
A volume-preserving sharpening approach for the propagation of
sharp phase boundaries in multiphase lattice Boltzmann simulations

T. Reis∗, P. J. Dellar∗

Oxford Centre for Collaborative Applied Mathematics
Mathematical Institute, 24-29 St Giles’, OX1 3LB, UK

Abstract

Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immisci-

ble liquids typically represent the boundaries between phases using a scalar function, the phase field,

that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the

thicknesses of these interfaces typically lead to the interfaces becoming fixed to the underlying grid

instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly

similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic

source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque

and Yee [J. Comput. Phys. 86, 187] to study the latter phenomenon in the context of computational

combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the

random projection method of Bao and Jin [J. Comput. Phys. 163, 216] we further generalise this

formulation by introducing a uniformly distributed quasi-random variable into the term responsible

for the sharpening of phase boundaries. This method is mass conserving and the statistical average of

this method is shown to significantly delay the onset of pinning.
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1. Introduction

The lattice Boltzmann method (LBM) is often promoted as a numerical simulation tool that is

particularly suitable for predicting complex flows, most notably immiscible fluids in porous media.

The lattice Boltzmann approach offers some attractive features to the CFD community, such as a linear

constant-coefficient advection operator, and all nonlinearity being confined to algebraic sources terms

that may be implemented locally grid point by grid point. This makes the LBM highly amenable to

efficient parallel implementations on modern computer architectures. The lattice Boltzmann equation

has been successfully applied to a wide variety of flow phenomena [17, 18, 19] In this paper we focus
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on lattice Boltzmann approaches that simulate two immiscible fluids using a phase field or colour

field φ to represent the different phases, following the work of Gunstensen et al [7] and Granau et al

[8]. We do not consider the other approaches for simulating multiphase flow at the molecular level

[9, 10, 11].

Regions where the phase field φ ≈ 0 might represent one phase (e.g. oil) and regions where φ ≈ 1

the other phase (e.g. water). In principle, φ is advected by the fluid velocity, hence φt + u · ∇φ = 0.

However, to make the most of limited spacial resolution it is common to add a “sharpening term” to

counteract the inevitable numerical diffusion and preserve relatively thin boundaries between different

phases. For example, the sharpening term might drive all points where φ > 1
2

back towards φ = 1,

and all points where φ < 1
2

back towards φ = 0. The width of the phase boundary is then controlled

by a balance between diffusion and the sharpening term. However, overly narrow phase boundaries

can fail to propagate correctly, becoming fixed or “pinned” to the grid [2, 4, 5].

This combination of advection and sharpening shares all the qualitative properties of the model

equation

φt + u · ∇φ = S(φ) = − 1

T
φ (1− φ)(φ− 1

2
) (1)

introduced by LeVeque & Yee [3] to study the misbehaviour of numerical solutions of hyperbolic

equations when the natural timescale T of the source term was small compared with a timestep.

Starting from initial conditions representing a step transition from φ = 1 to φ = 0, equivalent to a

boundary between one phase and the other, LeVeque and Yee [3] found that the boundary in their

computations either remained stationary, or propagated with the incorrect speed of one grid point per

timestep.

Bao & Jin [1] proposed a random projection method to tackle the difficulties in computing the

solutions of stiff hyperbolic conservation laws. Recognising that the effect of solving the partial

differential equation (PDE) (1) over a timestep ∆t � T is to project φ to either 0 or 1, whichever is

closer to its initial value, Bao & Jin [1] modelled the effect of the source term by an explicit projection

to either 0 or 1 at each timestep. However, rather than the direction of the projection being determined

always by whether φ ≷ 1
2
, they introduced a threshold φ(n)

c that varied from timestep to timestep. They

showed that taking this threshold from the van der Corput sampling sequence gave the correct average

propagation speed over many timesteps for a step transition from φ = 1 to φ = 0.

In an attempt to understand and overcome the phenomenon of pinning in multiphase LBMs, we

present a lattice Boltzmann formulation of a random-projection inspired generalisation of the model

equation (1). In Section 2 we discuss the problem of stiffness in more detail and summarise the find-

ings of LeVeque & Yee [3] and Bao & Jin [1]; in Section 3 we show how one can formulate a lattice
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Boltzmann implementation of the these model problems; and our numerical results are presented in

Section 4.

2. Stiffness and Pinning

To try and understand the misbehavior of numerical solutions to stiff PDEs, LeVeque and Yee [3]

studied the model problem given by equation (1). Algorithms for the advection step (that is, the left-

and side of (1)) inevitably introduce a degree of numerical diffusion which leads to some smearing of

φ while the sharpening term S(φ) drives these intermediate values back to one of its stable equilibria

(that is, either 0 or 1), depending on weather the post-advection value is greater or less than the

unstable point φc = 1/2. Thus, when the system is very stiff, that is when the timestep ∆t � T , the

sharpening step effectively becomes a deterministic projection of φ onto its stable equilibrium values:

SD(φ) : φ(x, t+ ∆t) =

1 if φ′(x, t) > 1/2,

0 if φ′(x, t) ≤ 1/2;

(2)

where SD(φ) denotes the discrete operator for the source term and φ′ is the post advection value of φ.

If φ′ > 1/2, the operator defined by equation (2) always drives φ to one over a timestep, thus forcing

the discontinuity to advance by one grid point. Conversely, φ → 0 if φ′ < 1/2 and the discontinuity

does not move at all.

The aim of the random projection method proposed by Bao & Jin [1] is to explicitly project φ

back to one of its equilibrium values with the direction of projection depending not on the (constant)

unstable equilibrium value but rather on the nth value of uniformly distributed quasi-random sequence

φ
(n)
c ∈ [0, 1] at the nth timestep. That is, Bao & Jin [1] apply the discrete random projection operator

SR to the post-advection value of φ, where

SR(φ) : φ(x, t+ ∆t) =

1 if φ′(x, t) > φ
(n)
c ,

0 if φ′(x, t) ≤ φ
(n)
c .

(3)

Bao & Jin [1] proved that their method yields the correct interface propagation speed with an

error of O(∆x| ln ∆x|) when either the first order upwind or Lax–Friedrichs method is applied to the

advection step, and the φ(n)
c are taken from the van der Corput sampling sequence. In other words,

the propagation errors that are inevitably incurred at each timestep average out over many timesteps.

The van der Corput sequence is an easily evaluated and equidistributed sequence on the unit

interval. If n ∈ N has the binary expansion
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n =
m∑
k=0

γk2
k, γk ∈ {0, 1}, (4)

the corresponding nth member of the van der Corput sequence is

φ(n)
c =

m∑
k=0

γk2
−(k+1). (5)

These φ(n)
c have the properties that φ(n)

c ∈ [0, 1], φ(1)
c = 1, φ(n)

c < 1/2 for n even, and φ(n)
c > 1/2 for

n odd.

Inspired by these findings, we generalise the model partial differential equation (1) studied by

LeVeque & Yee [3] to

φt + u · ∇φ = S(φ) = − 1

T
φ (1− φ)

(
φ− φ(n)

c

)
. (6)

In other words, we replace the previous constant threshold φc = 1/2 in the sharpening term by a

member of the van der Corput sequence. We use the nth member of the sequence at the nth timestep

for all grid points.

3. Lattice Boltzmann Formulation

We now construct a lattice Boltzmann formulation for our model equation (6), following the usual

approaches for advection-reaction-diffusion equations [12, 13, 14, 15]. We express the phase field φ

as the zeroth moment of a set of distribution functions fi(x, t),

φ =
∑
i

fi, (7)

where the ci are a given set of discrete velocities. We then postulate the discrete Boltzmann equation

∂tfi + ci · ∇fi = −1

τ

(
fi − f (0)

i

)
+R i. (8)

The equilibrium distributions are

f
(0)
i = wiφ

(
1 + θ−1ci · u

)
, (9)

where u is the advection velocity, which we assume to be constant. The wi are constant weights

associated with the particle velocities ci. Examples of these are given below. The lattice constant θ is

defined by

∑
i

wiciαciβ = θδαβ, (10)
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where Greek indices refer to Cartesian components, and repeated Greek indices will be summed.

Sharpening is provided by the term Ri, which must satisfy

∑
i

Ri = S(φ). (11)

3.1. Macroscopic limit

As is standard in the lattice Boltzmann approach, we aim to recover our model equation (6) as

the equation describing slowly varying solutions of (8), i.e. solutions that vary over timescales much

longer than the collision time τ . Taking he first two moments of (8) gives

∂tφ+∇ ·ψψψ = S(φ), (12)

∂tψψψ +∇ ·ΠΠΠ = − 1
τ

(
ψψψ −ψψψ(0)

)
+ G(φ), (13)

where higher moments of the fi and Ri are defined by

ψψψ =
∑
i

fici, (14)

G(φ) =
∑
i

Rici, (15)

ΠΠΠ =
∑
i

ficici. (16)

We seek the slowly varying behaviour using the multiple-scales version of a Chapman–Enskog ex-

pansion.

We expand the non-conserved moments ψψψ, ΠΠΠ, and the time derivative ∂t as series in the collision

time τ :

ψψψ = ψψψ(0) + τψψψ(1) + · · · , ΠΠΠ = ΠΠΠ(0) + τΠΠΠ(1) + · · · , ∂t = ∂t0 + τ∂t1 · · · . (17)

We do not expand φ because it is conserved by the collision term. The leading order contributions to

the fluxes are

ψψψ(0) = uφ, ΠΠΠ = θφI, (18)

where I is the identity tensor. Substituting these into equation (13), and evaluating ∂t0ψψψ
(0) using the

leading order approximation to equation (12), yields an expression for the first correction ψψψ(1) to the

flux,

u (S(φ)− u · ∇φ) + θ∇φ = −ψψψ(1) + G(φ). (19)
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We choose G(φ) = uS(φ) so that, after a little algebra,

ψψψ = uφ− τ (θ∇φ− u (u · ∇)φ) +O(τ 2). (20)

Substituting this expression for the flux into the evolution equation (12) for φ yields the advec-

tion/diffusion/reaction equation

∂φ

∂t
+ u · ∇φ = S(φ) + τ

(
θ∇2 − uu : ∇∇

)
φ+O(τ 2). (21)

The leading order terms match our intended equation (6). The inevitable diffusive correction term at

O(τ) will set the width of the boundary between the two fluids. A sharpening term Ri that satisfies

the constraints
∑

iRi = S(φ) and
∑

iRici = G(φ) = uS(φ) is

Ri = −wiS(φ)
[
1 + θ−1ci · u

]
, (22)

analogous to the expression (9) for the f (0)
i .

3.2. Reduction to fully discrete form

To solve (8) numerically we must discretise it in space and time. This may be achieved by inte-

grating (8) along a characteristic for a time ∆t to obtain

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =

∫ ∆t

0

Ωi(x+ cis, t+ s)ds, (23)

where Ωi represents the combination of collision and source terms,

Ωi(x, t) = −1

τ

(
fi(x, t)− f (0)

i (x, t)
)

+Ri(x, t). (24)

The left hand side of (8) is a derivative along a characteristic, so the left hand side of (23) is exact.

The remaining integral on the right hand side may be approximated by the trapezium rule to yield the

second-order accurate but implicit system of algebraic equations

fi(x+ci∆t, t+∆t)−fi(x, t) =
∆t

2

(
Ωi(x+ci∆t, t+∆t)

+ Ωi(x, t)
)

+O
(
∆t3
)
. (25)

Following He et al. [6], we now introduce the new variables

f̄i (x
′, t′) = fi (x

′, t′)− ∆t

2τ

(
fi (x

′, t′)− f (0)
i (x′, t′)

)
− ∆t

2
Ri (x

′, t′) , (26)
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Using these variables, the previous implicit scheme (25) rearranges into explicit formulae for the f̄i

at the new timestep,

f i(x+ ci∆t , t+ ∆t)− f i(x, t)

= − ∆t

τ + ∆t/2

(
f i(x, t)− f

(0)
i (x, t)

)
+

τ∆t

τ + ∆t/2
R i(x, t). (27)

We thus discard the fi and evolve the f̄i instead using (27). However, we still require the phase field

φ, which is defined in terms of the fi rather than the f̄i. By taking the zeroth moment of (26) we find

φ̄ =
∑
i

f i =
∑
i

[
fi −

∆t

2τ

(
fi − f (0)

i

)
− ∆t

2
Ri

]
= φ+

∆t

2T
φ
(
1− φ

) (
φ(n)
c − φ

)
= N(φ). (28)

We must solve the cubic equation N(φ) = φ̄ to recover φ, which is need to evaluate f (0)
i and Ri. This

may be achieved using a few iterations of Newton’s method,

φ→ φ− N(φ)− φ̄
N ′(φ)

. (29)

In all the numerical experiments we’ve conducted, satisfactory convergence took at most four

iterations starting from φ̄ = φ. Notice that N(φ) = φ + O(∆t/T ), so the function N is close

to linear when ∆t � T . This difficulty is not normally present in lattice Boltzmann formulations

for hydrodynamics, because the quantities ρ and u needed to evaluate the f (0)
i are conserved under

collisions.

Another subtle complication arises because the collision term Ri used in the definition of f̄i varies

from timestep to timestep through its dependence on φ(n)
c . At each timestep we must convert from

f̄i to fi using the threshold from the previous timestep, then from these fi back to f̄i using the new

threshold for the current timestep.

4. Numerical Experiments

The width and propagation speed of phase boundaries governed by the advection/diffusion/reaction

equation (21) is controlled by the timescale T of the sharpening term, and the timescale τ of the col-

lision term controlling numerical diffusion. The phase boundary extends across O
(
(τT )1/2

)
grid

points, as measured in the so-called lattice units where ∂x = ∂t = 1. The propagation speed is

controlled by the timescale ratio τ/T .
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In Figure 1 we show the measured propagation speeds of interfaces in one-dimensional compu-

tations using both the constant and van der Corput thresholds. Results for the constant threshold are

shown for both the D1Q2 and D1Q3 lattices. The former uses two particles with speeds c± = ±1,

weights w± = 1/2 and lattice constant θ = 1. The latter adds an additional rest particle c0 = 0, and

changes the weights to w+ = w− = 1/6 and w0 = 1/3. The lattice constant is θ = 1/3. The deter-

ministic D1Q3 model offers some improvement over the D1Q2 model, especially for smaller values

of τ/T , but both models suffer a reduction in propagation speed due to τ/T . When τ/T becomes

sufficiently large the interface no longer propagates and becomes pinned to the grid. By contrast, the

D1Q3 model using the van der Corput thresholds φ(n)
c , instead of the constant threshold φ = 1/2 for

all n, preserves the approximately correct propagation speed even for large values of τ/T .
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Figure 1: Interface propagation speeds as a function of the timescale ratio τ/T . The random-threshold method maintains

the correct propagation speed even when τ/T � 1.

The model extends easily to two dimensions using the standard D2Q9 lattice with nine velocities,

and the following expressions for the equilibrium functions and source terms,

f
(0)
i = wiφ (1 + 3ci · u) , (30)

Ri = wiS(φ) (1 + 3ci · u) . (31)

The wi are the usual D2Q9 lattice weights, w0 = 4/9, w1,2,3,4 = 1/9, and w5,6,7,8 = 1/36 [16].

Figure 2 shows the evolution of an initially circular patch under the two-dimensional scheme with

constant threshold φc = 1/2, advection velocity u = (1, 1), and timescale ratio τ/T = 10. The patch

shrinks and eventually disappears. This loss of mass is caused by the curvature of the interface, which

is a new phenomenon that was not present in the earlier one-dimensional simulations. Consider a

circular patch of fluid as represented by the sketch in Figure 3. Well inside the patch φ = 1, and

well outside the patch φ = 0. The grey areas indicate interfacial regions, the darker have a value
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Figure 2: Example of area loss using the scheme defined in (27) with τ/T = 10.

of the phase field in the range 1/2 < φ < 1, and the lighter having φ in the range 0 ≤ φ < 1/2.

The outer region covers a larger area on the plane than the inner region, so if we apply a constant

threshold φc = 1/2, or even a sequence of thresholds φ(n)
c with average value 〈φ(n)

c 〉 = 1/2, slightly

more φ is driven towards zero by the sharpening term in the outer annulus than is driven towards 1 by

the sharpening term in the inner annulur. This imbalance, which is proportional to the curvature, is

responsible for the shrinkage of the patch shown in Figure 2. A similar mass leakage affects level set

methods, and for the same reason.

Figure 3: Sketch representing the mechanism behind the loss of area. The outer annulus covers a slightly larger area than

the inner when the average threshold 〈φ(n)c 〉 = 1/2.

One way to cure the mass leakage problem is to replace the previous threshold φ(n)
c with a thresh-

old φ(n)
M chosen to conserve volume. Since the diffused φ is smooth, the volume V (χ) = Volume({x :

φ < χ}) enclosed by a level set χ is a monotonically increasing, and hence invertible function, of χ.

There is thus a unique volume-preserving φ(n)
M at each timestep, such that V (φ

(n)
M ) = V0 equals the

volume of the patch at the start of the timestep. This amounts to finding at each timestep the φ(n)
M that
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satisfies the following integral constraint over the domain Ω.∫
Ω

S(φ, φ
(n)
M ) = −

∫
Ω

1

T
φ (1− φ)

(
φ− φ(n)

M

)
= 0, (32)

where S(φ, φ
(n)
M ) denotes the source term with a parametric dependence on φ

(n)
M . To incorporate

a degree of quasi-randomness into this method the van der Corput sequence and its range may be

scaled so that its mean value is the volume-conserving level set.

Figure 4 shows the evolution of an initially circular patch under the lattice Boltzmann scheme

using the volume-preserving threshold obtained from (32) at each timestep. The applied velocity

was u = (1, 1), and the timescale ratio was τ/T = 50. The patch undergoes severe facetting, and

becomes pinned to the computational grid. The results of the analogous computations using the

same parameters and the biased mass-conserving van der Corput sequence are plotted in Figure 5.

They show that the patch propagates as expected, while maintaining a circular shape. These results

are confirmed by the scatter plot of φ versus distance from the centre of the patch in Figure 6. The

random projection approach maintains a close to circular patch with a thin interface spanning no more

than 3 lattice points.

Figure 4: Propagating circular patch with timescale ratio τ/T = 50. Plots from left to right correspond to t =

0.1, 0.2, 0.3, 0.4.

5. Conclusion

We have presented a volume-preserving multi-dimensional lattice Boltzmann implementation of

a generalisation of the model equation studied by LeVeque and Yee [3]. Our model incorporates a

quasi-random threshold to overcome the problems of numerical stiffness, as proposed by Bao and
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Figure 5: Propagating circular patch with timescale ratio τ/T = 50. Plots from left to right correspond to t =

0.1, 0.2, 0.3, 0.4.
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Figure 6: Scatter plot of φ when τ/T = 50 using a deterministic (◦) and random (�) type models. The random threshold

approach offers a much closer approximation to an isotropic solution.
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Jin [1]. We further modified the quasi-random threshold by applying a bias to the distribution of

thresholds that corrects for the mass leakage associated with curvature of the interface. This method

has been shown to predict the correct propagation speed of sharp fronts, while conserving volume in

simple two-dimensional experiments. It would be viable for simulations of suspensions of separated

droplets, in conjunction with a tracking algorithm to identify volumes containing individual droplets.

However, due to the difficulty of computing suitable mass-conserving thresholds, it is unlikely to be

appropriate for multi-phase computations in which droplets undergo mergers or fission.
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