence mechanism identified amount of allowed glitches in the data source, as

well as the number of anomalous data sources have been seen at the same time, which in

the described case 2 anomalous data sources are counted as an allowed false alarm.

4.7.2.1 Performance Analysis

The performance of the heuristic binary classification has been measured programmat-

ically. We have used a time stamp provided by an operating system (Raspbian, Linux

Kernel 4.4.27+). The method is that the program issues a timestamp from an operating

system, does the anomaly detection on 500 data samples that are used to enable accu-

rate calculation of the time taken for a single measurement, thereafter issues a newer

time stamp and calculates the difference between these time stamps. The result is at

the operating system time precision, for measuring performance of the classifier we were

monitoring execution time in nanoseconds. These functions are shown in Listing 4.1.

Listing 4.1: Timestamp functions

/∗ These f unc t i on s were used to measure execut ion time ∗/

s t r u c t t imespec t ime r s t a r t ( ) {

s t r u c t t imespec s t a r t t ime ;

c l o ck ge t t ime (CLOCK PROCESS CPUTIME ID, &s t a r t t ime ) ;

r e turn s t a r t t ime ;

}

long t imer end ( s t r u c t t imespec s t a r t t ime ) {

s t r u c t t imespec end time ;

c l o ck ge t t ime (CLOCK PROCESS CPUTIME ID, &end time ) ;
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long d i f f InNanos = end time . tv n s e c − s t a r t t ime . tv n s e c ;

r e turn d i f f InNanos ;

}

/∗ example was found on Stackover f low : http :// s tackove r f l ow . com/ que s t i on s /22579157/ kerne l

−mode−c lock−gett ime ∗/

Performance analysis has shown that the execution time of the heuristic binary classifi-

cation has a linear trend as the methodology was designed to be modular and generalize

any sensor data that is fed to the model. This allows the model to be predictable in the

sense of an execution time and can be used as an indication in the future. To calculate

the trend we have used a linear regression approach. The averaged classifier execution

times are presented in Figure 4.33, in the graph we demonstrate how long it takes to per-

form anomaly detection on a variable number of data sources. The measurement process

was repeated five times, each time sampling the data source 500 times to overcome the

operating system’s limited time-measurement granularity, as discussed above.

Figure 4.33: Classification process execution time

From the data we have identified that the single data source in the detection phase requires
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a certain amount of execution time to provide the anomaly detection result. We have to

note that the experiment was conducted on a Raspberry Pi 1 (Raspbian) clocked at 800

Mhz which is provided by the “modest” overclock setting. To evaluate the computational

performance of the Raspberry Pi 1 with “modest” configuration, we use commonly used

floating points operations per second (FLOPS) metric [135] to measure computational

performance. To perform such benchmark we use LINPACK benchmark tool which is

used as a standard for evaluation of computer system’s computational performance [136].

The score produced for the Raspberry Pi 1 configuration in the idle state was 49.52

MFLOPS using the “Unrolled Double Precision” setting. Our analysis of detection mech-

anism showed that one data source requires 0.8298 ms of execution time to process five

hundred of samples, this leads us to the conclusion that one data source requires 1.6596

µs to process one sample, taking into account that the computational performance of

a Raspberry Pi 1 is 49.52 MFLOPS and the execution time we can extract the cost

in terms of floating points operations, that are required by the detection mechanism to

process 1 data sample for 1 data source. We do this the following way, knowing that

the processor is able to perform 49520000 FLOP a second, we know that to process 1

data source and 1 sample it took 1.6596E − 06 s, therefore the cost in FLOP’s would

be 49520000 ∗ 1.6596E − 06 = 82.18339 FLOP. The FLOP metric can be used for an

evaluation of the detection mechanism’s performance on other computer systems that are

able to perform floating point operations. In regards to the CPU utilisation of Raspberry

Pi which can be seen in Figure 4.34, while running the detection mechanism.

We have also measured the memory usage in a variety of robotic vehicle testbed states,

where the robotic testbed vehicle has been executing specific tasks such as: moving, idling

or undergoing defined mission. Overall we have had 1230 samples of process memory

usage reported by the operating system. We have focused on the virtual memory and the

resident size memory as it demonstrates an overall memory requirement and the amount

of memory required for classification processing. The result of this can be seen in Figure

4.35, which shows that the memory usage is very low, and the variations are so small that

it can be considered as effectively constant.
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Figure 4.34: Classification process CPU utilization

To conclude the computational requirements we can state that it is possible to integrate

this model onto an embedded system. Based on the knowledge we got it seems that

theoretically it should be possible to integrate this model into our current Atmel AT-

Mega micro controllers which are installed on the robotic testbed. This is based on the

fact that the memory requirements are met. The main concern would still exist as the

ATMega1281 is clocked at 16 MHz and in the mean time the Raspberry Pi is clocked

at 800 Mhz. This shows that the Atmel micro controller is running 50 times than the

lower clock speed. If we take this into account we can rescale our execution time findings

based on the difference in the clock between two systems. This would lead us to 82.98

microseconds execution time for one data source and one sample and would require 41.49

milliseconds of execution time for one data source and five hundred data samples.

For some systems it may be acceptable, however it may raise an issue for safety-critical

real-time systems. This can be avoided by integrating the detection model into a system

which has higher computational power. Theoretically it is possible and based on our
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Figure 4.35: Memory consumption during operation

conclusions in the worst case scenario, the detection latency would be Et ∗ (ns−1), where

Et is the execution time taken for one data source analysing one sample and ns is the

number of data sources available in the system and used for anomaly detection. Therefore

theoretically on an ATMega1281 micro controller with 100 data sources we get the worst

case detection latency of 82.98 ∗ (100 − 1) = 8215.02(µs) = 8, 215(ms)(Theoretically),

the result for a Raspberry Pi would be 1.6594∗(100−1) = 165.94(µs) which is acceptable

to a broad range of systems. As the model has been designed to be generic and ignore

any environmental context thus ignoring the relationships, the detection latency can be

reduced further by implementing an algorithm on multi-core CPU’s. This would allow
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to run the algorithm in parallel thus reducing the execution time. Another improvement

that would improve detection latency is to enable multi-threading support. The current

implementation of the algorithm has been done on a single core CPU and detection is

achieved as a single thread on the system.

Throughout this project we were hypothesising whether it would be possible to implement

an anomaly detection technique which would be capable of showing a reasonable detection

performance and being able to run on the low powered micro controller. The results show

that it is possible and the way the model does the detection it does not require the

contextual information about the environment. However in its current state it is limited

to the CAN bus and expects the raw values from the sensors which is 1 byte. If the data

is in the range of 2 to 8 bytes it needs a descriptor which will convert the raw sensor

value into a numeric form. The structures of information are not supported, however it

is possible to describe the structure of the model and feed the data to the model. One

of the examples would be that if the model received encrypted data it would not be able

to operate accurately thus producing unreliable results. If the system meets the model

requirements then additional testing would be required, as our experiments demonstrated.

The heuristic binary classification model supports a number of tuning parameters pro-

viding flexibility for a variety of systems such as a behavioural threshold, anomaly index

thresholds, learning range, evaluation range and others. This has to be explored further

as to how these tuning parameters will affect detection accuracy on other systems. At the

moment this model has been tested experimentally on two robotic vehicles of which one

is our testbed and is documented here. A second robotic vehicle has showed detection

results based on the ROC (Area Under Curve), scoring around 0.85. The other data

set that has been used for evaluation was from a commercial research project which was

focused on identifying the behaviour using smart wearables and was able to identify the

abnormal events in behaviour. Due to the experimental nature we have not included

the performance from this data set. This shows that the model is applicable at least

for robotic vehicles that have routine mission tasks. However it is not limited to robotic

vehicles and can be integrated into other systems such as smart environments, potentially
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in smart homes and industrial automation environments identifying the degradation of

actuators or being used in similar tasks.

4.8 Using Bayesian networks to identify an attack’s

domain of origin

The methodology described in the previous section has focused on being sensor-agnostic.

This principle allows to integrate a mechanism on a variety of robotic systems and achieve

reasonably high detection rates in a restricted resource environment, as well as being flex-

ible in terms of being used as a feedback to other intrusion detection mechanisms that

work with the data in a numeric form or discreet. However, it does not have the ability to

tell anything more about the nature of a threat beyond its existence. To address this, we

have also followed an alternative approach using Bayesian Networks, which are frequently

used in various industries such as medical[137], business[138] or various cyber security

domains such as evaluating cyber-threats in smart grids[139] or evaluating cyber-security

risks in nuclear instrumentation and control systems[140]. Bayesian networks can be used

in statistical analysis providing a probability of events based on certain evidence. We have

already described that the heuristic binary classification method is capable of identifying

normal behaviour using sensor agnostic approach i.e. not taking into account the sen-

sor context information. The methodology uses a self-learning approach to generalise the

sensor data into signatures and uses these signatures as a data source’s unique description

that demonstrates a sensor’s specifics. We have used a Bayesian network based approach

because it is capable of working with discreet data, that can be in any generic form. This

provides multiple paths on how to use such a model. As it can learn and create rela-

tionships between the nodes, no expert knowledge is required to identify the conditional

probabilities of various events. Here, we have used the statistical analysis environment

R, which is an open-source programming language that has access to publicly available

libraries for Bayesian networks [141], neural networks[142] and many other useful tools.
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Bayesian network support was provided by the R library bnlearn.

Here, we use again the same data as in Section 4.7.1. The first step is to identify the rela-

tionships between entities in the data. Researchers have published a variety of algorithms

for identification of relationships between entities for Bayesian Networks which have their

strengths and weaknesses. We have used the Hill-Climbing algorithm to construct a Di-

rect Acyclic Graph (DAG). This creates all connections so that the graph does not have

cycles or disconnected entities in the end. Other provided algorithms were used, including

Incremental Association Markov Blanket, Max-Min Parents & Children, Tabu Search and

other algorithms that are provided by the bnlearn library packages. The Hill-Climbing

algorithm demonstrated that it is capable of generating a closed DAG taking into account

all entities that are given to the Bayesian Network. The weakness of Bayesian network

is that it uses Supervised learning approach, that is the data set needs to have data for

the events that it is being queried. In our cases, we use a data set with Normal,Cyber

Attack and Physical Attack. These are the events that will be queried given the evi-

dence which are the data source heuristic binary classification output. When we train the

Bayesian network, we use a 70/30 ratio for data used for learning and testing respectively.

Taking into account our learnt best detection rate of acceptable anomalies, the evaluation

of Bayesian network approach has started by evaluating the best detection scenario with

a later description of the weak results using different parameters. Figure 4.36 contains

variety of events that the Bayesian network is being queried. The evaluated events are the

detection of Normal Behaviour, Cyber Threat Behaviour and a Physical threat behaviour

accompanied with a random (0,0)(1,1) coordinate line representing uncertainty.

From the ROC graph, we can observe that the Cyber Threat detection has a high AUC

score that is used for evaluation, following by the Normal Behaviour detection and with

a poorer detection of physical threats. This is due to a stochastic mission behaviour

which is producing high amount of noise that is cancelling out the attacks themselves.

However, it is still performing well and can produce high probability identification of a

threat domain from the learnt data set. We have also experimented with a variety of data
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Figure 4.36: Bayesian network performance identifying cyber-physical domain threat

sources looking only at the cyber features and only physical features.

Figure 4.37 demonstrates how the threat detection is performing. It is noticeable that the

performance of a cyber threat identification has not changed, however all other domain

detection has decreased. This is reasonable as cyber attack vector is exposed to an attacker

and an attacker will take over control of the system by manipulating cyber features that

are capable to produce an impact. Detection of a normal behaviour was decreased, this

shows the necessity of the monitoring the cyber features of the system when decisions are

made by the system to evaluate it’s behaviour. Physical threat detection show promising

results as it is capable to identify physical threat with a lower confidence level based only

on the cyber features meaning that it necessary to monitor the physical features as they

are affected by the malicious activity of the system.

Figure 4.38 demonstrates the capability of this methodology to produce accurate prob-

abilities by only monitoring physical features. The detection rate produces reasonably



4.8. Using Bayesian networks to identify an attack’s domain of origin 124

Figure 4.37: Bayesian network performance identifying cyber-physical domain threat us-
ing only cyber features

high performance for a cyber-physical domain threat detection. However, we observe an

interesting fact if we compare the discussed Figure 4.38 with previous Figure 4.36 and

focus on the Physical domain detection. The AUC performance score is slightly lower

than the produced in the Figure 4.38. This shows that there is a potential situation when

the combinations of various domain features may act as noisy evidence when probability

is calculated for a specific event whether it would be probing cyber of physical threat

domains. However the difference is so insignificant that the advantages of using all cyber

and physical features allow to improve the identification of a normal behaviour as well as

the cyber domain threats.

The key advantage of using Bayesian network is that it can accept variable range of

evidence. Providing capability of producing probabilities based on several data sources

with the rest keeping as unknown variables. However, the weakness of such an approach

is that if less evidence is provided to Bayesian network it will require more processing
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Figure 4.38: Bayesian network performance identifying cyber-physical domain threat us-
ing only physical features

power as it has to calculate the probabilities of the unknown variables. This trade off

needs to be taken into account when model parameters are tuned for the system. The

data set which is discussed in this section is limited to one second sampling rate taking

into account latest values from the data sources. If the data will be kept in its original

format this will be limited by the data reception order, as usually the data does not come

in order. One example would be that the system has several components connected to a

CAN bus using different IDs, this will restrict communication transmission to one data

source transmission because of the CAN bus specifics as it is incapable transmitting data

in parallel and data will be sent based on CAN bus prioritisation of the message ID. This

will lead to a situation when the data is received in order of the data source transmission,

therefore becoming event driven. The issue may arise where single data sources may have

abrupt behaviour which is not reliable in probability calculation, thus producing high rate

of false positive detection relying on a single data source. It is recommended to collect



4.8. Using Bayesian networks to identify an attack’s domain of origin 126

multiple data source samples and make a query of Bayesian network to provide threat

probability using multiple data sources.



Chapter 5

Conclusion

Cyber attacks against cyber-physical systems have become common place, whether inten-

tional or not, and their impact can be disproportionately damaging, both in cyber and in

physical space. The robotic vehicle used for this research is richly equipped, making use

of a variety of common off-the-shelf technologies for sensing, control and communication,

used in the industry. In addition, its design is modular, based on the generic vehicle ar-

chitecture principles, so that the results of this research can be applicable and generalised

to a variety of different vehicles.

We have introduced a model for observing signal characteristics, including noise level

patterns on sensor data streams and have incorporated this information to characterise

normal or abnormal behaviour of a robotic vehicle. The approach is behaviour-based,

in the sense that the robotic vehicle first needs to learn what is normal about itself, i.e.

trained in a non-attack state, and is then asked to detect different types and degrees of

deviations when exposed to actual cyber attacks performed in a laboratory environment.

From a data analysis perspective, this is a binary classification problem, as to whether

a robot is able to detect attacks when they are ongoing and that it is in a normal state

when they are not. We have addressed the problem first with a heuristic classification

approach looking at a variety of features monitored in real-time on the vehicle, as well as

with an approach based on Bayesian Networks. The model was designed in a way that is
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sensor-agnostic, and based on our experiments it can work with a variety of sensor data.

Potentially, this model supports retrofitability, but as this aspect was out of the scope of

this project, this work can be explored as future work.

5.1 Key contributions

• Designed and implemented an autonomous and modular robotic vehicle testbed for

cyber-physical security experimentation.

• Designed, implemented and experimentally evaluated a heuristic intrusion detection

approach that allows an autonomous robotic vehicle to self-detect the existence of

attacks against it in both the cyber and physical domain without prior knowledge

of these attacks.

• Designed, implemented and experimentally evaluated a Bayesian network based

approach that allows an autonomous robotic vehicle to self-detect attacks against

it and additionally tell whether they originate from the cyber or physical domain.

5.2 Brief overall evaluation

One of this project’s strongest points is that it benefited from genuine support, feed-

back and recommendations on real-world applicability by Dstl, the industrial funding

organisation. As a result, it was driven by industrial requirements for modularity and

applicability in a large variety of real-world applications. This led to the adoption of

popular and commercially-relevant sensing, actuation, computation and communication

technologies, of the Generic Vehicle Architecture [1], as well as of routine missions that

are realistic in military, surveillance, patrol and other common applications of unmanned

ground vehicles. We believe that this is a satisfactory solution to the inherent problem

in cyber-physical systems, where their design (and hence the cyber and physical threats

that correspond to it) is highly specific to specific types of application.
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5.3 Future Work

The research carried out in this project and its outcomes have generated a number of

interesting challenges that can be explored as areas of future work. Below, we include

some of them:

5.3.1 Cyber-physical intrusion detection in complex missions

The scope of this project was limited to routine missions, where what is normal remains

largely the same during the whole of the mission. However, in many cases, an autonomous

robotic vehicle may be involved in much more complex missions, where the different

component steps can differ enormously between them. In such situations, it would be

advisable to introduce a dynamic state identification element to the intrusion detection

system. Take the very simple example of a UAV and only three possible states: takes off

or cruises. The take-off state involves several stochastic characteristics due to the effect of

wind gusts, ground surface and high acceleration causing increased vibration or deviation

from the expected path. In contrast, in the cruising phase, the conditions may be much

calmer, hence normal values may be very different to normal values during the take-off

phase. State tuning based on dynamic identification of the state would involve changing

what is considered normal (e.g. the threshold values) according to the state identified by

the vehicle itself.

5.3.2 Optimising Bayesian Network-based attack domain iden-

tification

In this project, we have studied the integration of the heuristic model with Bayesian

Networks to identify the threat-domain causing anomalous behaviour of the system. The

motivation was Bayesian Networks provide multiple classifiers for a specific purpose given

certain amount of evidences. However, in some cases it is possible to end up in a situation
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where certain data sources do not have any relationships with the other data sources, thus

having little or no influence on the overall cyber-physical threat identification value. This

increases the computation and hence power requirements as they still have to be taken

into account. A potential direction here is to develop or utilise optimisation algorithms

that would adapt according to the vehicle’s condition and mission, still abiding by the

original philosophy of being sensor-agnostic and applicable to a wide variety of cases.

5.4 Parting thoughts

The overall experience throughout the project was highly engaging, not only for the variety

of practical and theoretical work involved and range of skills developed, but also because

this is an area of continuously and rapidly increasing importance. When we started, there

was very little prior work of relevance, but this is now certainly not the case. Several

research groups globally are looking into novel approaches for detection, prevention and

mitigation of cyber-physical threats. This is a result of the increasing importance of

both the cyber security and cyber-physical system fields, and this research sits where the

two meet. Also, and perhaps more importantly, the potential impact of cyber-physical

attacks has increased dramatically in a very short period of time. In the past, where

reliance of embedded computation and communication was less, the impact would have

been minimal, but technological evolution is leading to a situation, where attacks against

traffic lights, autonomous trains, driverless vehicles, water and power pants put people’s

lives in danger.

There is no doubt that we are currently experiencing a shift in thinking in terms of the

security of cyber-physical systems. Security is an important requirement, while in the

past in was not. However, the reality is that the vast majority of cyber-physical systems

used today, from unmanned military vehicles and light railways to nuclear facilities, were

designed and installed long before this shift in thinking. Effectively, they were designed

at a time when there were fewer or different cyber threats. Today, integrating security by
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design into a system is a standard recommendation, and this is the approach we used in

this project. However, there is still a place for approaches that are able to be retrofitted

into legacy cyber-physical systems.

In either case, whether following a security by design approach or aiming to retrofit

security, threats evolve continuously. For example, it is now considered certain that any

political or military conflict between enemy states will involve some form of cyber attack

(from cyber espionage to kinetic cyber-physical attacks). In the past, the focus would

be on physical attacks. Lately, the focus is on cyber attacks. This project looked at

threats in general, whether they originate in cyber space and have an impact in physical

space, or they originate in physical space and have an impact in cyber space. From the

perspective of a cyber-physical system that exhibits a degree of autonomy, a threat can

originate in either domain. This project has contributed towards reducing the impact of

such threats by allowing an autonomous cyber-physical system to self-detect them and

potentially identify their domain of origin.
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