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Abstract

Social engineering is used as an umbrella term for a broad spectrum of

computer exploitations that employ a variety of attack vectors and strate-

gies to psychologically manipulate a user. Semantic attacks are the spe-

cific type of social engineering attacks that bypass technical defences by

actively manipulating object characteristics, such as platform or system

applications, to deceive rather than directly attack the user. Semantic

social engineering attacks are a pervasive threat to computer and com-

munication systems. By employing deception rather than by exploiting

technical vulnerabilities, spear-phishing, obfuscated URLs, drive-by down-

loads, spoofed websites, scareware and other attacks are able to circum-

vent traditional technical security controls and target the user directly.

In this thesis, we begin by defining the terminology of a semantic attack,

introducing a historic time-line of attack incidents over the last 17 years to

illustrate what is an existential relationship with the user-computer inter-

face and it’s ever expanding landscape. We then highlight the scale of the

semantic attack threat by identifying different individual attacks and dis-

cussing recent statistics. Recognising the complexity in understanding the

many facets that may form an attack, as well as the depth and breadth of

the threat landscape, we construct a taxonomy of semantic attacks which

encapsulates attack characteristics into a fixed, parametrised classification

criteria that span all stages of a semantic attack. We then supplement

the taxonomy of attacks with a survey of applicable defences and con-

trast the threat landscape and the associated mitigation techniques in a

single comparative matrix; identifying the areas where further research
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can be particularly beneficial. Armed with this knowledge, we then ex-

plore the feasibility of predicting user susceptibility to deception-based

attacks through attributes that can be measured, ethically, preferably in

real-time and in an automated manner. We conduct two experiments,

the first on 4333 users recruited on the Internet, allowing us to identify

useful high-level features through association rule mining, and the sec-

ond on a smaller group of 315 users, allowing us to study these features

in more detail. In both experiments, participants were presented with

attack and non-attack exhibits and were tested in terms of their ability

to distinguish between the two. Using the data collected, we determine

predictors of users’ susceptibility to different deception vectors. With

these, we have produced and evaluated a generalised model for training a

dynamic system for proactive user security. Using the model as a base-

line, we propose a technical framework that aims to utilise the concept of

Human-as-a-Security-Sensor as a dynamic defence mechanism against se-

mantic attacks. To test the viability of our framework and to demonstrate

the concept of the Human-as-a-Security-Sensor in an empirical context,

we employ the framework to develop a prototype Human-as-a-Security-

Sensor platform called Cogni-Sense; evaluating its utility in a real-world

experiment. Lastly, we conclude with a review of the problem space,

summarising our novel contributions towards a dynamic, user-driven de-

fence against semantic attacks and identify open problems in our work

to discuss future plans and motivation for continuing the development of

Human-as-a-Security-Sensor.
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Chapter 1

Introduction

In information security, the user is often seen as the “weakest link” [3] because even

the strongest technical protection systems can be bypassed if the attacker successfully

manipulates the user into divulging a password, opening a malicious email attachment

or visiting a compromised website. The term most often used for this process is

Social Engineering, but this does not differentiate attacks that bypass the security of

computer systems from those that can be observed in a non-technical arena, such as

prize-winning letter scams [4] or physically impersonating an authority figure [5]. To

differentiate from these, researchers have proposed the term Semantic Attack [6, 7, 8].

As semantics is the study of meaning and symbolisation, in the context of social

engineering a semantic attack is one that manipulates the user-computer interface

to deceive the user and ultimately breach the computer system’s security. We have

proposed the following definition [9]:

Semantic Attack. The manipulation of user-computer interfacing with the purpose

to breach a computer system’s information security through user deception.

On any system, the user interface is always vulnerable to abuse by authorised

users, with or without their knowledge. Traditional deception-based attacks, such

as phishing emails, spoofed websites and drive-by downloads, have shifted to new

and emerging platforms in social media [10], cloud applications [11] and near field

communications [12]. Furthermore, the advent of the Internet of Things [13] promises

to compound the problem and extend to physical impact, exposing user interfaces
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of systems previously inaccessible to the standard user, let alone via a distributed

application in the Internet [14]. The more effective such cyber-physical attacks prove

[15], the more the deception attack surface continues to grow.

Semantic attacks have been characterised as a technical enigma for information

technology [16]. That is because the user-computer interface is at the same time their

only boundary and their primary window of opportunity. The expanse of the problem

space and variation of attacks are extreme (from state-backed Advanced Persistent

Threats employing multi-stage/platform attack vectors to script kiddies generating

automated phishing emails), obscure (defining what constitutes a semantic attack

through its component structure) and arbitrarily difficult to detect (as attack vectors

primarily address the user rather than the technical system). They can be technically

basic [7, 17, 18], highly complex [19, 20] or a combination of the two [11, 21]. Defence

mechanisms have been proposed at scientific research level to target exploitations

such as website and phishing attacks [22, 23, 24, 25, 26] as well as at commercial

level [27, 28]. However solutions such as these have not addressed the wider semantic

attack problem space, and mitigations tend to be specific to given exploits; static and

disparate. Without the dynamic capabilities observed in other defence systems such

as antivirus and firewalls, they are often overcome by attackers who subtly adjust

their approach and render exploit-driven detection mechanisms no longer relevant.

1.1 Outline

We start in Chapter 1 by presenting a historic time-line of attack incidents to il-

lustrate the evolution of semantic attacks over the last 17 years and discuss recent

attacks statistics to highlight the scale of threat as it is today. In Chapter 2, we

present a taxonomy of semantic attacks which introduces a generic classification cri-

teria for simplifying the problem space and supplement the taxonomy with survey

of applicable defences mechanisms. In Chapter 3, we explore the feasibility of pre-

dicting susceptibility to deception-based attacks by conducting two user studies, the

first a large scale survey on 4333 users which informed a refined, smaller survey on
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315 users, using the data collected to determine predictors of susceptibility and pro-

duce generalised model for training a dynamic system for proactive user security. In

Chapter 4, we propose a technical framework based on the concept of “Human-as-

a-Security-Sensor” (HaaSS), drawing together the generalisation of semantic attack

classification, use susceptibility and the aim to develop a technical defence into a

single architecture for detecting and mitigating semantic attacks. To demonstrate

the real-world practicality of the framework, we develop a prototype HaaSS platform

called Cogni-Sense which we evaluate in an empirical experiment with real users. In

Chapter 5, we conclude with a summary of our contributions, discuss open problems

in our work as well as the wider problem space, and provide key motivations and fu-

ture research and development direction of the HaaSS concept as an essential defence

mechanism against semantic attacks.

1.2 Characterising the threat of semantic attacks

Semantic social engineering attacks are a pervasive and persistent threat to computer

and communication systems; existentially linked to the user-computer interface. The

problem space is both paradoxically and implicitly related to this fact: as long as

a user-computer interface exists, a computer or communication system is inherently

at risk to malicious manipulation to deceive a user into eliciting an action that will

compromise their own or their system’s information security.

1.2.1 A brief historic overview of social engineering in com-
puter systems

In computer systems, semantic social engineering attacks can be traced back to as

early as 1989 when the “AIDS Information Introductory Diskette” Trojan [29] was

sent to a mailing group in which Dr Joseph Popp, the Trojan’s author, subscribed. To

enter a computer system the attack exploited the use of a diskette pertaining to con-

tain information about the AIDS virus which deceived the recipients of the diskette

into inserting the media in their system. In fact, the diskette contained a malicious

3



program known as a Cryptovirus [30] which ransomed users for money by encrypting

their systems files. Another noteworthy semantic attack occurred only a year later in

1990, introducing a concept that is known today as “Scareware”. The malware, aptly

named Nightmare [31], was distributed via diskettes called “Fish Disks” designed

to share applications between Amiga computer systems of the time. On execution,

every 5 minutes the screen was hijacked for four fifths of a second to display a full-

screen image of skull with bullet wound and blood leaking out, at the same time

playing a loud shriek on the Amiga’s audio channel. Whilst the malware posed no

risk to user data, the concept of scaring/panicking a user would later be employed

by many cyber-criminals to force users into opening malware and / or for paying

for fraudulent services [32]. In 1995, five years later, new semantic attacks began to

appear which were specifically designed to exploit users accessing resources over a

new open network, called the Internet. Domain investor John Zuccarini introduced

the concept of Typosquatting or Cybersquatting into the mainstream, where cyber

criminals would purchase domain names that were similar to those of legitimate web-

site. Users who mistype the domain name URL of a legitimate website would then

be redirected to a malicious or fraudulent website. During the same year, service

provider America Online (AOL) had experienced growing success with a popular in-

stant messaging tool. Hackers soon realised that the application could be exploited

and developed an attack tool that lead to the first use of the term “phishing”. AOHell

[33], contained a “fisher” tool that enabled hackers to steal passwords and financial

information through automated social engineering by generating instant messages to

random AOL users with content such as: “Hi, this is AOL Customer Service. We’re

running a security check and need to verify your account. Please enter your username

and password to continue”.

Over the next decade, phishing attacks, in particular, had become widespread;

with the period of January to December 2005 alone accounting for 173,063 reported

phishing attacks, of which 49,774 were new phishing platforms [34]. However, it was

five years earlier in the year 2000, when one of the highest profile email phishing
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attacks to have ever occurred was discovered. The infamous ILOVEYOU “worm”1,

contained a malicious visual basic script titled “LOVE-LETTER-FOR-YOU.txt.vbs”

[37], initially spreading through corporate Philippine mailing lists and eventually af-

fecting over 45 million computers systems world-wide; resulting in what was one of

the world’s most dangerous computer related disasters at the time. This attack was

copycatted a year later in 2001 by the Anna Kournikova worm, using the same worm

generating script [38]. The same year, the first known phishing attack against a finan-

cial institution was discovered, where E-Gold users were targeted with emails tricking

them into entering their passwords into phishing websites [39]. Leading up to today,

the exponential growth of the Internet, multimedia services and mobile platforms,

have enabled semantic attacks to spread further into Android devices [40], peripheral

hardware accelerated by direct memory access [41] (e.g., Thunderbolt and Firewire

devices), file sharing networks [42], search engine optimisation engines [43], targeted,

drive by malware on websites [44] and the landscape continues to expand. For ex-

ample, the advent of online social networks and increase in online social media has

introduced a paradigm shift in Internet communication; where platform function-

ality promotes openness and information sharing amongst users. This new, online

social paradigm has enabled cyber criminals to take advantage of new concepts such

as “friend“ recommendations, user “posts” and sharing of media or apps that are

replicated and automated with the network [10, 45, 46].

Even more concerning is the potential for semantic attacks to result in physi-

cal impact, outside of their traditional “cyber” domain. For example, in December

2014 damage was caused to a German steel mill furnace when hackers used targeted

phishing emails as an initial entry vector to gain remote access to the steel mill office

production network. Through spear phishing, the attackers captured key user cre-

dentials which provided remote network access enabling further technical penetration

1Note that here we use the term “worm” to refer to a malware with a semantic attack vector that
exhibits automated, self-replicating behaviour, as stated by [35]: “To spread, worms either exploit a
vulnerability on the target system or use some kind of social engineering to trick users into executing
them”. However, a more traditional definition of a computer worm, (such as a network worm) defines
a worm as: “A malicious software that propagates automatically without human interaction, using
a vulnerability that has not been patched or widely acknowledged at the point of an outbreak.” [36].
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of the product management software of the steel mill and ultimately control over

the plant control systems with devastating consequences [47]. Another example of

physical impact occurred when households in Ukraine suffered a blackout on 23rd

December 2015 which was caused by an attack which brought down a portion of the

national power grid. Again, the attackers initially used phishing emails to trick users

at the electricity company into clicking on an attachment in an email, purportedly

from the Prime Minister of Ukraine [48]. Here, the e-mail attachment contained a

malicious macro which ran the notorious BlackEnergy malware, which is a Trojan

horse software designed to launch distributed denial-of-service (DDoS) attacks and in

this case deliver an exploitation called KillDisk ; an exploitation that had the capabil-

ity to disable or destroy critical software components on embedded systems (such as

Industrial Control Systems). As with the German steel mill, here, the attack relied on

a semantic attack vector as an initial entry point into the target system as a means

to deploy further sophisticated technical exploitation against vulnerable embedded

control systems. This is thought to be the first cyber-attack which brought down a

national power grid leaving 80,000 homes without electricity. As integration between

physical things and computer systems continues to evolve (e.g., Internet of Things)

and the more effective such cyber-physical attacks prove [15], the more the semantic

attack surface continues to grow.

In Figure 1.1, we provide a time-line containing an extract of high profile semantic

attacks from the first publicised incident in 1989 to the most recent attacks of today;

identifying the chronological emergence of different semantic attacks as well as the

persistence of those into current times. The time-line shows that from 1989 to 2016,

using a 5-6 year frequency, there has been a steady increase in the diversity (e.g.,

platform, device), size and impact of semantic attack exploitations across computer

systems. To a large degree, the rise of semantic attacks is symptomatic of the ex-

plosion of personal computing and the exponential growth of the Internet over the

last thirty years. However, importantly, we can see that irrespective of advancements

in computing security over this time period there has been a persistent appearance

of the same attacks such as email phishing and Trojan horse malware (which were
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identified as early as 1995), which continue to be highly successful today. Moreover,

unlike in 1995 where the impact of phishing and Trojan malware was limited to tra-

ditional computer systems, phishing today has enabled attackers to execute attacks

that result in physical impact.

Back in 1996, IT security expert Ira Winkler conducted a publicised study on

the non-technical threats to computer systems [49], providing the first serious insight

into the impact of semantic attacks. Two years later, IT security researcher David

Harley produced a research paper that documented the many facets of technical and

non-technical social engineering attacks and the risk posed to computer systems of

the time [50]. However, in the decades that has followed the threats of semantic

attacks today remain highly reminiscent of those originally identified by Winkler and

Harley’s research. In fact, the problem has remained the same, whilst the threat

space has grown exponentially as computer technology has become a richer and more

essential part of everyday life. Furthermore, a recent survey by Intel Security showed

that even modern IT security experts, trained specifically to detect semantic attack

such as phishing, were still found to have difficulty distinguishing between these types

attacks and legitimate system activity [51].

1.2.2 The extreme diversity of semantic attacks

As of today, there exists over 35 individually recognised types or variations (charac-

terised by pseudonym) of semantic attack, existing within and cross-contaminating

between a vast range of different platforms and systems. We summarise these types

in Table 1.1 to highlight the number of different semantic attacks in the wild today

and the extreme diversity in an attacker’s arsenal when launching semantic attacks

against computer systems.
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Figure 1.1: Historic time-line summarising notable Semantic Social Engineering At-
tacks
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Table 1.1: Different types of semantic attack observed in today’s computer systems

Attack Pseudonym Description

Spam Irrelevant/unsolicited messages sent over the Internet to a large number of
users, often containing advertising scams

Phishing Attempt to obtain access to sensitive information by disguising as a trustwor-
thy entity in an electronic communication

Spear phishing Phishing attack designed to target a specific person/organisation/system

Pharming Malicious code is installed on a personal computer or server, misdirecting
users to fake web sites without knowledge or consent

Whaling Phishing attack that targets high-profile end users such as corporate execu-
tives, politicians and celebrities.

Vishing Making phone calls/leaving voice messages purporting to be from reputable
companies in order to access sensitive user information

QRishing Phishing attack using quick response (QR) codes

Blue Snarfing Phishing attack enticing a user to install a malicious file allowing access to
the users device via the bluetooth protocol

Smishing Phishing attack on SMS

URL spoofing A spoofed URL is where a website poses as another by e.g., copying domain
name, sometimes exploiting bugs in web browsers

DriveyBy download Implanting a malicious file on a vulnerable web platform

Waterhole Targeted DriveBy download attack

File Masquerading Disguising a malicious file to appear as a legitimate file type

Multimedia Masquerading Disguising a malicious application appear as multimedia (e.g., video)

GUI Confusion A mobile application confusing users by impersonating as another application
(e.g., banking app) to obtain sensitive information

Adware Software that automatically displays or downloads advertising material such
as banners or pop-ups when a user is online.

SSL Spoofing MitM attack that intercepts HTTPS web requests, redirecting the users to
malicious and fake HTTPS website

Visual SSL spoofing Process of using fake SSL verification logos or browser GUI components to
visually deceive users into thinking they are on a secure website

Scareware Malicious program tricking a user into buying/downloading unnecessary often
malicious software, such as fake antivirus protection.

Rogueware A standalone malware program that pretends to be a well-known program or
a non-malicious one in order to steal sensitive data

Malvertisement An online advertisement that incorporates or installs malware.

WiFi Evil Twin A fraudulent WiFi access point that often spoofs other nearby access points
that appears to be legitimate.

Rogue AP Wi-Fi access point installed on a network but is not authorized for operation
on that network and appears to be legitimate

Trojan Horse Type of malware that is often disguised as legitimate software, such as a game
that is actually a key-logger.
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Self XSS Operates by tricking users into copying and pasting malicious content into
their browsers’ web developer console.

Typosquating A form of cybersquatting relying on mistakes such as typographical errors
made by users when inputting an address into a browser.

RansomWare A type of malicious software designed to block access to a computer system
until a sum of money is paid, often using fear tactics.

Tabnabbing A type of phishing where a website changes to impersonate popular websites

Sharebaiting Enticing web content on social media that persuades users to share on their
profile, often used to spread fake apps and phishing URLs

Click Jacking Concealing hyperlinks beneath legitimate click-able content, thereby causing
the user to perform actions of which they are unaware.

Like Jacking Variation on clickjacking in which malicious coding is associated with a Face-
book Like button.

Touch Jacking Variation of clickjacking that applies to mobile devices where users touch the
interfaces instead of using a mouse or keypad to click

Cursor Jacking Variation of clickjacking where users are deceived by means of a custom cursor
image, where the pointer is displayed with an offset.

Spamdexing Manipulation of search engine indexes where a website repeats unrelated
phrases to manipulate relevance or prominence

Torrent Poisoning Intentionally sharing corrupt data and malware with misleading file names
using the BitTorrent protocol

DNS Cache Poisoning Process by which DNS server records are illegitimately modified to replace a
website address with a different address.

Fake App Variation of trojan horse, rogueware, scareware on mobile devices where a
malicious app masquerades as a legitimate one

Fake Plugin Malicious plugin to view a video typically spread by re-posting the fake video
message to a victims profile page without permission

Madware Aggressive advertising placement in mobile devices photo albums, calendar
entries and notification bar

1.3 The scale of the threat today: recent semantic

attack statistics

Semantic attacks statistics have been dominated by phishing incidents in recent years,

due to their widespread use by cyber criminals and consistent success in breaching

computer systems. A report by Trend Micro in 2012 identified that over 90% of

targeted malware attacks discovered were initiated through spear-phishing attacks

[52]. In 2014, Social Engineer reported that out of the 129 billion emails sent daily,

90% of these were spam and contained viruses. Moreover, clicking on email links
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accounted for 80% of reported phishing attacks and phishing itself represented 77%

of all socially-based attacks [53].

In 2015 leading online statistics company Statista reported that phishing and

deception-based attacks accounted for 62% of all cyber attacks experienced by com-

panies world-wide [54], where 59% were reported by US companies alone [55]. Fur-

thermore, the average number of days to resolve this type of attack for a US based

company took 20 days [56], with damages of 12% and 16% for medium and enterprise

companies total operating costs, respectively.

The Anti-Phishing Working Group (APWG) produce yearly statistics related to

the current trends across a multitude of different phishing attacks that are reported

from around the world to their online phishing repository. We have compiled data

from the APWG phishing activity trends report archive [1] for years 2008 to 2016,

showing in Figure 1.2 the cumulative number of phishing reports received by APWG

over this period. With exception of 2008 to 2009, the linear increase in the number of

phishing reports received by the AWPG from 2010 to 2013, then becomes exponential

up to the current 2016 report (which at the time of writing did not yet include beyond

September 2016 for the reporting year). These statistics only include reports made to

the APWG and therefore are likely to only provide a snapshot of the actual number

of phishing attacks that have been received during this time period.

Figure 1.2: APWG Phishing report statistics for years 2008-2016 [1]

11



The Internet Security Threat Report, a yearly security study produced by Syman-

tec, expands beyond traditional phishing statistics and organises semantic attacks (as

well as other conventional malware and computer exploitations) amongst four cat-

egories: mobile and Internet of things (IoT), social media and spam, web threats

and targeted attacks. Figures 1.3, 1.4, 1.5 and 1.6 summarise a number of seman-

tic attacks and threats utilising deception techniques from years 2013 to 2015 [2].

For mobile platforms, over the course of three years approximately 5 million apps

were categorised as malware; with some further 4 million grayware applications also

categorised as madware (adware on mobiles). Amazingly, only 25% of mobile apps

analysed during this time period were categorised as legitimate. In all cases, mal-

ware, grayware and madware require users to agree to install applications, granting

permissions to the applications, irrespective of whether any further deception tech-

niques are used (e.g., during app usage); which indicates low user awareness of mobile

app vulnerabilities where users are likely to be deceived by a lack of perceived threat.

Social media attacks were consistently shown to be propagated largely by users man-

ually sharing posts and apps amongst friends and groups, instead of automated ”free

offerings” (e.g., surveys and malvertisements) that were dominant in 2013; further

highlighting the vulnerability of users behaviour in online social network platforms.

Spear phishing campaigns were also observed to have consistently increased over the

last three years, whilst the number of recipients per campaign have decreased by

an average of 25% each year which may indicate that attackers are developing more

sophisticated methods for spear phishing which require less targets for successful ex-

ploitation; which also helps to lower detection by creating a smaller attack footprint.

Whilst spear phishing attacks continue to target financial industries as cyber crimi-

nals aim to steal money for financial gain, recent attacks in 2015 have seen attackers

switching some focus to energy and health-care sectors (Figure 1.6). These attacks

demonstrate how threat actors are now beginning to target what were traditionally

isolated environments, as semantic attack vectors are re-focused toward the Internet

of Things.
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Figure 1.3: Classification of mobile apps analysed by Symantec during 2013-2016
(total apps analysed - 2013: 6.1m, 2014: 6.3m, 2015: 10.8m) [2]

Figure 1.4: Distribution method of social networks and social media scams/attacks
by percent
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Figure 1.5: Number of spear phishing campaigns and average number of attack re-
cipients per campaign [2]

Figure 1.6: Top industries targeted by spear phishing attacks in 2015, ordered by
majority percentage [2]
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1.4 Research Aim

Semantic attacks pose a significant and sustained threat to computer information

security. The attack landscape is vast, with attacks covering a multitude of disparate

platforms. As a result, the problem space is difficult to define as it continues to grow.

Consequently, there is an increasing need to identify defences that can operate across

the wider attack space, rather than in a atomistic fashion addressing specific attack

vectors, on specific platforms only. Such an approach to defence would help to simplify

an arbitrary degree of complexity in respect to the overhead of managing multiple

defences platforms, scaling such systems, their practicality for different types of users

(e.g., individual home users, usability for non-experts etc.) and future applicability

to new threats on emerging platforms.

This thesis’s aim is to produce a defence system able to detect a wide range of

semantic attacks, irrespective of target platform or attack vector.

Towards this aim, our principle objectives are as follows:

• To investigate whether semantic attacks in computer systems share key char-

acteristics that can be utilised to develop approaches to defence that are not

attack-specific.

• To investigate whether different users ability to detect semantic attacks in a

human-as-a-security-sensor role can be predicted.

• To develop a technical defence system for automatic estimation of a users ability

to detect an attack as a means to facilitate dynamic protection against semantic

attacks.

In the next chapter, we start by exploring in-depth the existing attack landscape,

evaluating the current literature related to attacks and identify existing taxonomies

that have been developed to classify semantic attacks. We then propose a novel,

systematic, parameterised taxonomy designed to identify and categorise key char-

acteristics observed in semantic attacks that are independent of individual attack
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vectors. We then conduct a survey of defences and map their application to our

taxonomy classification criteria in order to highlight the key areas of defence that

provide a direction of travel towards the development of a novel, dynamic approach

to defence.
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Chapter 2

A taxonomy of attacks and survey

of defence mechanisms

Semantic attacks are typically grouped by type of exploitation into specifically related

attack families. For instance, phishing has become synonymous with fake websites

and emails [17], whereby victims are targeted through a baiting mechanism [57]. In

this example, the attack family is phishing, whereas phishing emails and phishing

websites assume the exploitation type. Another example would be fake applications

posing as legitimate pieces of software (scareware, rogueware [58] etc.), which can

be associated with the Application Masquerading attack family. A majority view of

currently observed semantic attacks is presented in Table 2.1, which combines ter-

minologies commonly used by information security practitioners to identify semantic

attack exploitations into related attack families. This static approach fails to identify

common attributes of exploitations that are grouped under different attack families.

For example, a phishing URL on a web page or email may share a similar method of

obfuscation/deception with the one used in a bogus video URL on a social network

site (SNS). So, a defence mechanism that would defeat the particular method would

potentially be useful for both types of semantic attacks.

Attack-specific approaches to classification have historically led to development

of computer security systems that rely on manually generated attack signatures and

definitions [59], which can be circumvented in a number of ways (e.g. by zero-day vul-

nerabilities, obfuscation, polymorphism [60] etc.). Through taxonomic research and

17



Attack Family Exploit variant

Phishing Email, Website, URL, IM, Forums, SMS, IRC
File Masquarading Document , System, Application files
Application Masquerading Scareware, Rogueware, Ransomware, Trojan horse
Web pop-up Media-plugin, Alert / Error message, bogus survey
Malvertisement Infected ad, One-click fraud, Download button
Social Media / Networking Friend injection, Fake-video link, Fake Game, Likejacking
Removable Media USB, Flash / SD, Firewire, CD/DVD, PCI
Wireless Rogue AP, RFID, bluetooth

Table 2.1: Examples of semantic attack exploit family categorisation

development, defence systems have employed techniques that analyse relationships

between application behaviour and response (sandboxing [61, 62], dynamic anomaly

based scanning [63] etc.). These systems have enabled dynamic and proactive re-

sponse to security threats on multiple technical platforms, from mobile to desktop

operating systems. Yet, this approach has not been replicated or realised for semantic

attacks.

A taxonomy of the semantic attack problem space can help researchers evaluate

the applicability and scope of proposed solutions for different current and future

threats. Some first steps have already been taken in this direction, but still to a limited

extent. For instance, [64] have classified attacks based solely on the primary attack

vector, such as whether it is a website or email, while [65] have used a hierarchical

classification structure that links specific attack vectors to the conditions of their

delivery, specifically person-to-person or via online media. These approaches cannot

identify attacks and their associated behaviour outside of the criteria specified and

therefore may be unable to address future semantic attacks or ones that combine

exploitations from more than one category.

More recently, [66] introduced a dynamic classification framework that addresses

high-level attack behaviours involved in the creation of a semantic attack: persuasion,

fabrication and data gathering. This approach provides a basis for classifying threats

outside of the limited scope of previous taxonomies, but is limited to high-level the-

oretical dimensions of Social Engineering and it is not clear how it can be used at a
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technical level by developers of semantic attack defence technologies. On the other

hand, the work of [67] is highly useful in that respect as it identifies the entities that

comprise an attack irrespective of visual representation, but their focus is solely on

social networking.

2.1 Taxonomy of Semantic Attacks

Here, the aim is to help researchers and engineers develop technical defence ap-

proaches for both current and future semantic attacks by addressing core semantic

attack characteristics rather than particular implementations. That is because a de-

fence system designed for a particular set of characteristics can be applicable across all

attack types that share it, thus making it a more efficient choice from the perspective

of technical development.

Note that current cybercrime operations may have many layers and an adversary

may employ composite semantic attacks consisting of multiple phases of individual

semantic attacks, in parallel or one after the other [68]. An example may be a spam

email containing a URL to a spoofed website, where the user is forwarded to a drive-

by download that results in infection with a scareware application. The taxonomy

classification is designed to classify semantic attacks as individual singular compo-

nents (e.g., the drive-by download) rather than the possible permutations of these

components (spam → spoofed website → drive-by download → scareware). This is

an important function of developing a generic taxonomy of attacks that is practically

usable at a technical level because it simplifies the objective of a defence mechanism.

Assuming that a composite attack requires all its individual component attacks to

succeed, mechanisms that address any of the latter would protect against the compos-

ite attack too. In the example above, the threat of the scareware application delivered

in this manner would be thwarted by any technical mechanism that would effectively

block the spam email, spoofed website or drive-by-download attempt.
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To be usable in the long-term, these characteristics need to be universally appli-

cable and independent of the platform involved. In particular the platform consolida-

tion driven by cloud computing, the Internet of Things and other recent computing

paradigms is making the distinction between mobile, desktop and embedded system

user experience less obvious than in the past. For example, in the near future, fake

tyre pressure alerts shown on a car’s dashboard [69] may be used to achieve deception

in a manner not too dissimilar to current scareware pop-up alerts for mobile and desk-

top users. A defence approach focusing on the fake warning deception characteristics

rather than the platform targeted would potentially be applicable for both.

These characteristics also need to span all stages of an attack. For this, we adopt

the definition of the three distinct control stages of orchestration, exploitation and

execution suggested by [70]. For each stage we pose the questions that we believe

would matter the most to developers of technical protection mechanisms. In addition,

we have ensured that for each category, the classifications are mutually exclusive.

Based on this constraint we do not by any means claim that the taxonomy is

exhaustive, but we do evaluate its practical usefulness by providing for each category

an example of how a developer can find it useful.

Control Stage 1: Orchestration

1. How is the target chosen?

This can help identify the conditions for exposure to an attack. For instance,

whether a user is vulnerable due to a specific attribute of theirs or chosen

randomly makes a difference for the user and system features that a defence

system may have to focus on.

2. How does the attack reach the target?
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This may help identify the platforms that are involved in the attack, which in

turn may help a developer choose which remote (hence involving a network) or

local system to monitor and potentially where to place a defence mechanism.

3. Is the attack automated?

The degree of automation in an attack can change fundamentally the response

mechanism or the type of data that can be meaningful to collect about it.

For instance, a fully automated attack may be possible to fingerprint based

on patterns of previously observed behaviour, while a fully manual attack may

focus on the attacker’s behaviour instead.

Control Stage 2: Exploitation

1. Is it looks or behaviour that deceive the user?

This can potentially help the developer of a defence mechanism to pinpoint

mechanisms by which an attacker can deceive the user into a false expectation

by manipulating visual and/or system behaviour aspects of a system.

2. Is the platform used in the deception only (ab)used or also programmatically

modified?

Identifying whether the deception occurs in code (embedded in the system or

external), or by abusing intended user space functionality, can help shape the

design of a defence system by narrowing down its scope.

Control Stage 3: Execution

1. Does the attack complete the deception in one step?

An attack that relies on more than one step can be potentially detected more

easily than a single-step one and before it completes by looking for traces of its

initial steps. It may also be thwarted by preventing even one of the compro-

mising actions that a user needs to be deceived into committing.

21



2. Does the deception persist?

Contrary to one-off deception attempts, persistent ones may have a high chance

of succeeding in their target but could also help a learning-based defence system

to gradually identify its pattern of behaviour and block it.

Each category of answers that correspond to each question helps establish the

sections and subsections of the taxonomy, as shown in Fig. 2.1.

Utilising a single-layer attack model for classification, the taxonomy is able to

identify the composition of a semantic attack by using a parameter-based approach,

organising the classification criteria in a linear fashion. Unlike previous taxonomy

approaches, it captures multiple variables involved in the delivery and execution of a

semantic attack by applying criteria that are independent of the attack vectors used.

As a result, it can potentially represent both existing and future attacks.

To supplement the taxonomy we produce a survey of the current landscape of de-

fence mechanisms, as well as a comparative matrix between the classification criteria

and applicable defences, which illustrates areas of semantic attack security most in

need of research.

Figure 2.1: Taxonomy of Semantic Attack Mechanisms
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2.1.1 Control Stage 1: Orchestration

The arrangement of targeting, distribution and automation in a semantic attack.

TD: Target Description

This refers to the targeting methodology applied in the attack orchestration process:

whether the attacker has chosen to target an individual or group randomly (promis-

cuous targeting) or based on their identity or some other exclusive attribute of theirs

(explicit targeting).

TD1: Explicit targeting

By explicit targeting, we refer to the practice of choosing a particular individual or

group of users as the targets of an attack based on their specific identity or an ex-

clusive attribute of theirs (company, role, location etc...). Typical examples here are

spear-phishing and watering hole. Spear-phishing is the targeted version of phishing,

where a carefully crafted phishing email is directed to a specific individual or organ-

isation. This is known as whaling when the target is highly valuable (e.g., a senior

executive) [71]. Watering hole is the targeted version of the drive-by-download attack,

where a malicious script is implanted on the websites that a particular individual or

community are known to visit [72]. In the same category of explicit targeting based

on a common attribute we can include the practice of targeting victims located in

a particular country, so as to intentionally cultivate botnets of better quality or to

exploit that country’s sociopolitical affairs [73]. For emphasis, let us clarify that we

include here only attacks where the target is chosen explicitly for their identity or

for an exclusive attribute of theirs, not merely as a second order of consequence. For

example, a WiFi phishing attack in a coffee shop is generally not a targeted attack

(see TD2: promiscuous targeting). The fact that people that are coffee drinkers are

targeted is only a second order of consequence, as the attacker is highly unlikely to

have explicitly chosen them because they are coffee drinkers. However, one could con-

ceive a targeted instance of this attack (say a ”WiFi spear-phishing” attack) launched
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specifically when a particular target individual is known to visit that coffee shop. This

hypothetical attack would indeed be classified as explicitly targeted.

TD2: Promiscuous targeting

Promiscuous targeting is nondescript and typically focuses on maximum exposure.

A typical example would be a large-scale phishing campaign launched by a botnet

against any email address the attacker could find [74]. Semantic attack “worms” em-

ploying instant messaging and file-sharing platforms as automated replication medi-

ums usually also aim for maximum exposure through promiscuous targeting [75].

Wifi phishing attacks [76, 77] are generally promiscuous in their user targeting. The

attacker sets up a malicious access point to exploit any incoming client connection

regardless of user identity or any other attribute.

MD: Method of Distribution

This refers to the mechanism by which an attack arrives at the target system: through

a software interface (Software), executed on the target host (Software-Local) or on a

distributed host environment (Software-Remote); or whether it is a physical device

(Hardware) that interfaces with the target host via direct hardware access (Hardware

without software interaction) or via the host operating system (Hardware with soft-

ware interaction). Software interfaces are generally more common. Software-based

attacks can be highly automated and easy to reuse and replicate with minimal super-

vision, while embedding a hardware device in a target environment can be manually

intensive, high-risk, and difficult to target large number of users.

MD1: Software

This refers to semantic attacks that distribute a deception mechanism through a

software medium, usually exploiting built-in functionality in the user interface of

legitimate applications rather than technical flaws. They can be classified as local or

remote.
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MD1-L: Local

Local software attacks are distributed from within the target user’s local operating

system, as exemplified by attacks that use Trojan horse logic [78]. While a Trojan

horse carrying a semantic attack payload may itself have been distributed remotely

(e.g., unknowingly downloaded from a website), the semantic attack already resides

within the target machine when presented to its target [58]. This behaviour is com-

monly observed in PDF file masquerading [79] and in scareware/rogueware attacks

[76, 58].

MD1-R: Remote

Here, the semantic attack originates from a host environment other than the target

user’s system. It may involve web servers or distributed applications, such as cloud

(for storage, server hosting or email) and peer-to-peer platforms (P2P networks, in-

stant messaging, torrents). Remote distribution varies between different components

in a remote platform. For example, a malicious URL may be presented via an email

system on the Internet [18] or an instant messaging program [80, 81]. Malicious files

can be served via synchronised cloud storage [11], malvertisements embedded in com-

promised web pages [82], automated bots in social network sites [83, 84] or a stolen

online gaming avatar used to gather information on a computer gaming system [85].

MD2: Hardware without software interaction

This refers to attacks distributed to the target through a local hardware interface

without interacting with the target host’s operating system. Examples include hard-

ware interfaces capable of direct memory access (DMA) or external hardware devices

that passively intercept user data. In the case of DMA exploits, attackers plant com-

mon peripherals, such as storage devices, employing only hardware interfaces that are

capable of creating a direct channel to a system’s physical memory, such as firewire

[86] or a PCI network interface card [87]. Attackers can also plant man-in-the-middle

sniffing devices in the guise of Ethernet network outlet points, or hardware key loggers

embedded in keyboards [88].
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MD3: Hardware with software interaction

Most hardware-distributed semantic attacks rely on a software component in order to

elicit compromising user actions. For example, [89] describe a series of attacks involv-

ing the USB interface, presented as a masqueraded hardware device that includes a

software component, such as a malicious file triggering auto-run functionality in op-

erating systems (namely Microsoft Windows). In the same category we can include

exploitations that depend on WiFi, Bluetooth, as well as other less obvious interfaces

for their distribution. An interesting example is near field communication (NFC)

phishing. When attached to a legitimate surface (say a Red Cross donation appeal

poster), a maliciously modified NFC tag interacts with the NFC software on users’

smartphones and directs them to a malicious website rather than the Red Cross’s.

[12].

MA: Mode of Automation

Mode of automation refers to the degree of attacker supervision in the activation

and administration of a semantic attack: by manually supervising every element of

the attack throughout its lifetime (Manual), or by pre-configuring every aspect and

having no control over the attack after it is launched (Automatic).

MA1: Manual

This requires intervention from the attacker to facilitate delivery of a semantic attack.

The attacker explicitly triggers the deception mechanism by manually placing it in

the target environment and, where applicable, explicitly responds to events when

user interaction occurs. The attack procedure is flexible, because the attacker has

full control over the process and may modify it during the attack. Examples could

include an attacker manually sending a phishing email from a spoofed email account

rather than an automated botnet, handing out infected DVDs outside a building, or

physically intercepting legitimate media devices (e.g., through hardware or delivery

supply chain) and embedding into them a malicious payload before they reach their

target [90].
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MA2: Automatic

Here, the semantic attack is delivered in an automated manner without requiring

communication or intervention from the attacker. The attacker has pre-programmed

the procedure for delivering the attack. Automatic mode of automation provides

obfuscation of the attacker as the semantic attack operates without external influ-

ence, but also limits control and flexibility. For example, in the case of the Anna

Kournikova “worm”, the malicious email and file attachment contained the complete

set of instructions for the attack [91]; once released the author had no control over its

targeting or attack parameters. A more recent example is “Selfmite”, a SMS malware

for Android devices, which contains a hard-coded procedure to send text messages

containing a link to an app. Once installed, it then replicates the message to the

first 20 contacts on that device, effectively masquerading as a text from a known

associate in an automated fashion [92]. In the same category we can include drive-by

download attacks. Once an attacker embeds malicious code in a vulnerable website,

the drive-by download runs automatically when a user visits the website [93, 94]. In

general, full automation can help hide the origin of a semantic attack and reduce the

effort required to replicate it, but also limits control over the process. Most auto-

matic semantic attacks feature crude deception mechanisms that can be noticed by

an experienced user.

2.1.2 Control Stage 2: Exploitation

The construction and application of attack vectors designed to bypass system infor-

mation security.

DV: Deception Vector

The deception vector is a focal point of this taxonomy. It defines the mechanism by

which the user is deceived into facilitating a security breach, and can be categorised

as cosmetic, behaviour-based or a combination of the two.
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DV1: Cosmetic

In the use of graphical user interfaces (GUIs), there is an implicit trust between GUI

designer and user. The GUI designer trusts that the GUI will be used as intended,

and the user trusts that each component is what it appears to be (e.g., in the sense

that the GUI is used for the purpose of facilitating legitimate platform behaviour

and not manipulated in a way that aims to deceive and exploit the host system or

user). Cosmetic semantic attacks exploit this trust by manipulating the appearance

of GUI components. For example, a file contains a name, type extension, icon and

associated program. Filenames typically appear as readable, clear indicators of what

a file does or contains, as is often required by the author. Therefore, official-looking

and recognisable filenames command a level of trust. The attacks in [95] and [96]

are prime examples where cosmetic deception techniques have proven particularly ef-

fective in P2P applications, either by matching filenames in a user’s shared folder or

by generating commonly searched filenames on the network. File extensions carry a

presupposed risk associated to their behaviour. For example, “.exe” is a well known

executable extension and thus threat to the user’s system if the file is malicious.

However, the same caution is not exercised for other executable types, such as “.bat”,

“.ini”, “.lnk”, or “.scr” [11]. Moreover, in Microsoft Windows, the file type and ap-

propriate icon to be displayed are determined by extension. As Windows Explorer

hides extensions by default and executable programs can be configured to display any

icon [97], users can be deceived by an icon - extension mismatch if the filename is dis-

guised, as in “document.txt.exe” displayed as “document.txt”. In the same manner,

emails contain sender addresses, subject titles, body of text containing images and

attachments [18], and websites use a domain name URL and common page features,

such as buttons and images, which can be manipulated to deceive a user. Attackers

can generate phishing websites that assume the identity of their legitimate counter-

parts by copying the source code and images to appear completely identical [17]. In
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typosquatting attacks, simple but effective cosmetic deception is achieved by regis-

tering domain names that are similar to popular, legitimate websites, and are likely

to be visited by users making spelling mistakes (e.g. twiter.com or facebok.com) [98].

Cosmetic deception is prevalent in attacks against web-based user interfaces, such

as social media platforms where an attacker posts malicious links that visually imitate

videos, enticing users to click on them to view the content [99]. In WiFi phishing, the

attacker redirects users to an authentication website that looks like the login page for

free Internet service [100]. The GUI components expected for such a page are included

to add integrity and conformity to the exploit. [101] provide examples of techniques

for developing fake mobile apps that appear like their legitimate counterparts, by

duplicating login screen, including the logo, GUI layout and text. The study carried

out by [102] has demonstrated visual logo spoofing, with manipulated “seal images”,

which fool the users but are otherwise seen as non-malicious content to a security

system monitoring the web platform.

DV2: Behaviour

Here, deception is achieved by mimicking a legitimate system’s behaviour rather than

looks. Users are duped by supposed functionality convention against the standard

approach used in well-known implementations. For example, in the generic rogue

access point attack, the user is deceived by merely seeing it on the list of available

WiFi networks [76]. Also, in URL phishing attacks on social network sites [80, 103],

the deception relies solely on the accepted behaviour associated to the origin of the

attack, as it is received from a user that is on the target’s list of friends. In reality,

the message is automatically generated by a malicious app installed on that friend’s

account.

DV3: Hybrid

Hybrid approaches combine aspects of both “looking like” (DV1) and “behaving like”

(DV2) to create a convincing deception, as exemplified by phishing websites, which
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typically copy not only images and text, but also the actual code from the legit-

imate website [17]. [58] and [32] describe how scareware applications masquerade

as antivirus programs by using similar logos, text and interfaces as their legitimate

counterparts, complete with scanning engines and infection removal tools. [104] has

reported an attack where a wrapper was attached to a legitimate mobile banking app.

Once installed, it would load an in-app HTML page mimicking both the looks and

the behaviour of the legitimate application’s login form. On entering user credentials,

an error would be displayed, requesting the user to install the application again. At

that point, the legitimate version would indeed be installed and would function as

expected from then on.

Other examples of hybrid deception can be seen in removable media attacks, such

as USB flash drives. A USB storage device can be preloaded with a legitimate looking

Microsoft word file that actually contains a malicious Visual Basic macro or zero-day

exploit. Once the user has clicked on the file, Microsoft word opens as the user

would expect, whilst also running the malicious code attached to the word document.

A recent demonstration by [105] has shown how USB firmware controllers can be

reprogrammed to spoof other devices to take control of a system, exfiltrate data or

spy on the user. The exploit shows how a USB flash drive can assume different or

multiple identities on a computer, such as a webcam, keyboard, as well as a USB

flash drive, by manipulating USB interface identifiers used by operating system to

interact with the USB devices functionality (e.g., processing key states sent by a USB

keyboard peripheral). Here, the deception vector is both cosmetic and behavioural.

The USB device appears and functions as the user would expect, but in addition it

deceives the host system into thinking it is a different device and allows the execution

of arbitrary code.

IM: Interface Manipulation

A deception vector can be exploited by only utilising maliciously the existing func-

tionality of the target system (user interface) or by also programmatically modifying

it (programmatic interface). For example, an attacker may direct users to an attack
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server by merely posting a hyperlink using a social network site’s user interface or by

programmatically injecting malicious JavaScript code into its HTML code.

IM1: User Interface

Here, we refer to attacks that are limited to abusing existing functionality provided

by a user interface as the means of deceiving a user. This includes both hardware

and, more commonly, software user interfaces. In malvertisement exploitations [82],

attackers (ab)use the user functionality of an advertisement system on a website, by

first posting a legitimate advertisement and then replacing it with a malicious version

once it has gained popularity/trust on the host platform. In search-engine poisoning,

attackers repeatedly place unrelated phrases in the body of text or URLs on a website,

which when crawled by a search engine, return the attackers website in the results of

a user search [106, 43]. In man-in-the-middle rogue access points, the attacker adjusts

the user configurable service set identifier (SSID) to match that of a legitimate access

point in the environment in which it has been installed [76].

IM2: Programmatic Interface

Here, we refer to attacks that are not limited to utilising existing functionality, but

may also modify it, typically by exploiting vulnerabilities on the target system. This

is prevalent in drive-by download attacks where the attacker injects malicious scripts

(e.g., JavaScript) into vulnerable websites to redirect users to a malicious down-

load/installation [107, 108].

A technique detailed by [109] involves compressing into a zip file an executable

with special hexadecimal characters in the filename, so as to make it look like a

Microsoft Word document when accessed with a particular popular zip archive viewer

that has this technical flaw. Another example has been presented in [21] and [79],

where the PDF language is manipulated to create a file that appears and behaves as a

legitimate PDF file would, but when executed can launch a semantic attack requesting

login credentials and redirecting the user to a malicious website. This is achieved by

using certain special functions in the PDF language that once compiled run on file
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execution, such as embedding JavaScript which is automatically executed inside an

unsanitised PDF object (which follows the PDF header as part of the PDF file format

structure and is commonly used to declare a dictionary or document version labels).

2.1.3 Control Stage 3: Execution

Operational procedure during attack run-time

AP: Attack Persistence

Different semantic attacks implement varied levels of deception that are one-off or

persist depending on the intentions of the attacker.

AP1: One-off

Here, once the user has triggered the attack payload, e.g. by performing an action

that either grants access privileges or provides sensitive user data to the attacker,

the semantic attack ceases any further action. Large-scale spamming is typical of

this approach. Attackers mass mail a large address set aiming to capture user details

through a spoofed website, which once gathered it redirects users to the legitimate

site and disappear [18, 110]. Similarly, a drive-by-download attack completes on

the download of the malware when the user accesses the infected website. The user

remains vulnerable to the same infected website on further attempts to access it, but

each time the drive-by-download attack completes on download.

AP2: Continual

In continual semantic attacks, a particular attack instance does not expire upon

successful exploitation and the user continues to be exposed to its deception attempts.

This may involve recurring and direct communication with the target by exploiting

the messaging mechanisms provided by email, instant messaging, SNS, P2P networks,

IRC forums and other Internet-based services [18, 80, 96]. A characteristic example

would be scareware applications, which periodically display fake malware alerts for as
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long as they reside on the system [32]. Continual behaviour is common in semantic

attacks that are designed to elicit financial gain from a target.

ES: Execution Steps

A single semantic attack may consist of one or more distinct steps.

ES1: Single-step

Single-step attacks require that the target user carries out only one action to facilitate

exploitation (e.g. open a file, run a program, click on a web link or button). Once the

initial action from the victim has been carried out, the attack payload is able to gain

the necessary information or control for the attacker, at which stage the semantic

attack is complete. Variations of the phishing attacks described in [18] rely on a

single step. The less user interaction required the lower the risk of being detected.

This is one of the reasons for the rise in drive-by malware, where the user’s system

is infected with a single click [108]. Other examples of single-step attacks can be

identified in typical website and email-based phishing attacks [17], and more recently

in malvertisements [82]. In the latter, the attackers place legitimate advertisements

on trusted websites for as long as needed to gain good reputation and be trusted

themselves. At that point, the attackers start placing advertisements that carry

malware and infect all users visiting websites that display them.

ES2: Multi-step

In a multi-step attack, a user needs to be deceived more than once for the attack to

achieve a meaningful result. Attacks involving multiple steps within the exploitation

generally employ one step to gain access and an additional one to steal information

or deliver malware. For example, in WiFi phishing, where the attacker generates a

spoofed SSID of the local WiFi provider (e.g. a coffee shop’s or hotel’s), the user

needs to first connect to this rogue access point (step 1), and then to provide his/her

login credentials to the attacker (step 2) after he/she is redirected to a phishing login

page for access to the Internet [100]. Similarly, in the usual typosquatting attack
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[111, 98], the user must first navigate to the spoofed webpage with the mistyped

domain name (step 1), and then click on a malformed download link (step 2). In

[112], the phishing attack contains three separate steps for data gathering, payload

distribution and deception.

Most semantic attacks that exhibit continual attack persistence (AP2) are multi-

step. For instance, scareware [32] typically infects the target system via deception

(step 1) and then periodically attempt further deceptions through fake alerts of mal-

ware detected in the system (a repetitive step 2).

2.1.4 Taxonomy Examples

Here, let us illustrate the use of the taxonomy with four detailed examples and a

table summarising 30 different attacks that have been observed in the wild.

In a drive-by download attack (Figure 2.2), an attacker needs to first assess a

website for vulnerabilities that can be exploited to embed malicious behaviour. Once

a weakness is found, the attacker proceeds to insert malicious code into the website

that will redirect a user into downloading malware. Attack automation is automatic

(MA2) because it requires no intervention from the attacker after the malicious code

has been embedded in the vulnerable website weaknesses. The software distribution

is remotely presented to the user, on user navigation, via the infected website (MD1-

R). Targeting is promiscuous (TD2) as the attacker has planted the exploitation to

attack any user who visits the website (but there is also a targeted - TD1 - version of

this attack: watering hole). The deception vector can be classified as hybrid because

the website itself is legitimate and thus appears and behaves as expected (DV3). The

attacker has programmatically manipulated the application platform (IM2) to embed

the attack payload. The attack requires only one step of deception, which is that the

user performs an action, such as clicking on a button, for the exploitation to occur

(ES1). After this, the attack completes (AP1), but, of course, the user can be infected

again by performing the same action again.

The usual implementation of WiFi Evil Twin phishing (Figure 2.3) requires two

steps of deception (ES2). The attacker configures a rogue access point to advertise
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Figure 2.2: Taxonomic classification of Drive-By Download

Figure 2.3: Taxonomic classification of WiFi Evil Twin Phishing

an SSID that is identical to a legitimate access point’s in the target environment,

such as a coffee shop or shopping centre etc., and also programmatically introduces

a spoofed captive portal (IM2), which is automatically presented (MA2) to any user

who connects to the Internet through it. The rogue access point both looks (identical

SSID) and behaves in a manner that mimics the legitimate one (DV3). The rogue ac-

cess point is distributed via a wireless hardware interface waiting for users to connect

to the spoofed SSID. As software interaction is necessary to connect to the wireless

network, this is classified as MD3. In the attack’s usual implementation, targeting

is promiscuous (TD2), directed to any user within range. The deception persists at

least for as long as the user is connected (AP2).
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Figure 2.4: Taxonomic classification of SNS Malvertisement

Malvertisements in social media (Figure 2.4) are embedded by attackers after hav-

ing previously posted a legitimate advertisement that gained in popularity, through

user click volumes. Once that advertisement has gained enough reputation, the at-

tacker replaces it with a malicious one, which automatically redirects users to an

attack website (MA2). The attack targeting is usually promiscuous (TD2). Attack

distribution occurs via the social media website and is forwarded automatically across

user communities through in-built recommender and reputation processes on the so-

cial media site (MD1-R). The malvertisement deception vector uses cosmetic obfusca-

tion through the social media system own carrier browsing system, which creates the

appearance of its legitimacy as an advertisement by placing it in the advertisement

pane, displaying a graphic and applying recommendation labeling to users (DV1,

IM1). The attack persistence is continual (AP2), as after it deceives a user once

(ES1), the malvertisement continues appearing in the advertisement sections of their

social media profile.

In fake mobile applications (Figure 2.5), the attacker uploads a spoofed app that

masquerades as a legitimate program in a mobile software marketplace (e.g. Google
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Figure 2.5: Taxonomic classification of Fake Mobile App

Play, Android, Windows Store, Apple AppStore etc.). The first step is to deceive a

user who has searched for related keywords to download it. The second step is to

deceive the user into accepting the request for granting excessive system privileges

(ES2). Typically, attackers spoof popular types of applications with the purpose

of gaining maximum exposure (TD2) before the app is identified as malware and

removed. Depending on the implementation, deception can be based on looks, be-

haviour or both. In the example of Figure 2.5, a flashlight app downloaded from

an app market features non-standard GUI and poor graphics, yet the user may still

consider it legitimate if it operates the camera flash as expected (DV2), while in re-

ality, it may be a Trojan horse stealing the user’s private data in the background.

The whole process is automated (MA2), and attack persistence is continual because

the application resides permanently in operation on the mobile device until removed

(AP2). The delivery of the deception requires programmatic manipulation (IM2) and

distribution from the remote app server (MD1-R).
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Having followed a similar analysis for a broad range of semantic attacks that have

been discovered or are emerging, we have compiled Table 2.2 to summarise semantic

attacks based on the taxonomy and observe common characteristics.

Typical Semantic Attacks in the wild Orch. Exp. Exe.

Bluetooth Snarfing Attack: This is targeted at any users that leave their
mobile devices open to accepting Bluetooth transfer as a default setting. The
attacker sends to the target device a malware file with a filename that looks
like it corresponds to a popular application (e.g. twitter, facebook, a banking
app etc.). When opened by the user, it starts exfiltrating data back to the
attacker system [113, 114].

MA1,
TD2,
MD3

DV1,
IM1

AP1,
ES1

Cryptovirus/Cryptotrojan/Cryptoworm: An attacker spreads a malicious
application through email, infected programs (using a wrapper approach) and
compromised websites. If the user is deceived into allowing the application
to infect the user’s machine (e.g., by opening the email attachment), it starts
encrypting user data, such as files or the hard drive itself. At that point, it
attempts a second deception, demanding payment from the user to release
the private key that decrypts the data typically assuming the appearance of
an official-looking letter from a government agency [115].

MA2,
TD2,
MD1-L

DV1,
IM2

AP2,
ES1

Drive-By Download: An attacker exploits vulnerabilities in a website’s code
structure (typically JavaScript) and proceeds to embed a malicious payload.
The attacker then sends a link to this website, typically containing the web-
site and full URL path to the exploited code, to potential targets (e.g. via
phishing email, social media post etc). The machines of the users are infected
when they open the link to the website [93, 94, 107, 108]. The deception takes
advantage of the normal-looking cosmetics and behaviour of the affected web-
site.

MA2,
TD2,
MD1-R

DV3,
IM2

AP1,
ES1

Fake Mobile App: The attacker uploads a spoofed app that masquerades
as a legitimate program in a mobile software marketplace. Upon installation,
the application requests full user or admin/root access to the device, such
as access to volatile/non volatile memory, sending texts, making calls, or
downloading other software. When the fake application runs, it typically
exhibits no related functionality to the spoofed legitimate counterpart [101]
(see Figure 2.5).

MA2,
TD2,
MD1-R

DV2,
IM2

AP2,
ES2

Forum phishing - manual: An attacker manually posts a message within a
conversation thread on a web forum. This can consist of multiple messages
posted in the context of the thread, with some being legitimate but others
containing malicious links or images. Typically, the attacker must bypass
CAPTCHA controls by manually entering a verification code designed to
prevent web bots posting messages.

MA1,
TD2,
MD1-R

DV2,
IM1

AP1,
ES1

HTTPS Man-in-the-Middle Adware: An attacker intercepts a user’s
HTTPS requests and places a spoofed certificate within the root certificate
store on the user’s system. As a result, when a user send a HTTPS request
the attacker redirects them to a phishing website that is incorrectly identified
as legitimate through the spoofed certificate. A vulnerability facilitating this
attack has recently been discovered to have been inadvertently introduced to
Lenovo laptops through poorly written adware [116, 117].

MA2,
TD2,
MD1-L

DV3,
IM2

AP2,
ES1

Instant Message phishing - automated: Similar to email phishing, instant
messaging phishing includes obfuscated malicious URLs or attachments. The
URL redirects the user to a malicious website and the attachment typically
infects the instant messaging application or installs malware on the user’s
machine. In the case of the former, the attack configures the user’s instant
messaging account to resend the phishing messaging containing the attach-
ment or URL to the user’s contact list [118, 80].

MA2,
TD2,
MD1-R

DV2,
IM1

AP1,
ES1
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Malicious web pop-up: A malicious pop-up is generated through a browser
or website application window that activates on user action, such as navi-
gation, clicking or hovering over buttons, pictures and URLs. The window
content typically takes on various approaches to deceive users, such as sug-
gesting that they have won an online lottery and need to enter their bank
details to collect the prize, or displaying a fake antivirus scan that identifies
bogus infections on the user machine and advises download of a file to remove
the infection [16].

MA2,
TD2,
MD1-R

DV1,
IM2

AP1,
ES1

Malvertisement: Malvertisements are embedded by attackers after initially
posting a legitimate advertisement that gains in popularity on a website.
Once the legitimate advertisement has gained popularity and is trusted by
the hosting website, the attacker replaces the advertisement with a malicious
one. Once clicked, a user is redirected to a drive-by-download or bogus ques-
tionnaire. The malvertisement is distributed through the legitimate advertise-
ment system on the website without needing to programmatically manipulate
it [82].

MA2,
TD2,
MD1-R

DV1,
IM1

AP2,
ES1

Multimedia Masquerading: In multimedia masquerading, an attacker em-
beds a malicious link in the form of a video or audio player, often displaying
the video’s first frame and title to strengthen the deception. Once clicked, the
fake media redirects the user into installing a software application to play the
purported media content or to a website requiring the user to input sensitive
data, join a premium subscription service or complete a /questionnaire. Often
the attack will propagate through social media platforms where the user, on
completing a plugin installation to run the media content, gives the malicious
adware permissions to re-post on the user’s behalf. The fake media is then
propagated to friends [119].

MA2,
TD2,
MD1-R

DV1,
IM2

AP1,
ES1

NFC Phishing: In NFC attacks, the exploitation is embedded in a modified
NFC tag. If the user is deceived into scanning it, the user is presented with a
request to download an application, which is malicious. The deception relies
on the fact that NFC is a relatively new technology, which does not have
a reputation of being used maliciously and the interface generally resides in
a publicly accessible place governed by a trusted hosting authority, such as
airports, shopping centres and schools [12].

MA2,
TD2,
MD3

DV3,
IM2

AP1,
ES2

P2P Malware: A very simple attack, whereby the attacker shares malicious
files over a P2P application, giving them commonly searched file names. A
user downloads the malware matching their search criteria and infects their
machine by opening the file. Obfuscation is achieved by manipulation of file-
name, extension and possibly the icon displayed by the proprietary browsing
system of the P2P application. Replication occurs by the malware sharing
itself through the user’s P2P application [95, 120].

MA2,
TD2,
MD1-R

DV1,
IM1

AP1,
ES1

PDF File Masquerading: A Portable document format file is manipulated
by using special functions in the PDF language that when compiled execute
malicious functions, such as requesting access rights and login credentials or
redirecting users to an attack website. The appearance and handling be-
haviour, as represented by the operating system, appear legitimate [21, 79].

MA2,
TD2,
MD1-L

DV3,
IM2

AP1,
ES1

Peripheral Masquerading - USB: In USB masquerading, an attacker con-
figures a USB compatible device, such as a flash drive, mouse or keyboard,
to contain a malicious payload that executes on insertion in a computer sys-
tem. Typically, this is achieved using the autorun features in the operating
system, but zero-day attacks have also exploited vulnerabilities in the way an
operating system handles files on USB devices. Importantly, the malicious
peripheral functions as intended, so as to avoid raising suspicions while infect-
ing the target system in the background [121]. In its usual implementation,
this is a highly targeted attack (TD1), but a supply chain non-targeted attack
(TD2) is also conceivable).

MA1,
TD1,
MD3

DV3,
IM2

AP2,
ES2
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Peripheral Masquerading - Firewire: A hardware deception attack where
the deception mechanism is presented as a physical peripheral utilising the
firewire interface. This can be in the form of a memory stick or external media
reader. Once the user physically connects the hardware device via the firewire
interface to the target host, the malware in the device exploits firewire’s direct
memory access capability to steal user data or inject malicious data into the
system [86].

MA1,
TD1,
MD2

DV3,
IM2

AP2,
ES1

Phishing Website: An attacker spoofs a legitimate website for the purposes
of stealing user information or duping them into installing malware, usually
by duplicating both appearance and behaviour.

MA2,
TD2,
MD1-R

DV3,
IM2

AP1,
ES1

Ransomware: Ransomware is malware, similar to cryptovirus (without en-
crypting files), typically delivered through a Trojan horse, that blocks access
to a system by taking control of a browser of the operating system itself un-
til the user pays a sum of money to unblock the machine. The ransomware
attempts to convince victims that they are the subject of a criminal inquiry,
from a law enforcement authority (using official looking logos and pictures),
for ownership of illegal software or pornography. The user is then advised
how to unblock the computer by following instructions for paying a fine elec-
tronically [122]. The attack is continual for as long as it takes the user to pay
the money demanded by the software, after which the access restrictions are
lifted.

MA2,
TD2,
MD1-L

DV1,
IM2

AP2,
ES2

Rogueware: Similar to a scareware application, rogueware is a standalone
application, downloaded from a malicious website or as a wrapper/adware
alongside a legitimate file. It masquerades as a well-known program, (such
as a media player or Internet connection optimiser, which when executed
attempts to steal the user’s confidential data [58]. The rogueware continually
deceives the user by running as a application on the user host system until
removed.

MA2,
TD2,
MD1-L

DV3,
IM2

AP2,
ES2

Rogue Access Point: An attacker installs a wireless network access point
in public or private environment. Its aim is to harvest connecting users and
perform man-in-the-middle attacks through network data sniffing [76].

MA1,
TD2,
MD3

DV2,
IM1

AP2,
ES1

Scareware: A malicious computer program designed to convince a user that
their system is infected with malware, pressuring the user into buying and
downloading further (fake) antivirus applications (which are typically mal-
ware, spyware, adware etc.). Commonly, the protection software periodically
displays wwarnings for infections and demands payment for licensing in order
to remove them.

MA2,
TD2,
MD1-L

DV3,
IM2

AP2,
ES2

Search Engine Poisoning (Spamdexing): In search engine poisoning, a
search engine is manipulated, so as to include a malicious website among the
top-ranked results for given search terms. The users trust that since it appears
high on the list of a trusted search engine, that website must be popular and
very relevant to their keyword search, hence not suspicious. However, the
attacker can force search engines to associate keywords with websites (that
are malicious) in several ways, such as flooding websites that accept simple
user generation content with specially crafted URLs [106, 43].

MA2,
TD2,
MD1-R

DV2,
IM1

AP1,
ES1

SMS Worm (Selfmite): In the ”Selfmite” SMS worm an attacker config-
ures a text message to contain a web link to a recommended app that once
downloaded by a user proceeds to send the same text, including the obfus-
cated link, to the first 20 contacts in the user’s phonebook; thus spreading
effectively by originating from a trusted source [123].

MA2,
TD2,
MD1-L

DV1,
IM2

AP1,
ES2
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Spam Phishing Email (Botnet-generated): An email with a spoofed sender
address and an enticing subject title and message requesting the user to
download an attachment (which contains malware) or click on a malformed
URL. Large-scale phishing attacks are typically distributed via botnets, which
crawl the Internet for email addresses and are configured by botmasters to
send template-based emails with varied malicious content. The attacker uses
official-sounding language and logos to create a cosmetically appealing and au-
thentic communication. Occasionally, spam phishing emails contain payloads
for compromising the user’s system and adding it to the botnet [18, 124].

MA2,
TD2,
MD1-R

DV1,
IM1

AP1,
ES1

Spear-phishing Email: Identical in format to a spam phishing email, how-
ever highly targeted toward a specific user, organisation or demographic,
whereby the email subject, body of text and sender address are designed
to take advantage of an existing relationship with the target. For example,
the sender address may appear to originate from a friend and there may be an
attachment appearing to be a photo they would be likely to receive from that
friend. Spear-phishing is typically a manual process, as the attacker needs
to be meticulous in the email construction to create a communication that is
highly-specific to the intended target [124].

MA1,
TD1,
MD1-R

DV1,
IM1

AP1,
ES1

Spear-phishing Email - APT: This is an advanced form of spear-phishing
employed by advanced persistent threats (APTs). Highly targeted emails
are first sent to harvest login credentials for Microsoft Outlook accounts us-
ing dummy User Access Control prompts. A compromised account of one
employee, customer or partner is then used to send spear-phishing emails to
other company insiders. The attacker periodically injects a malicious message
containing previously exchanged Microsoft Office documents that embed hid-
den malicious macros into an ongoing email discussion among multiple people
(to improve the exploit success factor). E-mails are sent from the accounts of
people the target knows adding to on going discussions already taking place.
The attacker will blind carbon copy (bcc) other recipients to further obfuscate
the malicious e-mail [125].

MA1,
TD1,
MD1-R

DV3,
IM1

AP1,
ES2

Tabnabbing After a user unknowingly navigates to a malicious website, em-
bedded malware on the latter detects when the page has lost its focus and
attempts to deceive the user into thinking they had left a Gmail (or other pop-
ular website) tab open. For this, the attacker needs to display the Gmail fav-
icon (short for ”favourite icon”) and a convincing title, such as Gmail: Email
from Google, as well as a spoofed Gmail login page by adjusting Javascript
code within the website. The spoofed gmail login page is used to steal the
login credentials before redirecting the user to the real Gmail website. As it
is most likely that the user had never really logged out of Gmail, the direction
makes it appear as if the login were successful and, thus not suspicious [126].

MA2,
TD2,
MD1-R

DV1,
IM2

AP1,
ES1

Typosquatting (also known as Cybersquatting): User mistypes a domain
name (e.g, ”twiter.com” instead of ”twitter.com”) into a browser and lands
on a phishing website, which has copied the appearance of the legitimate,
intended website. Typically the website appears identical, but does not have
the same functionality. An example would be a social media website with
a login prompt. Once the user enters their login details into the phishing
website, they are redirected to the legitimate website after their personal
data have been stolen [111, 98].

MA2,
TD2,
MD1-R

DV1,
IM1

AP1,
ES2

Visual SSL Spoofing: In SSL spoofing, the attacker configures a website
to imitate specific parts of the browser interface, which a user would expect
to display SSL/TLS connectivity status. By using official-looking logos or
address bars with the typical padlock icon demonstrating encrypted commu-
nication, users can be fooled into believing they are on a secure website and
entering sensitive information which the user will steal [127].

MA2,
TD2,
MD1-R

DV1,
IM1

AP1,
ES1

Watering hole: A highly targeted version of the drive-by-download attack,
whereby an attacker embeds malware on websites that are visited by a specific
individual or group of people. Eventually, the user/group will be exposed to
the exploitation in one of the websites they regularly visit and trust. Here, the
attacker is persistent in the attempt to exploit the chosen individual/group
by infecting multiple websites they are known to visit [72].

MA2,
TD1,
MD1-R

DV3,
IM2

AP1,
ES1
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WiFi Evil Twin: Similar to a rogue access point, on top of the rogue AP
the attacker spoofs a nearby SSID of another WiFi service whilst also pro-
grammatically duplicating any web-captive portal (typically an authentica-
tion page) that exists on the legitimate access point in the environment. Once
a user connects to the spoofed access point, the attacker intercepts all traffic,
syphoning off credentials, files and sensitive information [100, 101, 128, 77].
An advanced version of this attack uses the snoopy platform that can be
embedded within a UAV drone [129].

MA1,
TD2,
MD3

DV3,
IM2

AP2,
ES2

Table 2.2: Taxonomic Classification of Semantic Attacks

Figure 2.6: Taxonomic statistics of Table 2.2

The taxonomic classification of Table 2.2 can help identify the characteristics that

are shared between different attacks (Figure 2.6). For example, it is evident that in

terms of orchestration most attacks exhibit promiscuous targeting (TD2), software-

based remote distribution (MD1-R) and automation (MA2). A defence approach that

would thwart this orchestration pattern would be applicable to almost half of the

semantic attack types listed here. In terms of exploitation, the vast majority rely on

cosmetic deception alone (DV1) or in combination with behavioural deception (DV3).

Approaches that would detect or prevent mismatches between the appearance and

function of GUI components on websites and applications would reduce considerably

the semantic attack surface.

The classification also shows the greatest strength of semantic attacks. Most

require no more that one deception step (ES1), which means that a single error in

judgement on behalf of the targeted user is sufficient. This is exemplified by spear-

phishing attacks used to gain a foothold in target systems with otherwise strong

42



technical security measures, from financial institutions and nuclear facilities [15], to

the computers of high-value individuals. Even a prominent cryptographer with several

computer security patents in his name can be deceived into clicking the “accept”

button on a spoofed LinkedIn invitation from a non-existent employee of the European

Patent Office [130].

2.2 Survey of Semantic Attack Defence Mecha-

nisms

The impulsive and unpredictable behaviour of human users has been widely charac-

terised as one of the most significant weaknesses in modern computer systems [131].

While security controls against technical exploitations have improved considerably in

recent years, the same successes have proven difficult to replicate in user security.

Training and experience can certainly help but are neither easy to acquire nor

sufficient [132, 133]. The landscape of semantic attacks is wide and continuously

expanding. While user targeting has been historically limited to emails and websites,

the advent of the Internet of Things [131] is expanding the scope of exploitations to

even include smart home appliances [134]. Current systems have limited capability

to compare a spoofed file icon with the associated extension or to efficiently highlight

the execution similarities of different file extensions to users in a pro-active fashion.

Similarly, users rarely inspect their computer environment before performing actions

that may compromise their system [7, 17, 16]. The following survey describes an

overview of mechanisms that can protect users against semantic attacks.

2.2.1 Organisational

2.2.1.1 Policy and Process Control

Policy and process provide hierarchical control through management frameworks as

opposed to technical systems. Designed at lowering exposure to semantic attacks,
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well maintained policy and organisational procedures help to mitigate and signifi-

cantly lower the risk of a potential exploit occurring, without relying on the technical

capabilities of users [132, 133, 135].

Policy and process control is defined around the business and user environment,

as appropriate to their specific needs, for organisational and personal use. How-

ever, security frameworks introduced to address semantic attacks have been added

as bolt-ons to the wider technical threat, rather than embedded into the governance

and strategic development of policy and process control. [132] reiterates this ap-

proach as a major vulnerability, insisting policy should be intrinsically built with

people management and therefore embedded in the core of any information secu-

rity framework. The prevalence of semantic attacks has resulted in a higher degree of

applicability within policies that are integrated in internationally standardised frame-

works ([136, 137, 138]). Dedicated governmental guidelines have also been proposed

([139, 140, 141, 142]) as well as detailed methodologies and investigations in guide

books and research ([143, 144]). The book published by [143] offers a comprehensive

collation of strategies for implementing secure policy and process for IT governance;

combining standards and best practice guidelines for integrating information secu-

rity across organisational domains i.e. user roles and responsibilities to embedded

data security tools. [144] have developed a user centric, holistic framework specifi-

cally targeting phishing attacks. The framework includes a user, ”Human Firewall”,

layer in the information security framework, enabling cross communication between

defence dimensions (the user, organisational policy and technical controls) by combin-

ing mechanisms such as user awareness and training with policy and linked technology

tools.

Current frameworks focus on preemption through layered control mechanisms,

as opposed to being proactive and dynamic to change. Policy and procedures need

to be flexible to unknown and unforeseen attacks and therefore appropriate to the

changing threat landscape. Fixed guidelines can quickly become out-of-date as new

attack methods are constantly being developed. Furthermore, as a personal tool,

policy and procedure can be ineffectual. Rules and regulations designed to enforce
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and maintain security are too large in scope, almost entirely irrelevant to the personal

user and their specific use of computer systems and the internet.

2.2.1.2 Awareness Training

As user deception is the primary attack vector, susceptibility to semantic attacks can

be somewhat reduced with user awareness training. Education is a core component

of the defence-in-depth model and in the instance of semantic attacks relates to ar-

eas where technical security mechanisms have proven to be inadequate. Interactive

training maximises learning and awareness, such as bite-size quizzes, tests or games

[26, 145, 146, 147], which when applied periodically provide education on the char-

acteristics of different attack types. A large proportion of research into awareness

training has focused on the approach of content, the methodology of its delivery and

how data gathered from testing and formal application can be used to shape security

policy and user training programmes [148, 149]. [150], [151] and more recently [152]

have conducted research to measure the effectiveness of awareness systems built into

browser security systems, including security toolbars, domain highlighting for sus-

pected phishing and HTTPS/SSL/TLS connection indicators. Their results showed

that none of these methods were effective because users would not understand or pay

attention to warnings. Similarly, the more recent work of [153] has shown that secu-

rity images meant to provide visual confirmation of website authenticity in Internet

banking have also proven unreliable, as 74% of the study’s participants entered their

password after the security images were removed.

An analysis of user awareness indicators in a role-playing survey carried out in

[154] demonstrated that the attitude of users against phishing attacks correlated

highly with certain demographic characteristics. For example, the age group 18 to 25

was shown to be more susceptible to phishing than other age groups. Furthermore,

once educational material was provided against a demographic, users were 40% less

likely to enter information into an attack website. Interestingly, this was shown to be

counter-productive in a few instances where users avoided legitimate websites too.
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A study carried out in [155] suggested using the familiar concept of live “capture

the flag” competitions also for measuring and teaching “cyber situational awareness”

to users faced with security threats, including semantic attacks. Their competition

involved 900 students spread across 16 countries. While undoubtedly interesting and

useful, there was no mechanism for measuring which of the students’ skills and to

what extent were improved by participating in the competition.

Other research has approached awareness training by exploiting the interactivity

observed in gaming and its educational impact and value, with development and

integration of technology trends such as Social Networking. In [156] and [157] Social

Networking Sites are used as a platform to both deliver awareness applications to

maximise exposure, exploitable functionality such as automated propagation through

friend activity notifications and viral trends. Furthermore SNS were able to provide

the means to measure effectiveness of applications in a social media environment by

monitoring the response of subsequent user activity such as public/private access

to profiles. Other developments have taken awareness efforts further through web-

based/portal training systems, even by introducing proxy based training such as

”awareness middleware” for access to the internet [158]. The middleware in this

sense is a proxy training portal, responsible for brokering a connection between the

user and internet access. Only after users successfully complete a training quiz/test

for improving security education and risk awareness will access to remote resources be

permitted. [159] and more recently [160] have developed training platforms to create

awareness and better understanding of the dynamics of semantic threats, by utilising

virtualisation as a collaborative and interactive training platform.

A study conducted by [161] has used neurological scanning to determine how

“habitation” (an automated response based on a reoccurring theme) occurs when

users are presented with common, static security warnings, such as HTTPS certificate

warnings. The research analyses brain behaviour through functional magnetic reso-

nance imaging, where users were shown to exhibit a drop in visual processing sections

of the brain after multiple exposures to a similar security warning. As a solution, the

researchers suggested security warnings that are polymorphic, constantly changing
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appearance and behaviour each time they are generated (e.g., different colour, text,

location, size, etc.). This was shown to reduce automatic responses and influence

higher cognitive responses.

A recent study by [162] identified the neurological indicators associated with user

response when exposed to semantic attacks. They showed that users exhibit notable

brain activity associated to decision-making, problem solving, attention and compre-

hension, when security scenarios arise. The study was able to show how individual

personality traits can influence decision making results, which can be used to im-

prove training and awareness programmes. For example, training users to respond

assertively to malware warnings may prove ineffectual outside a controlled environ-

ment for users that exhibit highly impulsive behaviour.

Novel suggestions for creation of a user risk-detection tools [163, 164], can be used

to build and define user awareness and develop training policies. The experiment

conducted in [165] has demonstrated how participating organisations can identify the

level of user security awareness, through targeted phishing attacks. Whilst this type

of experiment can yield very useful results, they can also be disruptive to an organ-

isation’s daily work and may have to be abandoned early (as was the case in the

particular study). Furthermore, results need to be followed up through continually

improved awareness programs and efficient user risk measurement. These tasks are

manually intensive and their long term benefit may not be obvious to organisations.

Awareness training approaches certainly have an impact, but the extent of this im-

pact is uncertain, as there is no reliable approach for measuring the lasting effect.

Primary evaluation is traditionally based on supervised testing in specific case stud-

ies [166, 167]. The extent to which different awareness training strategies employed

by organisations impacts their quarterly or yearly breach statistics is not measured.
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2.2.2 Technical

2.2.2.1 Sandboxing Mechanisms

Sandboxing is the process of creating an isolated computer environment, typically

through virtualisation, to test untrusted operations such as those observed in unveri-

fied and untested code or programs. It has been effectively implemented as a security

solution in various fields of computing, from specific code platforms [168] to browser

systems [169], and in the field of smartphone security to improve defence against ma-

licious software [61]. Proprietary applications, such as Adobe Acrobat X, have also

implemented their own sandbox engine for enhanced security [170].

A sandboxing environment can check and analyse characteristics associated with

an attack by categorising behaviour for anomaly detection [62]. Further sandboxing

methodologies can provide an assured integrity checking mechanism [171, 172]; this

approach relies heavily on the accuracy of behavioural analysis algorithms for detec-

tion and introduces the issue of increased resource demand. In the context of semantic

attacks, sandboxing offers limited control, especially as it handles the execution of

code, rather than user interfacing. A technical attack using visual deception methods

instead of technical mechanics to deceive users would need to be understood by the

sandbox, but this is a very complex task requiring sampling of graphical interpre-

tation. Web browsers [173, 174] have implemented sandbox technologies to prevent

websites from manipulating the browsers’ own visual and behavioural properties, such

as the URL address bar, browser tabs and security indicators. However, these mech-

anisms are still unable to prevent the execution of spoofing attacks, such as those

creating a fake address bar [18, 175] using code that appears legitimate to the sand-

box, but is visually deceiving the user. Instead, the limited research conducted in the

application of sandboxing for semantic attacks focuses on its value as a learning tool.

[176] utilised a sandbox environment to gather data used in enhancing user security

training.

The Windows and Linux operating systems implement a number of sandbox mech-

anisms to prevent unauthorised changes being made to a system; acting as a good
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line of defence even when a user may have unknowingly been deceived by a semantic

attack. One such example is the secure-attention-sequence or secure-attention-key as

it is better known, which is a secure method of preventing applications spoofing an op-

erating system login process. The login system is sandboxed from potential threats

by using the operating system kernel to suspend all running processes before it is

initiated. The user access control (UAC) system is another Windows sandbox mech-

anism that uses the user interface privilege isolation (UIPI) to prevent applications

from unauthorised privilege escalation during execution. This is achieved by isolating

processes marked with a lower integrity level (e.g. unsigned, untrusted third party

application) from sending messages to higher integrity level processes (e.g. to request

an action that might require root system access), until granted by an authorised user

in the UAC prompt or valid certificate from an approved code-signing authority [177].

This approach can certainly limit the impact of some semantic attacks, but is specific

to the operating system and cannot observe requests made to a remote system that

it has no control over.

A system titled “BLADE” (block all drive-by exploits) developed by [178], pro-

vides a sandboxing mechanism to mitigate drive-by download exploitations. BLADE

introduces a browser-independent operating system kernel extension, which enforces

the rule that executable files must originate from an explicit user action providing

consent. In the case of a drive-by download, where there is normally no explicit user

action involved, the system redirects to a secure sandboxed location on the user sys-

tem disk where execution is prevented. This approach is agnostic of the mechanism

for deception or obfuscation and whether it is a zero day threat, as it responds only

when a download occurs without specific user consent. In testing, BLADE was able

to block all drive-by download attacks against a sample of over 1900 active malicious

URLs with a minimal effect on system performance. To date, there is no further

information regarding its practical implementation and evaluation.

[179] and [180] offer commercial sandboxing environments that integrate into ex-

isting operating systems. These applications install an abstraction layer for handling
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the execution of programs and files (user initiated or otherwise). Whilst not exclu-

sively aimed at providing protection against semantic attacks, they offer a last line

of defence where a malicious application may have found its way on a user system.

Requests made by all executing programs are analysed in real-time and categorised

as either a threat or legitimate, and are then handled appropriately.

The open source project “Qubes OS” [181] has developed an operating system that

utilises sandboxing to logically separate different applications on a system from in-

fecting another, should one particular element become compromised. This is achieved

by separating different applications into virtual machines that are isolated by security

domain, e.g. work/personal. The system also integrates graphical properties, such

as red app window frames for untrusted and green for trusted, to visually identify

applications in different sandboxes. Whilst this functionality does not necessarily

block a semantic attack from occurring in the sandbox itself, it can help inform users

whether they should trust the behaviour or appearance of application based on the

specific sandbox’s security domain.

Recently, [182] have developed a tool for the android operating system designed

to prevent malicious apps executing cosmetic (DV1), behavioural (DV2) or both cos-

metic and behavioural deception (DV3). This can include spoofing an applications

appearance or generating misleading visual cues on top of legitimate applications by

capturing and analysing application programme interface (API) calls to the android

graphical user interface. The researchers employ a method call “static code analysis

which interrogates application bytecode, based on a system proposed by [183], dur-

ing run-time to scan for requests made to specific Android API’s which can enable

the execution of visually deceptive components into an android systems graphical

interface. The method can be applied for both preemptive and proactive protection

of the android interface by vetting applications before release or by detecting this

behaviour on the host device during operation. Whilst the approach was shown to be

successful at identifying applications that use these APIs to execute cosmetic decep-

tion, the researchers also found that there was a significant rate of false positives. In

response, they supplement the sandbox mechanism with a visual reputation system
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to confirm the identity of applications which use these APIs legitimately and those

that do not. Crucially, in an evaluation involving 308 users, this approach was shown

to significantly improve a users ability to detect malicious applications.

2.2.2.2 Authorisation, Authentication and Accounting (AAA)

Authentication, authorization, and accounting (AAA) is a framework for intelligently

controlling access to computer resources, enforcing policies, auditing usage, and pro-

viding the information necessary to bill for services. It is usually implemented in

controlled environments, especially where there is a varied user landscape posing a

risk to the control and protection of data. The framework provides controls for access

to resources (Authentication), organisational policy enforcement (Authorisation) and

auditing of resource usage i.e. login times, session length, devices accessed (Account-

ing). Its use aims to ensure that organisations have a detailed level of assurance and

control over who has access to a system, based on data on names, roles, skill sets etc.

In large deployments, such as organisation domains and networks, AAA can be effec-

tively managed through supervision, ensuring extended identification and delegated

access is in place to run executables, access shared folders etc. However, in a home

user environment, AAA is less practical because the central supervising authority

remains with the user [184]. The capabilities of the individual require correct usage

of ”least user rights” and administrator privileges where appropriate to protect the

system and secure data.

Many technical, autonomous, session based protocols such as Kerberos [185] have

been successfully combined with secure centralised authentication and authorisation

platforms [186]. Such solutions have proven effective at managing AAA assurances,

but governing configuration rules are statically implemented and lack interactivity and

dynamic visual interfacing with users once access to a system has been established.

On the other hand, security platforms such as Microsoft’s User Access Control not

only indicate to users that an action may require more privileged rights but it actually

displays when a program is trying to gain these rights to run and it asks the users

to identify themselves beforehand [184]. One can then make an informed decision.
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However, the system still relies on the user’s due diligence in correctly selecting use

access control options. Advancement in identity management, such as Microsoft’s

Forefront Identity Manager [187], have developed comprehensive AAA security that

has a wide range of application effect at preventing semantic attacks. Yet, although

they provide flexible control over users and access to resources, Identity management

systems are not dynamic in their mitigation mechanisms. With regards to the growing

threat of SNS-based semantic attacks, [188] have identified a range of AAA flavoured

mechanisms that can provide some protection against automated Sybil attacks (an

attack wherein a reputation system is subverted by forging identities in peer-to-peer

networks) [19] and other current threats. Portable identities, with mutual verification

and authentication between open systems (e.g. Facebook, Twitter, LinkedIn), limit

the ability to abuse SNS functionality. This is suggested as the main challenge to

address as it maintains usability without introducing difficult to use, user facing

security controls. This area still lacks working examples and complex semantic attack

SNS exploitations remain a major problem. For AAA frameworks to be able to

address semantic attacks effectively, there needs to be a shift towards more pro-active

measures, rather than relying almost entirely on sound management and individual

user security awareness against system generated warnings.

2.2.2.3 Monitoring

In this context, by monitoring we refer specifically to the observation of computer

system behaviour, generated by user/programmable actions, via collection, aggrega-

tion and analysis mechanisms. Monitoring is a key security mechanism for semantic

attacks as new exploitations can be classified through exposure and effective security

controls introduced through understanding of compromising user actions. Historic

monitoring has required heavy supervision and forensic investigation, whereas new

developments allow semantic attacks to be identified and addressed through use of

Honeypots [189, 190]. These virtualised environments allow security practitioners to

analyse exploitations, classify attack characteristics and identify the user behaviour

that can lead to compromise. Research conducted in statistical monitoring focuses on
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developing semantic attack masquerade aversion by modelling user search behaviour.

For example, [191] have introduced a novel method of monitoring and machine learn-

ing in order to identify anomalous user behaviour on a given system. The work

conducted by [192] proposes adding dynamic adaptation to crime scripts (a sequence

of actions observed in a semantic attack), which can model user/attacker behaviour in

a given scenario and can be used in simulation, monitoring data output for collation

in order to simplify the process of enumerating attack procedures. A promising piece

of recent research in this area by [193] has developed malicious website detection by

monitoring the redirection path taken to reach a web destination, instead of analysing

physical website features.

[194] have introduced “SURF”, a browser extension designed to detect search en-

gine poisoning by monitoring “search-then-visits” user sessions and classifying redi-

rections into legitimate or malicious. The particular system was able to achieve 99%

accuracy in the researchers’ empirical real-world evaluation.

[195] have topologically mapped dedicated hosts on malicious web infrastructures,

involved in orchestrating redirection paths to malicious websites. The research used a

PageRank algorithm to monitor and capture attack hosts responsible for traffic bro-

kering and exchange for malicious activities. This study focuses on the management

overlay that cybercriminals implement to conduct and control large-scale malware

distribution. As part of the study to identify redirection chains, the researchers used

a system called “WarningBird” [196], which is a URL detection system for Twitter,

designed to protect against conditional redirection, where the attacker redirects web

crawlers to a legitimate landing site, but a user to the attack location. In combi-

nation with a real-time classifier, WarningBird exhibits a high degree of accuracy

against large samples of Tweets.

2.2.2.4 Integrity checking

User and application/data integrity is difficult to assure without proof or analysis,

especially if the data and subsequent behaviour characteristics originate from an ex-

ternal network, colleague or friend. Integrity checking provides the user with a visual
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response and technical assurance as to whether the file, website, or data should be

trusted [27, 28]. Systems such as TripWire implement File Integrity Monitoring that

continuously monitors the integrity of a data e.g. a file a based on its properties and

behaviour, and further work has shown how this defense mechanism can become dy-

namic [197]. A study carried out by [198] evaluates methods for file type classification,

for the purposes of identifying and detection file masquerading attacks. The research

evaluates file type detection algorithms such as FHT (File header and trailer), MDA

(Multi-Discriminant analysis) and CFD (Compound file detection) in order to identify

the true file type. Using this approach the researchers are able to classify fragments

of a file or embedded files to determine a file type; thus providing a key mitigation

mechanism for common file masquerading attacks. Research conducted in [199] shows

how using simple methods to determine integrity, by checking and comparing visual

similarity-based phishing can provide accurate and effective results. The researchers

demonstrate that by analysing the similarity between visual components in a website,

without prior knowledge that it is an attack platform, they are able to automatically

determine specific templating of websites that have been spoofed by a large degree of

phishes sites.

Recent studies have proposed solutions for detecting the integrity of URLs (using

lexical tokens, network and web-based features) [200] through optimisation algorithms

(e.g., Ant Bee Colony algorithm) and image detection techniques to mitigate rogue-

ware [201, 202]. Integrity tools have also been developed to provide protection against

WiFi ”Evil Twin” access points, by analysing key components related to the appear-

ance SSID-mac address mappings as well as hashing and cryptographic algorithms

being used [203]. Future research addressing semantic attacks can consider digital

signatures or certificates that originate from a central authentication system to prove

legitimacy of data presented in a file or application (website, email, utility programs),

where the data is uploaded, analysed and approved, so that where data are missing

from this central authority or using unknown certificates, there is reduced function-

ality until it is properly verified for secure operation in its respective environment

(domain, shared platform/desktop, folder, cloud storage etc). Social media platforms
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have been plagued by “Sybil” attacks (where in the context of a social network / me-

dia site a reputation system is subverted by creating multiple fake identities such as

user profiles), [204] document and evaluate the evolution of defences that have been

developed to mitigate this growing threat. The study shows trends in defence mech-

anisms, that are quickly becoming mathematically complex in nature and sometimes

proven to be ineffectual in practice e.g. when applied against a real-world primitive

attack. The researchers suggest a defense in depth approach is necessary, such as

implementing region-based community detection and social graph topologies to iden-

tify sybil attacks where sybil regions (forged identities/communities) are connected

to honest nodes (legitimate user profiles). They also indicate that social network op-

erators should implement machine learning algorithms, user profiling tools and user

activity monitoring in combination to help identify attacks.

2.2.2.5 Machine Learning

Research has demonstrated how malware detection through machine learning can be

dynamic, where suitable algorithms such as k-nearest neighbours, decision tree learn-

ing, support vector machines, bayesian and neural networks, can be applied to profile

files against known and potential exploitations and distinguish between legitimate

and illegitimate data [205, 206, 207]. Machine learning algorithms have been suc-

cessfully applied to detect malicious emails, using anomaly classification techniques

that demonstrate the potential and capability for further application in other re-

lated semantic attack areas [208]. Research conducted to tackle the threats of social

engineering specifically has seen the employment of neural networks to predict the le-

gitimacy/illegitimacy of phone calls. Using a fabricated dataset, the approach showed

positive accuracy in prediction responses, and as such the classification methodology

may be suitable across a wider range of semantic attack types. However, dependable

datasets generated from real-world data may be essential, as well as the ability to

formally integrate algorithm decision processes into suitable access-control systems

[209]. An effort to build credible classifiers for teaching machine learning algorithms
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has been proposed in [190], where bespoke honeypots provide features that can indi-

cate and help filter out social network spammers.

The application of machine learning for defence against semantic attacks can be

traced back to the training of support vector machines using binary features for

detecting early spam emails [210]. A significant amount of research utilising machine

learning algorithms has focused on building efficient detection mechanisms for web

and email phishing attacks, with work by [211] and [212] testing a range of clustering

and filtering techniques to classify data for accurate prediction of attack detection.

Similarly, the research conducted by [213] highlights the difference between legitimate

and illegitimate URLS and proposes a regression filter for constructing classifiers

specifically for URL phishing. In a related piece of work, [214] developed a system to

detect phishing emails based on the component features of the email, such as body of

text, sender address or embedded images, using combinations of machine learning for

classification and class modelling mechanisms for filtering. [215] have continued this

research by demonstrating the effectiveness and functionality of a range of filtering

approaches that, if combined, can provide effective detection for this attack vector.

Advancements in the application of Ontological Semantics Technology have seen

developments that demonstrate applicability to semantic attacks too, employing an

artificial intelligence approach with an expression based dataset as the prediction

mechanisms for building inferences about textual data [216]. This type of detection

mechanism indicates useful application against phishing attacks observed in emails

and websites. Whilst this technology is not strictly classified as machine learning

in regards to the algorithms that are used, there is a learning process coordinating

decisions on a piece of data, in this case text-based language, to make predictive

inferences about malicious or non-malicious communication. More recent research by

[217] has introduced CANTINA+, which is a framework for website phishing detection

using machine learning algorithms over a range of systems including search engines

and third party services. This research brings together multiple systems, such as

search engines, third party services with machine learning mechanisms to accurately

classify web pages.
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In [108], machine learning and emulation techniques have been used to detect

anamolous javascript behaviour against established behaviour profiles to prevent drive

by downloads. The researches apply 10 different features of an attack process to cat-

egorise activities involved in drive-by downloads, emulating website behaviours that

match these features in combination with an anamoly detection classifier; imple-

mented in a publicly available tool named JSAND. The researchers presents results

of JSAND’s application on a large-scale dataset of Javascript code. The study is able

to demonstrate through the use of an emulator, detection of malicious code when

compared with anamolous features built into a learned classifier (machine learning)

model. Further research aims to build on the JSAND system to provide a browser

extension that provides pro-active detecton and mitigation of drive-by download at-

tacks.

Machine learning techniques have been applied to detect phishing attacks in Twit-

ter. In [218], a URL phishing detector for Twitter focuses on tweet content, length,

hashtags, mentions, age of account, number of tweets combined with URL features

(shortened text, non standard domain prefix and suffix structure). Using these vari-

ables within machine learning classification techniques (Naive Bayes, Decision Tree

and Random Forest algorithms), detecting phishing techniques with an accuracy of

92.52 %. The system has been developed for practical implementation, where the

researchers have deployed the system as a Chrome browser extension, working in real-

time to classify whether a tweet is a phishing attack or a legitimate communication

from a twitter account. Furthermore, the study has been tested on a user community

to evaluate its usability and practicality in application; with the researchers claiming

its relative simplicity and ease of use. The work represents research with a prod-

uct outcome that is usable to the internet community against a known vulnerability

of a popular social media platform. Other URL detection mechanisms have been

demonstrated by [219], the study introduces a system that provides real-time URL

spam filtering. The system proposed, Monarch, performs real-time filtering of spam,

phishing and malware URLs that are submitted to web services through the use of
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linear classification with the combination of iterative parameter mixing and subgra-

dient L1-regularisation (which is a tuning parameter used in statistical modelling to

prevent over-fitting and improve generalisation in probabilistic models); calculating

an impressive overall accuracy of 91% and 0.87% false positive margin.

[220] have recently developed a system for classifying and blocking spear phish-

ing emails from compromised email accounts by training a support vector machine

based system with a behavioural model based on a user’s email habits. The system

collects and profiles behavioural features associated to writing (e.g., character/word

frequency, punctuation, stylus), composition and sending (e.g., time/date, URL char-

acterises, email chain content) and interaction (e.g., email contacts). These features

are used to create an email behaviour profile linked to the user, which is continually

updated whenever a user sends a new email. Testing showed that the bigger the email

history of a user the lower the rate of false positives, dropping below 0.05% for 7000

emails and over.

Machine learning algorithms provide an architecture for profiling semantic attacks

in a pre-emptive fashion. By utilising characterisation variables with behavioural

input datasets (usually gathered via monitoring), precise predictions and indicators

can be established as to the significance of a file’s or a user’s behavioural effect on

a system. Whilst machine learning tools have been built, extensively tested and

evaluated in research, application has heavily focused on tackling phishing attacks,

and most specifically the cosmetic aspects (DV1), covering only a fraction of the wider

semantic attack problem space. There are not many actual implementations within

deployed and popular email services in the commercial space, and consequently there

is a lack of empirical evaluations in real user-facing environments.
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2.3 Attack Vs. Defence Matrix

The Attack Vs. Defence matrix shown in table 2.3 provides a comparative platform for

mapping current defence mechanisms to the taxonomic criteria of semantic attacks.

Its benefits are two-fold. It provides researchers with an indication of where the

current state of research stands (the majority view) and how to effectively categorise

this research (the taxonomy classification criteria). It also highlights attack vectors

that have seen underinvestment and may point towards areas where new research may

yield useful results, potentially achieving wider coverage by combining approaches

from multiple areas into a single, autonomous solution. For clarity we match each of

the survey literature to classification criteria where it has had the most impact or for

which is directly or most relevant, and not criteria with an association by second or

third order of consequence.
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We can observe that target description is the classification category that is one

of the least covered across the surveyed defence mechanisms. The usual approaches

relate to policy and process, which are typical in the corporate arena, but some-

what surprisingly, we have identified only three related technical approaches, none of

which in monitoring or integrity. This highlights an area where further research could

be beneficial. For example, semantic attacks that are automated (MA2), remotely

distributed (MD1-R) and promiscuously targeted (TD2) would generate the same

pattern and possibly noticeable volumes of network traffic, which may be detectable

by a network monitoring system. Alternatively, an attack that is manual (MA1) and

targeted (TD1) may be more easily identified by an integrity mechanism, for example

by authenticating an addressable feature.

Another observation that can be made is that there are several areas that are not

adequately addressed by policy and process controls. Examples include the hardware

distribution techniques that feature no software interaction (MD2), as well as attacks

that persist and may target the user periodically (AP2). From the matrix, it is also

evident that awareness and machine learning have the widest and largely overlapping

coverage. Yet, we have not identified a single example of research where the two areas

have been combined, potentially by incorporating a machine learning component in

an awareness system, or by feeding awareness data for the training of a machine

learning system.

Interestingly, awareness efforts have primarily focused on exploitation factors, and

particularly in understanding the impact of education against the plethora of de-

ception vectors that are used in attacks. However, most have only addressed this

through scrutiny of user interfaces (IM1) and not of programmatic interface manip-

ulation (IM2), perhaps because awareness methodologies are typically designed for

non-technical audiences. Also interesting is the application of sandbox technologies.

They are highly appropriate for the software-based locally distributed (MD1-L), one-

off (ES1) attacks, which are generally difficult to defend against, but have seen a

relative underinvestment in application against deception techniques (DV1-3). How-

ever, as recent research has shown [182], sandboxing can be effective in identifying
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semantic attacks that implement both behavioural and cosmetic deception. There-

fore, sandboxing mechanisms are likely to offer a viable focus of future research against

deception techniques.

A distinctive observation of the matrix relates to defences that incorporate user

awareness, sandbox and machine learning techniques. In combination, these three

defence categories apply to almost all of the classification criteria. Note that we

previously demonstrated how research in each classification category will be to a

large extent applicable across several attacks that share a characteristic. Therefore,

it is conceivable that a defence system combining these features would potentially

provide protection against a very wide range of semantic attacks. To the best of our

knowledge, a defence mechanism designed to mitigate a multitude of semantic attacks

integrating all of these features does not exist yet.

2.4 Discussion: Grand Challenges in Semantic At-

tack Research

Semantic attack research is fundamentally multidisciplinary. Different aspects of

it may require an understanding of personality traits, human-computer interaction,

computer and network monitoring, malware dynamics, and access control. In this

context, we have identified the following grand challenges.

2.4.1 An authoritative semantic attack dataset

The lack of publicly available, up to date, relevant and reliable datasets is a pervasive

issue in computer security research. In semantic attacks, the human factor makes

the acquisition of datasets even more difficult. Researchers often conduct lab-based

experiments, which allow for a controlled environment where several socio-technical

metrics can be evaluated, but their realism is arguably limited. The alternative,

which is to run “social experiments” at the scale required for collecting usable data

is problematic. Even if the semantic attacks conducted are innocuous, their potential

impact on the users is poorly understood and difficult to monitor. Crucially, debriefing
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is ethically vital for any deception-based research, but conducting effective debriefing

in large-scale social experiments is not straightforward.

The problem is aggravated by the wide range and dynamic nature of deception

mechanisms employed. By the time a research group studies a new attack, designs

a large-scale experiment, recruits participants, conducts it, analyses and publishes

the results, the particular attack may already be gradually abandoned in the wild in

favour of newer ones. We propose that this can be somewhat alleviated by focusing not

directly to specific attack types, but to the taxonomic characteristics shared between

multiple attacks. An authoritative dataset that would be useful in this manner does

not exist.

2.4.2 Predicting susceptibility to semantic attacks in real-
time

A challenge related to the acquisition of an authoritative dataset is the identification

of measurable semantic attack susceptibility indicators that are practically usable by

technical defence developers. For instance, an interesting real-world study by [221]

has identified conscientiousness as a personality trait that is highly correlated to a

user’s susceptibility to spear-phishing attacks. This might be helpful to social scien-

tists and designers of awareness programs, but is of little use to a technical protection

system’s developer, because it is unclear how conscientiousness can be measured by

a software system in real-time or automatically. For example, behavioural science

studies designed to validate the impact of conscientiousness on susceptibility to se-

mantic attacks have been shown to be contradictory [222, 221], measured using survey

and questionnaire instruments which are validated on different base-lines and anal-

ysed off-line against qualitative measures. What may be measurable, such as typing

speed, time to click, typing errors, mouse movement, number of browser tabs open,

time logged in, may not necessarily be relevant. A significant challenge is to iden-

tify automatically measurable features that do indeed correlate with susceptibility to

semantic attacks.
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2.4.3 Patching the user

An important strength of technical security measures is the ability to stay up to

date. Following an antivirus update, which is automatically and rapidly delivered,

a computer is protected effectively against several new and evolving threats. There

is no equivalent concept for semantic attacks. A software application or embedded

system may have a serious security flaw, but after this is discovered, the vendor can

issue a patch that addresses it. Again, there is no equivalent concept for semantic

attacks. The user, which is the entity of the system that is targeted, may take months

or years to learn how to recognise and protect from new deception techniques.

The challenge here is to develop a mechanism by which a user’s vulnerability to

a new semantic attack vector can be reduced in a timely manner. This may involve

elements of both dynamic access control and training. For example, a corporate

user’s access rights that are not core to their job role may be modified dynamically

according to the indicators identified in Section 2.4.2. An access restriction may then

be lifted once the user successfully completes a brief e-learning module or a practical

assessment on the latest semantic attack methodologies. In general, complying with

the core security principle of user least-privilege should ensure that any user in an

organisation does not have access to system rights which are outside of their core role.

However, this also requires a mature role-based or attribute-based access control

platform and policy to enforce securely; which is often a prohibitive management

overhead as experts are needed to install and support such systems. Therefore, in

smaller companies a wider range of users may (by default) have elevated system rights

beyond the requirements of their core role, whereby dynamic rights assignment based

on susceptibility indicators and security training (shown to address these indicators)

may provide a more flexible and cost effective means to balance access control security.

Of course, this highlights a further challenge, which is how to measure the effectiveness

of user training or indeed of any measure designed to protect users and organisations

from semantic attacks.
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2.5 Conclusion

Technical countermeasures have traditionally struggled to address a good range of

semantic attack types, especially the new and more dynamic ones. There is little

doubt that policy control, user education through training and awareness campaigns,

and other user management countermeasures can be effective, but to what extent is

difficult to tell without a formal framework. In-line with our initial research aim in

section 1.4, it is important to have an overall view and understanding of the semantic

attack threat landscape, where the taxonomy provided here is a step in tackling

this challenge. It introduces a structured baseline for classifying semantic attacks

by breaking them down into their components and thus allowing the researcher to

identify countermeasures that are applicable to a range of different attacks that share

a subset of their characteristics. Therefore, referring back to our initial research aim in

section 1.4, the taxonomy proposed identifies a set of key characteristics observed and

shared across different semantic attacks, across disparate platforms. Furthermore, by

complementing this taxonomy with a survey of defence measures, and highlighting

their suitability against the taxonomy’s categories, we have identified where existing

defence techniques apply to classification criteria that are not attack-specific.

Crucially, and as a result, the “Attack Vs. Defence” matrix in 2.3 uncovers “User

Awareness”, “Sandbox” and “Machine Learning” as 3 defence techniques shown to

address the full spectrum of the taxonomy classification criteria. In doing so, we have

identified a path towards a potential defence framework that would integrate each

of these techniques in order to develop a defence system that can operate holisti-

cally across the semantic attack threat space. Specifically, we propose that key user

attributes related to User Awareness can be measured and supplied to a Machine

Learning mechanism in order to predict levels of awareness by using these attributes

as predictor features. Here, the user and their system form the basis of a human

semantic attack sandbox, where user feedback through exposure to semantic attack

deception vectors and the collection of awareness attributes can be utilised to directly

influence the actions of a protection system. In such an environment, accurately and
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reliably predicting (e.g., Machine Learning) users’ ability to spot semantic attacks

(e.g., User Awareness), facilitates the development of a technical system that would

utilise detection telemetry (e.g., semantic attack sandbox) to provide heuristic “user-

driven” protection against semantic attacks.

In the next chapter, and towards this goal, a large-scale experiment is presented

aiming to measure users’ ability to detect semantic attacks; designing attacks based

on deception vectors instead of attack specific concepts, as defined in the taxon-

omy classification. Using the data collected we develop a statistical machine-learning

model with the aim to predict user susceptibility based on participant attributes re-

lated to user awareness concepts. We expand on the existing literature by reviewing

current work in this space, leading on to the modelling process where we evaluate

user attributes that are practically useful in a technical system, can be collected

automatically and are reliable in their prediction of user susceptibility to semantic

attacks.
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Chapter 3

Predicting Susceptibility to

Semantic Social Engineering

Attacks

Efforts towards technical defence against semantic attacks have led to the development

of solutions that are typically specific in design. This can be attributed to the sheer

complexity required to translate what is essentially human deception into code, as

well as attempting to combine this into a solution that spans disparate platforms. One

example is phishing emails, where filtering and classification software have proven to

be highly successful [223, 217, 28]. However, these defence mechanisms are built to

function on email systems only, unable to prevent conceptually very similar phishing

attacks in instant messaging, social media and other platforms. Similarly, automated

tools developed to block drive-by downloads via web browsers have been shown to be

highly effective in mitigating the threat [107, 178], yet the same tools cannot prevent

a drive-by attack in removable media.

Alternative approaches to technical solutions have focused on managing users

themselves, rather than the computer interface. For example, creation of policy and

process for user compliance [224] has helped to define specific rules which enforce

secure system use, but these are almost never applicable to the private user of a

computer system and the Internet. Furthermore, compliance guidelines are usually
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static in nature and therefore can quickly become out-of-date when new attack meth-

ods appear. User education and awareness training have been evaluated extensively

and in practice have been shown to improve user responses to specific attack scenar-

ios [225, 146], but it is difficult to automate this process and even more difficult to

measure its lasting effect. Moreover, training material tends to be limited to known

exploitations and requires regular updates to include new attack vectors. Systems

generating visual warnings or security indicators have also been implemented, pre-

sented to users in real-time by indicating a possible attack or whether a potential

threat exists, but research has shown that in practice users often do not pay atten-

tion to them or do not understand them [226].

A comprehensive survey by Khonji et al. [227] evaluating the state of phishing de-

tection provides a valuable insight into potential future defences. The researchers have

highlighted the application of machine learning techniques as a promising approach

to defence, producing accurate attack classifiers and effective defences against zero-

day threats. Measuring the effectiveness of user training has also been suggested,

where research towards a hybrid user/software solution is indicated as a potential

multi-layered approach to protection.

Given the limitations of defences designed for specific attacks and platforms, it

is attractive to look also towards the feasibility of predicting a user’s susceptibility

to different semantic attacks in order to augment technical systems with user-driven

defence. For example, user susceptibility profiles can be used to support systems

that are dynamic, by training predictors with user data collected in real-time or over

a period of time, and allowing dynamic allocation of access rights dependent on a

detected user profile. Furthermore, they could support the development of context-

based user awareness systems, where training material would be tailored to users

depending on their susceptibility to different deception vectors. User susceptibility

profiles can also provide useful measurement criteria for predicting the performance

of human sensors of semantic attacks, indicating whether a user report of a suspected

attack is accurate (and worth investigating); sharing analogies to the learning and

prediction capabilities employed in sandbox antivirus defences for categorising and
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identifying different malware families [228]. Towards this vision, we have conducted

two experiments with the participants being asked to tell whether particular exhibits

show an attack or not. We have collected data regarding both the users and their

performance in detecting attacks that employ different deception vectors [9] and have

developed two prediction models. The first experiment helped identify high level

predictors that can be measured ethically, automatically and in real-time, whilst

being applicable across the wider Internet population; we define this study as stage

1. The second experiment helped build upon the initial predictor features by further

dissecting each into a series of sub-features used to predict susceptibility against new

attacks using a smaller population; we define this as stage 2.

3.1 Predicting Susceptibility

3.1.1 Related Work

In computer security, it is usually computer systems, networks, applications and

data that are monitored to be able to detect and mitigate threats. Researchers

have also attempted to monitor and profile unauthorised users [229, 230] or witting

insiders performing unauthorised actions [231]. However, semantic social engineering

attacks target authorised users and lure them into performing an authorised (albeit

compromising) action. Recent research in this area has focused on demographic

attributes and psychological indicators as methods for predicting user susceptibility.

For example, in the field of behavioural science, research has explored the impact of

personality traits [232], influencing and persuasion techniques [233] as measurement

criteria for predicting susceptibility to semantic attacks. A study carried out in [222]

has reported that female participants exhibiting neurotic behaviour (e.g., tendency

for anxiety, obsessive compulsive disorder) were more likely to respond to phishing

emails than female and male participants that did not. More recently, the same

researchers have conducted a spear-phishing field-experiment, where the tendency

for conscientiousness (e.g., tendency to be efficient, organised and take obligations

to requests seriously) reported a high correlation to phishing susceptibility [221].
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Research in [234] has reported openness, positive behaviour (e.g., use of language)

and high levels of conversationalist activity as predictors of vulnerability to an online

social network bot. In [235], researchers have conducted a survey and field experiment

of phishing attacks which found that participants who demonstrated higher degrees of

normative, affective and continuance commitment, obedience to authority and trust,

to be more susceptible to phishing. Similar results were also reported in a recent study

in [236], where submissiveness and trust predicted higher susceptibility to phishing

emails. Crucially, these personality traits were also found to perform consistently as

predictors of susceptibility amongst participants from different geographical locations,

in this case Australia and Saudi Arabia.

Demographic research has considered Internet usage and behaviour as prediction

criteria of susceptibility to semantic attacks. In particular, it has been reported that

users who have knowledge of or take guidance from visual cues (security indicators,

source, design, language, etc.) on technology platforms are often good predictors of

susceptibility. For example, [237], [238, 239] and [240] have all reported a lower degree

of susceptibility to phishing attacks in emails and websites when the participants are

aware of security indicators and visual components. However, in many cases partici-

pants did not understand what the security indicators meant and the varying severity

of their message. In fact, in [241] and [242], it has been reported that the effect of

habitation to the visual cues and especially security warnings increases susceptibility

to attacks. Where studies have included general demographic elements such as age

and gender, a number of studies have reported that female participants were found to

be more susceptible to phishing attacks than male participants [154, 243, 124, 221]. In

[225], users were measured demographically as to whether they have had training on

the phishing email training system PhishGuru, where the number of training sessions

taken by users are used as input features to identify the lasting effect of the training.

Technical prediction systems have been previously proposed in [244] and more

recently [245]. The first describes a system which would present users through a

series of information security related questions within a web pop-up. Then, the

system uses a series of weighted decision algorithms to quantify the user’s degree
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of susceptibility based on the responses to the questions, and accordingly displays a

visual indicator of susceptibility to the user as a form of awareness mechanism. No

security enforcing functions are implemented. To date, there is no further information

regarding its practical implementation and evaluation. The latter, and more recent

study empowers user to report whether an email is a suspected phishing attack.

Based on prior knowledge and in-line warnings, correct reporting conversely highlights

predictor features for phishing susceptibility. More recently, a commercial phishing

company PhishMe reported results for their phishing simulator application, collating

the results for 3.5 million simulated employee phishing emails, over the course of one

year across 23 industries around the world. A key observation showed that repeat

phishing simulations lowered susceptibility for consecutive attacks by 35% for the first

successful phishing simulation to 1% by the fourth phishing simulation.

Table 3.1 provides an overview of the literature associated to susceptibility re-

search in semantic social engineering attacks. In the “Technical measurement” set

of columns, we have identified for each study whether the predictors of susceptibility

can be realistically measured by a technical system in real-time, automatically and

ethically. By ethical, we refer to aspects of diversity and inclusion related to protected

personal characteristics [246], and we extend this to also include personality traits,

where decision making based on assessment of personality types are argued to be a

form of discrimination [247].

The available literature for predicting user susceptibility to semantic social engi-

neering attacks is not as mature as other areas of computer security. Most related

studies have been constrained by small sample sizes and predictors that are difficult

to generalise across a multitude of semantic attacks. To some extent, this is due

to the fact that most researchers focus only on phishing attacks, which is only one

section of the problem space [9]. Specialised training systems have been shown to

work well [225], as well as technical models combining demographic and behavioural

attributes [242], but they are application-specific and do not consider other deception

vectors that might be employed in semantic attacks. Therefore, it is difficult with

the results produced from current studies to generalise across a wide range of attack
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types and it is unclear which of the research results could be realistically integrated

into a technical system for defence. To overcome these limitations and as our aim is

focused on facilitating the development of technical defence systems, we only select

predictor terms that can be collected and measured in real-time, automatically and

ethically. We argue that in order to predict susceptibility to a wide range of semantic

attacks, the mechanism for measuring susceptibility should be naive to low-level and

attack-specific parameters (e.g., sender source and body of text within an email, URL

composition in website post, etc.).

3.2 Indicators of susceptibility

To identify practical indicators, we start with five high-level concepts associated to

user knowledge, experience and behaviour:

3.2.1 Auditable Indicators

Auditable susceptibility indicators are user profile features that can be collected in

real-time, ethically and in a fully-automated manner and without user bias, as they

focus on the measurement of factual user activity rather than speculation.

Security Training (S)

Refers to the individual’s type of computer security training. Prediction of suscep-

tibility by computer security training has been shown to produce accurate results

[225, 261], but the approach can be limited by the specialised system delivering the

training or the specific training curriculum; especially where these system tend to fo-

cus on one type of attack such as phishing emails. For example, it is likely that a user

who is self-trained will cover a wider range of material relevant to their technology

profile than an employee who has only received work-based training on systems the

organisation uses. Moreover, the long-term benefit of training its effects on detection

and associated skill fade is not clear.

75



Frequency (FR) of access

Refers to the frequency with which the individual accesses the type of platform. A user

who accesses a specific type of platform (e.g., social media websites) very frequently

may be more aware of the kind of attacks that occur within that type of platform,

based on their experience with conventional platform behaviour and appearance [248].

Furthermore, frequently accessing specific platform providers (e.g., with Google+

social network site) may extend to other similar platforms (e.g., Facebook, Twitter),

where behavioural and cosmetic attributes on the platform are shared or follow user

experience and interface design conventions.

Duration (DR) of access

Refers to the duration for which the individual accesses the type of platform. Similarly

to FR, a user who uses a specific type of platform for long periods may be more aware

of the kind of attacks that occur within and on what components for that type of

platform [238, 257]. However, it is also possible that the longer the duration the

higher risk of platform habitation which may or may not have an adverse effect [251].

3.2.2 Self-Efficacy Indicators

Self-efficacy attributes, influences and measurements have been studied extensively

across a multitude of disciplines, particularly within the fields of sociology and psy-

chology. In computer science, studies related to computer security tend to focus on

measuring the impact in reducing vulnerability when users engage with specific secu-

rity training systems or participate in simulated semantic attacks experiments, and

primarily from a behavioural sciences standpoint. By comparison, a relatively small

amount of attention has been given to self-efficacy within computer security research

aiming to actively develop practical technical defences. For instance, a study by Rhee

et al [263] in 2009 agreed that self-efficacy in information security did have substan-

tial explanatory power regarding individuals information security practice behaviour,

but their results are mostly theoretical in nature and remain unclear as to how to

76



apply such findings in a technical system. A more recent study in 2014 by Arachchi-

lage and S. Love [264], found that conceptual and procedural knowledge positively

effected self-efficacy and as a result enhanced computer users phishing threat avoid-

ance motivation and behaviour. However, again, the results are represented by a

largely theoretical model construct that is not evaluated within an empirical phishing

experiment, and without clear indication of how to measure the self-efficacy criteria

in a real system.

Measuring self-efficacy has lead to a number of proposed specific self-efficacy scales

that have been evaluated as valid and accurate instruments for use across a range of

self-efficacy research concepts [265, 266], however these scales often do not fit well

with specific problems in computer science, as per the two prior examples that have

focused on measuring self-efficacy against information security threats. Therefore,

most existing studies in the field of computer security develop arbitrary scales that

suit the requirements and confines of the specific research problem at the time. In our

work we select basic self-efficacy criteria that is both simple to use, but also practical

for use within a technical computer system. At the time of writing and to the best

of our knowledge a unified and agreed self-efficacy measurement scale for computer

literacy and computer security awareness does not exist.

From a technical standpoint, self-efficacy features can be collected in real-time

if an existing record can be referenced prior to a security incident. Depending on

the last time a user updated their self-efficacy records (e.g., for security awareness

or platform familiarity), external auditable features can also potentially provide a

means to explain the users historic self-efficacy values and then employed to generate

a predicted temporary efficacy report value until the users updates it, or if the existing

self-efficacy measurement is inappropriate. Based on this approach, self-efficacy can

also be automatic, but in most cases for active and representative user input will

require manually updating. Self-efficacy features are also ethically compliant from

a user privacy perspective, however if a user were to abuse their ability to perform

self-assessment, technical means such as test-based validation can be used to adjust

features values supplied by users.
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Computer Literacy (CL) and Security Awareness (SA)

Refers to the user’s self-efficacy in respect to their computer literacy and computer

security awareness. User self-efficacy in computer literacy and computer security

awareness has been reported as an important predictor in numerous studies seeking to

identify what influences reduced susceptibility to phishing emails [248, 253, 221, 256].

Overall, self-efficacy was found to accurately represent a user’s expectation of their

ability to use a computer system competently and securely. However, self-efficacy

implicitly harbours a degree of bias depending on the user’s honesty and the accuracy

and practicality of the measurement scale used. While we count it here as practical,

we assume that in actual application, both CL and SA would need to be validated

against evidence (e.g., with some form of testing, certification, etc.).

Familiarity (FA)

Refers to the familiarity the individual has with a given platform. Familiarity is a

key enabler of distinguishing between what visually looks normal and what is normal

behaviour. For example, in [238, 239], the researchers have identified familiarity with

specific attacks and visual cues as key predictors of susceptibility, both of which

describe how a user identifies what is normal visually or behaviourally on a system

and what is not. Similar findings were also reported in [240] and more recently in

[259], with knowledge of visual cues being attributed to familiarity with the type of

platform used. In this context, platform habitation [241] is a factor that can increase

susceptibility to semantic attacks, facilitated in part by platform familiarity. At the

same time, without familiarity a user may be unaware how a system should normally

look and behave, and consequently may fail to detect an attack or may see threats

where they do not exist.

In section 3.6.2 we evaluate the viability of utilising self-efficacy indicators for

computer literacy, security awareness and platform familiarity measurement by con-

ducting correlation and modelling analysis; which also serves to identify whether such
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features can be accurately validated by other unbiased user attributes (e.g., Auditable

indicators).

3.3 Methodology

Figure 3.1 summarises our two-stage experimental approach. In stage 1, we have

conducted a large scale experiment, where we applied data mining techniques to

try and identify whether relationships and associations exist between the different

indicators of susceptibility described in Section 3.2. In stage 2, we have utilised

the results from the stage 1 analysis to apply a greater degree of granularity (and

measurability) to each of the indicators highlighted through the data mining process.

These refined predictor features were then employed in a second experiment in order

to determine practical predictors of susceptibility and develop a model to form a

susceptibility classifier.

Figure 3.1: Experiment approach and methodology

Both experiments were designed to be quantitative in nature in order to generate

numerical data that could be transformed into usable statistics. Some qualitative

data was captured in experiment 2, where users were asked to explain in free-text for

each exhibit why they had classified it as an attack or non-attack; this data was used

to eliminate sample “noise”, such as participants who guessed or marked all exhibits

as attacks (or non-attacks). Furthermore, attack exhibits were randomised so that
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Figure 3.2: Number of survey participants by geographical location for Experiment 1

participants could not guess the order between attack and non-attack exhibits in the

susceptibility test.

Both experiments were implemented in the online survey platform Qualtrics and

consisted of a short survey that collected demographic and platform behaviour data,

followed by an exhibit-based susceptibility test. In total, after sample cleaning and

pre-processing, experiment 1 consisted of 4,333 participant responses, and experiment

2 consisted of 315 participant responses. Both experiments provided participants with

a study brief prior to commencing the survey, so as to ensure they understood how

to proceed with answering the survey and exhibit test questions.

The research was approved by our institution’s research ethics committee and

participants were informed of the purpose of the study prior to providing online

consent and confirmation of being over 18 years of age. Furthermore, all data were

anonymised and participants were also given the opportunity to opt out of the study

analysis after completing the test; participants who opted out had their responses

removed from the study.
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Figure 3.3: Number of survey participants by geographical location for Experiment 2

3.3.1 Recruitment

3.3.1.1 Experiment 1

In the first experiment, participants were cultivated via an online advertisement chal-

lenging people to take a test of their susceptibility to semantic social engineering

attacks. This advertisement was posted in a number of popular online forums and

social media communities, including Reddit, StumbleUpon, Facebook and Twitter.

Additionally, undergraduate and research students were recruited via email. The re-

cruitment methodology of presenting the questionnaire primarily as a challenge and

secondarily as a research medium proved successful because participants were eager

to test themselves on a real-world skill that is becoming increasingly important. As

a result, our advertisement gained reputation quickly by being up-voted and shared

within a variety of social media platforms, resulting in a substantial sample size that

allows meaningful statistical analysis (4,333 responses). Our sample included partici-

pants across a broad range of online platforms, as well as technical and non-technical

environments from within our university’s undergraduate population. Also, in many
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studies in this area, the real nature of the study is initially hidden from the partic-

ipants, so that the strength of a deception attempt is not weakened by suspicion.

Here, instead we use the participants as human binary classifiers of exhibits into at-

tack versus non-attack. In this manner, we can reveal the nature of the study from

the beginning, which addresses key technical and ethical challenges associated with

temporarily deceiving the participants.

3.3.1.2 Experiment 2

In the second experiment, a controlled recruitment policy was employed in order to

achieve a balanced sample of participants who had received some security training

and were technology savvy and generic online users with little or no training. New

undergraduate and research students were invited to participate in the experiment if

they were studying a computer security program and the professional service Qualtrics

Panels was used to recruit participants from a wider, more generic population de-

mographic. Specifically, participants from the US ranging between the ages ranging

from 18-65, both female and male, were defined as the participant selection criteria.

No specific technology or security training attributes were defined in the Qualtrics

Panel recruitment. Figures 3.2 and 3.3 shows the geographical distribution of the

participants for both experiments.

3.3.2 Experiment Design

The survey portion of the experiment required participants to answer a series of

questions related to age, gender, general education, security training (S), platform

familiarity (FA), frequency (FR) and duration of access (DR), computer literacy (CL)

and security awareness (SA):

Security Training (S)

Formal computer security education (S1), work-based computer security training (S2)

and self-study computer security training (S3), each coded as a binary response: Yes

(1), No (0). In relation to the terminology used in [267], we directly map formal
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education as “Formal Learning”, work-based training as “Non-formal learning”, and

self-study as “Informal learning”.

Familiarity (FA)

We use FA for familiarity with a particular provider’s platform (e.g., GMAIL), coded

as: Not very familiar (1), Somewhat familiar (2), Very familiar (3).

Frequency (FR)

For each platform category presented in the susceptibility test, coded as: Never (1),

less than once a month (2), atleast once a month (3), weekly (4), daily (5).

Duration (DR)

For each platform category presented in the susceptibility test, coded: None (1), less

than 30 mins (2), 30 mins to 1 hour (3), 1 to 2 hours (4), 2-4 hours (5), 4 hours+ (6).

Computer Literacy (CL)

Self-reported level of computer literacy using a 0 (novice) - 100 (expert) scale.

Security Awareness (SA)

Self-reported level of security awareness using a 0 (novice) - 100 (expert) scale.

Each experiment included a series of 12 exhibits (6 attacks and 6 non-attacks),

each containing a concise scenario followed by an exhibit, consisting of one or more

screenshots, GIF animations or videos. For each, participants were asked to examine

the exhibit and provide a binary response to categorise each one as: “Most likely an

attack” or “Most likely not an attack”. In our analysis, correct responses were coded

as 1 and incorrect ones as 0.

To determine general indicators of susceptibility, the attack exhibits chosen spanned

a range of semantic social engineering attacks across different platforms. We have

developed each semantic attack according to the three different types of deception

vectors of the semantic social engineering taxonomy in chapter 2. In accordance

with this, and as described in chapter 2, deception vector refers to the mechanism

83



Figure 3.4: Experiment 1: Exhibit 5 (screenshot) - Fake “Clickbait” app on Facebook

by which the participant is deceived into facilitating a security breach. It can be

cosmetic (DV1), where the semantic attack is visually convincing, but does not nec-

essarily conform to expected platform behaviour; behaviour-based (DV2), where the

attack behaves in a manner that is expected or accepted within platform convention,

but is not visually convincing; and both cosmetic and behaviour-based (DV3), where

the attack needs to be both visually and behaviourally convincing to deceive the user.

A breakdown of the 24 exhibits developed for the two experiments is presented

in Table 3.2, along with the participants’ average score in each exhibit. The average

score can serve as an indication of the difficulty of each exhibit. To illustrate the style

of the presentation of the exhibits to the participants, we have also included three

indicative examples of attack exhibits (Figures 3.5, 3.4 and 3.6, which correspond to

exhibits Exp1.11, Exp1.5 and Exp2.11 respectively). For presentation purposes here,

we have added red outlines to represent visual attack indicators in the exhibit. These

outlines were obviously not visible to the participants.

3.3.3 Overall participant performance results

To determine overall accuracy and precision, we follow the approach defined in signal

detection theory [268, 269], which is geared towards analysing data generated from

human experiments, where the task is to categorise participants’ responses generated

by a known process or by chance. This approach is common in analysing experiments
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Figure 3.5: Experiment 1: Exhibit 11 (screenshot) - “Qrishing” attack leading to
Steam phishing site

Figure 3.6: Experiment 2: Exhibit 11 (Video) - “Typosquatting” attack on Microsoft
Edge browser leading to an attack website with a malicious update prompt for Google
Chrome browser
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that involve semantic attacks, such as phishing [243]. In the standard formulas used

below, for exhibit k ∈ [1, K], Tp,k is the number of true positives (i.e., correctly

identified as attack), Tn,k is the number of true negatives (i.e., correctly identified as

non-attack), Fp,k is the number of false positives (i.e., incorrectly identified as attack),

and Fn,k is number of false negatives (i.e., incorrectly identified as non-attack). Note

that in this case, K = 12, and by accuracy and precision, we are referring to the

average accuracy and average precision across all 12 exhibits.

Accuracy =
1

K

K∑
k=1

Tp,k + Tn,k
Tp,k + Tn,k + Fp,k + Fn,k

(3.1)

Precision =
1

K

K∑
k=1

Tp,k
Tp,k + Fp,k

(3.2)

To facilitate the analysis of the participants’ responses, we developed an equal

number of attack and non-attack exhibits for each platform category used in the ex-

periment. In this section, our aim is to simply evaluate the overall performance of

the users in our samples as human classifiers of the given exhibits. We also note the

performance of individual groups that are commonly studied in this space, including

groups by country, age and gender. We derive the country based on the IP of the

participant, assuming that there is no strong reason to believe that several partici-

pants would have spoofed their IP while taking part in this experiment. Also, age

and gender are self-reported. Again, we do not have any strong reason to believe that

several participants would provide false details in this case.

Table 3.3 summarises the performance of users from different countries, which we

observe to be almost identical across the world, with mean accuracy of 0.74 (with

variance of 0.0002) and mean precision of 0.77 (with variance of 0.0002). For this

reason, we did not consider the geographical factor in the second experiment. Also,

this is advantageous when developing a prediction model to be applied across all pop-

ulations. Table 3.4 summarises the performance of participants of experiments 1 and

2 based on age and gender. Here, we observe slightly more pronounced performance
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differences between the different groups. For example, we can see that female partic-

ipants were less accurate and less precise (68%, 67%) than male participants (74%,

77%), which is in accordance with most of the related literature ([154], [243] and

[124]). We also observe that accuracy and precision are fairly consistent between the

ages of 18 and 44, but drop in the 45+ age groups. Overall, the performance of the

samples of participants in both experiments is largely coherent and consistent. The

sample sizes of the groups that performed slightly worse in both experiments were

relatively low. Moreover, they represent protected personal characteristics, and are

thus impractical for our purposes. As we aim to develop prediction models suitable

for use in a technical system, age and gender need to be omitted as candidate predic-

tors because they do not satisfy the ethical criterion that we have set. For example,

an organisation implementing security controls that are stricter or less strict based on

age or gender would be seen as discriminatory. Overall, the reported performance of

the participants provides no strong indication that omitting these demographic vari-

ables (geography, gender, age) would have a major impact on the chosen predictor

features’ accuracy and precision.

Perf. US UK Canada Germany Australia Netherlands Brazil Other

Acc. 0.74 0.74 0.74 0.74 0.74 0.77 0.72 0.76
Prec. 0.77 0.77 0.77 0.77 0.76 0.80 0.76 0.80
Sample 1863 454 293 207 161 107 138 1234

Table 3.3: Experiment 1 participant performance by country

Experiment Perf. Overall 18-24 25-34 35-44 45-54 55+ Male Female

1
Acc. 0.74 0.74 0.76 0.75 0.71 0.67 0.74 0.68
Prec. 0.75 0.75 0.81 0.82 0.81 0.77 0.77 0.67
Sample 4333 2936 1074 190 68 65 3879 456

2
Acc. 0.65 0.72 0.69 0.66 0.57 0.59 0.71 0.59
Prec. 0.57 0.67 0.58 0.53 0.33 0.55 0.64 0.39
Sample 315 95 104 65 27 29 232 85

Table 3.4: Experiment 1 and 2 participant performance by age and gender
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3.4 Stage 1: Association Rule Mining on the re-

sults of experiment 1

While performing prediction based on the large dataset collected in experiment 1

would be an attractive prospect, in practice, the high-level features used (described

in Section 3.2) would not be granular enough. Our attempts to produce prediction

models solely based on them produced relatively low accuracy rates, just above the

null rate for each exhibit. Instead, the primary objective of experiment 1 was to

use it as a mechanism to determine which features should be explored further. For

this purpose, we have performed association rule mining (ARM). ARM is a standard

data mining methodology successfully employed in network intrusion detection [270],

bioinformatics [271], recommender systems [272], social network advertising [273] and

several other applications. It can help identify frequent itemsets (collections of at-

tributes that frequently occur together) and association rules to determine whether

strong relationships exist between two or more items.

As a brief introduction to ARM, an association rule is composed of an itemset,

which comprises an antecedent, consisting of one or more attributes and forming the

“IF” of a rule, and a consequent, which forms the “THEN”. The percentage of cases

of an item’s existence amongst frequent itemsets is referred to as support, while the

conditional probability of observing a particular exhibit response under the condition

that the participant attributes contain a particular set of participant attributes is

referred to as confidence. Here, we employ the apriori algorithm [274] to create

association rules by comparing frequent itemsets to a specified support/confidence

threshold that determines the strength of the rule.

Using the Arules package in R [275], we have conducted frequent itemset discovery

and association rule generation configuring a threshold for support larger than the

system default and the default threshold for confidence, which are 0.15 and 0.8 re-

spectively. For each association rule, we evaluate its importance using five commonly

used metrics: support/confidence as the primary interest measure for each rule, as
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well as lift, coverage and odds ratio of each rule as individual measures of indepen-

dence. For each metric’s formula below, X refers to the frequent itemset attribute(s)

that consist of the participant indicators defined in section 3.3.2, forming the rule

antecedent(s). The rules consequent Y defines a correct response to an attack ex-

hibit, coded as RESPONSE=1 (i.e., for participants who classified particular exhibit

correctly). In summary:

Support: supp(X ⇒ Y ) = P (X ∪ Y ) (3.3)

Confidence: conf(X ⇒ Y ) =
P (X ∪ Y )

P (X)
(3.4)

Lift: lift(X ⇒ Y ) =
P (X ∪ Y )

P (X)P (Y )
(3.5)

Coverage: cover(X ⇒ Y ) = P (X) (3.6)

Odds Ratio: α(X ⇒ Y ) =
P (X)/1− P (X)

P (Y )/1− P (Y )
(3.7)

Note that on investigation, no rules were reported for RESPONSE=0 (i.e., for par-

ticipants who classified particular exhibit incorrectly) to satisfy the support/confidence

threshold 0.15/0.8. This indicates that within the data there exists a high degree of

variability between participants who were susceptible and no distinguishable pattern

between their attributes could be determined.

For lift, a value of 1.0 indicates independence of X and Y , while values greater

than 1.0 indicate that participants with attributes X contain more correct attack

exhibit responses Y (i.e., RESPONSE=1), than those without these attributes. An

Odds Ratio of 1 indicates that Y is not associated to X, which is to say that an exhibit

response is not related to the participant attributes.

Using the apriori algorithm, a total of 24 association rules were initially identified.

These were then pruned by removing super rules of any other rule that has the same

or higher lift. Pruning resulted in reduction from 24 to 10 association rules.

In Figure 3.7, the 10 association rules are shown where each item and vertex

indicates the formation of a rule, where vertices leading to “RESPONSE=1” show

the consequent of the rule. The size of each circle linking vertices is related to the
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Figure 3.7: Association Rules graph with items and rules as vertices. The size of each
circle linking vertices relates to the support of a rule, while the colour indicates the
lift.

support of a rule, while the colour indicates the lift. In Table 3.5, the importance

measure of each rule is summarised, in order of confidence, lift and odds ratio (OR).

The association rule with the highest lift indicates that participants who had had

security training through self study and also used the type of platform shown in the

exhibit daily and were very familiar with the exhibit platform itself were highly likely

to correctly identify a semantic attack on this platform. In other words, the rule

antecedent “S3=1, FR=5, FA=3” was reported by 18% of the total participants in

the survey, where 15% of the total participants who also reported these attributes

correctly identified a semantic attack “RESPONSE=1”; resulting in a 85% confidence

that these participants were not susceptible. Of course, this was expected. In respect

to odds ratio, participants with these attributes were 82% less likely to be susceptible

to a semantic attack. Here, a lift value of 1.1 means that the participants who were

not susceptible (RESPONSE=1), who have security training through self-study, use
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Rules Support Confidence Lift Coverage OR

S3=1,FR=5,FA=3 0.15 0.85 1.1 0.181 1.82

CL=100,S3=1 0.15 0.84 1.091 0.181 1.71

S3=1,FA=3 0.21 0.84 1.091 0.248 1.78

FR=5,FA=3 0.21 0.83 1.083 0.247 1.69

CL=100 0.18 0.83 1.08 0.212 1.62

FA=3 0.28 0.83 1.075 0.34 1.69

S2=1,S3=1 0.16 0.83 1.073 0.193 1.53

S2=1 0.18 0.82 1.059 0.224 1.42

S3=1,FR=5 0.3 0.81 1.049 0.366 1.42

S1=1,S3=1 0.2 0.8 1.04 0.252 1.27

Table 3.5: Pruned Association Rules reported for participants with correct exhibit
response

the target platform type daily and are very familiar with the specific platform, are

observed 10% more than the percentage of the participants that were not susceptible

in the total participant dataset. Within the 10 pruned rules, the appearance of fre-

quently occurring items provides insight into association between specific attributes

and reduced susceptibility to attacks. For example, familiarity with the specific plat-

form provider (FA), frequency of access with a particular type of platform (FR), self-

study (S3) and computer literacy (CL) are consistently reported attributes. On the

contrary, duration of access (DR) and security awareness (SA) do not appear in the

rules at the support/confidence threshold. Overall, the association rules indicate that

security training through self-study, daily access to a type of platform and familiarity

with a specific platform in this type category, as well as high confidence with com-

puter literacy are associated to reduced susceptibility to semantic attacks. However,

given the minor variations in lift between these rules, the lack of 100% confidence

in any rule and relatively low support, a large proportion of non-susceptible users

without these attributes may not be represented. Therefore, employing these rules

as classification criteria would likely result in susceptibility prediction that produces
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many false negatives. Instead, we utilise these findings to identify the attributes that

we should study in greater detail in stage 2 of our analysis, as presented in Section

3.5.

3.5 Stage 2: Experiment 2 Model and Feature Se-

lection

Following on from the initial investigation of each high-level feature studied in experi-

ment 1, experiment 2 was conducted on a smaller participant base (315 respondents),

where participants were tested on a new set of semantic attacks, consisting of screen-

shots, animations and videos, and were asked to provide considerably more detail on

their profile. In experiment 2, we add further granularity to the high-level features

identified in the ten ARM rules of Section 3.4. In detail, we extend FR and FA to

include both specific provider platforms (FR1, FA1) in combination with types of

platform (FR2, FA2). Also, we adapt and extend security training as follows: S1, S2

and S3 are converted from a binary answer to a length of time since last training for

S1, S2 and S3, with a scale of: Never, over 1 year, up to 1 year, up to 6 months, up

to 3 months, up to 1 month, up to 2 weeks. The second measures security training

by platform types and specific provider platforms, including length of time since last

training. Each high-level security category is also extended to include the training

methods commonly used for each respective security category, such as: self study (S3)

through online videos, formal education (S1) through coursework, etc. Features SA

and CL are not altered. In order to identify whether features DR and SA are truly

non-informative, redundant features, we include them in the model feature selection

process alongside the newly expanded, granular feature-set; extending DR to specific

provider platforms (DR1 - platform type, DR2 - platform provider). As a result of

expanding and adapting the feature-set, we increase from 8 candidate predictors in

experiment 1 to 22 in experiment 2, as summarised in Table 3.6.

With the adapted feature-set from experiment 2, using R [275] and the Caret

package [276], we identify machine learning models that can predict a user’s ability
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to detect attacks. Firstly, we select and compare two distinct machine learning al-

gorithms; modelling both a linear and non-linear approach to prediction. Secondly,

for each model we have applied automatic feature selection with sequential backward

selection in Recursive Feature Elimination (RFE); obtaining an optimal model for

each machine learning algorithm.

3.5.0.1 Susceptibility Prediction: Logistic Regression Vs. Random For-
est

For a user susceptibility model to be practically usable by a technical security system,

it must employ predictor features that can be practically measured in real-time, auto-

matically and ethically. As our experiment sample includes each participants exhibit

classifications, these responses are used to label each participants predictor features

in the sample; which is suitable for supervised learning models. To evaluate whether

a linear model can be sufficient in predicting susceptibility, we first employ logistic

regression (LR), which performs well in linear spaces, functioning by definition as a

special case generalised linear model using a Bernoulli distribution for a binary re-

sponse [277]. LR is relatively robust to noisy data and over-fitted models, where the

data contains high variance. By computing a LR model we receive an estimation of

the probability of a binary response Y (e.g., dependent variable) as P (Y ), in this case

where Y = 0 (i.e., susceptible) or Y = 1 (i.e., not susceptible), based on one or more

predictor (or independent) features X. The result is a log odds (logit) coefficient

which is either positive or negative and represents the effect that the predictor(s) has

on the outcome, respectively. The LR of binary response Y on features X1, ..., Xk

estimates the parameter values for the coefficients of each feature β0, β1, ..., βk using

a maximum likelihood estimation to establish a multiple linear regression function as

the following formula:

logit(p) = log

(
p

1− p

)
= β0 + β1X1 + ...+ βkXk (3.8)

To find the probability response for the logistic regression (which is the probability

of the binary response outcome, given a one unit increase in the primary independent
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feature variable with all other features held constant), which is the solution for P ,

the formula is:

P̂ =
eβ0

∑
βkXk

1 + eβ0
∑
βkXk

(3.9)

In comparison to LR, another method that is resilient to variance in model predic-

tions is an algorithm known as bagging (also known as Bootstrap Aggregating [278]),

where the algorithm produces replicates of an original data sample by creating new

datasets by random selection with replacement. With each dataset, multiple new

models are constructed and gathered to form an ensemble of models. Within the

prediction process, all of the models in the ensemble are polled and the results are

averaged to produce a result that is low in variance. Random forest (RF) is a popular

bagging algorithm that can also be described as an ensemble decision tree classifier.

In RF, a number of decision trees are trained with different re-sampled versions of

an original dataset and then used to predict data that was omitted from each sample

as an embedded measure of training accuracy; this is called the out-of-bag error. To

avoid biases through collinearity in the feature space, Random Forest implements a

facility for randomly selecting a range of feature variables for splitting at each decision

node in a decision tree. The following equation provides a high level overview of the

bagging and Random Forest training and prediction process:

For trees t = 1, ..., T : sample with replacement n training sets from X, Y , then

train a decision tree Pt on Xt, Yt. Where dependent variable Y = c, which is the

binary response class or probability (if defined), and f is the set of features to be

used in each decision tree, the final trained RF model is summarised as:

P (c|f) =
n∑
1

Pn(c|f) (3.10)

After training of all decision trees, predictions on unseen samples (e.g., test data)

x′ is made by taking the majority vote (e.g., average class distribution) amongst all

decision trees on x′:
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P̂ =
1

T

T∑
t=1

Pt(x
′) (3.11)

Here, RF reduces the high variance inherent in a decision single tree by creating

n trees that are averaged to reduce the variance of the final model [279]. Unlike LR,

RF handles non-linearity naturally. Predictor variables are randomly chosen at each

decision split in the decision tree which results in a randomised, non-linear approach.

As compensation for loss of model interpretability that is available in simpler, linear

statistical learning algorithms such as Logistic Regression, Random Forest is rela-

tively simple to optimise and tune to most types of data and has been shown to be

an excellent general purpose machine learning algorithm, overall outperforming 179

different machine learning classifiers across 121 different datasets in a comprehensive

study carried out by Delgado et al [280].

3.5.0.2 Recursive Feature Elimination

Employing the predictor features summarised in Table 3.6, for both LR and RF

models, we have used an automatic feature selection method to identify the most

informative predictor features and build a single prediction model for each individual

attack exhibit. Recursive Feature Elimination (RFE) is an automatic backwards

feature selection algorithm. It starts by fitting a model to all 22 features, ranking the

latter based on their variable importance to the model, and gradually excluding the

features with the lowest importance in each iteration, recursively considering smaller

and smaller feature sets. In RF, variable importance is calculated within the model by

recording the out-of-bag prediction accuracy for every predictor variable permutation

in each decision tree. At each feature iteration, model accuracy is compared between

the prior and permuted model, averaged over all trees and then normalised by the

standard error. Since LR has no model-specific method to estimate importance, the

Caret package conducts receiver operating characteristic (ROC) curve analysis on

each feature iteration by evaluating the area under the ROC curve (AUROC), which is

used as the variable importance for LR [281]. A ROC curve illustrates the performance
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of a binary classifier at different prediction probabilities by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various thresholds. AUROC

represents the area under the ROC curve, where a random guess area of 0.5 (0,0 to

1,1) is typically used as the reference area from which to evaluate model performance.

The result of LR is the selection of those features that have a statistically significant

impact on the probability of a user’s correct prediction.

One possible drawback of RFE is the potential for over-fitting to predictor vari-

ables, as the procedure can focus on nuances in the sample data that may be anoma-

lous and therefore not present in future data. For example, where predictors randomly

correlate with the dependent variable being predicted, RFE may assign a good im-

portance ranking to these variables, even if they were to make no practical sense.

During training, this would indeed lower prediction error, but when validating the

model on new data it might reveal that the predictors are actually non-informative, in

a case referred to as “selection bias” [282]. To avoid this problem, and as is standard

practice in supervised machine learning experiments and models, we have employed

an outer layer of resampling through a repeated 10-fold cross-validation to provide a

robust estimate of model feature-selection and test error as evaluated by RFE. Cross-

validation (CV) is a model validation technique for assessing model performance on

unseen, independent data sets and is an important tool for avoiding exaggerated

model accuracy results (e.g. over-fitting a model by testing it on the same data the

model has been trained on). In the 10-fold CV process, the data sample is partitioned

into 10 equal folds, where nine folds are used to train the model and the remaining

one fold is used to test it. This process is repeated 10 times so that the model is

tested on each fold in order to produce an average model test error, which in our case

reports model test error at each variable selection step in RFEs backwards selection

process. With repeated 10-fold CV, for each 10-fold training process, the process is

repeated another 10 times.

In Figure 3.8, we present the results of LR and RF CV test error for each attack

and the optimal set of predictors selected by RFE. We compare LR and RF with each

other, as well as with a naive classifier, which, for each exhibit would always select
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Figure 3.8: Each graph presents the results of 10 times repeated 10-fold cross-
validation for each exhibit, using recursive feature elimination with a LR and a RF
model. Results are presented in the form of overall test accuracy

the answer (0 or 1) that is the most common in the sampled population (the sample

response rate). This is the maximum accuracy of a model that uses no features for

predicting the sample population outcome. For five out of six attack exhibits, both

LR and RF models reported superior classification accuracy than the sample response

rate. RF outperformed LR in four of the six attack exhibits.

Table 3.7 (see page 94) shows where each feature was selected for an exhibit’s

final prediction model (whether it was the LR or the RF model that was best per-
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forming). We observe that frequency of access to the specific provider platform in

the exhibit (FR1) was included in the best performing prediction model for 5 out of

6 exhibits, followed by length of time since security training through self-study and

formal education, which appeared in 4 out of 6 exhibits’ final models.

On the other end, familiarity with the exhibit platform type, security training with

a particular platform type, security self-study through games, work-based through

tests and formal education through lectures were not selected for any exhibit’s final

prediction model. Removing these five features, we prune the candidate-feature set

from 22 to 17 within a final RFE model selection process process with the aim to

build a final model for susceptibility prediction. In order to build a prediction model

that can potentially be employed across any platform and with any semantic attack,

we combine each of the exhibits’ sample responses into a stacked data sample, where

all users’ responses are included in a single dataset for all attacks. So, the values

for each feature relate to the particular attack’s settings in a particular entry in the

dataset. For instance, the feature “familiarity with platform type” in an attack that

utilises Facebook would refer to the familiarity with platform of type “social network”.

This approach enables the construction of a single model that contains a range of

semantic attacks, platform types and specific provider platforms. Creating a single

model for each attack would be impractical, as we would need one model for each

platform/attack combination. Training a model based on a wide-range of disparate

platforms and attacks, and using a combined dataset for a single prediction response,

enables more widely applicable prediction of susceptibility that can be utilised in a

technical security system.

3.5.1 Susceptibility Model: Results and Analysis

A reliable and widely applicable user susceptibility prediction model can have several

applications as part of a defence mechanism against semantic attacks. It can help

predict a specific user’s a) degree of “susceptibility” to semantic attacks (likelihood of

being deceived by one), or equivalently b) expected performance if they were to act

as a human classifier (likelihood of spotting attacks). The former can help a security
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system identify whether a user is particularly susceptible to semantic attacks and

consequently whether the system environment needs to adapt accordingly (e.g., by

privilege adjustment, targeted warnings, security enforcing functionality, etc.). The

latter can help evaluate to what extent a user can be relied upon as a “Human as

a Security Sensor” (HaaSS) of semantic attacks, where user reports are taken into

account so as to strengthen an organisation’s cyber situational awareness.

In Tables 3.8 and 3.9 the tuning and configuration parameters for each of the final

LR and RF models are provided. For both models, due to the relatively small data

sample, we have opted to use 80% of the participant dataset for each models training

sample; validation testing each model with a 10-fold cross-validation. Each model is

then tested for actual accuracy on unseen data using the remaining 20% as the test

sample. In RF, for the optimum number of random variables to try at each decision

tree split (e.g., dependent variable 0,1 association) we use the recommended default

which is square root of the total number of features in the model. The number of trees

generated for RF was set to the default of 500; no improvement in model access was

observed with an increased number of trees. By default, RF employs embedded re-

sampling with replacement, as part of the bagging (bootstrap aggregation) process.

The LR model uses a primary independent variable, with all other features set to

static values in order to compute class probabilities; here we have employed FR1

which received the highest variable importance in the RFE feature selection process.

Feature interaction was not used so as to preserve the interpretability of the LR

model.

For both applications, it is important to measure the model’s performance based

on its general accuracy in predicting which participants will detect the attacks and

which will not, and secondly its ability to reduce false positives or false negatives by

using a probability cut-off threshold. Table 3.10 compares the LR and RF classifiers’

overall performance against the naive classifier, which always selects the answer with

the highest probability in the population sample (so, always 0 if population’s success

rate is below 50% and always 1 otherwise, for a given exhibit). The test split used

for classification consisted of 215 correct (1) and 147 incorrect (0) responses. In
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Parameter Value

Model Type Classification
Parallel Processing True
Validation 10-Fold cross-validation
Train split 0.8
Test split 0.2

Number of feature sets (=
√

no. features) 4
Number of trees 500
Sample replacement True
Class Probabilities True
Metric Accuracy (ACC)
Decision threshold (δ) 0.5

Table 3.8: Random Forest model configuration

Parameter Value

Model Type Binomial (General Linear Model)
Parallel Processing True
Validation 10-Fold cross-validation
Train split 0.8
Test split 0.2
Primary individual variable FR1 (Frequency with provider)
Feature Interaction False
Class Probabilities True (default)
Metric Accuracy (ACC)
Decision threshold (δ) 0.5

Table 3.9: Logistic Regression model configuration

Table 3.12, the predictors selected by the RFE process for the LR and RF models are

presented. For the RF model, to evaluate feature variable importance, as metric, we

use the reduction in out-of-bag error during the model training process. For the LR

model, we use the increase in AUROC.

3.5.2 Key observations

Both the LR and RF models satisfy the statistical significance threshold of 0.05 and

both appear to outperform comfortably the naive classifier, which is a good sign in

terms of their practical applicability. There is a slight advantage of RF over LR across

all metrics (higher accuracy and precision, and lower false positives), but this comes
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Classifier Accuracy Precision FN FP P value Features

RF 0.71 0.72 0.10 0.19 <0.001 16
LR 0.68 0.70 0.12 0.20 <0.001 7
Naive 0.59 0.59 0 0.41 0.5 0

Table 3.10: Prediction performance comparing the accuracy, precision, false positive
and false negative detection of the final LR and RF models against the Naive (i.e.,
no information detection rate) classifier. See B.1 for R console output of prediction
test accuracy

Features Intercept FR1 CL S3T S2 2 DR2 S1T S3 1

OR 0.20 1.22 1.01 1.10 0.57 1.13 1.06 1.29

Table 3.11: Feature Odds Ratios for Logistic Regression Model

Model Selected Features

Random Forest CL (0.114), S3T (0.112), SA (0.107), FR1 (0.099),

FA1 (0.097), S3 1 (0.087), S1T (0.073), S2T (0.073),

S2 2 (0.068), FR2 (0.06), DR1 (0.05), S2 3 (0.048),

S3 2 (0.048), DR2 (0.046), ST2 (0.039), S1 3 (0.033)

Logistic Regression FR1 (0.035), CL (0.032), S3T (0.029),

S2 2 (0.027), DR2 (0.023), S1T (0.021), S3 1 (0.018)

Table 3.12: RF and LR model predictor features selected through recursive feature
selection (in order of variable importance measure: decrease in out of bag error rate
for RF, and increase in AUROC for LR). The higher the variable importance (in
brackets), the more important the feature is to its model.

at the expense of practicality, because it requires a large number of features to be

monitored (16 against LR’s only 7). Moreover, as RF employs a black box modelling

approach, this makes it less interpretable than the LR model as to why each feature

within the model informs prediction. In LR, interpretation is more straightforward,

because it produces each feature’s odds ratio (OR), which is the increase in the

probability of a user correctly identifying an attack for every one unit increase in

that feature’s scale, when all other features remain fixed. For example, from table

3.11, we see that a unit increase in the scale of frequency of use (e.g., from once a
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Figure 3.9: Random Forest model performance for false positive (not susceptible),
false negative (susceptible) prediction and overall prediction accuracy at each proba-
bility cutoff

Figure 3.10: Logistic Regression model performance for false positive (not suscepti-
ble), false negative (susceptible) prediction and overall prediction accuracy at each
probability cutoff

month to weekly), increases the probability of correct detection by 22%. So, ORs can

also be used to cross-reference with variable importance in interpreting each feature’s

influence to the prediction outcome.
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As one would have expected, computer security training does make a difference,

with all three forms (formal education, work-based training and self-study) appearing

in some form in both models. In general, we observe that the length of time since last

training (whether self-study, formal education or work-based training) is particularly

important, with time since last self-study (S3T) appearing to be overall the most im-

portant in the training category. This is reasonable, because semantic attacks evolve

continuously and any guidelines or technical information learned in training needs to

be updated often. Five years ago, semantic attacks were almost entirely based on

generic phishing and ransomware. Today, watering holes, WiFi evil twins and social

media friend injection attacks have become the norm, and phishing has expanded to

all forms of user interaction, from Quick Response (QR) codes, to near-field commu-

nication (NFC) and Bluetooth [9]. Interestingly, formal security education through

lectures was not chosen as a useful predictor of susceptibility to semantic attacks by

any of the models and for any of the exhibits.

Frequency of access to the specific provider’s platform (FR1) rather than gener-

ally to the type of platform (e.g., specifically Facebook rather than generally social

networks) was shown to reduce susceptibility noticeably, being the fourth most im-

portant variable in RF and the first in LR. Frequency of access to the general type

of platform (FR2) was utilised by RF as one of the features with the lowest variable

importance (0.06), and was not utilised at all by LR.

Duration of access to the same platform type was important in both models, with

13% increase in the probability for each unit increase in the LR odds ratio. In RF,

frequency and duration was also important for the platform type. Also, in the RF

model familiarity with the platform provider was the fifth highest important variable.

Computer literacy (CL) was shown to be the most important feature for RF and

the second most important for LR. This reinforces the need for a mechanism to

monitor and record computer literacy as a gauge of an organisation’s cyber risk.

Unlike the high level predictors Security Awareness (SA) and Duration of Access

(DR), which were not included in the association rules in experiment 1, the RF model

included both Security Awareness and the expanded DR features: duration of using
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a specific platform provider (DR1) and specific platform type (DR2), whereas the

LR model included DR1 only. Surprisingly, in RF, SA was the third most important

feature, whereas in LR it was not included at all; as per the association rules. On the

other hand, more in line with the association rules omitting DR in experiment 1, both

DR1 and DR2 were were given relatively low variable importance in RF, placing 11th

and 15th out of the total 17 features, respectively, with DR2 placing 5th out of a total

7 features for LR and DR1 omitted from the models feature-set. For both models, SA,

DR1 and DR2 were given a lower degree of variable importance than all other features

that were expanded from their higher level counterparts (FR, FA, CL, S3, S2, S1)

reported in experiment 1’s association rules frequent item sets; with the exception

of time since last security training through formal education (S1T), which slightly

less important than DR2 (0.21 compared to 0.23) in the LR model. The indication

is that the original high level predictors show a consistent association with reduced

susceptibility across both experiments, even after adding further granularity to their

measurement scale and context, and as a result also gained sufficient predictive power

for determining the probability of a participants susceptibility to semantic attacks

with a reasonable degree of accuracy.

There is no doubt that a user’s susceptibility to semantic social engineering attacks

depends also on personality traits, social context, psychological state and other human

and contextual factors, which are, however, impractical, as they cannot be measured

in real-time, automatically or ethically. Without knowledge regarding these factors,

one cannot expect a highly accurate prediction of susceptibility. So, the accuracy

improvement of around 10% against the naive classifier achieved here is significant.

In practice, we have developed this method to act as a baseline for an organisation’s

technical security system, which can then adapt over time, as it learns the character-

istics of the organisation’s own users.

Equally significant is that one can utilise these models to identify an appropriate

probability threshold depending on preference in minimising false positives, minimis-

ing false negatives or maximising accuracy (Figure 3.9 and 3.10). By probability
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threshold, we refer to the value over which a technical security system should con-

sider a user to be susceptible to a semantic attack. For instance, if the aim were

to maximise accuracy, the probability threshold for determining whether a user is

susceptible or not, should be 0.5 for both models. However, it would be 0.55 if the

aim were to keep both false positives and false negatives below 0.2. Overall, RF ap-

pears to perform slightly better than LR in terms of false positives at low probability

thresholds, but is slightly worse at higher probability thresholds. For false negatives,

the reverse is observed. In an organisation that is tolerant of false positives, but not

tolerant of false negatives, to keep the false negatives below 0.02, both LR and RF

models would yield a false positive rate just under 0.4. For RF, this would correspond

to a probability cut-off of 0.15, and for LR to a cut-off of 0.3. For an organisation

that is tolerant of false negatives, false positives can be effectively avoided using the

RF model at a 0.85 cutoff, but this results in an approximate 20% decrease in overall

classification accuracy, with the number of false negatives increasing to 0.48.

3.6 Discussion

3.6.1 Limitations

In our exhibit-based experiment there are a few limitations that must be considered.

Participants were primed to the purpose of the survey and subsequent test and thus

may have been more vigilant and sensitive to a semantic attack’s deception (therefore

weakening its effect) than they would have normally been.

For the first experiment, the simple approach of using screenshots to represent the

exhibits was very useful in conducting a large-scale study online and on any computer

platform. However, the use of screenshots is more appropriate for DV1 attacks that

rely on cosmetic deception than for DV2 (and partially DV3) that rely on behavioural

deception, which is less straightforward to convey via screenshots. To address this, in

the second experiment we included video exhibits where behavioural deception can

be more accurately emulated (in terms of context and system behaviour), rather than

depicted visually.
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Potential limitations may also exist in the selection of features for our susceptibil-

ity model. We have focused on a number of high-level concepts with the aim to create

a model for predicting susceptibility that is applicable across a wide range of semantic

attacks. One example is computer security training where we focus on the type and

mode of delivery of security training rather than its content. Prediction taking into

account the content too would have probably been more accurate, but would presume

that an organisation can collect such detailed information for its users, which may be

impractical. However, as training content is often attack specific [147, 25, 261, 256]

(e.g., phishing emails/websites), which limits users’ exposure to other threats, alter-

natively measuring whether security training has been received training for different

types platform (i.e. ST2 - e.g., Social Media) can help address threats observed on

similar types of platform that share characteristics (e.g., taxonomy attack vectors

in chapter 2); thus covering a wider range of attacks. The range and type of sus-

ceptibility predictor features we have identified is by no means exhaustive, but by

employing a series of high level user susceptibility indicators - identified as practically

measurable in a technical system, we have demonstrated the feasibility for accurately

modelling user susceptibility against semantic attacks. It is also possible that in our

experiment some features were selected and others omitted due to the limited profiles

of the experiment participants, however in general we expect this less of a problem

as the best performing classifier selected 17 out of a total 22 of features.

3.6.2 The viability of self-efficacy features in our model

It is important to evaluate the general reliability of self-efficacy features included in

our user susceptibility model in order to determine whether they can be accurately

and practically validated. In Table 3.13 we have conducted a number of correlation-

based analyses to identify relationships between user activity (e.g., auditable features)

and contextually related self-efficacy rating. We also test the ability to predict a user’s

self efficacy by developing a number of Random Forest models. For the correlation
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analysis, as per best practice, between ordinal categorical variables we employ spear-

man correlation [283] and between continuous and ordinal categorical variables we

employ polyserial correlation [284].

Self-efficacy Auditable Corr Method

FA1 FR1 .69 Spearman
FA1 FR2 .31 Spearman
FA1 DR1 .65 Spearman
FA1 DR2 .22 Spearman
SA S3T .33 Polyserial
SA S2T .36 Polyserial
SA S1T .39 Polyserial
SA ST1 .36 Polyserial
CL FR1 .11 Polyserial
CL DR1 .11 Polyserial
CL FR2 .20 Polyserial
CL DR2 .21 Polyserial
CL FA1 .23 Polyserial

Table 3.13: Correlation analysis of association between self-efficacy and auditable
user susceptibility features (all results were statistically significant at the 0.001 level
- see B.2 for R studio output)

Unsurprisingly the results show that the level of familiarity a user associates with

a specific platform (FA1) is highly positively correlated with the frequency and du-

ration with which the user accesses it. On the other hand, a low to medium positive

correlation was found to exist between specific platform efficacy and the frequency

and duration that a users accesses that general type of platform. These results demon-

strate that a user is very likely to associate a level of familiarity with a platform the

more often and longer that they use it, and this is also influenced to some degree by

using platforms of a similar type. For computer security awareness (SA), all security

training types reported a medium positive correlation, whereas for computer literacy

(CL) frequency and duration features reported low positive correlations. The lower

correlation results for security awareness and computer literacy indicate that indi-

vidual security training and platform usage features alone are not sufficient to fully

explain a user’s selection of these self-efficacy criteria.
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In Table 3.14, using a Random Forest classifier we review the prediction accuracy

for each self-efficacy feature based on each of the auditable features tested in the

correlation analysis.

Self-efficacy Model Test Error Metric

SA SA∼S3T+S2T+S1T+ST2 .19 RMSE
CL CL∼FR1+FR2+DR1+DR2 .25 RMSE
FA1 FA∼FR1+FR2+DR1+DR2 .30 Accuracy

Table 3.14: Prediction test error of self-efficacy features using auditable features - see
B.3 for R studio output

The relatively low model test error for predicting platform familiarity, computer

security awareness and computer literacy user self-efficacy demonstrates a strong

association between auditable features and their direct influence on users’ self-assessed

skill. Notably, computer security awareness achieved the lowest test error, which

means that even though individual security training is not highly correlated with

users’ self-efficacy, overall aggregate security training appears to have a strong affect

on users’ perceived ability. In general, the model test results suggest that the self-

efficacy features included in the user susceptibility model are strongly associated and

influenced by user activity attributes that can be measured accurately on a technical

system. As a result, employing contextually related activity features as validation

criteria for self-efficacy can potential help to reduce the effect of bias and also help

to highlight abuse of self-assessment were users claiming a level of efficacy that is not

evident in their auditable usage pattern.

3.6.3 Challenges in producing datasets for semantic social
engineering susceptibility prediction

Real-world, authoritative datasets for user susceptibility to semantic attacks are not

available. An organisation may not publicly reveal that their business has been ex-

ploited because of the perceived reputational damage it could cause or simply because

employees fail to report breaches for fear of disciplinary actions. Security authori-

ties and organisations, such as Symantec [285], who actively publish data from those

110



businesses, and users who do report attacks tend to anonymise and censor the data

to a point that profiling information that could show context leading to an attack

is removed before being made publicly accessible. Therefore, development of user

datasets through research experiments is necessary to understand which behaviours

and identifying factors help determine susceptibility and thus inform the design and

development of new security mechanisms against semantic attacks. In this section,

we identify a number of persisting problems for the development of robust semantic

attacks datasets:

• Ethics. A prevalent limitation for access to user susceptibility data is ethics.

Ethical consideration and approval can be a barrier to the collection of rich user

data for aiding researchers and developers in the development of user-centric

defences against semantic attacks. Experiments with human participant require

ethics approval from an institutional of governmental review board, and there-

fore there are often a number of requisite requirements which limit researchers

ability to produce truly representative results. For example, in [286], partici-

pant deception and debriefing, privacy and institute review board approval were

determined to be the main challenges that affect the design and execution of

phishing experiments. Mouton et al [287] proposes a normative perspective for

ethics in social engineering which can help ethics committees in the process of

experiment approval. Here, reporting susceptibility would be considered from a

utilitarian and deontogical standpoint; that is, whether or not the collected and

reported data would be ethical given the consequences of the specified action

(utilitarianism) or the duty and obligations related to that action (deontology).

In [288], researchers developed what has become widely accepted approach for

designing ethical social engineering experiments, but the method proposed fo-

cuses solely on phishing emails and it is unclear how it can be extended to a

wider range of semantic attacks and platforms other than email.
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As well as ethics approval, semantic attack research poses legal implications

[289], where researchers are increasingly conducting phishing experiments with-

out the knowing consent of participants. In this case, the data collected may

prove more representative of natural user behaviour, but cannot be validated

as legitimate research without formal approval.

One approach towards tackling this fundamental problem in the research of se-

mantic social engineering attacks is to provide a platform that enables users

and organisations to anonymously report semantic attacks, without omitting

crucial contextual information such as whether the attack was successful or

not, the scenario in which the attack occurred, whether or not the target had

been trained, etc. This database of user susceptibility information would pro-

vide an invaluable resource for researchers seeking to analyse trends or predict

behaviour to semantic attacks. Most importantly, collection of data in this for-

mat removes the complexity and damaging effect on user experiment data that

ethics approval may require.

• The experiment population against data collection detail trade-off.

Participants in semantic attack research tend to be recruited from the institu-

tion in which the study is conducted (e.g., university students, organisation’s

own staff, etc.) and often this is noted as a limitation of the research as the

results may not be representative the wider target population. This poses a

major problem for empirically proving the validity of research outcomes. In the

first study, we recruited a large number of participants from multiple different

geographical locations on the Internet, but this approach limits the ability to

collect more detailed data from the participants. There is a trade-off to be con-

sidered when recruiting participants that are more representative of the user

base against the qualitative data that can be extracted from a user population

that is easily accessible. In the case of the former, collecting user responses from

a large number of disparate demographic backgrounds is fairly simple when the

Internet is the recruitment platform, but these participants cannot be easily
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observed or interviewed at any stage of the research. For the latter, researchers

have localised access to participants and therefore a higher degree of detail

regarding user behaviour can be recorded and analysed.

Ultimately, semantic attack research is affected by both circumstances and as

such context should dictate the most suitable approach. In our study, it was

more important to recruit sufficient numbers of participants to allow the eval-

uation of statistical machine learning models. For research focusing on psycho-

logical impact of exploitation from semantic attacks, detailed qualitative data

may be a more relevant goal, in which case research would most likely benefit

from a smaller population.

• Attack coverage. In table 3.1, the majority of research related to predict-

ing susceptibility to social engineering attacks has focused on phishing, which

is only one type of semantic attack. Conclusions made from research solely

reliant phishing experiments may not be applicable to the wider semantic at-

tack problem space. As with network and operating system attacks, there are

many types of semantic attack, crossing multiple platforms, and therefore like

an anti-virus for an operating system or firewall for the network, it is crucial

that experiments consider and evaluate a wide range of semantic attacks in or-

der to build defence systems that can mitigate multiple threats. Furthermore,

specific attacks may become less popular over time as new platforms emerge

or more successful techniques are developed, and therefore it is also important

that an experiments results remain relevant for addressing future attacks.

In chapter 2, the taxonomy for semantic attacks can provide a useful baseline

to build such experiments that measure user susceptibility across a series of

generic attack attributes. In this study, we have included Deception Vector

only for clustering attacks on the same and different platforms, simplifying the

modelling process and ability to classify susceptibility with a single, general

model. For research aiming to understand user vulnerabilities to removable

media or targeted cyber-supply chains, other items of the taxonomy such as
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Method of Distribution and Target Description may provide useful categories

for clustering a wide range of attacks in a single experiment.

• Lack of an authoritative archive. Repositories of historic and current phish-

ing emails and websites do exist [290, 291, 292], but do not cover the wider range

of semantic attacks and do not include data on the profiles of the users who

have or have not been deceived by them. An open archive of semantic attacks

and corresponding user profile data would be immensely helpful to researchers

in this field.

3.6.4 Human as a Security Sensor (HaaSS)

The concept of the human as a sensor has been used extensively and successfully

for the detection of threats and adverse conditions in physical space, for instance

to detect noise pollution [293], monitor water availability [294], detect unfolding

emergencies [295] etc. In relation to semantic attack threats, the concept is very

new. There is one example specifically for phishing attacks [245]. We argue

that the concept can be explored much further and for most semantic attacks,

where the human user’s situational knowledge can help detect attacks that

are otherwise largely undetectable by technical security systems. For example,

there are no known technical countermeasures to attack E11 in experiment 1

(“Qrishing”) and attack E1 in experiment 2 (Video masquerading “clickbait”),

but in our experiments, users were able to detect them with a probability of

86% and 78% respectively (see Table 3.2). This is certainly not a rigorous way

for evaluating HaaSS, but we feel is an indication of its potential. Introducing

a HaaSS element in an organisation’s security can empower users to become

its strongest link. In this context, predicting the performance of an individual

user as human sensor of semantic social engineering attacks is the equivalent

of measuring the reliability of a physical sensor. For example, within a HaaSS

reporting platform, a prediction model that measures the probability of a user’s

report being correct can provide security engineers with the ability to triage
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the review of reports; prioritising the ones from users that are more accurate

human sensors.

3.7 Conclusion

We have conducted two experiments, each consisting of a survey and an exhibit-

based test, asking participants to identify whether specific exhibits were likely to

show attacks or not. Based on the data collected, we identified a set of features

from which we produced logistic regression and random forest models for predicting

susceptibility to semantic attacks, with accuracy rates of .68 and .71 respectively.

The slight performance advantage of RF over LR is countered by the larger number

of features that it requires to be monitored (16 against LR’s 7), but also explains that

the relationship between features and a user’s susceptibility is not strictly linear. In

terms of the features themselves, we observe that security training makes a noticeable

difference in a user’s ability to detect deception attempts, with frequent self-study

appearing to be a key differentiator. Yet, formal security education through lectures

was not chosen as a useful predictor by any of the models and for any of the exhibits.

More important features were computer literacy, familiarity and frequency of access to

a specific platform. The models developed can be configured in terms of preference in

minimising false positives, minimising false negatives or maximising accuracy, based

on the probability threshold over which a user would be deemed to be susceptible to

an attack. For both models, a threshold choice of 0.55 would keep both false positives

and false negatives below 0.2; minimising equally the number of incorrect predictions

of non-susceptibility and susceptibility, respectively.

We have also identified a number of challenges associated with developing datasets

for predicting susceptibility to semantic attacks, where addressing these challenges can

help produce rich and representative user susceptibility data that can aid developers

and researchers of user security defence systems. In future work, our model can be

experimentally validated with a technical implementation and using a wider range of

semantic attacks for each deception vector in order to provide empirical results for
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the model’s performance in practice. As deception-based attacks utilised in the wild

evolve continuously, the baseline model and classification rules can be continuously

improved with new training data from different user populations and attack types.

The advent of the Internet of Things [13] promises to compound the problem of

semantic attacks and extend to physical impact, exposing user interfaces of systems

previously inaccessible to the standard user, let alone via a distributed application in

the Internet [14]. The more effective such cyber-physical attacks prove, the more the

deception attack surface will grow. Semantic social engineering threats in the Internet

of Everything are likely to expand attack surfaces via ubiquitous connectivity which

practically facilitate new and convincing semantic attacks; the impact of a phishing

email may no longer be limited to stolen user credentials or malware infection, but

can also bring down a national power-grid [296]. Providing users with the ability to

report suspected semantic attacks can help provide system developers and security

practitioners with key insights in how to design or update systems to mitigate such

threats, while at the same time instilling users with a sense of empowerment in pro-

tecting their technological environment. To this end, report credibility provides a

crucial role in identifying the likelihood that an attack has indeed occurred, so as to

prioritise reports and utilise their information to augment defence mechanisms. Pre-

dicting user susceptibility as a performance measure of semantic social engineering

attack reporting provides a first step towards this vision.
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Chapter 4

A Human-as-a-Security-Sensor

framework and a prototype

implementation for detecting

semantic social engineering attacks

In chapter 3, we combined two of the three key defence techniques highlighted in

chapter 2, user awareness and machine learning, to develop a predictive model of user

susceptibility to semantic attacks. By identifying and measuring features associated

to users’ semantic attack detection efficacy, we demonstrated that it is feasible to

predict user performance in detecting semantic attacks across a range of different

attack vectors and disparate computer platforms. We then proposed the concept

of Human-as-as-Security-Sensor (HaaSS), where we argue that a user’s situational

knowledge can help in the detection of threats alongside existing technical security

systems (e.g., phishing), as well as the detection of attacks that are otherwise largely

undetectable by technical security systems (e.g., multimedia masquerading).

In this chapter, we expand on the concept of Human-as-a-Security-Sensor (HaaSS)

by unifying the three key defence techniques (User Awareness, Machine learning and

Sandboxing) identified in chapter 2 into a single defence framework for detecting

semantic attacks. The proposed framework forms the architectural blueprint of a

technical platform which utilises users as human sensors for the detection of semantic

attacks. Using the proposed framework, we take the first steps towards exploring

117



the applicability of the HaaSS concept for semantic attack detection in an empirical

context, by testing the reliability of human users as security sensors in an experiment,

where we introduce Cogni-Sense, a proof of concept HaaSS platform implementation

derived from our prototype framework.

4.1 Human-as-a-Security-Sensor: a technical frame-

work

There is a growing realisation in the security industry that the users need to be at

the core of any system’s security design [297, 298, 299, 300, 301, 302]. Our aim is to

progress a step further and empower users to directly contribute to the security of

themselves, their organisation or the wider community actively. However, to capture

the detection of semantic social engineering attacks, it is users which require an

interface which provides functionality to report suspicious or anomalous activity that

uses deceptive attack vectors, rather than relying on technical exploitations; for which

the human user often is a more accurate sensor than an organisation’s technical

security systems.

From a system standpoint, humans are autonomous, multi-sensory systems with

the ability to produce inferential output data based on multiple experiential and en-

vironmental input data. Within human society, therefore, this ability means that

humans (as physical sensors) are often best placed to provide information in various

contexts where technical systems alone are not adequate. The aim of HaaSS (and in-

deed most user-driven defences) is not to replace technical security systems, especially

those that have been shown to work well in detecting and mitigating certain semantic

attacks (e.g., phishing websites [28]), but to enhance or complement them by leverag-

ing human sensing capacity and experience. More specifically, HaaSS can be used to

actively augment existing technical defence mechanisms by combining telemetry gen-

erated by user threat detection with threats flagged by technical defence platforms;

helping confirm the existence and highlight the extent of the threat, or crucially, for

detecting semantic attacks that have been largely undetectable by technical systems.
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In this capacity, HaaSS allows for proactive and preemptive detection of semantic

attacks by positioning (and empowering) the user as a platform security sensor in

order to identify and report suspected attacks in real-time.

To add clarity to the function of HaaSS in the context of semantic attacks and

the wider computer security threat space, we propose the following definition:

Human-as-a-Security-Sensor. The paradigm of leveraging the ability of human

users to act as sensors that can detect and report information security threats.

Stembert et al. [245] have recently proposed combining a reporting function with

blocking and warning of suspicious emails and the provision of educative tips (such

as which technical factors indicate malicious intent e.g., URL structure), so as to

harness the intelligence of expert and novice users in detecting email phishing attacks

in a corporate environment. Initial experimental results of their mock-up have been

encouraging for the applicability of the human as a security sensor concept in this

context. Another recent example of utilising the human as a sensor security con-

cept was demonstrated by Malisa et al. [303] where the researchers developed an

accurate and automated mobile application spoofing detection system by leveraging

user visual similarity perception; integrating the human sensing data collected as an

integral component of the technical systems detection decision making. To detect se-

mantic attacks with some accuracy, both systems utilise explicitly user expertise and

knowledge, but there is no exploration or measurement of what determines the users’

performance as security sensors. By establishing such insight, a technical system

could highlight the key attributes associated to user threat detection and as a result

improve system performance by recognising which threat reports are more reliable.

As we have experimentally demonstrated in chapter 3, the reliability of a users

attack reporting (and therefore attack detection efficacy) depends on their activ-

ity profile, as defined by characteristics including the amount and type of security

training, familiarity with each system, frequency and duration of system access etc.

[304, 305]. The profile also serves to define one’s predicted susceptibility to semantic

attacks. However, before building a system that depends extensively on a particular
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type of sensor (and the human sensor is no exception), one needs to be able to measure

or estimate its overall reliability. In the case of HaaSS, this means expanding upon

theoretical observations made under survey or questionnaire conditions (which often

limit the ability to produce lasting empirical conclusions about a security system’s

practical usefulness [306]), by testing the concept in an representative environment.

Here, we take the first steps in empirically evaluating the HaaSS concept for de-

tecting semantic attacks by designing a technical HaaSS framework (subsection 4.1.1),

which we then use to develop an applicable prototype system (section 4.2), tested un-

der both laboratory (subsection 4.3.1) and real-world (subsection 4.3.2) conditions.

4.1.1 Framework architecture

To build upon chapter 3 and systematise HaaSS sensors within a practical defence

system, we propose a set of three processes which organise users as physical sensors

(i.e., the HaaSS Sensor) within a typical cyber security defence architecture. Each

discrete process (attack detection, classification and response) represents root system

functions as technical components, which consist of a series of modular sub-system

components.

Below, each of the processes are described according to domain specific functions in

the HaaSS framework. However, they can also be traced to more generic applications

of threat detection and resolution observed in technical computer security systems

that do not employ HaaSS functions.

• Process 1 - Detection. Threat detection is the primary function of the HaaSS

sensor and concerns the reporting of semantic attacks that are observed by

HaaSS sensors (e.g., human users) on the user-computer interface. Here, threat

detection can be an ongoing active or passive process, depending on the con-

text of the HaaSS sensors (e.g., actively searching for threats, or symptomatic

exposure based on activity profile). Within the detection process, HaaSS sen-

sor activity is continuously monitored to establish, dynamically, their detection

efficacy for semantic attacks.
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• Process 2 - Classification. In the HaaSS framework, the classification pro-

cess is where HaaSS threat reporting is actively translated into decision actions

for informing and coordinating the implementation of technical security de-

fence rules for mitigating semantic attacks. Therefore, HaaSS sensor report

classification forms the focal function of HaaSS defence, as it is the framework

component where security response enforcement decision making is made for

HaaSS reports. Specifically, threat report classification process decides whether

semantic attack reports received by HaaSS sensors are credible attacks or not.

However, unlike conventional defence approaches, in HaaSS the primary and

initial decision process relies on the scoring of the HaaSS sensor’s detection ef-

ficacy, rather than the attack data, to determine the reliability of the report

being an actual threat. Detection efficacy is used as a filter to automatically

respond to HaaSS threat reports, or to forward and prioritise reports for attack

data review and classification.

• Process 3 - Response. Like any security system, the result of an attack report

classification outcome (e.g., attack decision: true/false) is either the deployment

of threat mitigation functions or not. In HaaSS, the response is the execution of

security enforcing functions and rules (e.g., blocking a website URL, adding an

email domain to spam lists, creating a malicious file signature, or sending out

user threat notifications) designed to mitigate positively classified HaaSS threat

reports. The response process is also responsible for feeding back classification

output to enforce continuous learning of correct and incorrect HaaSS detections,

with the aim to continuously improve classification accuracy whilst adapting the

system to its specific HaaSS sensor-base.

Shown in Figure 4.1 is the detailed HaaSS framework with the system criteria

and underpinning functional components. In the next subsections, each of the frame-

works system and sub-system components are described as to their role and function.

The experimental system settings are included as tested in the prototype technical

implementation called Cogni-Sense. Cogni-Sense is discussed in detail in section 4.2.
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Detection system process: functional components

• User Interface (semantic attack exposure). The user interface is an im-

plicit component in the HaaSS framework and the source of HaaSS sensors ex-

posure to semantic attacks. The user interface applies to any computer system,

whether served locally, remotely, by cyber or physical means. The taxonomy

in chapter 3 describes the various methods of attack distribution on the user

interface; which can be used to identify the optimum positioning of the HaaSS

sensor to implement reporting mechanisms for the widest coverage.

• Feature collection. HaaSS sensor activity on the user-computer interface

generates real-time profile data which formulate the on-line, auditable features

for computing the HaaSS sensor detection efficacy metric. Here, we refer to

on-line, auditable features as features generated as a result of real-time HaaSS

activity (e.g., duration of platform access). By comparison, self-efficacy features

are collected in real-time, but are not necessarily continuous by nature (e.g.,

HaaSS sensor self-efficacy). Auditbale feature data is generated through HaaSS

sensor interaction with the user interface and is collected by the underpinning

HaaSS reporting platform integrated with the user interface. If feasible, feature

measurement can be automatic through the platform collecting the feature.

However, for specific features such as self-efficacy based data, manual HaaSS

sensor input is required. The specific process and algorithms for auditable and

self-efficacy feature collection in the framework are described in detail in section

4.1.2.1.

• Sensor Report (Feature interpolation and attack data) An attack report

is initiated by a HaaSS sensor using a HaaSS report interface when a suspected

semantic attack is detected. The HaaSS report interface provides a mechanism

for generating an attack report using the existing user interface available to

the HaaSS sensor. Once initiated, a sensor report captures, in real-time, the

HaaSS sensor feature-set for the specific attack report context (e.g., platform).
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The sensor report uses report context to extract the HaaSS sensor feature-set,

where raw feature data is interpolated and discretized into a format readable

by the HaaSS susceptibility model; this process is described in more detail in

section 4.1.2.1. The formatted feature-set is unique to each report, formulated

dynamically based on the attack report context and time. The sensor report

attaches attack data alongside HaaSS features to be sent for classification and

response (e.g., defence). In a HaaSS report, the attack data is built by ex-

tracting key threat information automatically from the user interface, as well

as optionally allowing for manual data input supplied by the HaaSS sensor.

For example, attack data may consist of (but is not limited to) video, images,

files, links, interface meta-data, text description (supplied by HaaSS sensor),

diagnostic data on the platform serving the user interface. Once sent, sensor

reports are delivered to a remote platform for classification in the HaaSS attack

detection validation component, where attack data is forwarded to a semantic

attack sandbox and HaaSS features are used to compute the sensors detection

efficacy for the report.

Classification system process: functional components

• Compute HaaSS Score H (HaaSS features). A focal point of the HaaSS

framework is the measurement of HaaSS sensor detection efficacy and reliability

for semantic attacks reports. The H score forms the primary decision making

process within the HaaSS framework and provides a mechanism to distinguish

between credible threats for triggering appropriate defence mechanisms. HaaSS

report classification is initiated on-demand when a attack report is received by

a HaaSS sensor and is computed as a validation measurement of the HaaSS

sensor’s attack detection efficacy. The validation measure utilises a susceptibil-

ity model (using the approach developed in chapter 3) to generate a detection

probability metric which we coin as the HaaSS score (H). The H score is pri-

marily used to determine the likelihood of whether a HaaSS report is a credible
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semantic attack or not, which, depending on the score and classification thresh-

old defined, would result in automatic classification and immediate execution

of security enforcing functions for classified attacks. Alternatively, it is used

to inform manual report classification of the likeliness of the report being a

semantic attack. By default, once computed, each attack report received by a

HaaSS sensor is assigned a H score generated based on the reports accompany-

ing HaaSS features. We expand considerably upon the concept of the H Score

(H) in section 4.1.2.

• Report repository (Attack data, HaaSS features and the Semantic

attack sandbox). Within the HaaSS framework, the report repository stores

all received HaaSS reports received by HaaSS sensors and serves as the stor-

age source which supplies attack data and report information for review and

classification in a semantic attack sandbox. Conventional computer security

sandboxes are designed as safe containers which evaluate heuristically the se-

mantics of untrusted code execution, or the meta-data of computer system files

in a secure environment away from the host computer platform to detect at-

tack patterns or anomalous activity. In HaaSS, the semantic attack sandbox is

designed to expose behavioural and cosmetic user-interface attributes for anal-

ysis, to distinguish between legitimate or malicious intent (as suspected by the

HaaSS sensor). As deception vectors (see taxonomy chapter 2) primarily tar-

get the user-computer-interface, instead of technical software analysing system

behaviour, it is human users who form part of the sandbox architecture by

analysing the system behaviour through human sensory (e.g. visual interpreta-

tion); such as human users as security operators of the HaaSS system or peer

HaaSS sensors. Currently there exist a number of online platforms providing

sandbox functionality for email and website phishing, but to a limited extent.

Online phishing repository PhishTank provides a web interface for reporting

and reviewing phishing website and email attacks, supplying a screenshot of

the report and for phishing websites the ability to interact with the attack itself
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via a HTML iframe (providing the phishing website has not been removed from

circulation). By comparison, Millersmiles, provides only a simple text scrape

of phishing emails for review (see section B.6). Unlike the HaaSS framework,

these environments are limited to phishing attacks only, do not integrate with

any security systems (where classified attacks result in direct defence measures)

and provide no mechanism for report prioritisation based on the reporters detec-

tion efficacy profile. In the framework, all HaaSS sensor reports are forwarded

immediately to the semantic attack sandbox, where report attack data is pre-

sented in a secure container for analysis. Sandbox attack data can consist of a

number of formats such as images and video, however to guarantee security and

persistence in the sandbox, only static data is supplied instead of linkage to the

actual attack source. This ensures the sandbox provides the necessary visual

interaction with deception vectors for effective threat classification, without the

risk of exploitation. The semantic attack sandbox also provides a mechanism for

pro-active defence, where report classifications can be reviewed again if historic

automatic or manual classifications turned out to be incorrect.

• Susceptibility threshold (δ). The HaaSS score susceptibility threshold con-

trols when the system automatically classifies a HaaSS report as an attack (1),

non-attack (0) or whether it defaults to an unclassified state (e.g., NULL). The

threshold allows for adjustable control of false positive and false negative re-

port classification, which vary depending on the HaaSS score model accuracy.

For a configured threshold, if the upper or lower threshold is met, the HaaSS

report is automatically classified (which also serves to automatically set the re-

sponse label when adding the report to the HaaSS model training and validation

dataset). In the case of an unclassified report state (i.e., HaaSS score <upper

threshold and >lower threshold), the HaaSS report is marked as unclassified in

the semantic attack sandbox for manual classification. Here, the HaaSS score

is then utilised as a prioritisation metric for manual classification by a HaaSS

report reviewer (e.g., security operations/platform personnel).
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Response system process: functional components

• Rule enforcement (System and user defence). HaaSS report classification

results in an attack decision which is true or false. Attack classification results

directly in a response that issues a security enforcement function on a set of pre-

configured rules based on the context of the report. This involves implementing

a function that would protect against the semantic attack on the system or user

and requires the HaaSS system to have a security enforcement module (SEM)

that is integrated locally or remotely to external technical security platforms.

The rule enforcement process provides traceability of HaaSS sensing and detec-

tion through to autonomous and pre-emptive defence measures against semantic

attacks, by utilising a report classified as an attack to invoke rule enforcement

that results in technical security configuration and execution. For example, in

the case of an organisational HaaSS system, for a HaaSS report of a phishing

website classified as credible (automatically or manually), the HaaSS system

can enforce a rule that sends a configuration setting to the organisations web

proxy (using the website URL) to block the phishing website. Undoubtedly,

this would require API connectivity or middle-ware to translate the rule to con-

figuration input. Another example, in a wider use case setting might be email

distribution containing the details of the phishing website which is sent to all

HaaSS subscribers (e.g., home internet users and other HaaSS sensors using

the system). For each attack decision response, the HaaSS features and attack

decision (true or false) are fed back into the H score training sample for the H

score adaptive remodelling function.

• HaaSS Score adaptive remodelling. Adaptive remodelling is a continuous

feedback mechanism designed to learn the behaviours and profiles of a HaaSS

sensor-base by periodically re-training the HaaSS score prediction model and

improving its accuracy. The remodelling procedure activates when the overall

HaaSS detection distribution within the training data has deviated significantly

from the HaaSS score models original training data distribution; distribution
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refers to the user detection rate which is based on the number of HaaSS re-

port samples with correct or incorrect classification in the most recent baseline

training and validation dataset. The task can be periodic (e.g., running once

a day, week or month), employing mean deviation as the trigger to invoke re-

modelling; the calculation takes x as the values of the most recent base-lined

training data distribution and the current (at that point in time) distribution

where mean deviation =
∑
|x−µ|
2

. If distribution exceeds a specific deviation

threshold (with experiment configuration set as 0.5), remodelling is invoked.

When remodelling is triggered the HaaSS score model is retrained on the most

current HaaSS data sample with any tuning parameters defined i.e., train and

test sample split, machine learning algorithm, cross-validation (CV), automatic

feature selection. After retraining, the HaaSS score model’s predictive perfor-

mance is reviewed at different class probability thresholds to define the optimum

threshold (δ) for minimising false positives or false negatives when computing

the HaaSS score and setting the threshold for automatic or manual report clas-

sification as defined in the classification process. Adaptive remodelling can be

configured to run as an autonomous process, or manually by a HaaSS system

administrator.
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4.1.2 Predicting Sensor Reliability: The HaaSS Score

The concept of Human-as-a-Security-Sensor places users at the heart of a security

system designed to detect deception-based attacks on the user-computer interface,

where instead of computer-based security sensors, it is human sensing capacity and

experience that is utilised for threat detection.

Whilst similarities between computer-based and human-based security sensors can

be drawn by a mutual requirement to measure their attack detection accuracy, a major

distinction between computer and human sensing (in this case) is that human sensor

detection is much more unpredictable by nature and therefore less consistent from one

sensor to another. This is because in a technical system, for a specific computer-based

security sensor (such as an anti-virus scanner), the same attack detection reliability

is shared amongst all sensors (as each sensor is effectively a clone of the other -

assuming they are fully updated), whereas in HaaSS, detection reliability is uniquely

applicable to each individual HaaSS sensor based on their specific detection efficacy

profile. To harness and channel the unpredictability of human sensing and to model

humans as physical sensors that form an effective and systematic medium for semantic

attack detection, we employ a metric, which we call the H score. The H score

represents the trustworthiness of the report as a result of computing a HaaSS sensor’s

predicted detection efficacy for a specific report context (e.g., attack platform type

and sensor’s current security training). This is achieved by utilising the susceptibility

model developed in chapter 3, to profile HaaSS sensors through a series of key user

susceptibility indicators, which are then used to form a dynamic prediction of their

expected detection efficacy. The H score is computed by extracting a HaaSS sensor’s

most recent detection efficacy profile attributes (i.e., their susceptibility indicator

predictors) at the current point in time when a semantic attack report is initiated;

using these attributes as a series of features to determine the likelihood of whether

the attack report is or is not a correctly identified semantic attack.

In the HaaSS framework the H score facilitates three key objectives of HaaSS

sensor reporting, (1) immediate classification of HaaSS reports (i.e. attack / not an
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attack) for executing automatic security enforcing functions, (2) prioritisation of the

most trustworthy HaaSS reports (where the H score is too low or high for automatic

classification) for manual classification with the aim to minimise the exposure time

of vulnerable users by review precedence, and (3) the ability for a HaaSS system to

learn and adapt to the changing detection efficacy profiles of its incumbent HaaSS

sensor-base through H score accuracy remodelling. In these applications the H score

can function in two modes independently or simultaneously. These are classification

mode for autonomous, system-initiated security enforcement and prioritisation mode

for manual, human-initiated security enforcement. In classification mode, the prob-

ability value is evaluated against a defined classification threshold which determines

whether automatic report classification will occur and is defined by the sensitivity

and specificity requirements of the environment. Depending on the general HaaSS

score accuracy, different classification thresholds will result in either higher false pos-

itives or false negatives or an optimum minimum for both. For prioritisation mode,

the higher the probability, the more trustworthy the report and therefore the higher

precedence it is afforded by manual human review and classification.

Whilst the H score is primarily designed as a mechanism for accurate treatment of

semantic attack reports that are received from HaaSS sensors, it can also be utilised

as monitoring tool for continuous analysis of HaaSS sensor detection “health”. For

example, in the case where a HaaSS sensor lacks the detection efficacy to identify a

specific semantic attack on a specific user-interface (and platform), it is reasonable

to assume that a report of this particular threat would never be received from/by

this sensor. Conversely, for HaaSS sensors that are over-suspicious and therefore

highly sensitive to suspected deception on the user-computer interface, the HaaSS

sensor is likely to produce many false positive reports. To identify these weaknesses

and perhaps deliver targeted training where needed, periodic review of the passive H

scores for HaaSS sensor detection efficacy would be beneficial.

Figure 4.2 provides an overview of the H score function, expanded from the

“HaaSS attack detection validation” component which forms the classification process

of the HaaSS framework. Within the HaaSS attack detection validation, the function
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Figure 4.2: H score prediction and report classification process

extracts HaaSS sensor features for incoming semantic attack reports (shown is an ex-

tract the features selected as part of the statistical modelling in chapter 3), which are

fed to the susceptibility prediction model for H score predication. The susceptibility

model prediction method is defined by the machine learning algorithm used to train

model, for the models trained in this work the prediction formula (which forms the H

score probability value) for Logistic Regression and Random Forest are used as per

Chapter 3. For the prototype system developed in section 4.2, the Random Forest

model was implemented. The H score output is the the probability P of the output

class c (susceptible/not susceptible or equally not detected/attack detected) for input

HaaSS features f in the report, being P = (c|f), as computed by the susceptibility

model algorithm. The H score generated is evaluated in classification mode against a

user defined threshold δ to decide whether automatic or manual classification should

be performed on the attack report.
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Next we describe the framework’s procedure for collection and measurement of

the HaaSS features which are used to predict the H score.

4.1.2.1 Feature Generation and Measurement

The following section describes how the auditable and self-efficacy predictor features

defined in the susceptibility model chapter 3 are generated from user attribute data

and measured in order to supply detection efficacy features for the H score compu-

tation.

auditable features can be collected in real-time and automatically either on the

user’s client-side system or remotely through API’s that are integrated with the HaaSS

platform; this function operates whenever there is user activity that can be monitored.

Feature collection is a continuous task that initiates at user log-in and operates pas-

sively until the user logs off or shuts down their system. For remote feature collection,

computation of auditable efficacy features can be conducted in batch mode - e.g., on

demand or in real-time depending on whether all auditable features are sent to the

server-side HaaSS database. Real-time computation can be less efficient as platforms

forwarding features to the HaaSS database whether on the users machine or in the

Internet must continuously monitor user activity from different locations and sending

multiple data streams over the network and therefore introduce scalability problems.

Similarly, local feature collection on the users systems can be computed in real-time

or batch mode (e.g., on demand - which is the point at which a user makes a re-

port) this is achieved by either continuously checking the activity history to generate

features values or periodically extracting the recorded history of user activity on the

platform associated to the suspected attack. In the case of the former the processing

requirements of continuous feature generation are less efficient, whereas batch fea-

ture generation still allows for real-time feature selection when a user sends an attack

report. If a user were to be exploited both approaches equally facilitate the ability

to forensically review user activity to generate a “snapshot” in time feature-set that

would identify their susceptibility profile at the time of exploitation. In the case of the

former, feature values would already have been generated whereas for batch mode,
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the features would require generation from the existing activity history that has been

recorded. The process of feature generation, which applies to both local or remote

collection, is presented visually in Figure 4.3.

4.1.2.2 Auditable Features

In the following section we describe the technical process of auditable feature gener-

ation using local batch-mode collection only. In the HaaSS framework, it is assumed

that a continuous monitoring mechanism collects raw data from each measurable

user-interface that the HaaSS sensor accesses and interacts with (e.g., web platform,

application, file, device etc.). On different systems and for a range of disparate user-

interfaces, the method for collecting raw access data from user-interaction may vary

and therefore the exact technique for raw access collection is not prescribed within

the framework. We do however develop a specific collection technique within the

prototype HaaSS platform Cogni-Sense in section 4.2, to demonstrate the viability

of automatic access activity collection and to facilitate feature generation and inter-

polation using the following algorithms. Here, the algorithms for feature generation

and interpolation are designed to function on any source of raw access data, assuming

that the data has an an accurate time-stamp.

• Frequency of access (FR). The feature measurement algorithm for Frequency

of Access (FR) is designed as a generic algorithm which applies to a monitored

user interface (which refers to a measurable computer platform or application

interface). By default, frequency of access is measured a using a 31 day period

to represent a month of activity (rounding upwards based on a 30.5 day leap

year month), which defines the threshold for moving between frequencies. For

example, for user platform activity to be classified with a frequency of “daily”

access (i.e., there is a maximum of one day elapsed between platform usage),

this daily activity must be continuous for a period of 31 days, without more

than one day difference between accesses. The same rules apply for each fre-

quency category, for example “weekly” access would require that there is no
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more than 7 days between each indexed access date; the same rule is applied for

the remainder of the frequencies categories. However, different frequency tran-

sition thresholds can be applied when increasing or decreasing the frequency

granularity scale. When a HaaSS sensor attack report is initiated the related

user-interface access activity specifically related to the report (e.g., platform,

application, file ... etc.), are indexed in an array of dates ·v from the current

recorded access up to 31 days from the latest measurement taken at the time

of a report. Here, it is assumed that the collection mechanism records each

individual access of a platform user-interface continuously and therefore may

consist of multiple accesses on the same day; for the frequency algorithm only

the first recorded platform access is indexed for each specific day. For the length

of the array, beginning with the first array index i=0, the elapsed period Ei is

measured in absolute days between the reference date time vi (which for the

first index in the array is the date the report is made) and the next index vj,

where j = i+ 1 (which is the recorded access time-stamp for when the platform

interface was last accessed since the report was made) is computed. vi and vj

are then both iterated to the next index in the array, where the absolute value

in days between each index value is computed again; this process is repeated

for each index for the length of array.

Once each of the absolute elapsed days between each platform interface access is

completed, we are left with a frequency list (E1, E2, ..., En) which is then iterated

through with a case function (e.g., IF, ELSE) to calculate the frequency of access

(e.g., daily, weekly etc.). In the case where there is no recorded access activity

prior to the HaaSS sensor attack report, then the frequency of access is “never”

(which is to say no recorded access before this point in time). Algorithm 1 in

Appendix 2, provides a step-by-step description of the feature generation and

interpolation, using the default 31 day frequency threshold shift.
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• Duration of access (DR). The feature measurement equation for Duration

of access (DR) is designed as a generic algorithm which applies to a monitored

user interface (which refers to a measurable computer platform or application

interface). Here the same assumption for the access activity collection mecha-

nism is employed, where it is continuous for each individual access on a specific

day and therefore may consist of multiple accesses on the same day. With this

in mind, for each access in a 31 day period, each chronological time-stamp is

ordered to represent a start and stop elapsed time in seconds for each day. The

elapsed time in seconds for each individual access per day, at the time of a

HaaSS attack report, is then indexed in an array ·v = (v11 , v12 , ..., vnj
). By

iterating through all the access instances recorded for a specific day ij up to

the last measurement taken before the HaaSS sensor attack report, beginning

at the first observation i, the duration of access is summed in seconds and is

computed as the total duration of platform access in seconds for each recorded

day seci. The result is a list of duration in seconds for each day which is then

divided by the the total number of days D = len(seci) measured, to compute

an overall average duration of access Tsec for the reports platform interface.

Finally, the average total duration in seconds Tsec is converted to an ordinal

integer scale using a case function to form the input value for the prediction

models duration feature (DR). As per frequency of access, in the case function

different duration thresholds can be applied when increasing or decreasing the

duration granularity scale as required. Algorithm 2 in Appendix 2 provides a

step-by-step description of the feature measurement algorithm.

• Computer Security Training (S1T, S2T, S3T, S1 3, S2 2, S2 3, S3 1,

S3 2, ST2). Computer security training is measured based on its recency

from the date it was last received, based on the training type (S1 - formal,

S2 - work-based, S3 - self-study), delivery (S1 - coursework, S2 - video and

games, S3 - video and websites) and platform type (e.g., email, social media,

e-commerce etc.). Therefore, the elapsed time of computer security training
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increases symptomatically until it is reset/reduced when training is next re-

ceived. However, like frequency and duration its recency is in relation to the

date and time that a HaaSS sensor report is made. Whilst monitoring activ-

ity of security training could utilise the frequency and duration algorithms for

similar measurement criteria, here we assume that security training is recorded

and validated prior to determining the time since it has been received, as well

as the format, delivery method and platform. For example, on taking security

training the system delivering the training will provide a record of the training

for the HaaSS sensor(e.g., on work, formal education, or self-study subscribed

system). This record of training will be supplied to the HaaSS system to update

their HaaSS sensor security training features. Therefore, security training is not

locally measured and triggered at the point of attack report, rather on receiving

a report to the HaaSS system, before H score prediction, the HaaSS sensor’s

detection efficacy features are queried on the HaaSS system for their security

training record. In this respect, security training is updated by external systems

or users themselves manually after completing training, and symptomatically

becomes less recent as time elapses since the record was updated. For manual

updates of security training, validation mechanisms would be required such as

entering completion codes (issued by the delivery platform) which is a common

form of validating the attendance of training and assessment.

In chapter 3, each type of security training and the elapsed time since it was

received (i.e., S1:3T) was measured separately from the delivery method related

to that type (e.g., formal - coursework, work - games, self-study - websites and

so on), as was elasped time since security training for particular platform types

(e.g., email, social media etc.). However, when measuring security training pe-

riodically it assumed all three will be entered as a single record as representative

of a training received. So, whilst they are implemented and computed as sepa-

rate features in the susceptibility model for generating the H score, it is assumed
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that there will be direct, time-based correlations between them that were not

possible to accurately measure in the experiments conducted in chapter 3.

In Figure 4.3, a visual representation of a continuous measurement time line is

shown, where the frequency and duration feature algorithms applies interpola-

tion and discretisation to raw recorded activity data from a HaaSS sensor.

Figure 4.3: Real-time collection of auditable HaaSS sensor features (FR and DR),
variable green periods represent variable durations of access to the same platform
and blue periods represent variable durations of access to other platforms over the
period of one day. Access activity for frequency measurements is made by recording
the first observed access instance for a day on a specific platform. Features are
computed at the point in time when a user reports a suspected semantic attack for
the specific platform in question, where Rn represents the nth report for jth platform
interface accessed by the HaaSS sensor.

For each of the auditable feature collection algorithms, the discrete measurement

scale configuration can be adjusted to increase or decrease the granularity of activity

monitoring. For example, frequency measured on a five point ordinal scale (daily,

weekly, monthly, less than monthly, never) can be extended to measure a wider access

frequency range (daily, every two days, weekly, every two weeks, every month, every

two months etc.), or reduced to {daily, weekly, less than weekly}. The same applies to

duration of access. Depending on the range and granularity of the discrete scale, this

would either increase the required learning time to move between frequency threshold

e.g., 31 days for a five point scale, or decrease e.g., seven days for a three point scale

such as daily, weekly, less than weekly. The greater the range of measurement, the

more accurate the picture of HaaSS sensor activity. However, one constraint for
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increasing beyond a default scale that has been used to training the susceptibility

model is the need for retraining the model to utilise the new feature scale effectively.

This would requite a prolonged period of activity and associated feature collection

from the HaaSS sensor-base, over an amount of time sufficient to produce suitable

sample data for training and testing of a new susceptibility model based on a new

feature scale.

4.1.2.3 Self-Efficacy Features

For self-efficacy we refer to the generation and measurement of features that are

supplied as part of self-assessment by HaaSS features in real-time (e.g., at the time

of a HaaSS report), or over elapsed time as part of their HaaSS sensor profile. Whilst

we include features that were selected during the modelling process in chapter 3, the

process for measuring self-efficacy applies generically for future features within the

HaaSS framework.

• Platform Provider Familiarity (FA1). Each time a user initiates an attack

report, the user is required to provide their self-assessed familiarity for the

platform interface they are reporting an attack on (as previously mentioned here

we refer to the original scale defined in the susceptibility model developed in

chapter 3). If practically available (e.g., in a fully integrated production HaaSS

system), FR and DR features can be used to provide estimated validation of

the familiarity reported by the user to define accepted correlation threshold’s

between the self-assessed familiarity and the actual frequency and duration in

which the user accesses the platform; downgrading the familiarity value if this

threshold is not satisfied. This mechanism can prevent users claiming familiarity

with a system they do not use often and as result helps to preserve the integrity

of the familiarity feature. The familiarity feature is supplied as a report meta-

data input within the HaaSS sensor attack report interface.
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• Computer Literacy (CL). When a user updates their security training auto-

matically through a compatible platform, or manually through an online form,

they are requested to enter their self-assessed general computer literacy; using

the original scale defined in the susceptibility model developed in chapter 3.

If practically available (e.g., in a fully integrated production HaaSS system),

the computer literacy metric can be compared against a user’s recorded and

validated computer usage, platform training and qualifications to develop an

acceptable correlation threshold between between these attributes and the users

self-assessed computer literacy. As demonstrated in experiment 2 in chapter 3,

platform-oriented features for frequency and duration of access can be used to

accurately predict a user’s security awareness and computer literacy self-efficacy

score. This mechanism can prevent users claiming a level of computer literacy

that they are unlikely to have attained and as result helps to preserve the in-

tegrity of the computer literacy feature.

• Security Awareness (SA). When a user updates their security training au-

tomatically through a compatible platform, or manually through an online

form, they are requested to enter their self-assessed general computer security

awareness; using the original scale defined in the susceptibility model devel-

oped in chapter 3. If practically available (e.g., in a fully integrated produc-

tion HaaSS system), the security awareness metric can be compared against a

user’s recorded and validated computer security training, qualifications, correct

HaaSS reports and detection of emulated attacks (e.g., in an embedded secu-

rity training tool) to develop an acceptable correlation threshold between these

attributes and the users self-assessed security awareness. As experiment 2 in

chapter 3 demonstrated, features of different types of security training can be

used to accurately predict a user’s security awareness self-efficacy score. As

with familiarity and computer literacy features, this mechanism can prevent

users claiming a level of computer security awareness which they are unlikely
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to have attained and as a result helps to preserve the integrity of the security

awareness feature.

4.2 Cogni-Sense: a prototype HaaSS platform

Employing the HaaSS framework as a technical design blueprint, we have developed

a prototype HaaSS platform called Cogni-Sense. The prototype’s technical architec-

ture is shown in Figure 4.4, where each of the coloured boxes within the architecture

refer to a component’s functional role within the HaaSS framework’s defence sys-

tem processes in Figure 4.1. By combining each of the system processes functional

components into a real technical system, the development of Cogni-Sense provides

a HaaSS sensor with a practical facility to report suspected semantic attacks and a

platform in which to evaluate the concept of HaaSS for semantic attack detection. In

Table 4.1 the technical components within Cogni-Sense are summarised, with direct

traceability to the HaaSS framework functinal components, by technical integration,

platform configuration and a description of their functionality. The development of

Cogni-Sense in this work demonstrates the technical feasibility of the HaaSS frame-

work for building a real-world system around computer users, utilising the medium

of human detection as a physical threat sensor for semantic attacks.

The Cogni-Sense architecture consists of four key high-level components, (1) the

HaaSS sensor detection platform (i.e., Cogni-Sense app), (2) a centralised cloud-

based platform for classification and security response, (3) a security operations centre

platform (e.g., web browser) that is used to access the cloud platform and (4) a

security enforcement module (SEM) for the rule enforcement response process which

provides integration between the cloud platform and external security platforms. Each

of the components are described below:

• Cogni-Sense app. The HaaSS sensor application is a multi-process python

application that runs locally on the HaaSS sensor host device OS (in the case

it was programmed for Windows OS). The local host OS was selected as the

platform in which to develop the feature data collection and attack reporting
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Figure 4.4: High-level overview of Cogni-Sense technical architecture

interface as it provides the widest coverage of user-computer interfaces. For

example, were the Cogni-Sense app developed as browser extension it would

have only been able to report attacks and collect access activity from the browser

interface, instead of wide range or other interfaces such as local applications,

removeable media, cyber-physical interfaces (e.g., NFC) etc. Therefore, the

host OS provided the largest user-computer interface coverage available for the

HaaSS sensor interface application.

The first process is the HaaSS platform interface access activity monitoring for

raw feature data collection. Whilst a number of mechanisms could have been

used to extract platform interface identity, through application programmable

interfaces (APIs) or graphical user interface libraries provided by the host OS

or third-party applications, for simplicity we employ the PYWIN32 library to

hook into the Windows WIN32 system for reading the text of applications win-

dows in foreground (e.g., focused) of the user-computer interface which provides

platform identity data that represents the identity of the user interface. This

approach is less accurate and robust than validating directly the platform in-

terface through an API, but is much less resource-intensive and proved suitable
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for the prototype implementation to record raw data used to create the H score

auditable feature-set. In a production system, other programming platforms

such as C++ (instead of Python) may prove more suitable for raw feature data

collection due to their accessibility to lower-level interface functions in the host

platform which benefit granular and accurate activity monitoring. For example,

the excellent employee monitoring software ActivTrak [307] provides platform-

specific implementations for Windows and MAC OSX, using C++, to measure

accurately user activity. However, in the case of this thesis such development

would take extensive development time and would be expected to form part

of a production monitoring system, which is outside the scope of this project.

The raw data collection in the Cogni-Sense app for the activity monitoring

process is shown visually in Figure 4.5. Platform interface recognition in the

activity recording is performed by matching the window text in the foreground,

using regular expressions against a known list of platforms in a local SQLITE

database, where platforms were not in this list they were recorded as unknown

with a text-based watermark which allows for aggregated access and measure-

ment of this specific unknown platform. Using this approach we only record

specific platform access as required for the experiments in this project, preserv-

ing the privacy of participants. However, in a live system the SQLITE database

can be updated with new platforms and interfaces in a modular fashion in the

same approach used to download a white-list to a spam filter, web proxy or

website category classifier.

The second process is the HaaSS sensor semantic attack reporting interface,

which runs as a process in the system tray process as an eye icon, which when

clicked, spawns a reporting window identifying the platform interface (as well as

generating the local audi-table HaaSS features based on the platform context).

Using the reporting window, the HaaSS sensor enters their platform interface

familiarity self-efficacy feature, as well as attack meta-data such as suspected at-

tack vector and general report-related information. A button is provided to send
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Figure 4.5: Platform usage meta-data collected by user activity monitor agent

the report, which when clicked takes a screenshot of the user-computer inter-

face, gathers the HaaSS features and meta-data and sends the report via HTTP

to the cloud-platform, where classification and security response is applied to

the HaaSS report. In the case of the HaaSS features, the feature generation al-

gorithms described in the HaaSS framework in section 4.1.2.2 are programmed

directly into Cogni-Sense app (see Appendix 2 1 and 2 for pseudocode). The

HaaSS attack reporting interface is shown in Figure 4.6.

Figure 4.6: The Cogni-Sense HaaSS reporting app icon running in system tray. When
clicked, a reporting window is opened with the detected platform and report infor-
mation
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• Cloud-plaform.

The cloud component of Cogni-Sense was implemented within Amazon Web

services, on a Ubuntu Linux 14.04.3 virtual machine, with 1 GB RAM, a single-

core 2.4 GHz Intel Xeon process with 30 GB of storage. Within the Cogni-Sense

cloud-platform, the HaaSS processes of detection, classification and security re-

sponse are coordinated between Python middle-ware which provides integra-

tion and communication between different components of the system, such as

a MySQL database which stores all HaaSS profile and report data, an R-based

Random Forest H score engine (i.e., the susceptibility model), an Apache, PHP

and JavaScript web-server which hosts the HaaSS report portal and sandbox,

as well as interfaces to external security platform connectivity such as SMTP e-

mail integration for confirmed semantic attack alerting and awareness training.

When a HaaSS attack report is received via the Cogni-Sense app, the report is

stored immediately in the report repository (MySQL database), where the H

score is then computed in the H engine and depending on the score and con-

figured susceptibility threshold, is automatically classified or listed by H score

priority on the report portal live feed dashboard. The report portal dashboard

also includes analytics such as number of outstanding unclassified reports, the

frequency of reports received, as well as the different platforms and platform

types reported in attacks; which provides indications of where attacks are most

concentrated or being targeted. The Cogni-Sense report portal dashboard is

shown in Figure 4.7.

For generating report H scores, Cogni-Sense utilises the Random Forest suscep-

tibility model which has been developed and trained from experiments in [304];

integrating this model directly into the technical system for HaaSS attack re-

port classification and prioritisation. The model can operate in two distinct

prediction value modes, strict classification (0,1) or class probability (0:1.0) as

an output criteria. However, strict classification is sensitive to false positive and
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Figure 4.7: Example of the Cogni-Sense portal live report feed with predicted H score
for HaaSS reports

false negative output, which in practice would result in the discarding of accu-

rate reports or nugatory time spent reviewing non-attack reports. Therefore,

as per the HaaSS framework H score, Cogni-Sense utilises a class probability

output mode for prediction of user detection efficacy, where both automatic clas-

sification may be used by defining pre-defined responses to different probability

thresholds, and manual classification based on report trust through prioritisa-

tion of the probability output.
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• SOC platform. The SOC platforms refers to the web browsing platform used

to interface with the Cogni-Sense cloud-based platform, where the live feed

dashboard (e.g., report portal) and sandbox are located. The SOC platform

is designed to be a web-browser which is compatible with Javascript for in-

terfacing with these features. The report portal live feed is the initial screen

presented to SOC engineers (or peer HaaSS sensors) who manually review and

classify semantic attack reports, where on selecting a report for manual review

the image-container sandbox is opened for the reviewer. The sandbox provides

an expandable image of the HaaSS attack report, the H score, report meta-data

and a classification button (attack/not an attack) for report review. On select-

ing the report classification the rule enforcement (response process) is triggered.

The sandbox is shown in Figure 4.8, containing an example HaaSS attack re-

port received by a HaaSS sensor in the experiment conducted in case study one

(section 4.3.1). An example of confirmed “semantic attack” classification for

the HaaSS report in the sandbox is shown in Figure 4.8.

• Security enforcement module (SEM). The SEM is configured as Python

middleware which translates attack report classification into configuration pa-

rameters for security platforms that are integrated with the HaaSS system. For

Cogni-Sense, integration with an SMTP server has been configured to automat-

ically issue confirmed semantic attack alerts via e-mail to HaaSS-sensors. Given

the modularity provided by the use of python middleware, in future iterations

of Cogni-Sense, configuration rules issued via APIs to security products such as

web proxies, anti-virus, firewalls etc., could easily be developed - however this is

outside the scope of this project. For the confirmed attack report classification

in Figure 4.8, SEM semantic attack e-mail alert response rule is shown in Figure

4.9.
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Figure 4.8: Attack 3.2 (Amazon phishing website) Cogni-Sense portal report screen-
shot for HaaSS report by participant H5

In Figure 4.11, we provide a flowchart for the Cogni-Sense semantic attack detec-

tion, classification and response process, which is described both systematically and

visually to highlight the related platform interfaces made available to HaaSS sensors

and semantic attack reviewers on the cloud-platform.

In the next section, using the prototype HaaSS platform Cogni-Sense, we conduct

two case study experiments to evaluate the viability of the overall HaaSS concept

for semantic attack detection and its advantages over current and existing technical

defence methods.
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Figure 4.9: Example of classified Cogni-Sense report, on selecting the option “Real
Attack”, the dataset for training the H score prediction is updated with the reporting
users feature-set and classification decision as the training label. The Security En-
forcement Module (SEM) then carries out any configured rules as part of the attack
classification e.g., adding the report to user awareness training, sending out a threat
alert email or adding the file name to a proxy gateway blacklist.
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Figure 4.10: Cogni-Sense HaaSS report attack classification triggering SEM module
rule: attack awareness email security enforcing function rule
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Figure 4.11: Visual and system HaaSS semantic attack detection, classification and
response flow diagrams. Numbers refer to related stages in the flow, blue arrows refer
to automatic system activity and black arrows refer to manual human user activity
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4.3 Evaluating the concept of HaaSS within a lab-

oratory and real-world experiment

In this section we put the prototype HaaSS platform Cogni-Sense to the test, to

evaluate the concept of HaaSS within two case studies, the first within a controlled

laboratory environment and the second in an empirical real-world scenario. For both

case studies we compare the ability for HaaSS sensors to detect each semantic attack’s

deception vector (see chapter 2) against a range of existing technical defences. Here,

we define detection as the identification of the deception within a semantic attack and

not the exploitation payload. That is, both HaaSS sensors and technical defences are

evaluated by their ability to identify each semantic attack as a semantic attack, where

a detection failure is recorded by either the HaaSS sesnsor or technical system allowing

the deception to run up to the point of attack payload execution (e.g., clicking a link,

entering credentials, or opening a file). Whilst some default behaviours may inherently

block the execution of some of the experiment attack payloads (e.g., executable file

opening attack landing page), all attack payloads are emulated and therefore a real

malware may have different behaviour that allows it to successfully execute.

Therefore, for semantic attacks that logically consist of multiple phases (a semantic

attack that directly lead to another separate semantic attack) we treat each phase

as a separate attack in its own right, following the taxonomic attack classification

methodology in chapter 2. This approach allows for measuring a HaaSS sensor’s

detection efficacy for each individual deception vector in a multi-phase semantic attack

(e.g., (1) email URL →(2) phishing website →stolen credentials). In this case, a user

exploitation to any single phase in a multi-phase attack could also be viewed as

exploitation to an individual semantic attack which results in direct exploitation. For

clarity, the attack model in Figure 4.12 highlights the points at which each semantic

attack detection/exploitation is measured (deception vector text highlighted in red).
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Figure 4.12: Experiment attack model for measuring H score and exploitation for in-
dividual semantic attack’s deception vector in both singular and multi-phase semantic
attacks

4.3.1 Case study 1: HaaSS Vs. Technical platform defences
- the case of Selina Carlysle

In the following controlled laboratory-based experiment, we evaluate two major com-

ponents of Cogni-Sense: (a) the HaaSS sensor semantic attack detection reporting

mechanism Cogni-Sense app, installed on the participant experiment environment,

as shown in Figure 4.6, and (b) the viability of the H score prediction as a utility

to determine accurately HaaSS attack detection efficacy compared with a range of

technical security platforms which claim to enforce anti-social engineering defences

against different semantic attacks.

4.3.1.1 Zero-day semantic social engineering attacks

The vast majority of semantic social engineering attacks are largely undetectable by

technical defence systems, because they primarily rely on cosmetic or behavioural de-

ception vectors and as a result often leave very small technical footprint that can be

analysed, especially if the deception has been designed to utilise intended user func-

tionality [9]. Consequently, technical heuristic detection capabilities have a limited

view of potential attack vectors through user actions, instead of system interfacing
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Attack Emulated Attack Depend. Description

1.1 Spear Phishing Email - Targeted participant email advertising job role spe-
cific to their profile from fake recruitment company
with URL to purported job description PDF docu-
ment on Google drive

1.2 Cloud Storage File Mas-
querading

1.1 Malware HTA file masquerading as PDF in online
Google Drive folder

2.1 IM Phishing - Unsolicited Facebook message containing Facebook
page link

2.2 Multimedia masquerading 2.1 Malicious image link masquerading as Facebook
video post

3.1 Phishing Email - Order confirmation email from Amazon with order
details and tracking URLs leading to phishing Ama-
zon login web page

3.2 Phishing website 3.1 Amazon login phishing website which captures user
login details

Table 4.2: Experiment emulated semantic attacks sent to participants with indicated
date and time at which the attacks were launched for all participants (this does not
guarantee that participants were exposed to the attacks at the time of launch)

malware. In most cases, technical defence systems rely on attack reports before they

can develop signatures that can be matched against similar patterns when analysing

potential threats, or attempting to pre-empt them.

For example, it is difficult to characterise a website as phishing if the URL is

not registered with a spam database, and does not use obvious tricks such as similar

domains names used as sub-domains, obfuscated by domain suffixes which are not

related to the masqueraded website (e.g., amazon.net-shopping.tk). In cases where a

phishing website name originates from a legitimate and credible service provider (and

does not attempt to obfuscate its appearance), until the website has been reported

as malicious (or contains easily identifiable malicious code or web re-directions in the

web page), most technical defence platforms will not recognise the website as phishing.

The same example can be seen in spam emails where spam protection mechanisms

analyse components such as sender from and to address, subject title, domain, hy-

perlinks, attachments, salutation and common phrases (e.g., urgency) which match

known common patterns in conventional phishing attacks. However, if the email body
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consisted purely of a deceptive image from a domain name not registered in a black

list, then the classifiers effectiveness is significantly reduced, as a spam protection is

unlikely to have the ability to interpret contextually the visual information in the

image.

For technical defence systems to stand a chance in detecting unknown semantic

attacks, defence mechanisms require the ability to interpret visual and behavioural

attributes in real-time, simultaneously, to predict the likelihood that a deception

attempt is occurring - which without knowledge of the targeted user or integration

with the platform would likely result in many false positives or false negatives. On the

other hand, human users, by definition, are implicitly interfaced with such attributes

and are therefore best placed to decide whether system activity on the user interface

is anomalous or not, based on their experience and knowledge.

As the attacks were developed specifically for this experiment, and therefore have

not been seen by technical defence systems or users before, they are assumed to

be zero-day semantic social engineering attacks at the time of the experiments. In

Figures 4.13 (semantic attack 2.1 and 2.2) and 4.14 (semantic attack 3.2) we provide

two examples of semantic attacks executed within case study 1. Table 4.2 provides

an overview of the semantic attacks tested in case study one.

4.3.1.2 Laboratory environment

The experiment environment was presented in the form of a Windows 10 virtual ma-

chine which each participant could remotely access via TeamViewer. The task was a

role-play exercise in the form of “a day in the life of Selina Carlyle” (an imaginary

freelance artist), where all participants conducted a number of computer-based ac-

tivities that Selina would typically carry out as part of her computer usage. This

involved checking her e-mail on Gmail, accessing Facebook and reading messages,

notifications, as well accessing other platforms such as Twitter, Pinterest and gen-

eral web browsing for artwork. In the case of Twitter, Pinterest and web browsing,

these were designed as noise activities to prevent participants from presuming that

all attacks would reside within Gmail or Facebook.
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Figure 4.13: Facebook automated phishing message and URL leading to a fake Face-
book charity community page with malicious image link masquerading as a Facebook
video post

Figure 4.14: File masquerading attack in Google drive cloud storage platform, file-
name appears to be a PDF but is in fact a HTML application (.HTA) file when
downloaded.
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In total, seven participants were recruited for the experiment as HaaSS sensors

by inviting a number of computer science students, lecturers and the general public

to complete a questionnaire related to the experiment’s purpose and their computer

activity profile. The questionnaire described the role-play scenario, the goal of report-

ing detected attacks using the Cogni-Sense app, and collected “offline” the required

HaaSS features for computing the H score of each participant with the Random For-

est susceptibility model. Each of the participants were assigned a HaaSS number

and reporting user ID to match reports to corresponding HaaSS sensors in the ex-

periment. Participants were given also a user guide on how to use the Cogni-Sense

reporting tool (Figure 4.6) when detecting a suspected semantic social engineering at-

tack. The same Windows 10 virtual machine environment was also used to install and

test individually each of the technical platform defences against each of the semantic

attacks.

In table 4.4, each of the technical platforms and defence systems listed is evaluated

according to the functional capabilities for detecting semantic attacks. Whilst email

and browser platforms tend to offer anti-phishing, URL filtering and anti-malware

defence, they do not directly employ heuristic scanning as part of this functional-

ity, which as shown, is exclusively provided by the anti-virus software that we have

evaluated. This means that in practice, most email providers rely on signature-based

attack recognition for email by query through registered attack databases. It is im-

portant to note that for a number of the anti-virus products, installation of their

full-product suite included browser security add-ons specifically designed for detec-

tion of website and email phishing threats and deception-based attacks. Amongst

the anti-virus products, Norton, Sophos, Avast and Kaspesrky included and installed

browser security add-on software as part of their security suite.

Due to the role-based constraints of the remote laboratory-based environment,

participants’ HaaSS feature-sets were implemented manually in the Cogni-Sense sys-

tem under each HaaSS sensor (i.e., participant) profile. In this experiment, we did

not use or evaluate the automatic HaaSS feature collection functionality developed

in Cogni-Sense as the participants spent an average of thirty minutes attempting
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ID Ref Security Platform
Platform
Type

Phishing
Web
Rating

URL
blocking

Heuristics
On access
malware

E1 [308] Yahoo Mail Email 3 7 3 7 3
E2 [309] Gmail Email 3 7 3 7 3
E3 [310] Outlook Email 3 7 3 7 3
E4 [311] ProtonMail Email 3 7 3 7 3
E5 [312] Yandex Email 3 7 3 7 3
E6 [313] GMX Email 3 7 3 7 3
E7 [314] Mail.com Email 3 7 3 7 3
B1 [315] Firefox Browser 3 3 3 7 3
B2 [316] Chrome Browser 3 3 3 7 3
B3 [317] Opera Browser 3 3 3 7 3
B4 [318] Commodo Dragon Browser 3 3 3 7 3
B5 [319] Avast Safezone Browser 3 3 3 7 3
B6 [320] Microsoft Edge Browser 3 3 3 7 3
B7 [321] Safari Browser 3 3 3 7 3
A1 [322] Commodo Cloud AV 3 7 3 3 3
A2 [323] AVG AntiVirus AV 3 7 3 3 3
A3 [324] Avast AntiVirus AV 3 7 3 7 3
A4 [325] Windows Defender AV 3 7 3 3 3
A5 [326] Norton Security AV 3 3 3 3 3
A6 [327] Kaspersky IS2017 AV 3 3 3 3 3
A7 [328] Sophos Intercept X AV 3 3 3 3 3
P1 [329] Facebook Platform 3 7 3 7 7
P2 [330] GoogleDrive Platform 3 7 7 7 3
P3 [331] Windows10 OS 7 7 7 7 7

Table 4.4: Cogni-Sense HaaSS platform configuration across the HaaSS framework
architecture

to detect attacks, therefore sufficient learning time to collect activity data was un-

available. Instead, HaaSS features were extracted from input from the participant

questionnaire as per the approach used in chapter 3. We do, however, evaluate the

functionality of security enforcement module (SEM) integration attack classification

e-mail alerting (as shown previously in Figure 4.9), which was triggered by conduct-

ing manual classification on a semantic attack report received by HaaSS sensor ID 15

during the experiment. Participants did not have access to the cloud-based Cogni-

Sense portal during or after the experiment and were unaware of reports made by

other participants during the experiment.

In this experimental environment, we aim to compare the detection efficacy of

HaaSS sensors for identifying zero-day semantic social engineering attacks against

the detection efficacy of technical defence systems, in order to show the potential

usefulness of the HaaSS concept for detecting deception-based threats.
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4.3.1.3 Case study 1 Results

In Tables 4.5, 4.6 and 4.7, we compare the experimental results for the HaaSS partic-

ipants and each of the technical platforms for detecting the semantic attacks in Table

4.2. In each table the colour refers to detection result: red - not detected, green -

detected, orange - precautionary measure taken, but no threat reported, grey - attack

not seen (due to the nature of the attack for the technical defence or because the

HaaSS sensor did not notice or was not exposed to the attack and therefore gave no

response).

The spear-phishing email in attack 1.1 proved the most challenging one to detect

for HaaSS participants, with only three out of seven participants correctly reporting

the email as an attack. However, three out of four of the HaaSS sensors who were

exploited by the email by clicking on the GoogleDrive link, then detected the malicious

HTML application file in Google drive afterwards (attack 2.2). TheH score prediction

at a probability threshold of 50% threshold was only 43% accurate, but at a 65%

threshold, it was 86% accurate, with a 100% true positive rate and false positive rate

of 25%. By comparison only two out of the seven email providers, Yandex and Yahoo

mail, sent the email to spam, with all others placing the email in the inbox folder with

no warnings of a suspected attack. All browsers and AntiVirus failed to detect the

email or subsequent file in GoogleDrive (in the online platform or when downloaded

and run) as malicious; with no user warnings at all; with the exception of Firefox (B1)

and Windows 10 (P3), which prompted the user that they were downloading/running

an executable file. Moreover, Commodo Cloud AV (A1) also ran the downloaded file,

but within in a sandbox as a default action of the software because it was an executable

file of unknown provenance (i.e., missing a trusted digital signature).

For the IM phishing message (attack 2.1) on Facebook only three out of seven

HaaSS sensors were actually exposed to the semantic attack, as the message originated

from an account which was not a Facebook friend of the Selina persona. This meant

that the message was placed under Facebook “message requests” which is more hidden

than friend based messages or profile notifications. For the three HaaSS sensors that
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HaaSS
Attack H1 H2 H3 H4 H5 H6 H7

1.1 .68 .92 .61 .77 .64 .61 .78
1.2 .66 .87 .49 .19 .77 .52 .76
2.1 .78 .85 .64 .90 .74 .23 .84
2.2 .78 .85 .64 .90 .74 .23 .84
3.1 .68 .92 .61 .77 .64 .61 .78
3.2 .68 .79 .53 .46 .54 .57 .75

Email Provider
Attack E1 E2 E3 E4 E5 E6 E7

1.1 7 7 3 7 3 7 7

1.2 - - - - - - -
2.1 - - - - - - -
2.2 - - - - - - -
3.1 7 7 3 7 3 7 7

3.2 - - - - - - -

Table 4.5: HaaSS sensor (left) and Email provider (right) detection results

Browsers
Attack B1 B2 B3 B4 B5 B6 B7

1.1 7 7 7 7 7 7 7

1.2 3 7 7 7 7 7 7

2.1 7 7 7 7 7 7 7

2.2 7 7 7 7 7 7 7

3.1 7 7 7 7 7 7 7

3.2 7 7 7 7 7 7 7

AntiVirus
Attack A1 A2 A3 A4 A5 A6 A7

1.1 7 7 7 7 7 7 7

1.2 3 7 7 7 7 7 7

2.1 7 7 7 7 7 7 7

2.2 7 7 7 7 7 7 7

3.1 7 7 7 7 7 7 7

3.2 7 7 7 7 7 7 7

Table 4.6: Browser provider (left) and Anti-virus provider (right) detection results

were exposed, all three clicked on the link in the message, which was included as an

image hyperlink leading to another Facebook page. At this point during the technical

testing, no technical defences (including the Facebook platform itself) had flagged

the message as malicious or anomalous. Even though all three HaaSS sensors were

exposed to the video masquerading images on the fake Facebook charity page (attack

2.2), none of the users actually clicked on the image, but they also failed to report it as

a semantic attack. Again, none of the technical defences and the Facebook platform

itself detected the image as malicious (which was expected given the fact that the

image was simply using the in-built Facebook image hyperlink functionality (posing

as a video using cosmetic features in the image). Here, the H score predicted that the

three users exposed to the threat would detect it, however given the lack of exposure

to the threat in a realistic context (e.g., participants’ own personal accounts), it is

unclear whether the actual response is robust enough to discount the prediction of

the H score.

For the amazon phishing email (attack 3.1), six out of seven HaaSS sensors de-

tected the attack, whereas only the Yandex email provider sent the email to spam;
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Platform
Attack P1 P2 P3

1.1 - - 7

1.2 - 7 3

2.1 7 - 7

2.2 7 - 7

3.1 - - 7

3.2 - - 7

Table 4.7: Host platform detection results.

Yahoo email blocked the email’s images but did not flag the email as malicious. All

other technical defences failed to identify the email as a threat or provide any warn-

ings. The H score correctly predicted six out of seven HaaSS detections at the 50%

threshold, but would only have detected four out of seven correctly at the 65% thresh-

old. The one HaaSS user that was exploited by clicking on the link in the Amazon

phishing email, then correctly detected the following Amazon phishing login webpage

- an action correctly predicted by the participant’s H score. Again, all technical

defences and platforms failed to detect the phishing website as malicious.

In Figure B.6 an example the amazon phishing email (3.1) attack is shown de-

livered into the inbox of Gmail, Outlook and Yahoo accounts. Figure B.7 shows

an example of the Comodo Dragon web browser failing to detect both the amazon

phishing email and website as malicious. Evaluating the phishing website with the

browsers built-in WebInpector tool in Figure B.8 resulted in the detection of no ma-

licious activity; failing to recognise the spoofing of the Amazon login page.

Overall, the HaaSS sensors were more efficient at detecting all threats than the

technical defences exposed to the semantic attacks - without prior knowledge of the

attacks themselves or any training provided prior to this experiment. By comparison,

the technical defences in almost all cases failed to detect the existence of a threat.

Surprisingly, Yahoo detected the spear phishing email as spam, but not the Amazon

email which used as a simple header alias to look as if the email originated from

Amazon. An example of a HaaSS detection result for attack 3.2 is shown in Figure 4.8,

which is the screen capture of the users screen made by the Cogni-Sense reporting app

(sent to the cloud portal) and the accompanying report details showing the computed
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H score for the report, time and date when the report was made and the HaaSS sensor

report observation details.

From a classification perspective, HaaSS was 68% accurate at a 50% probability

threshold with a true positive rate of 93% and true negative rate of 43%, precision of

62%, false positive rate of 57% and false negative rate of 7%. However, at the 65%

probability threshold, it achieved an accuracy of 64% with a true positive rate of 67%,

true negative rate of 6%, precision of 67%, false positive rate of 4% and false negative

rate of 33%. Where the H score was shown to be the same value for consecutive

attacks on the same platform (e.g., email on Gmail, social media on Facebook), this

is due to the report and classification processes occurring in essentially the same time

period, with the same feature set.

In the case of organisational HaaSS defence, if these participants were HaaSS

sensors in a security platform, prioritising these HaaSS reports based on the H score

probability results in the experiment would ensure almost all of the attacks were

identified before reviewing a non-attack report. Furthermore, by utilising such HaaSS

sensors the organisation would indeed detect the semantic attacks in the first place,

which would be unlikely if they were to rely purely on the technical defences evaluated

in the experiment.

4.3.2 Case study 2: Crowd-sourced HaaSS in the cloud

In case study two we conduct a larger scale, real-world experiment for HaaSS semantic

attack detection, integrating participants and their personal systems directly into the

prototype HaaSS platform Cogni-Sense. Here, we use the concept of crowd-sourcing

HaaSS sensor detection to utilise attack report telemetry for semantic attack detec-

tion. In this scenario crowd-sourcing HaaSS sensor capabilities can be representative

of multiple HaaSS platform structures, such as general HaaSS sensors who are com-

puter users subscribed to a public HaaSS system, within a business organisational

setting (which would include general business users and security operations users), or

even paid human intelligence task workers (HITs) [332, 333] that have been effectively

integrated within a hybrid human/machine technical security system [334, 335], which
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draws from a pool of user profiles qualifying as HaaSS sensors. In the case of the lat-

ter, it is reasonable to assume that the highest performing HaaSS sensors, as proven

by their track record and detection performance, would likely command a higher fee.

In all cases, a key requirement is for HaaSS platform integration directly into different

users computer devices, which in the era of Internet of Things and Bring-Your-Own-

Device (BYOD) within working environments means that more often than not these

computer devices are the users own.

4.3.2.1 Empirical experiment environment

We have developed case study two in adherence with the five design principles for

user studies in security and privacy proposed in [336]. In experiment case study two,

participants are assigned (i) a primary task of reporting suspected semantic attacks

using the Cogni-Sense software; (ii) where the semantic attacks introduce a realistic

risk by exposing users to real-world deception vectors on their own computer systems,

where similar real attacks could be easily received by the participant before, during

or after the experiment; (iii) the participants are not primed to the nature of the

semantic attacks and how they will be received to prevent detection bias; (iv) adding

element of double-blinding as the researchers do not know when participants will be

exposed to the emulated experiment attacks or whether their systems security will

block the attacks from reaching the participants and (v) ensuring the terminology

and dissemination of the experiment, in relation to the delivery method of the se-

mantic attack threat, security and privacy is consistent in order to prevent bias in

the participants behaviour and overall reported results.

As the experiment HaaSS sensor report interface Cogni-Sense app is installed

directly on personal computer devices, the experimental environment was primar-

ily presented in the form of the participant’s own system. However, as the HaaSS

reporting interface in Cogni-Sense a HaaSS sensor app was developed for Windows

operating systems, participant recruitment was constrained by the requirement for

their primary computer devices to have a Windows operating system installed (Win-

dows 7, 8 or 10). Consequently, this also required participant devices to be a desktop
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PC, laptop or tablet; mobile devices were not used as part of this experiment. Due to

this condition, the specific host platform configuration (aside from the Cogni-Sense

app) was different from one participant to another. For example, different HaaSS sen-

sors will have installed and use different software and computer security applications,

therefore by employing a crowd-sourced approach to HaaSS sensor integration specific

platform configurations associated to the HaaSS sensors device operating system and

installed applications were unknown.

The goal for participants in the experiment was to detect and report any suspected

attacks without falling victim to them by using the Cogni-Sense app HaaSS report

interface within Cogni-Sense, which participants installed on their system. As part

of the experiment, participants were advised to use the application to send a report

whenever they detected a suspected attack. Participants were encouraged to use their

computer devices as per their usual pattern of behaviour, under the condition that

they may or may not be subjected to a number of emulated social engineering attacks,

at random times, during the experiment time period; lasting for 6 weeks. As part of

the recruitment process, participants took a questionnaire which described the over-

all experiments scenario, which was also used to collect the HaaSS computer security

features. Unlike case study one, in case study two the experiment involves installa-

tion of a user app on the participants personal device, which enables Cogni-Sense’s

automatic feature collection and generation functionality for frequency (FR1, FR2),

duration (DR1, DR2) and familiarity (FA1) to be utilised. For computer security fea-

tures, these were implemented manually through the recruitment questionnaire as a

baseline set, and then updated during the experiment time period by sending weekly

e-mail reminders to participants to update their security training profile (only if they

had receive training), using online form, shown in Appendix 2, Figure B.4). As per

case study one, each of the participants were assigned a HaaSS number and reporting

user ID to match reports to corresponding HaaSS sensors in the experiment and each

participant received a user guide on how to use the Cogni-Sense app reporting tool

when reporting a detection of a suspected semantic attack. During the experiment,
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if any participant was exploited by one of the semantic attacks, they were either di-

rected to a second attack, as shown in Table 4.2 and Table 4.8 or redirected to an

attack landing page where the participant was required to enter their experiment ID

and name. For both cases, should participants fail to report an attack or submit their

details after exploitation, this information would still be available for offline analysis

via the Cogni-Sense app activity collection process. The landing page is shown in

Figure B.5

In total, 26 HaaSS sensors were recruited by inviting participants to partake in the

experiment with the incentive of a 50 participation voucher given to each participant

at the end of the experiment’s six week period. The participants, which consisted

of students, lecturers, working IT professionals and the wider general public, were

recruited as an intentionally diverse demographic that vary in terms of their expert

computer literacy and computer security awareness, without specifically organising

participants based on their individual skills. In a HaaSS system, all employees in an

organisation or the general public (e.g., from the Internet) are viable HaaSS sensors.

However, it is the application of the H score that distinguishes between sensors by

providing a metric of the expected reliability (and therefore detection efficacy) of

different sensors semantic attack reports. With this in mind, it is preferable to be

agnostic of the HaaSS sensor from a demographic perspective, instead relying on the

H score to provide a unique probability of detection efficacy, which is dynamic based

on time and training, rather than profiling a sensor individually (e.g., age, gender,

personality); which we have shown to be of limited value and impractical in a technical

system [304].

4.3.2.2 Case study 2 semantic attacks

In case study two, we extend beyond the semantic attacks listed in Table 4.2 by ex-

tending existing and adding new attacks. The new attacks are aimed to test HaaSS

sensors against a wider range of deception techniques and platforms to evaluate detec-

tion efficacy rigorously against across a comprehensive suite of threats to confidently

generalise detection performance. In Table 4.8, the new attacks are described. We

165



Attack Emulated Attack Depend. Description

2.1a Fake Facebook account - Friend request from fake Facebook account

4.1 Automated IM phishing - Unsolicited Facebook message from non-friend ac-
count with shortened URL

4.2 Phishing website 4.1 Facebook login phishing page

5.1 Spear USB - Packaged and branded USB designed specifically for
target, delivered in the post

5.2 File masquerading 5.1 Executable masquerading as PDF file

Table 4.8: Experiment emulated semantic attacks sent to participants with indicated
date and time at which the attacks were launched for all participants (this does not
guarantee that participants were exposed to the attacks at the time of launch)

introduce a Facebook account friend-request from a fake profile, combined with an

assocaited Facebook IM phishing message in attack 2.1, another Facebook instant

messaging phish (with shortened malicious URL) and a spear USB attack, which

contains a malicious executable file masquerading as a PDF file with an adobe acro-

bat PDF icon.

The spear USB attack branches the semantic attacks deployed in the experiment

into physical space and tests whether HaaSS sensor detection can be equally useful in

detecting threats that cross a cyber-physical domain, and to evaluate the detection

of deception-based attacks where computer devices require physical interaction with

hardware interfaces as an entry vector to the system. An example of the spear USB

attack is shown in Figure 4.15 and PDF file masquerading attack in Figure 4.16.

Each of the spear USBs were designed to be targeted by printing on them official

logos associated specifically to platforms the participants reported to use and have a

specific affinity for in terms of their Internet profiles.

Figure 4.15: Spear USB attacks (Facebook, Instagram and Blackhat participant pro-
files)
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Figure 4.16: PDF File masquerading

4.3.2.3 Case study 2 results

In Tables 4.9, 4.10 and 4.11, the HaaSS sensor participants results for case study two

are shown, as well as the performance of the technical defence platforms for detection

of the new attacks introduced.

General observations: In case study two, exposure to the experiment attacks

was quite varied across HaaSS sensors. Most HaaSS sensors were not exposed to a

majority of the attacks, with at least three HaaSS sensors only being exposed to one

attack set. However, exposure was also dependent on attack detection efficacy. For

example, a HaaSS sensor with perfect detection performance would only have ever

been exposed to five of the eleven attacks in total. For Facebook attacks (2.1, 2.2, 4.1

and 4.2), at least 8 out of 26 HaaSS sensors did not have Facebook accounts or had

prevented their profiles from being searchable, meaning these eight HaaSS sensors

would definitely not have been exposed to these semantic attacks.

In total, 17 out of 26 (65%) HaaSS sensors detected at least one semantic attack,

with the HaaSS sensor base in the experiment detecting all semantic attacks across

all platforms; 2.2 (Facebook video media masquerading) was the only semantic attack

not reported by a HaaSS sensor. By comparison, only 3 out of 24 (13 %) technical

defences detected a semantic attack in the experiment and these detections were

specifically limited to phishing emails only; all of which only identified one of the

phishing emails each. Therefore, all other semantic attacks on different platforms

went undetected by the technical defences.

In terms of individual attack detection, the HaaSS sensors did not find any specific

attack particularly simple to detect. For attacks 3.1 (Amazon phishing email) and

4.1 (Facebook phishing message), there was an equal number of HaaSS reports to
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HaaSS sensors
A H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 H24 H25 H26
1.1 .49 .72 .54 .55 - .59 7 .50 - - .70 .59 .48 - .53 - - .33 .46 - - .46 .54 .70 .79 .66
1.2 - .66 .53 - - - 3 .26 - - - - .34 - .18 - - .44 - - - - .17 - .71 -

2.1A - - - - - .60 3 - - - .58 - - - .48 - - - - .49 .30 - - - - -
2.1B .51 - - - - - 3 .51 - - .58 .43 - - .48 - - .32 - .49 - - - - - -
2.2 .51 - - - - - - - - - - - - - .48 - - .32 - - - - - - - -
3.1 - - .54 .55 - .60 7 .63 - .51 .70 .59 - .56 .56 .46 .49 .33 .46 - - - .54 .70 - .66
3.2 - - - - - - .62 - - .49 - - - .48 - - .26 .44 .46 - - - - .49 - .67
4.1 - - - .63 - .56 - - - .53 .72 .43 - - - - - - - .49 - - - - - -
4.2 - - - - - - - - - .56 - - - - - - - - - - - - - - - -
5.1 - .67 - .61 7 .63 7 .39 .35 - .65 .52 - - .49 - - .45 .47 - .30 .37 .66 .44 - .68
5.2 - - - - 7 - 3 - .35 - - - - - - - - - .47 - .57 - .68 .72 - .64

Table 4.9: HaaSS sensor attack detection results for case study 2. The value in each
cell refers to the H score. Note that the HaaSS sensor number shown here is different
to the HaaSS sensor ID assigned to participants during the experiment, as the IDs in
Cogni-Sense were automatically generated by a database and not contiguous.

Browsers
Attack B1 B2 B3 B4 B5 B6 B7
2.1A 7 7 7 7 7 7 7

4.1 3 7 7 7 7 7 7

4.2 7 7 7 7 7 7 7

5.1 - - - - - - -
5.2 - - - - - - -

AntiVirus
Attack A1 A2 A3 A4 A5 A6 A7
2.1A 7 7 7 7 7 7 7

4.1 7 7 7 7 7 7 7

4.2 7 7 7 7 7 7 7

5.1 7 7 7 7 7 7 7

5.2 3 7 7 7 7 7 7

Table 4.10: Browser provider (left) and anti-virus provider (right) detection results
for new attacks in case study two

Platform
Attack P1 P3
2.1A 7 -
4.1 7 -
4.2 7 -
5.1 - 7

5.2 - 7

Table 4.11: Host platform detection results for new attacks in case study two

HaaSS attack exploitation, which was shown to be the highest performance for the

HaaSS sensors in the experiment. Nonetheless, attack 1.1 (spear phishing email),

similar to case study 1, continued to be a challenging attack to detect for the HaaSS

sensors and in this case was specifically tailored to the HaaSS sensor (and therefore

contextually relevant to each sensor). The new USB spear phishing attack 5.1 also

proved equally challenging, with both attacks 1.1 and 5.1 exploiting at least 35% and

38% of HaaSS sensors, respectively. For HaaSS sensors exploited by attack 1.1, 67%
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were also exploited by attack 1.2 (Google Drive file masquerading), and for attack

5.1, 60% were also exploited by 5.2 (PDF file masquerading). The most difficult

attack in the experiment for HaaSS sensors appeared to be the Google Drive PDF file

masquerading, whereby 88% of HaaSS sensors exposed to the attack were deceived

into downloading the fake file.

For case study 2, the H score was generally less accurate for the spear phishing

e-mail and spear USB attacks (as was the case with case study one), predicting high

probabilities of detection efficacy for specific HaaSS sensors. However, it is worth

highlighting the complexity of these two semantic attacks in particular, compared to

the rest of the attacks deployed in case study two. The spear phishing attack was

particularly well-crafted, with very little indication of the signs the the e-mail was

illegitimate. For example, by analysing Figure 4.17 the Google drive URL is in fact

legitimate, and the e-mail communication appears credible with the exception of the

domain name that even though it matches the email sender appears to originate from

a company called “Iname”, which is in fact fictitious. In this case, a quick online

investigation identifies “@iname.com” as a free email domain provided by Mail.com

email provider and the company has no public website listed or details available by

search engine.

For the spear USB attack, the device was posted directly to HaaSS sensors’ home

addresses, labelled professionally with logos from platforms and companies based on

online profiles they associated most affinity to during the participant survey recruit-

ment. The HaaSS sensors needed only to insert the USB into any of their systems

for the deception to have been successful, with no technical defence being capable of

preventing this physical action from being executed; other than that of the HaaSS

sensors themselves (although as a pre-emptive technical defence a USB write-blocker

could potentially provide some defence here). In a real world scenario it is quite

possible that the USB device would contain zero-day malware, which may have com-

promised a users system immediately, irrespective of whether they used a Windows,

Mac or Linux operating system; a malware designed for these platforms could easily

have been planted on the device. On the other hand, for this attack in particular, it
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Figure 4.17: Spear phishing e-mail (attack 1.1) from Iname Consultants tailored to
each specific HaaSS sensor participant

is also possible that participant HaaSS sensors did not expect to be exposed to, or

even expected to report semantic attacks that manifest in cyber-physical form.

Nevertheless, 23% of HaaSS sensors detected attack 5.1 and generated seman-

tic attack reports for the spear USB attack in physical space, which demonstrates

deception-based attack detection that simply would not have been possible for a

technical defence system. One such report is shown in Figure 4.18, where a picture

was taken of the USB and reported via the Cogni-Sense app.
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Figure 4.18: HaaSS sensor report for spear USB through Cogni-Sense app

Performance of the H score: In case study two, the HaaSS scores generated

for sensor reports were less confident than those generated in case study one, with

the probability of detection relatively proximal to the default classification threshold

of 0.5 for the majority of reports. Further, analysis showed a low standard deviation

of 0.07 from the H score sample mean of 0.56, with the most confident correct H

score only reporting a 71% detection probability as the highest prediction result.

Consequently, no reports qualified for the automatic H score report classification

threshold and therefore all reports were sent for manual classification in the semantic

attack sandbox. The lower H score confidence in case study two may be explained by

a number of reasons. Firstly, in case study two, HaaSS sensors auditable (i.e., activity)
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features were only collected on one device and therefore a large proportion of their

platform usage may not have been seen by the Cogni-Sense app. This would have

resulted in less accurate platform frequency and duration features which may have

been significantly different if the HaaSS sensors spent most of their time using mobile

devices. Secondly, unlike case study one which computed scores for participants at

one point in time, computer security training within case study two automatically

decreased over time, unless it was updated by HaaSS sensors when they reported

receiving training. As a result, the measurement for HaaSS sensors features in case

study 2 was dynamic and thus dependent on participants keeping their computer

security features up-to-date and limited by the visibility of the Cogni-Sense app for

sensor activity on the device in which it was installed.

In Table 4.12 we evaluate the performance of the H score in case study 2, reporting

the model performance using the default and optimal classification thresholds. Here,

a true positive (TP) refers to a correctly predicted HaaSS sensor attack report, a true

negative (TN) refers to an incorrect attack report (e.g., report was not a semantic

attack) or correctly predicted HaaSS sensor exploitation, a false positive (FP) refers

to an exploited HaaSS sensor who was predicted to have detected the attack and a

false negative is an incorrect prediction of a HaaSS not reporting an attack.

We do not include in the analysis HaaSS sensor reports or exploitation records

for which it was not possible to generate a H score as this would provide biased

increase in the naive classifier by increasing the detection rate through more samples

than were made available to the H score. HaaSS sensors who were not exploited

by attacks by performing mitigating actions (orange box in Table 4.9), but who also

failed to report them were not included in the analysis. In case study 2, it was not

possible to generate H scores for HaaSS sensors’ H5 and H7 exploitation records

because their database files used to generate the frequency and duration features via

the Cogni-Sense app was deleted by the participants at the end of the experiment

and therefore not supplied for analysis.

The optimal H score classification threshold was reported at the probability cut-

off value of probability of 52% for predicting HaaSS sensors attack reporting and
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Class. Threshold Accuracy TP TN FP FN Precision
.50 (default) .69 .32 .35 .25 .06 .57
.52 (optimal) .74 .32 .42 .20 .06 .62
Naive classifier .62 0 .62 0 .62 0

Table 4.12: H score detection efficacy classification performance for HaaSS sensor
reports in case study 2 - Naive refers to the naive classifier performance as per chap-
ter 3 and in this case refers to classifying HaaSS sensors as susceptible (i.e., unlikely
to report semantic attack

exploitation, which demonstrated a 12% increase in prediction accuracy over the

naive classifier (i.e., no information rate). In the case of the default classification

threshold of 50%, the H score was only 7% more accurate than the naive classifier.

Arguably the most crucial validation of the H score performance (and its viability

as a robust measure of sensor reliability) is observed by aggregating H scores and

corresponding HaaSS sensor detection results. In Figure 4.19, a box-plot of the H

scores in case study two shows that as the probability of detection efficacy increased

(as predicted by the H score), semantic attack detection efficacy was indeed higher.

Equally, as the prediction of probability lowered, sensor detection efficacy was lower

and interestingly where sensors’ were not exploited by a semantic attack, but also

failed to report it, the H score was a median between the two.

Figure 4.19: H score predictions for HaaSS sensor responses in case study two
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Overall, the H score’s performance was consistent with the experimental results

received in chapter 3 and therefore confirms the validity of the the H score prediction

model within the context of empirical, real-world application.

HaaSS detection of further semantic attacks: During case study two a

total of forty nine extra HaaSS sensors reports were received for suspected attacks

that did not originate from the emulated attacks. In total, 26 of these reports were

correctly detected semantic attacks and 23 were incorrectly detected as semantic

attacks. Interestingly, multiple reports of typosquatting attacks were received, further

validating the HaaSS concept for detecting and reporting an even wider range of

semantic attacks than those evaluated within case study two. In Figure 4.20 an

example typosquatting report is shown from HaaSS sensor 11, with a H score of 67%

(who also reported the highest detection rate overall in the experiment).

Expert reviewer sandbox classification (Classification): Within the exper-

iment, for each HaaSS sensor report made by participants, the computed H score was

subject to automatic classification if the probability value hit the default defined up-

per (>.85) or lower (<.1) threshold in Cogni-Sense. However, unlike in case study one

where two HaaSS sensor reports for attacks 1.1 and 3.1 were automatically classified

based on a 92% H score, during the experiment for case study 2 no reports qualified

for automatic classification and therefore all HaaSS sensors reports were sent to the

semantic attack sandbox for manual classification.

In order to evaluate the practicality of the Cogni-Sense semantic attack sandbox,

we invited an expert reviewer to manually classify each of the HaaSS reports received

in case study 2. The expert reviewer recruited for this task was a lead security op-

erations centre engineer, with over ten years experience working as an information

security practitioner, working specifically with security event and information mon-

itoring platforms. Here the aim is to evaluate experimentally whether information
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Figure 4.20: HaaSS sensor report of typosquatting website received during case study
2

supplied by the Cogni-Sense system and HaaSS sensors adequately informed accurate

classification by report reviewers.

Overall, the expert reviewer classified each of the HaaSS reports with a high degree

of accuracy and excellent precision to distinguish between HaaSS reports that were

credible semantic attacks. According to the performance indicators, the semantic

attack sandbox has proven its utility as an informative tool for manually classifying

HaaSS reports in order to transform HaaSS attack detection into kinetic defence

against the reported threats. In the case of the Cogni-Sense prototype, each correct

detection would have resulted in an e-mail attack alert of the HaaSS report to HaaSS
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sensors, however in a production system the security enforcement module (SEM)

could be expanded to blocking URLs, domains, file names for example, within an

organisational security platform (e.g., proxy, anti-virus, firewall etc.).

Expert reviewer role Accuracy Precision FP FN
Security operations centre engineer .87 .94 .04 .09

Table 4.13: Expert reviewer semantic attack sandbox report classification perfor-
mance

HaaSS Score remodelling: During the course of both case study experiments

the Cogni-Sense prototype collected new HaaSS feature data as a result of exploitation

records and report classification received via the semantic attack sandbox. In total

only 136 new observations were collected, which had no significant change in the

HaaSS sensor detection rate and therefore H score remodelling was not carried out.

In general, the data arrival frequency from HaaSS sensor reports is relatively low

compared to that of network alerts from an IDS, but is likely to gradually increase

as a HaaSS sensor-base expands. With this in mind, unlike in streaming prediction

models, the H score RF rule-set will remain valid for longer until a significant change

in the detection distribution, or until a significant amount of data has been collected

with feature expansion (e.g., granularity of existing feature scale and entirely new

features).

Conclusion from case study results: Overall, the HaaSS sensors comfortably

outperformed all of the technical defences for the attacks evaluated in case study one

and the new attacks in case study two. In both experiments every technical defence

completely failed to identify the deception vectors in any of the semantic attacks. By

exception, whilst the Comodo Antivirus failed to detect the PDF file masquerading

on the spear USB as an attack (as it was unable to recognise the deception), it did run

the file as part of default product configuration behaviour through a virtual machine
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sandbox and prevented the executable from opening a browser for the attack landing

page. This behaviour effectively mitigated the threat of automatically opening a ma-

licious URL via the system’s browser. However, it remains untested whether the VM

would prevent a sophisticated malware exploitation in practice, as the execution of

the file allowed to run (inside the Comodo VM) and a zero-day exploit could poten-

tially subvert this container. The Avast and AVG anti-virus products also scanned

the PDF file masquerading executable, presumably because it was an unsigned exe-

cutable and this is again default product configuration behaviour conducted in most

modern-day anti-virus products. Although, in both cases the scanning found the file

to be legitimate and therefore allowed the file to run; as the file contained a system

command to directly open a browser to a random URL and domain (emulated attack

landing page) this can and should be deemed as malicious code. More importantly,

and as expected, was that the cosmetic deception vector of the PDF file masquerading

attack was undetectable and could not be prevented by the host system and or any

anti-virus product tested in the experiment. For attacks 2.1A, 4.1 and 4.2 none of the

technical defences identified any malicious behaviour or blocked any of the attacks

from being executed by susceptible HaaSS sensors.

Another important observation from the experiment results is further confirmation

that detection efficacy for semantic attacks is influenced by security knowledge and

experience with specific user platforms; exemplified by the fact that different HaaSS

sensors were able to detect semantic attacks on some platforms, but not others. This

result reinforces and confirms the contextual relevance of measuring HaaSS sensor

features which are associated to the frequency, duration of activity and computer

security training received for specific platforms. It is also equally important that

these features do not depend on specific attack knowledge launched on a platform,

but experience and knowledge of the platforms themselves and are therefore resilient

to new attack vectors in future semantic attacks.

By evaluating the results from our laboratory experiment in case study one and

our empirical, real-world experiment in case study two, the concept of the Human-as-

a-Security-Sensor as a dynamic security mechanism for detecting semantic attacks,

177



proved to be both viable and superior to a wide range of technical security solutions.

Whilst the analysis of available security systems for detecting semantic attacks was

not exhaustive, here we have shown how HaaSS sensors can dynamically and accu-

rately detect semantic attacks across a range of disparate platforms, irrespective of

the individual attacks vectors used, where typically technical systems tend to be inca-

pable in operating in the same holistic manner. Crucially, we also showed how fairly

accurate prediction can be made to determine whether a HaaSS sensor will report

a credible attack, or indeed be vulnerable to an attack, and how this prediction in

the form of the H score provides a metric to measure the reliability of sensors in a

technical system.

4.4 Limitations

The interactive laboratory-based experiment in case study one has a few limitations

that must be considered. As participants were primed to the purpose of the role-play

experiment, they may have been more vigilant and sensitive to each of the seman-

tic attacks deception vectors than they would have normally been; thus potentially

weakening the attacks effect. Conversely, as the experiment involved role-play, this

may have also reduced participants’ ability to determine whether certain attack in-

teractions were contextually anomalous (e.g., Amazon order confirmation, Job offer

phishing e-mail). Nevertheless, in direct comparison with the operation of techni-

cal defence systems, a HaaSS sensor in practice can also be purposely employed to

search for semantic social engineering attacks in a continuous “online” fashion as

part of a security platform within an organisation (e.g., security operations centre)

or remote paid service (e.g., cloud-based HaaSS reporting). From this perspective, it

would be assumed that a HaaSS sensor is constantly vigilant and therefore actively

searching for semantic attacks on platforms that they are accessing. In respect to

the experiment itself, limitations were also shown in the evaluation of HaaSS against

semantic attacks 2.1 and 2.2 (Facebook IM phishing and video masquerading), due

to participants not being exposed to the attack or simply missing it. In practice, it

178



is still unclear how effective such attacks would be, and therefore it is important to

investigate this more robustly in future work.

For case study 2, it is possible that the Cogni-Sense did not capture the full

footprint of participant user (i.e. HaaSS sensor) activity, because the HaaSS sensor

activity collection tool was not installed on all platforms that the participants may

have been using (e.g., smart phone, work devices etc.). By including all participant

devices, this would increase the accuracy of the activity analysis of each HaaSS sensor

and would have an impact on the H scores computed for each attack report; however

this was highly impractical for the experiment due to ethics approval and substantial

cross-platform development required for the prototype. Furthermore, as the activity

learning period was for one month only, this could have also limited the ability to

get a fuller and more accurate picture of user activity. For future experiments a

wider footprint for user activity collection (by installing across a range of devices

and synchronsing data through cloud storage, for example), as well a longer learning

period would improve the accuracy of feature generation for user activity. In principle,

the longer the learning period a HaaSS system has for each HaaSS, the more accurate

measurements will be for HaaSS activity for feature generation and consequently

more confident the H scores. Regarding the prototype HaaSS platform Cogni-Sense,

implementation limitations were identified by the difficulty in reporting attack 5.1,

which initiates a semantic attack distributed as hardware with software interaction

(i.e., MD3, see 2.1). For HaaSS sensors that detected the USB as a semantic attack

in the physical space, this required HaaSS sensors to take an actual picture of the

USB and then send this image to their device to initiate a report; naming the image

appropriately for the HaaSS score to determine the frequency and duration in which

they used USB devices (specific user-computer interface/platform) and removable

media (user-interface/platform type). Therefore, for future HaaSS system platforms

it would be essential to allow for capturing reports more naturally in physical space

through use of mobile devices video and image capture capabilities.
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4.5 Expanding the User Susceptibility Feature-Set:

Identification of future practical HaaSS fea-

tures based on our work

Through our early experiments we identified high-level user susceptibility features

that provided a reasonably accurate insight into whether users are likely to detect

or be susceptible to social engineering attacks; where we have used these features

to form the basis of the HaaSS (H) score. As a result of our empirical experiment,

we identify further practical user features that can be measured ethically, in real-

time and automatically, but which would also require further experimentation to

determine their practical value; such as the ease of collection versus their measurable

improvement to H score accuracy.

• HaaSS report history. Report history provides a performance-based review

of a HaaSS sensor’s reliability over a defined time period and across different

user-interfaces, platforms and systems. This type of feature can be used to

pinpoint a HaaSS sensor’s accuracy for detecting different types of attacks, so

as to establish which platforms and interfaces they are most suited for and

also their typical susceptibility to such threats (for example if they have been

subject to emulated attacks as part of HaaSS sensor validation training). As

we have shown in case study two, HaaSS report history can be used to identify

the performance of a sensor’s detection across different platforms, which can be

used to profile individual sensors.

• Cogni-Sense SEM semantic attack alerts. Whilst we have demonstrated

the ability to generate semantic attack alerts using the Cogni-Sense security

enforcement module (SEM) functionality, we have not tested the impact that

attack alerts have on the detection efficacy of HaaSS sensors. As a feature,

attack alerts can be measured in two ways, their direct effect on HaaSS sensors

reporting the same or similar type of attack which has been included in an
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alert, and the general influence it has on HaaSS sensors’ future detection of dis-

parate semantic attacks. For example, were attack alerts (which are confirmed

HaaSS reports of a semantic attack) attributed to HaaSS sensors as part of a

reputational system, introduction of gamification and competition may have an

influence on HaaSS sensors detection prevalence; irrespective of whether this

would result in more true or false positive reports.

• Attack Emulation. Repeated exposure to semantic attacks and in particular

exploitation has been shown to improve the ability for users to detect them

[299]. In case study two, 82% of HaaSS sensors were exploited at least once

by a semantic attacks, with 31% falling victim to three or more attacks. By

recording a HaaSS sensor’s specific attack exposure, for example through attack

emulation campaigns (which amounts to active awareness training), this feature

could be used as predictor of whether the sensor is likely to predict a specific type

of attack on a specific type of platform. From an exposure perspective, HaaSS

response to emulated attacks can be provided as part of mandatory/validation

training or as serious gaming for subscribers (e.g., in the context of home users

outside a controlled organisational setting).

• Passive H Score Variance and distribution. During the experiment, par-

ticipant HaaSS scores for different platforms would have varied depending on

the change in their activity and any updates that are supplied to the system

for their computer security training and self-efficacy features. Passive H scores

were not measured during the experiment, but in future work could be gener-

ated periodically for different platforms of interest and recorded substantively

as they change based on a defined threshold (e.g., significant increase/decrease

in H score) or trigger (e.g., received security training, updated self-efficacy fea-

tures). Passive generation of H scores outside of attacks reports can be used to

generate a new feature based on variable changes in a HaaSS sensor’s H score,

which in turn can be used as a forecast of the expected performance of a HaaSS

sensor under specific conditions (e.g., attack exposure on specific platforms).
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Furthermore, it could also be used to compare with the HaaSS report history

feature to identify interactions that more accurately predict future detection

performance.

• Frequency and duration context time-lining. In case study one and two

we have only measured platform activity on one device, on a rolling window of

31 days as the frequency and duration threshold. However, nowadays HaaSS

sensors are likely to switch their activity across a range of devices, applications

and services (e.g., social media and apps), where activity recognition will fluc-

tuate from month to month. For example, a HaaSS sensor may access a social

media platform daily in one month, from their mobile and laptop devices, but

in the next month only access the platform once on their laptop and continue to

use it daily on their mobile. Therefore, generating multiple features associated

to frequency and duration of platform access across different devices provides a

more detailed insight into user activity, also providing insight as to whether the

device context (and related user-interface) plays a role in detection performance.

Aside from features, a cloud-based model to synchronize activity measurements

could be utilised in this respect to store activity information on a secure stor-

age environment that can be automatically analysed without requiring to access

the device directly, or on demand when receiving data from attack reports; this

approach would also aid passive H score analysis.

• Validated security training and integration with HaaSS. Whilst we have

measured high-level features associated to computer security training within the

prototype HaaSS platform developed, it is important to know more deeply how

specific training material improves HaaSS sensor detection over other types of

training. This is an on-going research problem within the field of semantic at-

tack detection and prevention. Nevertheless, integration of computer security

training platforms can be used as a robust way of validating security training

and ensuring its measurement is kept up to date. In this way, validated security

training would be a feature that is more “trusted” than self-reported training
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which is not validated or not-compliant with the HaaSS systems quality crite-

ria; irrespective of whether it can be measured and confirmed externally. In

fact, further potentially useful security features would be those that represent

computer training on platforms proven to work for improving semantic attack

detection efficacy [25, 26]. Using this concept, HaaSS sensor status could be

validated as a time-based qualification if the user undertakes approved training

and passes some mandatory testing.

• Device / System cyber trustworthiness. In this project we have focused

on measuring the reliability of HaaSS sensor detection as a mechanism to auto-

matically classify and prioritise responses to credible semantic attack threats.

However, as HaaSS sensors are likely to use a range of computer devices and

systems to report semantic attacks it is important to understand how the in-

tegrity of the reporting source, as a combination of HaaSS sensor and device,

affects a report’s overall credibility. For example, identifying whether a mobile

device’s “cyber trustworthiness” state differs to that of a desktop device, based

on security posture and location may to serve as a factor of the overall reliability

of a HaaSS report [337]. This is especially pertinent given the variable security

controls that users install on their systems, where often mobile devices are not

afforded as much attention.

• Date, Time. The date and time in which a HaaSS sensor report can help

to indicate the likelihood of HaaSS report credibility, especially during specific

times of the year that hackers and cyber criminals select as vulnerable, such as

public holidays or during international crisis. It can also indicate whether or

not the HaaSS sensor detection efficacy is affected by the date and time that an

attack might be observed. In case study two, attacks 1.1 and 5.1 (spear phishing

job advertisement and USB) were issued during a weekday in the morning, with

attacks 2.1 and 3.1 issued on a weekday in the evening and attack 4.1 issued on

a weekend in the evening. As all participants were based in the UK during the

time of the experiment, reports were based on a London, UK GMT time zone.
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Analysis of the results showed that 58% of HaaSS sensors were exploited in

the weekday on an evening, with 82% being exploited on a weekday. Further,

78% of exploitation’s on weekends also occurred in the evening. For HaaSS

reports, the majority were received in the evening (61% of total reports), but

were equally distributed between weekdays and weekends. However, HaaSS

report accuracy for reports sent on the weekend and in the evening was 81%

(i.e., classified as actual semantic attacks), whereas HaaSS report accuracy for

reports received on a weekday in the evening was 68%. By comparison, only

38% of the total reports were received during the morning or afternoon, with the

majority of reports received on a weekday (77%). For these weekday reports in

the morning and afternoon the report accuracy was 90%, with afternoon reports

reporting 93% accuracy.

The results do not represent a robust or rigorous analysis of the effects date

and time have on HaaSS sensor detection efficacy, especially as attack exposure

would have been determined by the specific HaaSS sensor’s lifestyle and usage

pattern (e.g., when they looked at the platforms in which the attacks were

deployed). However, they do demonstrate the viability of measuring reporting

(and exploitation) timestamps as a feature which could be used to highlight if

specific HaaSS sensors’ detection efficacy is influenced by the day and time.

To a large extent, these results will follow the HaaSS sensors’ pattern of life,

whereby exposure to attacks will be determined by a sensor typically accessing

different computer platforms that they use. However, this is also a useful metric

from date and time analysis as it allows for a HaaSS system to potentially predict

the time period when it expects HaaSS sensors to be exposed to attacks, based

on their individual usage.

Interdependent, time-sensitive features facilitate investigation of whether or not

the accuracy and precision of a users’ detection efficacy is transient in nature under

specific conditions. For instance, were a user to detect an attack on specific time

and day, on a specific platform and device, where the frequency and duration of their
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platform access and security training increased over this period of time compared to

past measurements, this time-series data could contain patterns that reveal tempo-

rary changes in the user’s susceptibility; especially if they were more successful in

detecting attacks over this time period than others. Using this approach, suscepti-

bility measurements can be truly dynamic based on users’ behavioural and auditable

history, rather than training a prediction model on independent sets of user suscep-

tibility samples.

As we have discussed in chapter 3, it is without a doubt that a user’s suscepti-

bility to semantic social engineering attacks depends also on personality traits, social

context, psychological state and other human and contextual factors, which are im-

practical to measure in a technical system. Once a HaaSS system is in place and

has operated for a prolonged period of time, with access to a wider set of features,

such as the temporal types mentioned above, it would be interesting to evaluate to

what extent these features inherit traits of the former. It is also important to keep in

mind the practicality of measuring different features, which can be limited by environ-

mental deployment of the HaaSS system and its sensor-base. For example, a public

crowd-sourced HaaSS system would likely have less integration into HaaSS sensors

systems and activity (making some features unavailable or less practical to measure),

whereas a HaaSS system deployed within an organisational environment for users

would have access to a wider set of features through deeper system integration. At

the same time, unlike a crowd-sourced deployment, there may be reduced visibility

outside of the organisational environment for user activity feature collection (e.g., on

users’ personal devices).

4.6 Conclusion

In this chapter we have proposed a prototype technical framework for utilising Human-

as-a-Security-Sensor as a novel means of detecting and mitigating semantic social

engineering attacks. The framework proposed provides researchers and developers

with an architectural blueprint for the design and development of a technical HaaSS

185



system, where we have then employed it to build a prototype HaaSS system called

Cogni-Sense; evaluating the prototype system’s performance in a real-world experi-

ment. The results have shown that the framework is both a practical and effective tool

for developing a HaaSS defence system against semantic attacks, as well as reinforc-

ing the wider applicability of the HaaSS concept of user-driven defence for semantic

attacks.

We have put the HaaSS paradigm to the test with two case studies in semantic

social engineering attacks, and compared against technical platforms that claim to

provide defence against such attacks as well as technical defence systems designed to

protect specifically from them.

In this respect, this first evaluation was successful, as the users performed con-

siderably better than all technical defence systems, and the Cogni-Sense application

developed for leveraging this ability of users proved fit for the purpose. In the case of

the second evaluation, as an empirical experiment of HaaSS semantic attack detec-

tion, we showed that the application of HaaSS under real-world conditions is indeed

viable and practically useful means to dynamically detect semantic attacks.
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Chapter 5

Conclusion

5.1 Summary of the semantic social engineering

problem in computer systems

Semantic social engineering attacks are a pervasive and existential threat to computer

systems, because on any system the user-computer interface is always vulnerable to

abuse by authorised users, with or without their knowledge. However, as attacks

specifically target the user-computer interface it is particularly difficult for technical

defences to identify them. This is because attacks primarily employ cosmetic or be-

havioural deception vectors and as a result often leave a very small technical footprint

that can be analysed by technical systems. This leaves individual technical defences

with an extremely limited view of semantic attack vectors through platform-specific

implementations, which often mean the defence is only able to address a small number

of attack vectors. To harness defence that addresses a wide range of semantic attacks

requires extensive integration with many security platforms which is impractical, es-

pecially as this often is not feasible even to organisational technology platforms, let

alone the home user. For technical defence systems to stand a chance in detecting

a wide range of semantic attacks, defence mechanisms would require the ability to

interpret both visual and behavioural information, contextually and across multi-

ple user-interface platforms; a condition which makes the human user an attractive

candidate to perform detection.
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Furthermore, up until recently, semantic social engineering exploitation in com-

puter systems has been limited to traditional Internet communications such as email

and website platforms. However, in the Internet of Things the threat landscape in-

cludes vehicles, industrial control systems and even smart home appliances. As a

result, the effects of a deception-based attack will no longer be limited to cyberspace

(stealing information, compromising a system, crashing a web service ... etc.), but

can also result in physical impact, ranging from manufacturing plants being dam-

aged, trains and tram signalling disrupted causing death and injury, water treatment

plants discharging sewage to damage to a nuclear power plants, or denial of service

to a national power grid [48]. Therefore, given the ever expanding landscape, and

the inability for technical defences to work dynamically across a wide range of user-

interfaces, the impetus of designing semantic attack defence around the human user

increases, especially as the user provides many of the primary physical interfaces and

mediums between different systems, in a ubiquitously connected world.

5.2 Summary of our contributions

5.2.1 A Taxonomy of Attacks and Survey of Defenses for
Semantic Social Engineering Attacks

We have designed a taxonomy of semantic social engineering attacks which introduces

a structured baseline for classifying any semantic attack by breaking it down into

its components and thus allowing to identify countermeasures that are applicable

to a range of different attacks that share a subset of its characteristics. We have

complemented this taxonomy with a survey of defence measures, highlighting their

suitability against the taxonomy’s categories. Our taxonomy provides researchers

and developers with a tool that can help facilitate the design of more comprehensive

defence mechanisms that can address each criterion of our classification rather than

specific attack families. Using this approach, we have simplified the problem space

and provided a systematic approach to breaking down a semantic attack to more

easily identifying the means for mitigating their impact on a user-computer interface.
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As the taxonomy relies on systematic components in semantic attacks, rather than

platform specific attributes, the taxonomy is applicable to current and future attacks.

5.2.2 A model of user susceptibility to semantic attacks that
can be integrated into technical defence systems

We have developed a model of susceptibility to semantic attacks, based on high-level

predictors that can be measured ethically, automatically and in real-time. Unlike

models produced in prior susceptibility research, this approach enables our model to

be directly integrated into technical defence systems. The model provides a strong

baseline with which to train a dynamic system for mitigating semantic attacks, where

we have robustly validated its performance on a participant sample that spans a

diverse geographical footprint.

5.2.3 A Human-as-a-Sensor technical framework for detect-
ing Semantic Attacks

We have designed a HaaSS framework for building a technical system around com-

puter users as physical sensors of semantic attacks. The framework provides an ar-

chitectural blueprint to design and develop a fully-functional HaaSS platform, based

on a core set of procedural and functional components.

5.2.4 Development of Cogni-Sense: a prototype HaaSS plat-
form implementation

We have developed and implemented a prototype HaaSS platform Cogni-Sense, based

on our HaaSS framework, which we have evaluated experimentally within two case

studies. The Cogni-Sense prototype system demonstrated the feasibility of capturing

and scoring HaaSS attacks reports, through a device-based report interface and cloud-

based platform for report classification and response; providing a practical means to

evaluate the overall concept of HaaSS and prove its viability in an empirical context.
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5.3 Future Work

Human-as-a-Security-Sensor is a relatively new concept in computer security and

we have made progress towards the first technical framework in order to enable the

design and implementation of HaaSS platforms. However, despite the demonstrable

feasibility of the utilising HaaSS as a dynamic means to defend against semantic

attacks, there is still a lot of room for further development to make HaaSS a viable

option for defence against attacks in the era of the Internet of Everything.

1. We have proposed a technical HaaSS framework and used it to develop a func-

tioning HaaSS system to demonstrate the feasibility of the concept as a defence

against semantic attacks. Experimentally, the concept and prototype have been

shown to work well in combating the threat, however both remain at a pro-

totype stage and require further development to reach a stage of technology

readiness that is suitable for integration into a production system. For exam-

ple, for a user to report a WiFi Evil Twin attack using Cogni-Sense, it would

probably be safer for the user to make a report that is stored offline until they

are connected to a secure access point, before sending the attack report. So,

developing an offline attack reporting function when no network connectivity

is available would be highly useful as the loss of reports would be minimised;

instead stored and queued for batch upload when network connectivity is es-

tablished/restored. Furthermore, in order to maintain the integrity of HaaSS

reporting cryptographic watermarking and supplementing HaaSS scoring with

both user and device susceptibility posture offers options for better guaranteeing

the source and identity of the reporting sensor.

2. Whilst we have proven the concept of HaaSS for conventional desktop systems,

in the space-constrained interfaces of smartphones and embedded systems, the

user is afforded a lot less information to spot suspicious activity. For instance,

it is difficult to see the full address of a website. Also, SMS messages in mod-

ern smartphones are automatically grouped within one’s existing conversations
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based on the phone number of the sender. So, anyone using a freely available

mobile number spoofer can insert themselves into an existing SMS discussion

between two smartphone users and masquerade as one of the two. As a result,

Cogni-Sense HaaSS sensor reporting mechanisms should be expanded to include

a range of system and device interfaces; especially as future semantic attacks

will be designed to exploit IoT devices that interface with users through both

physical and cyber means. By providing a richer facility for users to report

suspected threats across a multitude of mediums (e.g., pictures, videos, files,

audio, text ... etc.), Cogni-Sense can be expanded to address an even wider

range of cyber-physical semantic attack threats that are expected to emerge in

the near future.

3. The trustworthiness of HaaSS reporting information has been studied in re-

lation to the reliability of human sensors of semantic attacks in the context

of this work. However, malicious modification, prevention or delay of HaaSS

reports can also be the result of cyber security breaches affecting the mobile

devices and network infrastructure used to deliver HaaSS reports. Examples of

these can be denial of service attacks, where the timely delivery of reports is

important, and location spoofing attacks, where the accuracy of the location

of an incident is important. Future work should aim to introduce the cyber-

trustworthiness aspect in HaaSS and propose a mechanism for scoring reports

in terms of their cyber-trustworthiness based on features of the HaaSS reporting

device. Whilst we have conducted some preliminary research in a mobile de-

vice “cyber trustworthiness” in [337], combining both approaches explores the

concept of a unified measure of trust and reliability for HaaSS reports based on

both the reliability of the HaaSS user and cyber-trustworthiness of their system.

4. Our primary aim in this work has been to evaluate the concept of Human-as-a-

Security-Sensor for detecting and mitigating semantic attacks. However, more

generally, the concept of Human-as-a-Sensor (HaaS) has practical uses beyond

semantic attacks. For example, human as a sensor has been used extensively and
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successfully for the detection of threats and adverse conditions in physical space

[338, 339, 295]. It would be interesting to investigate to what degree human-as-

a-sensor can be used for detection of other threats in computer science such as

denial of service, reporting service interruption and degradation to determine

user experience for improving a systems quality of service in real-time or even

further exploring the concept of theH score as a measurement criteria for “cyber

insurance” premiums.

5.4 Final Remark

Semantic social engineering attacks are an existential threat to computer systems.

As technology evolves, the landscape for attacks constantly shifts and containing the

threat is becoming a greater and more complex task than ever before. The emergence

of the Internet of Things will enable semantic attacks to thrive, further exacerbating

the threat as it bridges into a cyber-physical domain - where deception in cyber space

has direct impact in physical space. Fundamentally, building lasting and practical

defenses against semantic attacks is a perpetual challenge, for which technical defences

are simply not equipped to solve on their own.

The purpose of this thesis was to identify a dynamic and holistic approach to

the challenge of detecting semantic social engineering attacks, by involving users as

human sensors at the heart of a technical defence platform. In doing so, we have

challenged the concept that users are the weakest link against semantic attacks, and

instead empowered them to become a human firewall against cyber deception in the

Internet age.
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Appendix A

Chapter 3 Experiment Surveys and

Exhibit Tests

A.1 Experiment 1
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Susceptibility to Social Engineering Attacks 

 

P1 PARTICIPANT CONSENT & INFORMATION      

 

This survey is part of a research project on the identification of user susceptibility to social 

engineering attacks on computer systems.  By clicking "Yes" the you agree to the following 

terms:      

 

I understand that I am free to withdraw from this study:       

 

at any time (until 31/09/2015 as this will no longer be possible, which I have been told) 

without giving a reason for withdrawing (for students:) without affecting my future with the 

University and without affecting my grades. I understand that my research data may be used 

for a further project in anonymous form, but I am able to opt out of this if I so wish, by 

clicking "Opt Out" below.  I can confirm that I am 18 years of age or older.   

 Opt Out 

 

 Yes 

 No 

 

 

PARTICIPANT INFORMATION      

 

Information technology is used so pervasively in our society that it is increasingly difficult to 

identify when and where it is possible for a social engineering attack to occur and more 

importantly what one would look like.  With this survey, we will try to identify the parameters 

that are the most relevant in predicting what makes a user susceptibility to social 

engineering attacks, in front of different, often unfamiliar user interfaces, on desktop 

computers and smartphones.  The survey starts with a few questions about yourself and 

continues with a test containing a number of exhibit based questions. It should take no 

longer than 10 minutes or so to complete. Please ensure you are using a Desktop or Laptop, 

or 8inch or larger tablet device when taking this survey, as some images may appear 

distorted or obscured from view.   Researcher’s contact details (including telephone number 

and e-mail address):    Room QM365, University of Greenwich, Old Royal Naval College, 

SE10 9LS, UK E-mail: hr07@gre.ac.uk    Tel: +44 (0)20 8331 8531 
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Q1 Age: What is your age? 

 18-24 years old 

 25-34 years old 

 35-44 years old 

 45-54 years old 

 55-64 years old 

 65+ 

 

Q2 Gender: What is your sex? 

 Male 

 Female 

 

Q3 Education: What is the highest level of education you have completed (This should NOT 

include what you are currently studying)? 

 Less than High School 

 High School / GED 

 Some College 

 Trade/technical/vocational training (2 year) 

 Associate degree 

 Bachelor's degree 

 Master's degree 

 Doctorate degree 

 

Q4 Where 0=Beginner and 100=Expert, for each category what is your approximate skill 

level? 

______ Computer Literacy 

______ Computer Security Awareness 

 

Q5 Have you ever received any computer security training? 

 No Yes 

As part of formal education     

As part of training at work     

As part of self study     

 

 

The next section is a test of your susceptibility to social engineering attacks. You will be 

shown 12 cases and you will be asked to determine whether they are examples of computer 

security attacks or not.This should take no longer than 10 minutes. Incorrectly marking an 

exhibit as an attack that is NOT an attack will negatively affect your score.Your responses 

are timed.Scores are displayed at the end of the survey.  
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E1 EXHIBIT 1: You click on "INSTALL" to download this app from the Googleplay store. 

Once downloaded, the following permissions are granted to the app. 

 Most likely not an attack 

 Most likely an attack 

 

 
 

E2 EXHIBIT 2: When logging into GMAIL to check some emails, you see that the following 

email has been received. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 3: Whilst sat inside a Starbucks cafe, you connect to WiFi access point "Starbucks-

WiFi" which opens the following login page when attempting to browse the Internet. 

 Most likely not an attack 

 Most likely an attack 

 

 
 

 

EXHIBIT 4: You enter "facebok.com" into Internet Explorer address bar, press enter and the 

following webpage appears. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 5: You log onto Facebook and you see the following post on your news feed. On 

clicking on the link in the post the following request appears. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 6: When logging into GMAIL to check some emails, you see that the following 

email has been received. 

 Most likely not an attack 

 Most likely an attack 

 

 
 

EXHIBIT 7: By clicking on the link in the previous email, the following webpage appears. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 8: Whilst waiting at a train station, you connect to WiFi access point "BTWiFi-with-

FON" which opens the following login page when attempting to browse the Internet. 

 Most likely not an attack 

 Most likely an attack 

 

 
EXHIBIT 9: When logging into GMAIL to check some emails, you see that the following 

email has been received. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 10: When logging into OUTLOOK to check some emails, you see that the following 

email has been received. 

 Most likely not an attack 

 Most likely an attack 

 

 
 

EXHIBIT 11: Scanning the following QR code opens the following website. 

 Most likely not an attack 

 Most likely an attack 
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EXHIBIT 12: The following Twitter post is clicked on. 

 Most likely not an attack 

 Most likely an attack 

 

 

 
 

 

Q6 Frequency: How often do you use the following? 

 

 Never Less than once a 
month 

Once a month Weekly Daily 

Email           

Instant Messaging           

Public WiFi           

Social Media           

Search Engine           

 

 

Q7 Duration: For each frequency interval you chose in the previous question, on average 

what is the cumulative duration of time you spend using the following (e.g. Instant 

Messaging: Weekly, 1 to 2 hours)? 

 

 None Less than 30 
mins 

30 mins to 1 
hour 

1 to 2 hours 2 to 4 hours 4+ hours 

Email             

Instant 
Messaging 

            

Public WiFi             

Social Media             

Search Engine             
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Q8 Familiarity: How familiar are you with using the following? 

 Not Very Somewhat Very 

Facebook       

Twitter       

WhatsApp       

Skype       

Gmail       

Googleplay       

Paypal       

Starbucks WiFi       

BT WiFi Hotspot       

Steam       

Google Search       

Youtube       

 

 

Q9 Feedback (Optional): Please provide any thoughts, suggestions or observations you may 

have after taking this survey. 

 

Share Challenge your friends to beat your score by inviting them to take the survey or 

sharing the following 

link: https://greenwichuniversity.eu.qualtrics.com/SE/?SID=SV_dbcX1BR4kQOH6sJ 
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A.2 Experiment 2
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Susceptibility to Social Engineering Attacks 

 

PARTICIPANT CONSENT & INFORMATION      

 

This survey is part of a research project for testing user susceptibility to social engineering 

attacks on computer systems. It starts with a few questions about yourself and continues 

with a test containing a number of exhibit based questions. It should take no longer than 

10 minutes or so to complete.  By clicking continuing with this survey you agree to the 

following terms:      

 

I understand that I am free to withdraw from this study at any time without giving a reason for 

withdrawing.   I understand that my research data may be used for a further project in 

anonymous form, but I am able to opt out of this if I so wish by existing the survey at any 

time.  I can confirm that I am 18 years of age or older.       

 

**IMPORTANT**       

 

This survey must be taken on a device with a browser that is capable of playing flash videos 

e.g. Chrome, Firefox, Internet Explorer. Mobile browsers will NOT work. Test scores are 

displayed at the end of the survey. 

 

Age: What is your age? 

______ Years of Age 

 

G What is your gender? 

 Male 

 Female 

 Other 

 

Education: What is the highest level of education you have completed (This should NOT 

include what you are currently studying)? 

 Less than High School 

 High School / GED 

 Some College 

 Trade/technical/vocational training (2 year) 

 Associate degree 

 Bachelor's degree 

 Master's degree 

 Doctorate degree 
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S1 Please answer the following question as accurately as possible.  

 Have you 
ever 

received 
computer 
security 
training 
through 

the 
following 

When did you last receive this training How was the training delivered? Tick all that 
apply 

 No Yes NA 
1 

year 
+ 

Up 
to 1 
year 
ago 

Up to 6 
months 

ago 

Up to 3 
months 

ago 

Up to 
1 

month 
ago 

Up to 
2 

weeks 
ago 

In 
the 
last 

week 

Lectures Tests Projects 
Course 
work 

N/A 

Formal 
Education 

                              

 

 

S2 Please answer the following question as accurately as possible.  

 Have you 
ever 

received 
computer 
security 
training 

through the 
following 

When did you last receive this training How was the training delivered? Tick all that 
apply 

 No Yes NA 
1 

year 
+ 

Up 
to 1 
year 
ago 

Up to 6 
months 

ago 

Up to 3 
months 

ago 

Up to 
1 

month 
ago 

Up to 
2 

weeks 
ago 

In 
the 
last 

week 

Survey  Videos Tests Game N/A 

At 
work 

                              

 

 

S3 Please answer the following question as accurately as possible. 

 Have you 
ever 

received 
computer 
security 
training 
through 

the 
following 

When did you last receive this training How was the training delivered? Tick all that 
apply 

 No Yes NA 
1 

year 
+ 

Up to 
1year 
ago 

Up to 6 
months 

ago 

Up to 3 
months 

ago 

Up to 
1 

month 
ago 

Up to 
2 

weeks 
ago 

In 
the 
last 

week 

Books Videos Websites Game N/A 

Self-
study 
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Please answer the following question as accurately as possible. Please answer all columns with NA if no options apply. 
 How often do you use the following? If you use any of the above on a particular day, for 

how long would it be throughout the day? 
When did you last receive computer security training for this platform? How familiar are you with 

this type of platform 

 N/A 

Less 
than 
once 

a 
month 

Once 
a 

month 
Weekly Daily N/A 

Less 
than 
30 

mins 

30 
mins 
to 1 
hour 

1 to 2 
hours 

2 to 4 
hours 

4 
hours 

+ 
N/A 

1 
year 

+ 

Up 
to 1 
year 
ago 

Up to 6 
months 

ago 

Up to 3 
months 

ago 

Up to 
1 

month 
ago 

2 
weeks 

ago 

Within 
the 
last 

week 

Not 
very 

Somewhat Very 

Email                                             

Instant Messaging                                             

Public WiFi                                             

Social Media                                             

Web browsers                                             

E-commerce / classifieds 
websites (e.g., ebay, 

amazon, gumtree ...etc.) 
                                            

 

 

Please answer the following question as accurately as possible.  
 How often do you use the following? If you use any of the above on a particular day, for 

how long would it be throughout the day? 
When did you last receive computer security training for this 
platform? 

How familiar are you with 
this particular platform 

 N/A 

Less 
than 
once 

a 
month 

Once 
a 

month 
Weekly Daily N/A 

Less 
than 
30 

mins 

30 
mins 
to 1 
hour 

1 to 2 
hours 

2 to 4 
hours 

4 
hours 

+ 
N/A 

1 
year 

+ 

Up 
to 1 
year 
ago 

Up to 6 
months 

ago 

Up to 3 
months 

ago 

Up to 
1 

month 
ago 

2 
weeks 

ago 

Within 
the 
last 

week 

Not 
very 

Somewhat Very 

Gmail                                             

Steam Community                                             

Starbucks WiFi                                             

Facebook                                             

Twitter                                             

Youtube                                             

Microsoft Edge Browser                                             

Gumtree                                             

 

 

SA Where 0=Beginner and 100=Expert, for each category what is your approximate skill level? 

______ Computer Security Awareness 
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CL LAST Question before the test! Where 0=Beginner and 100=Expert, for each category what is your approximate skill level? 

______ Computer Literacy 

 

The next section is a test of your security awareness to computer-based social engineering attacks  
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You will be shown 12 cases and you will be asked to determine whether they are examples 

of computer security attacks or not.  

 

This should take no longer than 10 minutes.   

 

E1 You are logged into Facebook. The following slideshow of images shows a post on your 

news feed that you have clicked on. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 
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E2 You are logged into the Steam community website after recently playing Counter-Strike. 

The following message has been received on your steam instant messaging account. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 
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E3 You have logged in to Facebook on your mobile and received the following message. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 
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E4 You are on holiday in California and connect to a WiFi access point called "Starbucks" at 

a Starbucks cafe, on attempting to browse the internet you are redirected to the following 

webpage. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 
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E5 Whilst web browsing on your mobile the following warning appears. Clicking "Delete 

viruses now" downloads the app circled in red. You run the app "Android Defender". Do you 

think the app "Android Defender" is: 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 
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E6 You are browsing Youtube and search for the video "Reckless love", which you find and 

attempt to play. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 
 

 

E7 The following video shows Selina Carlylse web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

https://www.dropbox.com/s/jak2in8k7q3824q/E8.webm?dl=0  

 

 

E8 The following video shows Selina Carlylse web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

https://www.dropbox.com/s/3d0vi7dxyy4022s/E9.webm?dl=0  

 

214



E9 The following videos shows Selina Carlysle web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

Video: https://www.dropbox.com/s/3d0vi7dxyy4022s/E9.webm?dl=0  

 

E10 The following video shows Selina Carlysle web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

Video: https://www.dropbox.com/s/7aose6bolyvtpl3/E10.webm?dl=0  

 

E11 The following video shows Selina Carlysle web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

Video: https://www.dropbox.com/s/l05u6akwk3ra4os/E11.webm?dl=0  

 

E12 The following video shows Selina Carlysle access web browsing. 

 Most likely "NOT" an attack 

 Most likely "IS" an attack 

 

If you think this is an attack, please explain why, in one sentence 

 

Video: https://www.dropbox.com/s/5023ureohok2w0b/E12.webm?dl=0  
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Appendix B

R Modelling Output and

Cogni-Sense Technical Details

B.1 Random Forest Susceptibility Prediction Mod-

elling R results

Figure B.1: Random Forest Test Accuracy R Model Console Output
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B.2 Self-efficacy Feature Evaluation and Modelling

R results

Figure B.2: Correlation results between self-efficacy features and individual auditable
features
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Figure B.3: Random Forest prediction accuracy for self-efficacy features using au-
ditable features
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Algorithm 1: Algorithm for generating platform/application/system frequency
(FR) feature

1 function Frequency (·v);
Input : Array of dates ·v = (v1, v2, ..., vn)
Output: FR

2 if ·v = 0 then
3 return FR = Never;
4 else
5 for i ∈ ·v do
6 j = i+ 1;
7 Ei = |vi − vj|;
8 i+ +

9 end

10 end
11 for i ∈ E do

12 FR =


Less than once a month, if Ei ≥ 31

Monthly, if Ei ≤ 31 and > 7

Weekly, if Ei ≤ 7 and > 1

Daily, if Ei = 1

13 if FR = Less than once a month then
14 return FR;
15 else
16 if i = len(E) then

17 FR =


Monthly, if FR = Monthly

Weekly, if FR = Weekly

Daily, if FR = Daily and len(E) ≥ 31

18 return FR;

19 else
20 i+ +
21 end

22 end

23 end
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Algorithm 2: Algorithm for generating platform/application/system duration
(DR) feature

1 function Duration (·v);
Input : Array ·v = (v11 , v12 , ..., vnj

)
Output: DR

2 for i ∈ v do

3 seci =
∑j

j=0 vij ;

4 end
5 D = len(seci);

6 Tsec =
∑i

i=0 seci
D

;

7 DR =



1, if Tsec = Never

2, if Tsec ≤ Less than 30mins

3, if Tsec ≤ 30mins to 1hour

4, if Tsec ≤ 1 to 2hours

5, if Tsec ≤ 2 to 4hours

6, if Tsec > 4hours+

8 return DR;
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B.3 User activity monitoring algorithms

B.4 User computer security training form (includes

CL and SA self-efficacy

Figure B.4: Cogni-Sense user form for updating computer security record
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Figure B.5: Cogni-Sense attack landing page for users exploited by experiments em-
ulated semantic attacks

B.5 Technical Defence Evaluation against Experi-

ment 3’s semantic attacks

Figure B.6: All major email providers with anti-phishing technology failure to detect
amazon phishing email or generate any warnings of suspected phishing
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Figure B.7: Comodo Dragon browser with ant-phishing and anti-malware and sand-
box technology (based on Google Chromium) fails to generate warnings or block links
in the phishing email that lead to the Amazon login phishing website; which also not
detected as malicious.
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Figure B.8: Comodo Dragon browser webinspector application - evaluates the legit-
imacy and rating of website based on blacklist and heuristic factors. The website
check fails to identify the spoof Amazon login webpage.
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B.6 User Phishing Report Repositories

Figure B.9: Phishtank phishing report repository, 1) Live report of most recent re-
ported phishing attacks, 2) Phishing report form, 3) Review and classification (votes)
of phishing report in PhishTank sandbox, 4) Phishing technical details
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Figure B.10: Millersmiles spam and phishing report repository, phishing report view
(left) and phishing report instructions (right)

Figure B.11: Anti-phishing working group (APWG) phishing report form
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