
Lattice Boltzmann Model for Simulating Immiscible

Two-Phase Flows

T. Reis and T. N. Phillips

School of Mathematics, Cardiff University, Cardiff, CF24 4AG, United Kingdom

E-mail: ReisT@cf.ac.uk, PhillipsTN@cf.ac.uk

Abstract. The lattice Boltzmann equation is often promoted as a numerical

simulation tool that is particularly suitable for predicting the flow of complex fluids.

This article develops a two-dimensional 9 velocity (D2Q9) lattice Boltzmann model

for immiscible binary fluids with variable viscosities and density ratio using a single

relaxation time for each fluid. In the macroscopic limit this model is shown to recover

the Navier-Stokes equations for two-phase flows. This is achieved by constructing

a two-phase component of the collision operator that induces the appropriate surface

tension term in the macroscopic equations. A theoretical expression for surface tension

is determined. The validity of this analysis is confirmed by comparing numerical

and theoretical predictions of surface tension as a function of density. The model

is also shown to predict Laplace’s law for surface tension and Poiseuille flow of layered

immiscible binary fluids. The spinodal decomposition of two fluids of equal density

but different viscosity is then studied. At equilibrium, the system comprises one large

low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical

arguments of Renardy and Joseph [1]. Two other simulations, namely the non-

equilibrium rod rest and the coalescence of two bubbles, are performed to show that

this model can be used to simulate two fluids with a large density ratio.
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1. Introduction

The numerical simulation of multiphase flow problems requires some procedure

for tracking the interface(s) between the different phases as they evolve in time.

Conventional continuum-based numerical methods are not always suitable for these sort

of calculations. For example, a Lagrangian approach can accurately track an interface by

attaching to it a number of probes, the dynamics of which follow the boundary evolution.

However, if the interface topology is radically altered this method can suffer from ill-

conditioning and singularities, and, due to the necessity to mesh complex geometries,

three-dimensional computations can prove to be costly. An Eulerian approach on the

other hand can overcome these difficulties since large deformations in an interface can

be captured without a re-discretisation of the domain. Rather than track the interface

explicitly, this method reconstructs it as an isocontour of a field variable. The problem

with this technique is, due to the lack of explicit treatment, interfacial diffusion effects

are generally smeared over a region surrounding the interface.

In the classical continuum approach the equations of motion that hold in each fluid

are solved with appropriate conditions defined at the interface between the fluids. The

interface is a free surface that evolves in time and the conditions that hold there involve

the physical properties of the fluids such as surface tension. An alternative description

of immiscible two-phase flows is based on diffuse-interface models in which quantities

such as surface tension, for example, are distributed throughout an interfacial region.

In such a description, surface tension is represented as a distributed stress within this

region.

From a micro/mesoscopic view point the segregation of two fluids is due to inter-

particle forces. The Lattice Boltzmann method is therefore in a strong position

compared to its macroscopic rivals since these particle interactions can be incorporated

into the evolution of the distribution function. As a result, a multi-phase Lattice

Boltzmann model should not track interfaces but rather let them emerge spontaneously

from the underlying dynamics.

A number of Lattice Boltzmann models have been developed to predict the flow of

two interacting fluids, each showing a degree of success in a variety of test situations

but also several limitations.

Rothman and Keller [2] were the first to propose an extension to the single phase

lattice gas model of Frisch et al [3] (the so-called FHP model) to multiphase problems. In

the multiphase FHP model of Rothman and Keller [2] coloured particles are introduced

to distinguish between the phases. Furthermore, a nearest neighbour particle interaction

is used to facilitate interfacial dynamics such as Laplace’s formula for surface tension.

The latter is accomplished by modifying the collision process to encourage ‘like’ particles

to congregate.

The original coloured particle scheme of Rothman and Keller [2] was extended by

Somers and Rem [4] and Chen et al. [5] by introducing coloured holes. Chen et al.

[5] showed that this approach resulted in an extension of the nearest neighbour particle
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interaction to several lattice lengths. Furthermore, since this scheme carries purely local

information in its particle collision step, the size of the look-up table in the algorithm

is reduced and consequently there is an improvement in the efficiency of the algorithm.

Although multiphase lattice gas algorithms are able to produce interesting surface

phenomena it is difficult to make quantitative comparison with experiments and other

numerical simulation techniques due to noise induced by particle fluctuations.

The lattice Boltzmann model (LBM) of McNamara and Zanetti [6] solves the

kinetic equation for the particle distribution instead of tracking the motion of each

particle and is therefore less susceptible to noise. Since lattice gas algorithms contain

more information about the microscopic behaviour of particles they will be superior

to LBM for simulating the underlying physics and modelling microscopic dynamics

such as correlation effects and phase transitions. However, LBM’s come into their

own as a numerical tool for solving PDEs governing macroscopic behaviour. As with

lattice gas algorithms LBM can be efficiently implemented on parallel computers and

boundary conditions can be treated easily. Boundary conditions on curved boundaries

can be treated using interpolation methods to calculate the distribution functions on the

boundary. For example, Yu et al. [7] presented a second-order treatment of boundary

conditions on curved boundaries.

The pseudo-potential approach introduced by Shan and Chen [5] is a multi-phase

LBM that attempts to be a more physically orientated model than the R-K models.

Since flows with more than one phase have a non-ideal equation of state, Shan and Chen

[5] looked to preserve this feature in a lattice Boltzmann framework by incorporating

non-local interactions among particles. Chin et al. [8] used a Shan-Chen model on a

D2Q9 lattice with the LBGK collision operator to simulate flows of immiscible fluids with

different viscosities. Their prediction of Laplace’s law for surface tension gives noticeable

errors and their simulated results for Poiseuille flow, although in close agreement in single

fluid regions, shows discrepancies near an interface.

Due to its simplicity and elegance the Shan-Chen model is probably the most

popular choice for flows with phase transitions. Encouraging results in comparison to

thermodynamic theory have been obtained [5, 9, 10]. There are unfortunately a number

of drawbacks. As pointed out by Nourgaliev et al. [11] this model cannot introduce

a temperature which is consistent with thermodynamics and Luo [12] shows that the

equation of state is not the same in the momentum equation and the energy equation.

Striving to ensure thermodynamic consistency within the lattice Boltzmann

framework, Swift et al. [13] and Orlandini et al. [14] introduced phase effects directly

into collision process by considering a generalised equilibrium function that includes

non-ideal pressure tensor terms. These terms are defined to cohere with the free-energy

functional in diffuse interface theory. To test this model Swift et al. [13] performed

numerical simulations (on a FHP lattice with one rest particle) using a Van-de-Waals

equation of state. They report a very good agreement between the mechanical (Laplace’s

law) and thermodynamic definitions of surface tension. Also shown in [13] is the

accurate prediction of the coexistence curve between the two phases for different fluid
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temperatures. Further work with the free energy model was undertaken by Inamuro,

Nobuharu and Ogino [15] who showed Galilean invariance of the model in moving droplet

deformation and breakup simulations, and Xu, Gonnella and Lamura [16] improved the

stability of the model by controlling density fluctuations.

Theoretical criticisms of the free energy approach are made by Luo [12, 17]. He

points out that since density gradients do not appear in the first order Chapman-Enskog

expansion the inclusion of density gradient terms is not justified. An in-depth study

reveals other shortcomings such as a degree of anisotropy and varying temperature even

though the model claims to be isothermal. Although all the algorithms considered so

far in this section are in some way mathematically ad hoc it appears from the work of

Luo that the free energy model is also physically incorrect.

Gunstensen et al. [18] proposed a LBM for multiphase flows that combined

the single-phase LBM of McNamara and Zanetti [6] with the multiphase lattice gas

algorithm of Keller and Rothman [2]. An important contribution in this article is the

introduction of a perturbation step in order to recover Laplace’s formula at an interface.

This is achieved by adding a binary fluid collision operator to the post collision state at

sites near the interface. The role of this operator is to deplete mass along lattice links

parallel to an interface and add mass to lattice links perpendicular to an interface, while

conserving the total mass and momentum at the site. Although Galilean invariance is

recovered by the proper assignment of rest particles, the model does not solve the exact

governing equations for multiphase flow. Furthermore, the model uses a fully linearized

collision operator which is computationally inefficient in 3D and it is restricted to flows

in which the fluids have the same densities and viscosities.

A similar model that allows for different densities and viscosities was proposed by

Grunau et al. [19] by the incorporation of the freedom of the rest particle equilibrium

distribution function and a space dependent relaxation process. The incompressible

Navier-Stokes equations are also recovered for the colour-blind fluid. The advantage of

models based on the Rothman-Keller model [19, 18] is that surface tension, the density

ratio and the viscosity ratio can be chosen independently. Tölke et al. [20] proposed

another adaptation of the Rothman-Keller type model introduced by Gunstensen et al.

[18] based on unstructured tree-type grids in which an additional lattice Boltzmann

equation is used to advect the phase field. However, a recolouring step is still required

to eliminate diffusion effects and to maintain a sharp interface.

In this paper we propose an immiscible lattice Boltzmann model for binary fluids

that is similar to the model of Gunstensen et al. [18] but with several important

modifications. First, the two-phase operator is adjusted and shown to recover the

single phase Navier-Stokes equations, with an appropriate source term to model surface

tension, in the macroscopic limit. As a result, a new theoretical expression for the surface

tension coefficient is found from the analysis of the model. Furthermore, extensive

numerical experiments show this model is capable of predicting flows with large density

ratios unlike the original model of
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2. Immiscible Lattice Boltzmann Model

We develop a R-K-type model for immiscible binary fluids with different densities and

viscosities, similar to the work of Grunau et al [19]. Like these authors we use a

lattice Boltzmann equation with a single relaxation parameter for each fluid but use

a D2Q9 lattice rather than a 7-velocity FHP lattice with additional rest particles. The

equilibrium expressions given in this section, found by a simple ansatz, thus differ to

those in [19] and the collision operator is modified to satisfy the conservation laws and

recover the extra volume source term in the multi-phase Navier-Stokes equations.

Let Nk
i be the single particle distribution function for fluid k, where k = r or b

denotes the colour (‘red’ or ‘blue’). The total population at node x and time t is

Ni(x, t) = N r
i (x, t) +N b

i (x, t), (1)

and the evolution equation for each phase is

Nk
i (x + ci, t+ 1) = Nk

i (x, t) + Ωk
i (x, t). (2)

The collision operator

Ωk
i =

(
Ωk
i

)(1)
+
(
Ωk
i

)(2)
, i = 0, . . . , 8 (3)

consists of two processes. The first represents relaxation to a local equilibrium state

using, for simplicity, an LBGK operator:(
Ωk
i

)(1)
= −ωk

(
Nk
i −N

k(e)
i

)
, (4)

where N
k(e)
i is an equilibrium function and ωk is the relaxation parameter of fluid k.

The operator
(
Ωk
i

)(2)
is the two-phase component of the collision operator and is derived

in Section 2.1.

Mass and momentum are, as usual, defined to be the first two moments of the

distribution function respectively, and conservation of these quantities require

ρk =
∑
i

Nk
i =

∑
i

N
k(e)
i , (5)

ρu =
∑
i

∑
k

Nk
i ci =

∑
i

∑
k

N
k(e)
i ci, (6)

where ρk is the density of fluid k, ρ = ρr +ρb is the total density, and u is the local fluid

velocity.

The equilibrium function N
k(e)
i can be chosen arbitrarily providing it respects the

conservation constraints of equations (5) and (6). To derive an expression we specify a

D2Q9 lattice domain and use the following ansatz:

N
k(e)
0 = Ak0 +Dk

0u
2, (7)

N
k(e)
i = Ak1 +Bk

1ci · u + Ck
1 (ci · u)2 +Dk

1u
2, (8)

for i = 1, 2, 3, 4,

N
k(e)
i = Ak2 +Bk

2ci · u + Ck
2 (ci · u)2 +Dk

2u
2, (9)

for i = 5, 6, 7, 8,
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where the 10 capital letters are free parameters to be ’tuned’ accordingly. To achieve a

stable interface we require the non-stationary distribution functions for both liquids to

be equal when u = 0. To meet this condition we assume

Bk
1

Bk
2

=
Dk

0

Dk
1

=
Dk

1

Dk
2

= r, (10)

where r is some constant. Now assume

Ak0 = αkρk, (11)

Ak1
Ak2

= r, (12)

where αk is a free parameter. By taking advantage of the LBGK moments and respecting

isotropy the equilibrium functions are readily found to be

N
k(e)
0 = ρk

(
αk −

2

3
u2

)
, (13)

N
k(e)
i = ρk

(
1− αk

5
+Wi

[
3ci · u +

9

2
(ci · u)2 − 3

2
u2

])
, (14)

i = 1, 2, 3, 4,

N
k(e)
i = ρk

(
1− αk

20
+Wi

[
3ci · u +

9

2
(ci · u)2 − 3

2
u2

])
, (15)

i = 5, 6, 7, 8,

where the weights Wi are given by

Wi =


4

9
, i = 0,

1

9
, i = 1, 2, 3, 4,

1

36
, i = 5, 6, 7, 8.

(16)

The stable interface assumption leads to the following density ratio, γ:

γ =
ρr
ρb

=
1− αb
1− αr

, (17)

with the pressure given by:

pk0 =
3ρk (1− αk)

5
= ρk(c

k
s)

2, (18)

which satisfies an ideal equation of state. The parameter αk determines the speed

of sound, (cks)
2, thus controlling the hydrodynamic pressure at interfaces. It can be

viewed as representing the ensemble average number of degenerate rest particles, which

is needed to achieve a stable interface and achieve a density variation between the

fluids. Therefore the choice of αk is important for flows with a large density difference.

To ensure that 0 < Nk
i < 1 in a mixed region we require

0 < αk < 1, (19)

and a little manipulation reveals that
ρr − ρb
ρr

< αr < 1, (20)

if ρr > ρb.
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2.1. Two-Phase Collision Operator

The two-phase collision operator,
(
Ωk
i

)(2)
, is defined in such a way as to encourage

colour segregation while satisfying the conservation constraints of equations (5) and (6).

A spatial colour difference, ρ̄, is defined as

ρ̄(x) = ρr(x)− ρb(x). (21)

The colour gradient may be calculated in terms of the colour difference using

H(x) = ∇ρ̄(x).

A fourth-order approximation, F, to the colour gradient, H, is given by

F(x) =
8∑
i=1

ci [ρr (x + ci)− ρb (x + ci)] . (22)

Since the colour gradient is perpendicular to the interface, we can define an approximate

unit normal, n, to the surface:

n =
F

|F|
' ∇ρ̄
|∇ρ̄|

.

An extension of the model proposed by Grunau et al. [19] to a D2Q9 lattice would

give (
Ωk
i

)(2)
=
Ak
2
|F|
[

(F · ci)2

|F|2
− 3

4

]
, i = 1, . . . , 8. (23)

In equation (23) Ak is a free parameter controlling surface tension. We note that F = 0

in pure phases, thus
(
Ωk
i

)(2)
only contributes to mixed interfacial regions. The factor

3/4 in equation (23) is included to ensure the conservation of mass and momentum:

8∑
i=1

(
Ωk
i

)(2)
= 0, (24)

8∑
i=1

(
Ωk
i

)(2)
ci = 0. (25)

However, it can be shown using the Chapman-Enskog technique that it is not possible

to derive the correct form of the macroscopic continuum equations for multiphase flow

when the two-phase collision operator is defined by (23). To obtain the correct form

of the continuum equations we propose the following representation of the two-phase

collision operator(
Ωk
i

)(2)
=
Ak
2
|F|
[
Wi

(ci · F)2

|F|2
−Bi

]
, i = 0, . . . , 8, (26)

where

Bi =


− 4

27
, i = 0

2

27
, i = 1, 2, 3, 4

5

108
, i = 5, 6, 7, 8.

(27)
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The colour gradient F(x) is normal to the interface at node x (see Fig. 1) so

we see that (Ωk
i )

(2) in (23) serves to add mass to populations moving in this direction

and removes mass parallel to the interface. Since this term does not conserve colour

densities separately an additional step is needed to promote phase segregation and

maintain surfaces between fluids. Following Gunstensen [18], we define the colour flux

K(x) by

K(x) =
8∑
i=1

(
N r
i −N b

i

)
ci, (28)

and force this vector to align with the colour gradient (22) and minimise the diffusion

of one colour into the other.

Figure 1. The colour gradient F is normal to a fluid-fluid interface.

2.1.1. Re-colouring The optimisation problem above can be written as follows:

Maximise the work done W against the colour gradient:

W = K · F, (29)

subject to the constraints

N r′′
i +N b′′

i = N ′′i , (30)∑
i

N r′′
i = ρr, (31)

where the double primes denote post two-phase collision quantities. Differentiating W

with respect to N r′′
i and N b′′

i yields

∂W

∂N r′′
i

=
∑
i

(ci · F) = 0, (32)

∂W

∂N b′′
i

= −
∑
i

(ci · F) = 0, (33)

i.e. there are no turning points. Optimisation techniques such as the method of

Lagrangian multipliers are therefore redundant. We continue to solve the maximisation

problem in a more ad hoc fashion. The link vectors ci are listed in descending order

starting with the one nearest the colour gradient F. The maximum number of red
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particles available are sent in the directions close to F (i.e. perpendicular to the

interface) while blue particles are sent in the opposite direction, subject to constraints

(30) and (31). Latva-Kokko and Rothman [21] point out that a potential drawback of

this re-colouring technique is so called lattice pinning. This situation occurs when one

of the fluids, say red, is close to or on a fluid-fluid interface but the flow is too weak to

move many red particles. The interface now becomes pinned to the lattice. Latva-Kokko

and Rothamn studied this effect in the case of small bubbles concentrated around one

lattice node. The authors report that such bubbles will not move unless forced very hard

- a problem which can be of significance when examining the flow and separation of an

initially mixed state. Alternative re-colouring schemes which reduce lattice pinning but

widen the interface have been suggested by Latva-Kokko and Rothman [21] and Tölke

et al. [20].

2.1.2. Interface relaxation parameter The thickness of an interface will depend on an

averaged relaxation parameter. When the relaxation parameters ωk, and therefore the

viscosities, of the two fluids are different, the interface width increases. To ensure a

stable interface and smooth change in viscosity we define an order parameter ψ in the

same fashion of Grunau [19] et al.:

ψ =
ρr − ρb
ρr + ρb

, (34)

and a relaxation function ω ≡ ω(ψ) is defined as follows:

ω =


ωr, ψ > δ,

fr(ψ), δ ≥ ψ > 0,

fb(ψ), 0 ≥ ψ ≥ −δ,
ωb, ψ < −δ,

(35)

where

fr(ψ) = β + γψ + εψ2, (36)

fb(ψ) = β + ηψ + ξψ2, (37)

and β, γ, ε, η and ξ are constants chosen so that ω and its derivative are continuous.

Let 〈ω〉 = 2ωrωb/(ωr + ωb) be the averaged relaxation parameter across the interface

and assume that fr(δ) = ωr, fb(−δ) = ωb, ∂ω/∂ψ = 0 when ψ = ±δ, and

fr(0) = fb(0) = 〈ω〉. Simple algebra reveals that

β = 〈ω〉, (38)

γ =
2(ωr − β)

δ
, (39)

ε = − γ

2δ
, (40)

η =
2(β − ωb)

δ
, (41)

ξ =
η

2δ
, (42)
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where δ ≤ 1 is a free parameter controlling the thickness of an interface. If the relaxation

parameters (and therefore viscosities) are equal the value of δ does not affect the flow.

If on the other hand there is a large difference in viscosity between the two fluids the

choice of δ could affect the thickness and dynamics of an interface.

2.2. Surface Tension

Figure 2. Planar interface geometry in Cartesian co-ordinates.

The mechanical definition of surface tension is

σ =

∫ ∞
−∞

(PN(z)− PT (z))dz, (43)

where PN and PT are the normal and tangential components of the pressure tensor and

z measures the distance normal to the interface. Let θi be the angle between link vector

ci and the x-axis and let θz be the angle between z and the x-axis (see Fig. 2). The

components PN and PT are given by

PN =
∑
i

Nic
2
iN , (44)

PT =
∑
i

Nic
2
iT , (45)

where

ciN = |ci| cos(θi − θz), (46)

ciT = |ci| sin(θi − θz). (47)

Consider equation (43) as an average over M adjacent long integration lines

y = constant and cast a discrete summation over lattice nodes in an area A [22]:

σ ≈ cos θz
M

∑
x∈A

∑
i

NiUi =
cos θz
M

∑
x∈A

∑
i

(
N

(e)
i +N

(neq)
i

)
Ui, (48)

where

Ui = c2
i cos[2(θi − θz)]. (49)

Now consider the equilibrium and non-equilibrium contributions separately. After

substituting equations (13), (14) and (15) into (48) a little algebraic evaluation leads us

to the following relation:∑
x∈A

∑
i

N
(e)
i Ui =

∑
x∈A

ρu2 cos[2(θu − θz)], (50)
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where θu is defined through

ux = u2 cos θu(x), (51)

uy = u2 sin θu(x). (52)

To find the non-equilibrium contribution we note that, at steady state, the evolution

equation is reduced to

Ni(x + ci) = Ni(x)− ωN (neq)
i + Ω

(2)
i , i = 0, . . . , 8 (53)

where Ω
(2)
i = (Ωr

i )
(2) +

(
Ωb
i

)(2)
. For a lattice with well-defined boundary conditions∑

x

Ni(x + ci) =
∑
x

Ni(x) (54)

and therefore ∑
x

∑
i

N
(neq)
i Ui =

Ar + Ab
2ω

∑
x

|F|
∑
i

(
Wi

(ci · F)2

|F|2
−Bi

)
Ui. (55)

If we assume F/|F| is constant we can write

Ui =

(
(ci · F)2

|F|2
− (ci ·G)2

|G|2

)
, (56)

where G is any vector perpendicular to F. This then yields∑
x

∑
i

N
(neq)
i Ui =

2(Ar + Ab)

18ω

∑
x

|F|. (57)

Finally, combining the equilibrium and non-equilibrium contributions gives

σ =
cos θz
M

(∑
x

ρu2 cos[2(θu − θz)] +
2(Ar + Ab)

18ω

∑
x

|F|

)
. (58)

The second term in equation (58) is relatively straightforward since |F| vanishes in

non-interfacial regions but there appears to be no obvious general simplification of the

first term (which is of second order in u). It is, however, manageable in particular

circumstances.

To first order in u we can neglect the first term in (58) to obtain

σ =
cos θz
M

(
2(Ar + Ab)

18ω

∑
x

|F|

)
∼
Ar + Ab

ω
, (59)

where ω determines the kinematic viscosity of the fluid through the relationship (77).

2.2.1. Plane interfaces Consider a thin plane interface parallel to the y-axis (such that

cos θz = 1) with colour symmetrically separated and assume there are no microcurrents

(u = 0), then the expression for surface tension (58) becomes

σ =
2(Ar + Ab)

18Mω

∑
x

|F|. (60)

The stable interface cannot be centered on a single layer and as we integrate (43) along

the line perpendicular to the interface three nodes will contribute to the surface tension,
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i.e there are three nodes with non-zero F: one lying on the line x = x0 and one to both

is left and right (Fig. 3). This corresponds to a |F| given by

|F| = C (δ(x− x0 + 1) + δ(x− x0) + δ(x− x0 − 1)) , (61)

where C is a constant and δ here refers to the Dirac delta function. Therefore

σ =
2(Ar + Ab)C

18Mω

∑
∀z,x

(δ(x− x0 + 1) + δ(x− x0) + δ(x− x0 − 1)) , (62)

=
(Ar + Ab)C

3ω
. (63)

At steady state the colour gradient is constant, making it possible to estimate |F|, and

therefore C. By looking at the amount of red and blue particles at interfacial sites we

find that C = 5ρ/2 and therefore

σ =
5ρ(Ar + Ab)

6ω
. (64)

Figure 3. Symmetric separation about a thin interface. Circled nodes contribute to

the theoretical expression for surface tension.

To verify the above relation a 64× 64 square lattice domain was constructed with

a vertical interface through the centre. Equal amounts of red and blue fluid filled the

domain and, for simplicity, we set ωr = ωb = 1 and Ar = Ab = 0.0001. The system was

allowed to evolve to a steady state before PN and PT were measured and the integral

(43) approximated using a simple trapezoidal formula. Fig. 4 shows the numerical

measurements of the mechanical definition (+) and the theoretical prediction (solid

line) of σ as a function of density. The theory and numerics are seen to be in good

agreement, confirming the validity of the above analysis.

We also test the capability of the model to predict Laplace’s law for surface tension.

We construct a 128×128 domain with a bubble of red fluid centered in the middle of the

geometry and measure the pressure difference inside and outside the bubble. Laplace’s

formula is as follows:

pi − po =
σ

R
, (65)

where pi and po are the pressures inside and outside the bubble, respectively, R is the

radius and σ the surface tension. Fig. 5 plots the pressure difference (calculated by
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Figure 4. The numerical measurements (+) and theoretical predictions (solid line) of

surface tension as a function of density.

equation (18)) against 1/R using the following choice of parameters: ρr = ρb = 1,

Ar = Ab = 0.001 αr = 0.1. The numerical measurements are shown by the � symbols

and the solid line is a linear fit passing through the origin, the slope of which gives the

surface tension. The straight line is seen to be an excellent fit to the predicted pressure

difference, thus demonstrating the ability of the model to predict surface tension.

Figure 5. The numerical measurements � and theoretical predictions (solid line) of

Laplace’s law for surface tension.

2.3. Macroscopic Equations of Motion

Although the addition of the two-phase component of the collision operator (23) enables

the lattice Boltzmann model to simulate some multi-phase problems [19], the validity

of the operator is not well understood. More specifically, its ability to handle flows

with substantially different densities is untested and the theoretical considerations are

incomplete.
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A collision operator of the form (23) or (26) aims at a discretisation of the term

involving the distributed stress tensor because the colour gradient is an approximation

of the derivative of a jump condition. However, it can be shown that equation (23) does

not recover the correct form of the macroscopic force term after applying the Chapman-

Enskog analysis. We will show, however, that a modification of the lattice Boltzmann

collision operator can recover the correct form of the macroscopic equations. A single

phase version of the Navier-Stokes equations are derived containing an appropriate

source term, localized to the vicinity of the interface, to account for surface tension

effects.

Since the two-phase collision operator
(
Ωk
i

)(2)
vanishes in regions containing just

one fluid, the standard Chapman-Enskog analysis can be employed for each pure phase

and the Navier-Stokes equations can be derived. At an interface the two-phase operator,

(Ωk
i )

(2) enters the analysis and a Taylor and Chapman-Enskog expansion of equation (2)

yields, to first order in ε:

∂t1N
(0)
i + ciα∂αN

(0)
i = −ωN (1)

i + Ω
(2)
i , (66)

where we have summed the ‘red’ and ‘blue’ contributions. We note that in the above

ω = ω(φ) is the average relaxation parameter defined in equation (35). The mass and

momentum constraints yield:

∂t1ρ+ ∂αρuα = 0; (67)

∂t1ρuα + ∂αΠαβ = 0, (68)

respectively, where Παβ is the momentum flux tensor, given by:

Παβ =
8∑
i=0

N
(e)
i ciαciβ, (69)

= p0δαβ + ρuαuβ, (70)

where the pressure p0 = pr0 + pb0, is found from equation (18).

After the application of the mass constraint to the second order expansion of

equation (2) we obtain:

∂t2ρ = 0; (71)

and combining this with the first order results shows that

∂tρ+∇ · ρu = 0. (72)

Application of the momentum constraint to the second order equation leads to the

relation:

∂t2ρuα + ∂βQαβ +
1

2
∂t1∂βΠαβ +

1

2
∂β∂γPαβγ = 0, (73)

where Pαβγ =
∑

iN
(0)
i ciαciβciγ and Qαβ =

∑
iN

(1)
i ciαciβ. The two-phase operator

dictates the following form of the tensor Qαβ:

Qαβ = − 1

ω

(
∂t1Παβ + ∂γPαβγ −

∑
i

Ω
(2)
i ciαciβ

)
, (74)
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and therefore we find that

∂t2ρuα + ∂β

(
1

2
− 1

ω

)
[∂t1Παβ + ∂γPαβγ] + ∂β

1

ω

∑
i

Ω
(2)
i ciαciβ = 0. (75)

Now, adding equations (68) and (75) and using vector notation we find that

∂tρu +∇ · (ρuu) = −∇p0I + ν
[
∇2(ρu) +∇∇ · (ρu)

]
−∇ · S, (76)

where

ν =
1

3

(
1

ω
− 1

2

)
(77)

is the kinematic viscosity and

Sαβ =
1

ω

∑
i

Ω
(2)
i ciαciβ (78)

=
A|F|
ω

(
1

|F|2
∑
i

Wi(ci · F)2ciαciβ −
∑
i

Biciαciβ

)
(79)

=
A|F|
ω

(
1

9|F|2
FγFδ(δαβδγδ + δαγδβδ + δαδδβγ)−

1

3
δαβ

)
(80)

which can be written as

S =
2A

9ω|F|

(
−F 2

y FxFy
FxFy −F 2

x

)
. (81)

The additional term in the Navier-Stokes equation viz. ∇ ·S, arises from the effect

of surface tension and can be expressed in terms of the fluid composition. The fluid

composition is modelled using the colour difference, ρ̄, which plays the role of an order

parameter.

In the lattice Boltzmann model for immiscible fluids described here and elsewhere

there are three fluid regions: homogeneous red and blue regions and a thin region near

the interface where the two fluids mix. The method will not recover a sharp interface, i.e.

one of zero thickness, but instead produce what is known as a ‘diffuse’ interface. Diffuse

interface ideas were developed by Rayleigh [23] and by van der Waals [24], who proposed

gradient theories for the interface based on the principles of thermodynamics. In diffuse

interface models [25] a capillary stress tensor is used to model the interface between the

two fluids. In this way a theory of the interface based on continuum mechanics may be

developed and a modified Navier-Stokes equation can be derived with an additional term

that accounts for surface tension (see Anderson et al [25], for example). The capillary

tensor, Γ, has the following form in terms of the colour difference:

Γ ∼ |∇ρ̄|2I−∇ρ̄⊗∇ρ̄ ' |F|2I− F⊗ F, (82)

where ⊗ denotes the outer product between two vectors.

Suppose that ρr and ρb are smooth functions that decay rapidly to zero in the

interfacial region. Since ρ̄ approximates a jump function, the surface delta distribution

δs, defined by

〈δs, φ〉 =

∫
s

φ ds,
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where s is the interface between the two phases, satisfies δs ≈ C|F| where C is the

inverse of the jump height. The surface distribution δs is only non-zero within a finite

thickness transitional region near the interface since F = 0 in pure phases. Therefore

we can express the tensor S in the form

S =
2A

9ω

(
I− F⊗ F

|F|2

)
|F|

=
2A

9ωC
(I− n⊗ n)δs

To first order in u, A/ω is approximately proportional to σ, and therefore we have

S = Bσ(I− n⊗ n)δs, (83)

where B is a constant. We note that

∇ · (I− n⊗ n)δs = κnδs,

where κ is the mean radius of curvature of the interface defined by

κ = −∇ · n.

Note that the constant B in (83) can be replaced with unity by scaling the two-phase

collision operator (26) by an appropriate factor.

We remark that the collision operator defined in equation (23) would give the tensor

S in the form

S =
2A

ω|F|

(
2F 2

x − |F|2 4FxFy
4FxFy 2F 2

y − |F|2

)
, (84)

which is not a correct discretisation of the term involving the distributed stress tensor

in the Navier-Stokes equations.

3. Numerical Simulations

Consider two incompressible immiscible fluids moving in the x-direction under the

influence of a horizontal pressure gradient G. If the flow is sufficiently small so that no

instabilities occur with the interface remaining in the centre of the channel at all times

then the analytical solutions for the steady flow are found to be

ur =
Gh2

2µr

[
−
(y
h

)2
+
y

b

(
µr − µb
µr + µb

)
(85)

+
2µr

µr + µb

]
, −h ≤ y ≤ 0,

ub =
Gh2

2µb

[
−
(y
h

)2
+
y

b

(
µr − µb
µr + µb

)
(86)

+
2µb

µr + µb

]
, 0 ≤ y ≤ h,
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Figure 6. Analytical (solid line) and numerical (+) measurements of velocity for two

adjacent immiscible fluids (left plot) and three-layer Poiseuille flow (right plot).

where h is the half channel width and µr and µb are the shear viscosities for red and

blue fluids, respectively.

A horizontally periodic 128× 65 lattice with a no-slip condition on the upper and

lower walls was initialised with the upper half of the channel consisting of pure red fluid

and the lower half pure blue. The centre line initially contained an equal number of

each particle type. Both fluids were of unit density with ωb = 0.795229, ωr = 0.360685

(corresponding to viscosities µb = 0.2525, µr = 0.75775). We also set αr = 0.1, δ = 0.1,

Ar = Ab = 0. Initially the system was at rest and a small force G was used to mimic

the pressure gradient and drive the flow based on the velocity uI at the center:

uI =
gh2

µr + µb
= 0.045 (87)

Fig. 6 plots the analytical solution (solid line) and lattice Boltzmann prediction (+) of

the velocity profile. We see a very good agreement between the numerical and analytical

predictions.

To demonstrate the role of the relaxation parameter, δ, we perform the layered

Poiseuille flow simulation as outlined above with δ = 0.01, 0.3, 0.5, 0.7, 0.9. Fig. 7 plots

the velocity profile when δ = 0.9. Compared with the left-hand plot in Fig. 6, we see

a smoother curve in the neighbourhood of the interface and a further departure from

the analytical solution in this region. Table 1 shows the computed value of velocity at

the points y = −h/2, y = 0 and y = h/2 for each value of δ alongside the relative error

between these and the analytical values. It is clear that as δ increases the relative error

increases, which justifies our choice of δ = 0.1 in the simulations that follow.

Using the same value for the force G we measure the velocity of a flow that has one

fluid sandwiched between another less viscous fluid. Apart from the initial configuration

this simulation is identical to the one described above. The analytical solutions to this

flow are given by

ub =
G

8

(
3h2

µr
+
h2 − 4y2

µb

)
, −h ≤ y ≤ −h

2
,

ur =
G

2µr

(
h2 − y2

)
, −h

2
≤ y ≤ h

2
,
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Figure 7. Analytic and numeric (+) measurements of velocity of two adjacent

immiscible fluids when δ = 0.9.

δ u(−h/2) u(0) u(h/2)

0.01 0.03020 0.0451 0.04490

error (%) 0.5 0.2 0.2

0.1 0.03021 0.0451 0.04490

error (%) 0.5 0.2 0.2

0.3 0.0306 0.04520 0.0457

error (%) 2 0.4 1.56

0.5 0.0306 0.0454 0.0457

error (%) 2 0.89 1.56

0.7 0.0306 0.0458 0.0457

error (%) 2 1.78 1.56

0.9 0.0297 0.0459 0.0458

error (%) 1 2 1.78

Table 1. Comparison of velocity for two-layer Poiseuille flow using different values of

δ. The exact values are (to three significant figures): u(−h/2) = 0.03; u(0) = u(h/2) =

0.045.

ub =
G

8

(
3h2

µr
+
h2 − 4y2

µb

)
,

h

2
≤ y ≤ h

and in Fig. 6 we plot the velocity predicted by the analysis (solid line) and the numerics

(+). Once again the results are in very good agreement.

The theoretical problem of finding the position of a fluid-fluid interface has non-

unique solutions. However, experimental observations show immiscible fluids of the

same density form spheres of one fluid within another. A stability analysis along with

a study of the dynamics of rotating binary mixtures predicts the same phenomenon [1].

We test our model against these findings by adjusting the material parameters of the

spinodal decomposition simulation discussed above. Starting with a random mixture of

fluid in a fully periodic 64× 64 domain with ρr = ρb = 1, ωr = 0.360685, ωb = 0.795229

(corresponding to viscosities νr = 0.7575, νb = 0.2525), A = 0.0001, and αr = 0.1

we view the fluid configuration at various time steps. It is important to note that the
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Figure 8. Distribution of colour at times t = 1000 (top left) t = 3000 (top right),

t = 15000 (bottom left), and t = 30000. The white fluid is the more viscous.

mass of each species did not change throughout this experiment. In Fig. 8 we see how

a mixture of two liquids of different viscosities evolves into a stationary configuration

with one large low viscous bubble immersed in a more viscous fluid. This result seems

to agree with the ideas of Renardy and Joseph [1]:

Perhaps there is a selection mechanism based on the stability to large

disturbances, in which the stable configuration is the one that minimizes the

surface area. This type of criterion would lead to large bubbles, even one large

bubble, rather than many small ones.

When a rod or cylindrical drop of one fluid is immersed in another, surface tension

causes it to deform and capillary waves are induced that make the drops surface oscillate

about its equilibrium shape. This behaviour can be observed in numerical calculations

by surrounding an initially square droplet of one fluid with another and monitoring its

response. To perform this test with our model we let a 32 × 32 square of red fluid

centered in a 64 × 64 grid evolve in time. The parameters chosen for this flow were:

ρr = 2, ρb = 1, νr = νb = 1, Ar = Ab = 0.01, αr = 0.5. The initial configuration is

shown in the top left plot of Fig. 9 and we take snapshots of the flow at different time-

steps. After 140 time-steps surface tension has caused the corners (which are the areas

of high curvature) to collapse, which in turn pushes the center of the vertices outward,

resulting in diamond-like formation. Surface forces are then strong in these new areas

of high curvature, thus sending the drop into oscillation. This behaviour is observed in

Fig. 9 and which shows the red drop collapsing to a smoothed square (t = 300) before

returning to a smoothed ‘diamond’ shape. The frequency of this oscillation decreases

in time and by 800 time-steps the red fluid has found its equilibrium spherical shape.
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The final radius of the bubble is approximately 18.05, which shows its area is the same

as the initial square configuration.

Figure 9. Oscillation and relaxation of an initially square droplet of higher density

fluid to its equilibrium spherical shape.

For a large density ratio test we look at the coalescence of two identical circular

droplets. Two red bubbles of radius R = 18.2 and density ρr = 2.261 are placed very

close together in the center of a 100 × 100 computational domain. The surrounding

fluid is blue with density ρb = 0.122, giving a density ratio of γ = 18.5. To ensure

a stable interface we set αr = 0.95 and the other parameters are: νr = νb = 1 and

Ar = Ab = 0.008. The initial configuration is shown in the top left plot of Fig. 10.

As soon as the simulation starts inter-molecular forces cause the bubbles to coalesce

and we see in Fig. 10 how the two droplets merge together. Like the non-equilibrium

rod test tension forces send the surface into oscillation before it reaches its equilibrium.

The symmetries about x = nx/2 and y = ny/2 are preserved and in agreement with

other researchers’ results [26]. The oscillation is clearly visible in Fig. 11 which plots

the droplet radius at y = ny/2 as a function of time t. It is important to note that

the relation Rf =
√

2RI , where Rf is the final radius of the bubble and RI the initial

radius, is satisfied.

4. Conclusion

In this paper a Rothman-Keller type lattice Boltzmann model has been developed for

immiscible binary fluids using a D2Q9 lattice. An equilibrium function and collision

operator for each phase has been derived, allowing each fluid to have to have its own

density and viscosity while at the same time satisfying the necessary conservation laws

and symmetry conditions. A theoretical expression for surface tension has been derived

from this model and shown to be in good agreement with numerical measurements. The

macroscopic governing equations are satisfied by the mesoscopic evolution of each phase.
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Figure 10. Plots showing the coalescence of two identical bubbles and its relaxation

to an equilibrium configuration due forces at the interface.

Figure 11. The radius of the coalescing bubble at y = ny/2 as a function of time.

The solid line is a polynomial fit through the data points.

The model was first used to study Poiseuille flow in a two-dimensional channel

for two and three layer configurations of immiscible fluids. Good agreement with the

analytical solution was obtained in both cases. The three layer configuration maximises

the mass flux for a given pressure gradient [1]. Using a body force of the same magnitude

a greater maximum velocity is obtained than in the two layer configuration.

The thickness of the interface between the two fluids is controlled by the value of

the free parameter, δ. Sharp interfaces are achieved by choosing small values of δ while

values close to unity lead to the interface being spread over several lattice cells. The

results in this paper were generated using δ = 0.1. Larger values caused too much

smearing of the interface and resulted in a less accurate prediction of the velocity profile

near an interface.
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The model was then used to simulate the spinodal decomposition of a binary

mixtures. In the case of a mixture of two fluids with the same density but different

viscosities the model predicts that, in equilibrium, one large low viscous bubble is

surrounded by the more viscous fluid. This prediction agrees with the analysis of Joseph

and Renardy [1] who show, using rigorous mathematical arguments, that stable solutions

to the equations for rigid motions of two liquids can be framed as a minimisation of

energy problem, the only global solution to which is one large sphere. We have also

performed simulations to demonstrate that this model can predict binary flows with

much larger density ratios than other R-K type lattice Boltzmann methods.
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