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Abstract
Root-associated microbes play a key role in plant performance and productivity, making them important players in
agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it
is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We
investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT
sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal
network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone
taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong
negative association (R2= 0.366; P < 0.0001) between agricultural intensification and root fungal network connectivity. The
occurrence of keystone taxa was best explained by soil phosphorus levels, bulk density, pH, and mycorrhizal colonization.
The majority of keystone taxa are known to form arbuscular mycorrhizal associations with plants and belong to the orders
Glomerales, Paraglomerales, and Diversisporales. Supporting this, the abundance of mycorrhizal fungi in roots and soils
was also significantly higher under organic farming. To our knowledge, this is the first study to report mycorrhizal keystone
taxa for agroecosystems, and we demonstrate that agricultural intensification reduces network complexity and the abundance
of keystone taxa in the root microbiome.

Introduction

Agricultural intensification is one of the most pervasive
problems of the twenty-first century [1]. To keep pace with
the ever-increasing human population, the total area of
cultivated land worldwide has increased over 500% in the
last five decades [2] with a 700% increase in the fertilizer
use and a several-fold increase in pesticide use [3, 4].
Agricultural intensification has raised a wide range of
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environmental concerns, including poor nutrient-use effi-
ciency, enhanced greenhouse gas emissions, groundwater
eutrophication, degradation of soil quality, and soil erosion
[4, 5]. Alternate farming systems such as conservation
agriculture (e.g., no-till) and organic farming have been
widely adopted to reduce such adverse environmental
effects [6–8]. Organic arable lands represent 2.5% of the
total arable lands in Europe, and over 3.5% in Switzerland
[9]. The adoption of no-till globally has increased by
~233% in the last decade and it is over 3% of the total
arable lands in Switzerland [10]. These farming systems are
adopted to maintain environmental sustainability and eco-
systems services, and at the heart of ecosystem services lies
the contribution of microbial communities [11–13].

Microbial communities play an indispensable role in
ecosystems and render a wide range of services [12, 14–16].
In agroecosystems, microbes modulate a number of pro-
cesses, including nutrient cycling, organic matter decom-
position, soil aggregate stabilization, symbiotic and
pathogenic interactions with plants, and thereby play an
essential role in the productivity and sustainability of
agroecosystems [5, 12, 17]. The agricultural intensification
with high resource use and low crop diversity can affect
soil- and plant-associated microbiota, with subsequent
impact on ecosystem services [18, 19]. Increasing adoption
of no-till and organic farming also warrants an investigation
of their effects on microbial communities. Previous studies
comparing the effects of conventional, no-till, and organic
farming have mostly focused on the soil microbiome [6, 8,
20–22], and our understanding of the impact of these
farming systems on root-associated microbiota is minimal.

Root-associated microbiota plays a key role in deter-
mining the above-ground productivity [23–26]. No-till
farming may affect root architecture and root distribution
in soil, with a subsequent effect on microbial recruitment
into the roots [27]. However, very few studies have assessed
the effect of no-tillage on root microbial communities, and
the ones that investigated root microbiota have only focused
on root bacteria [28] or specific fungal groups, including
arbuscular mycorrhizal fungi (AMF) using traditional
techniques [29, 30]. Furthermore, the impact of agricultural
intensification on the overall root fungal communities is still
poorly understood [31, 32]. Plant root harbors a diverse
assemblage of endophytic fungi that form symbiotic, para-
sitic, or pathogenic associations, and through such asso-
ciations, play a key role in plant diversity, community
composition, and performance [26, 33, 34]. The widespread
symbiosis of AMF and the array of benefits rendered by
these fungi are now well established [35, 36]. Moreover,
mycorrhiza like endophytes, Piriformospra indica, also
promote plant growth, stress tolerance and induce local and
systemic resistance to pathogens [37]. Trichoderma spp.
have also been shown to grow endophytically and enhance

plant growth and systemic resistance to plant pathogens
[38]. Thus, the structure and composition of root fungal
communities play an important role in agroecosystems, and
yet the effect of agricultural intensification on root fungal
communities remains poorly understood.

The structure of a microbiome has substantial effects on
its functioning [39]. However, studying the structure of a
microbiome is not simple mainly due to complex inter-
relationships among the myriad of members. Microbial co-
occurrence networks can unravel such relationships and
offer insight into community structure [40–43]. Network
analysis has been found particularly useful in recent years to
understand how microbe–microbe associations change in
response to environmental parameters [42, 44–47]. Network
scores can also be used to statistically identify the keystone
taxa, i.e., taxa that have a large influence in the community
[34, 48, 49]. A recent study has shown that despite being
numerically inconspicuous, keystone taxa confer greater
biotic connectivity to the community and thus can be
indicators of community shifts and compositional turnover
[50]. It has also been observed that the impact of abiotic
factors and host genotypes on the plant microbiome is
facilitated via keystone taxa [51], and the root microbial
network complexity is linked to plant survival [52]. Agri-
cultural intensification may alter the structure of root
microbial network and the abundance of keystone taxa,
which in turn may have implications for crop performance
[53, 54]. However, so far, it has not been investigated
whether root microbial networks differ between organic,
conservation, and conventional agriculture. A pertinent
question is whether mycorrhizal fungi that are widely
regarded for their role in plant productivity can also act as
keystone taxa in the microbial community.

Here we explored the impact of farming systems on the
fungal community structure using the latest PacBio SMRT
sequencing and network analysis of wheat root samples
collected from 60 farmlands in Switzerland. We aimed to
address the following questions: (a) Does agricultural
intensity affect the structure and composition of wheat root
fungal communities? (b) Do network complexity and the
abundance of keystone taxa vary between conventional, no-
till, and organic farming? (c) Which taxa act as keystone
and what are the drivers of such taxa in the root microbiota?

Material and methods

Site selection and sampling

Soil samples were collected in early May 2016 from wheat
fields in 60 agricultural farmlands in the northeast and
southwest regions of Switzerland (Figure S1). Wheat fields
were either managed conventionally with tillage,
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conventionally under no-tillage, or organically under a
mouldboard plough tillage for at least the last 5years.
Farming systems were distributed equally in both regions,
and each system was represented by 20 farmlands, resulting
in a total of 60 farms. Conventionally managed fields
applied pesticides and synthetic fertilizers and were mana-
ged following the ‘Proof of Ecological Performance’
guidelines of the Federal Office for Agriculture, Switzerland
(https://www.blw.admin.ch). No-till fields were without any
soil tillage except for occasional use of strip till, and
potential application of synthetic substances (www.no-till.
ch). Organically managed fields received no pesticides and
synthetic fertilizers and were managed according to the
guidelines of BioSuisse, the Federation of Swiss Organic
Farmers (www.bio-suisse.ch). In addition to inherent dif-
ferences among the farming systems in the use of plough or
synthetic fertilizer and plant protection products, farmers
also planted 25 different wheat varieties, all belonging to
the list of recommended winter wheat varieties published
annually by the Agrarforschung Schweiz (www.agra
rforschungschweiz.ch) or BioSuisse, for conventionally or
organically managed fields, respectively. While field sites
showed a degree of variability in soil texture, elevation, and
the mean annual temperature, none of these parameters
differed significantly between the farming systems [55]. We
calculated agricultural intensity index according to previous
studies [54] based on the information collected from 59
farmers; information could not be obtained from one farm
[55]. Agricultural intensity index was calculated using the
information on three anthropogenic input factors: fertilizer
use, pesticide use, and the consumption of fuel for agri-
cultural machinery. These factors were also included in
assessing agricultural intensity in a previous study.

At each farmland, 18 soil cores (4 cm diameter) were
collected at 0–20 cm depth with a hand auger (Figure S2).
These 18 samples were mixed and pooled to obtain a
representative sample for a farm. The auger was cleaned
between sites. Five undisturbed cylindrical soil cores of 100
ml volume and 5.1cm diameter were collected for bulk
density measurement and the median of the five measures
was considered as the estimate of bulk density for each field.
Root samples were collected in June 2016 at wheat flow-
ering (BBCH growth stage 69–75). At each site, ten wheat
plants, five per transect, were excavated using a fork spade.
Shoots were cut off at the height of ~5 cm and all roots of a
specific site were pooled in a plastic bag for subsequent
processing. Samples were placed on ice in a cooler box for
transfer to the laboratory. Soil samples were processed
on the same day as the collection by removing plant mate-
rials, homogenizing and passing through a 2-mm sieve. Sub-
samples were taken for various soil physicochemical
and biological analyses and stored at 4 °C or −20 °C as
required.

Plant and soil analyses

Root microbiome comprises microbial communities asso-
ciated with plant roots, including microorganisms in the
endosphere, rhizoplane, and rhizosphere [56–58]. This
study specifically focused on the root endophytic fungal
communities. In the lab, roots were thoroughly cleaned
under cold tap water. Subsequently, fine roots (<1 mm)
were cut into small pieces of about 1 cm length and thor-
oughly mixed. A subsample of 2 g of fine roots was stored
in 1.5 Eppendorf tubes, lyophilized and stored at −20 °C for
DNA extraction. The rest of the samples were used to
determine AMF colonization by estimating the abundance
of arbuscules, hyphae, or vesicles according to a modified
line intersection method [59]. A minimum of 100 inter-
sections per slide was examined with two technical repli-
cates applying a blind procedure throughout the
quantification process to avoid subjectivity related to the
origin of the sample. For soil samples, total phosphorus (P),
plant available P, pH, and bulk density were measured using
the Swiss standard protocols [60]. Plant available P was
measured according to Olsen et al. [61]. The abundance of
AMF in soil was assessed by phospholipid fatty acid
(PLFA) extraction followed by analysis on gas chromato-
graphy mass spectrometry [62]. We quantified the abun-
dance of AMF in soil by using the PLFA 16:1ω5, which is
well regarded as a biomarker for AMF because it constitutes
a large proportion of total PLFAs in AMF, and strong
correlations between AMF abundance in the soil and con-
centrations of the PLFA 16:1ω5 have been observed pre-
viously [63]. Neutral lipid fatty assay or NLFA 16:1ω5 is
also used as an indicator of AMF biomass; however, NLFA
16:1ω5 is mainly present in storage organs [64]. Thus, it is
considered a weak indicator of active AMF in soil and a
previous study also found low amounts of NLFA 16:1ω5 in
soil [65].

DNA extraction and SMRT sequencing

For each sample, 200 mg of roots (dry weight) was used for
DNA extraction using 600 mL of NucleoSpin lysis buffer
PL1 for 15 min at 65 °C followed by the NucleoSpin Plant
II kit (Macherey & Nagel, Düren, Germany). The DNA
samples were amplified with the primer pair ITS1F-ITS4
[66, 67] targeting the entire ITS region (~630 bp) [68]. The
forward and reverse primers were synthesized with a
5-nucleotide-long padding sequence followed by barcode
tags at the 5′ end to allow multiplexing of samples within a
single sequencing run [69]. Library preparation and SMRT
sequencing were conducted at the Functional Genomics
Centre Zurich (http://www. fgcz.ch) on the PacBio® RS II
Instrument (PacBio, San Diego, CA, USA). Details of PCR
conditions and sequence data processing are described in

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in. . .

https://www.blw.admin.ch
http://www.no-till.ch
http://www.no-till.ch
http://www.bio-suisse.ch
http://www.agrarforschungschweiz.ch
http://www.agrarforschungschweiz.ch


the Supplementary Information. In brief, the SMRT Portal
was used to extract the circular consensus sequences (CCS)
from the raw data (available from the European Nucleotide
Archive, study accession number: PRJEB27781). The CCS
of at least five passes yield similar error rates as 454 or
MiSeq sequencing platforms [68, 69]. The CCS reads were
quality filtered in Mothur (v.1.35.0) [70]. Quality reads
were demultiplexed based on the barcode-primer sequences
using flexbar [71]. De novo chimera detection was per-
formed on quality reads using UCHIME [72]. To avoid
unwanted multi-primer artifacts, we deleted reads where
full-length sequencing primer was detected within the read
[73]. We clustered the quality sequences into operational
taxonomic units (OTUs) at ≥98% sequence similarity with
the UPARSE series of scripts [74]. Reads were de-repli-
cated, and single-count and chimeric sequences were
excluded for OTU delineation. The OTUs of low abundance
(<0.1% global abundance and less than 0.5% abundance
within a specific sample) were removed from the dataset
(Figure S3). We normalized the OTU table by rarefying to
1000 reads per sample. On average 357 OTUs were found
per site and a total of 837 OTUs for all 60 sites. The OTUs
were classified taxonomically against the UNITE database
[75]. The OTU and taxonomy tables were filtered to
exclude OTUs classified as nonfungal.

Statistical analyses

Alpha diversity indices such as OTU richness, Sheldon
evenness and Shannon–Weaver index were calculated from
the rarefied fungal OTU table using the phyloseq package
[76] in R v3.4 [77]. The effect of farming systems and
wheat varieties on fungal community structure was assessed
by performing PERMANOVA and canonical analysis of
principal coordinates with 999 permutations in PRIMER-E
(PRIMER-E, Plymouth, UK). Fungal beta-diversity patterns
were only assessed on OTUs that were present in at least
two samples. Homogeneity of multivariate dispersions was
checked with the PERMDISP test using the Bray–Curtis
similarity matrix in PRIMER. We also identified the indi-
cator taxa for each farming system using the ‘multipatt’
function in the indicspecies package in R [78]. Funda-
mentally, this analysis is based on two species traits:
exclusivity (exclusively present in a habitat) and fidelity
(present in all samples of that habitat) [79]. An indicator
value is calculated based on these traits to assess the extent
to which a species is indicator of a habitat.

Co-occurrence patterns in fungal communities were
assessed by performing network analysis using the maximal
information coefficient (MIC) scores in MINE statistics
[80]. MIC is an insightful score that reveals positive,
negative, and nonlinear associations among OTUs. Network
analysis was performed on the same set of OTUs as testing

for the beta-diversity i.e., only OTUs that were present in at
least two samples were included, resulting in 822 OTUs.
The overall meta-network was constructed with 60 samples,
whereas the three farming-specific networks were con-
structed with 20 samples each. The MIC associations were
corrected for false discovery rate (FDR) [81] and the final
networks were constructed with relationships that were
statistically significant (P < 0.05) after FDR correction. The
networks were then visualized in Cytoscape version 3.4.0
[82]. The NetworkAnalyzer tool was used to calculate net-
work topology parameters. Nodes (e.g., the fungal OTUs in
this study) are the fundamental units of a network, while
edges represent the connections or links between the nodes.
Thus, degree represents the number of edges connected to a
node. Clustering coefficient reflects the higher connected-
ness among nodes in a particular region of a network,
whereas the shortest path indicates how quickly information
can travel between two nodes [83]. Network diameter is the
largest distance between two nodes of a network. We also
evaluated networks against their randomized versions using
the Barabasi–Albert model [84] available in Randomnet-
works plugin in Cytoscape v2.6.1. Nodes in a random
network may have the same number of degrees, resulting in
a Poisson distribution. On the other hand, nonrandom net-
works are scale-free i.e., degree distribution shows a power-
law tail with some nodes showing higher degrees than the
rest [83]. Indeed, the structural attributes of root fungal
networks such as degree distribution, mean shortest path,
clustering coefficient were different from random networks
with an equal number of nodes and edges. The OTUs with
the highest degree and highest closeness centrality, and the
lowest betweenness centrality scores were considered as the
keystone taxa [48]. Closeness centrality is based on the
average shortest paths and thus reflects the central impor-
tance of a node in disseminating information [85]. On the
other hand, betweenness centrality reveals the role of a node
as a bridge between components of a network. For the
overall network, OTUs with degree greater than 50, close-
ness centrality higher than 0.44, and betweenness centrality
lower than 0.12 were selected as the keystone taxa. For
farming-specific networks, OTUs with degree higher than
10, closeness centrality higher than 0.28, and betweenness
centrality lower than 0.18 were selected as the keystone
taxa. We chose a single set of cut-off values for consistent
comparison across farming-specific networks. We also
calculated the proportional influence of various fungal
orders in network structure by dividing the number of nodes
belonging to a particular order by the number of connec-
tions (edges) it shared. This was based on the assumption
that topological parameters have a direct influence on net-
work structure [39]. We assessed the difference between
farming-specific networks by bootstrapping node attributes
(degree, between centrality, and closeness centrality) with
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10,000 iterations. We then performed the two-sample Kol-
mogorov–Smirnov test to compare node attributes between
farming systems using the ks.test function inbuilt in the stats
package in R. Kolmogorov–Smirnov test compares the
overall shape of the cumulative distribution of two variables
where the null hypothesis is that the variables have same
distribution patterns. For each network, node attributes were
computed by bootstrapping approach with 10,000 iterations.
Moreover, to compute node attributes for each farm, we
used the subgraph function in the igraph package [86].

Finally, we performed random forest analysis to explore
the determinants of the identified keystone taxa. Random
Forest is a powerful machine learning tool that offers high
prediction accuracy by using an ensemble of decision trees
based on bootstrapped samples from a dataset [87]. It is a
nonparametric and nonlinear statistical method that does not
have prior distributional assumptions. The portion of dataset
drawn into a sample is called in-bag data, whereas the data
not drawn is termed as out-of-bag data [88]. Trees are fully
grown to predict the out-of-bag data and the importance of a
specific predictor variable is obtained by randomly per-
muting the values of that variable for the out-of-bag data
and calculating increase in the mean squared error. Each
node of a decision tree is associated with a subset of random

data points from the original dataset and thus, increase in
node purity (which is basically decrease in node impurity or
misclassification rate) indicates the importance of a pre-
dictor variable. Random forest analysis was performed with
999 permutations using the randomforest and rfPermute
packages [89]. The best predictors were identified based on
their importance using the importance and varImpPlot
functions. Increase in node purity and mean square error
values were used to determine the significance of the pre-
dictors using the randomForestExplainer package [90]. The
factors significant at P < 0.01 were selected as the predictors
of keystone taxa.

Results

Overall structure and co-occurrence

Alpha diversity indices of root fungal communities did not
vary significantly between the conventional, no-till, and
organic systems (Fig. 1a-c). This was also true for the
overall taxonomic composition (Fig. 1d). However, farming
systems significantly influenced the root fungal community
structure with three distinct clusters for organic,

Fig. 1 Alpha diversity indices
and community composition of
root fungal communities across
conventional (Conv), no-till
(NT), and organic (Org) farming
systems. OTU richness (a),
Sheldon evenness (b), and
Shannon–Weaver index (c) were
calculated from the rarefied
fungal OTU table. Same
lowercase letter indicates no
statistically significant (P < 0.05)
difference between farming
systems. d Stacked bar chart
showing the relative abundance
of various orders of wheat root
fungal communities
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conventional, and no-tillage fields (Fig. 2a). A PERMA-
NOVA test also confirmed the significant effect of farming
systems (pseudo F= 1.42; P < 0.05; explained variation=
4.17%). A nonsignificant PERMDISP test (F= 2.072; P=
0.202) indicated homogenous dispersions of samples across
systems. Further, a pairwise comparison in PERMDISP
revealed that there was no significant difference in disper-
sions between organic and conventional (F= 1.068; P=
0.372), and organic and no-till (F= 0.870; P= 0.435). We
found no impact of wheat varieties on community structure
and this was reinforced by a nonsignificant PERMANOVA
test (Pseudo F= 0.972; P= 0.595) (Figure S4). However,
geographical locations i.e., northeast and southwest regions
had an impact on root fungal community structure (Fig-
ure S5). Indicator species analysis was performed to test
which taxa are characteristic for each of the three farming
systems. Root inhabiting Trichoderma, a member of
Hypocreales, was the only indicator taxon for conventional
farming system, whereas seven fungal taxa (e.g., Cyphel-
lophora, Myrmecridium, Phaeosphaeria, Cadophora, Pyr-
enochaeta, Solicoccozyma, and Conocybe) were the
indicator taxa for no-till farming (Table S1). Six taxa of
Sordariales, Cantharellales, and Agaricales were indicator
taxa for organic farming with Chaetomium and Psathyrella
as the only known genera.

The overall network of root fungal communities in
60 samples revealed distinct co-occurrence patterns
(Fig. 2b). The meta-network consisted of 378 nodes and
1602 significant (P < 0.05) edges. This network with strong

power-law distribution of degrees had a diameter of 8,
average number of neighbors of 8.476, and a clustering
coefficient of 0.258. For the overall network, eight of
keystone taxa belonged to arbuscular mycorrhizal orders
Glomerales, Paraglomerales, and Diversisporales, and the
remaining five belonged to Tremellales, Malasseziales, and
Cantharellales (Table S2). Indeed, the majority of the
associations were from these four orders with Glomerales
forming the largest guild with the maximum number of
nodes and associations in the network. Overall, farming
systems significantly affected fungal community structure
with mycorrhizal orders playing a major role in the network
complexity as measured by the number of edges, the
average number of neighbors, and the clustering coefficient.

Farming-specific co-occurrence networks

Owing to the significant difference in fungal community
structure across three farming systems, we further evaluated
root fungal networks for each farming system separately. The
networks displayed remarkable differences in their structure
and topology (Fig. 3). The network of conventional farming
consisted of 261 nodes (e.g., taxa) and 315 edges (associations
between taxa), while the no-till network consisted of 267 nodes
and 341 edges. In stark contrast, the organic farming network
consisted of 301 nodes and 643 edges. The average number of
neighbors and the clustering coefficient of the organic farming
network were also considerably higher than for the other two
networks (Fig. 3). The higher complexity and connectivity in

Fig. 2 a Canonical analysis of principal coordinates (CAP) revealing a
significant impact of farming systems on fungal community structure.
b The overall network of root fungal communities across three farming
systems. The overall network is arranged according to orders. White,
red, and wavy lines represent positive, negative, and nonlinear rela-
tionships, respectively. Large diamond nodes indicate the keystone

taxa in the network. Top ten nodes with the highest degree, highest
closeness centrality, and lowest betweenness centrality were selected
as the keystone taxa. Out of the ten keystone taxa in the overall net-
work, seven belonged to mycorrhizal orders, Glomerales, Para-
glomerales, and Diversisporales
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the organic farming network were supported by the abundance
of keystone taxa. The organic farming network harbored 27 of
such keystone taxa compared to two in the no-till network and
none in the conventional one (Fig. 3; Table S3). The majority
of these keystone taxa belonged to the orders Glomerales,
Tremellales, and Diversisporales with a noticeable presence of
taxa from the orders Paraglomerales, Sebacinales, and Hypo-
creales. To explore the importance of keystone taxa for the
higher network complexity in organic farming, we constructed
the organic network without including keystone OTUs. The
organic network devoid of any keystone taxa was much sim-
pler and was similar to the conventional and no-till networks
(Figure S6).

Higher connectivity in the organic farming network was
visible in the distribution of degrees, which indicates the
number of associations shared by each node in a network
(Fig. 4). The organic farming network had a much stronger
power-law distribution than the conventional and no-till
ones, despite the similar node distribution across root fungal
orders (Figure S7). We calculated the proportional influence
of various orders in the microbiota by dividing the number
of nodes belonging to a particular order by the number of
connections (edges) it shared. It revealed the orders that
exhibited maximum connections across three farming sys-
tems and thereby influence the network structure. Various
orders exhibited considerable differences in their propor-
tional influence in the complexity of root microbiota. Orders
such as Sordariales and Agaricales showed a major

influence in the conventional network structure, and Sor-
dariales, Cantharellales, and Mortierellales in the no-till
network. In addition to Tremellales and Hypocreales, three
mycorrhizal orders Glomerales, Paraglomerales, and
Diversisporales showed a major influence on network
complexity under organic farming. Overall, the organic
farming network formed a much more complex network and
harbored more keystone taxa than the other two farming
networks.

Drivers of keystone taxa

Agricultural intensity was significantly (P < 0.05) different
across three farming practices with conventional being the
most intensive and organic the least intensive system
(Fig. 5a). This trend was opposite for network connectivity
as represented by the node degree across three farming
practices (Fig. 5b). Network bootstrapping revealed that the
network connectivity in organic fields was significantly (P
< 0.05) higher than the conventional and no-till ones. Kol-
mogorov–Smirnov test showed that node degree, between-
ness centrality, and closeness centrality were significantly
(P < 0.01) different between the three framing systems
(Table S4). Moreover, network connectivity was inversely
proportional to agricultural intensity index (R2= 0.366; P <
0.0001; Figure S9). The number of keystone taxa was also
higher (27) in the organic farming network than the no-till
(2) conventional (0) networks. Random forest analysis

Fig. 3 Farming system-specific root fungal networks. Each network
was generated with root samples collected from 20 farmlands
belonging to that farming system. The number of nodes, number of
edges, average number of neighbors, and clustering coefficient is given
below the specific networks. Large diamond nodes indicate the key-
stone taxa, whereas circular nodes indicate other taxa in the network.

White, red, and wavy lines represent positive, negative, and nonlinear
relationships, respectively. Despite having similar number of nodes,
the organic network displayed twice more edges and many highly
connected nodes than no-till and conventional networks that were
dominated by less connected peripheral nodes
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revealed that soil phosphorus content, bulk density, pH, and
mycorrhizal colonization best explained (P < 0.01) the
occurrence of keystone taxa (Fig. 5c). Most of these para-
meters were also significantly (P < 0.05) correlated with the
alpha-diversity indices, indicating their importance for the
overall root fungal communities (Table S5). The majority of
keystone taxa belonged to mycorrhizal orders, and mycor-
rhizal colonization of wheat roots was significantly (P <
0.01) higher in the organic fields than in the conventional
and no-till fields (Figure S8). Consistent with this, the
abundance of mycorrhizal PLFA in soil was also sig-
nificantly (P < 0.01) higher in the organic compared to the
conventional fields. Agricultural intensity had a sig-
nificantly negative impact on mycorrhizal colonization in
roots and the abundance in soils (Fig. 5d). Taken together,
the root fungal network complexity, abundance of keystone
taxa and mycorrhizal abundance showed an opposite trend
to that of agricultural intensification across farming systems.

Discussion

It is now well established that root-associated microbiota
plays an important role in plant diversity, community
composition, and performance [24, 35, 58, 91]. Conse-
quently, it is important to understand how microbial com-
munities harbored inside crop roots are affected by

agricultural practices and how key microbial players can be
targeted for ecological intensification of agroecosystems
[5]. However, with much of the previous work only
focusing on the soil microbiota, our understanding of the
effects of farming systems on root-associated microbiota is
still rudimentary. Moreover, previous studies mostly
focused on microbial alpha- and beta-diversity patterns, and
the impact of different farming systems on microbial net-
work structure is poorly understood. Here we show that
wheat roots under different farming systems harbor distinct
fungal communities and with varying network complexity.
Fungal network complexity of organically managed fields
was almost twice as high under conventional and no-till
farming practices. Moreover, network connectivity was
negatively associated with agricultural intensification.

Our finding that the overall structure of root microbiota
influenced by farming systems is in agreement with studies
on the soil microbiome where a large number of reports
showed a significant impact of farming systems [6, 20–22,
92, 93]. It should be noted that most of these studies
investigated microbial communities in agronomical context
and were performed in field-trials [20–22, 32]. While a
major strength of field-trials is that farming treatments are
imposed under homogenous management and at one loca-
tion with a specific soil type, management effects on
microbial patterns may be different in actual farmlands and
thus the results obtained at one location may not be

Fig. 4 Proportional influence of
various fungal orders in
affecting the complexity of root
microbiota (left panel). The
influence was calculated by
diving the number of nodes
belonging to a particular fungal
order by the number of
connections (edges) it shared. It
illustrates the orders that exhibit
maximum connections across
farming systems and thus
influences network structure
most. Distribution of degrees in
three farming systems (right
panel with three plots). Degree
indicates the number of
associations shared by each node
in a network. In conventional,
farming, the number of degrees
was limited to a maximum of 12
compared to the no-till network
that had a maximum of 22
degrees. On the other hand,
organic farming had many nodes
with over 20 degrees
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generalized. We report the impact of farming practices on
root microbial community characteristics in on-farm
research and across many fields at a regional scale.

Microorganisms do not thrive in isolation and rather
form complex association networks. Such networks hold
special importance for gaining insight into microbiome
structure and its response to environmental factors [25, 42,
43, 47, 51]. Our study highlights how farming practices
impact the network structure of root microbiota and
uncovers that organic farming harbors a significantly more
complex network with many highly connected taxa (nodes)
than the conventional and no-till farming. It has been shown
that complex networks with greater connectivity are more
robust to environmental perturbations than simple networks
with lower connectivity [94]. In this sense, the higher

complexity of organic networks may indicate that the root
microbiota under organic management is more resilient to
environmental stresses as different taxa can complement
each other. However, further studies are necessary to cor-
roborate this observation.

Keystone taxa are the highly connected taxa that play
important roles in the microbiome and their removal can
cause significant changes in microbiome composition and
functioning [48, 50]. Although previous studies have reported
keystone taxa in various environments [34, 45, 95], reports on
keystone taxa in the root endophytic microbiota are very
limited. The organic farming network exhibited by far the
highest connectivity and comprised most of the keystone taxa.
It should be noted that fungal richness did not vary sig-
nificantly between the farming systems nor did the number of

Fig. 5 a Agricultural intensity index across conventional (Conv), no-
till (NT), and organic (Org) farming systems. Agricultural intensity
index was estimated using information on three anthropogenic input
factors: fertilizer use, pesticide use, and the consumption of fuel for
agricultural machineries. Different lowercase letters indicate statisti-
cally significant (P < 0.05) difference between farming systems. b
Network connectivity as represented by node degrees for individual
farms calculated by subsetting the networks of three farming systems.
Different lowercase letters indicate statistically significant (P < 0.05)
difference. c Results of random forest analysis showing the relative

contribution of various factors in determining the abundance of key-
stone taxa. The mean squared error (MSE) indicates the prediction
accuracy of each factor. The top (P < 0.01) five drivers were total
phosphorus, plant available phosphorus (Olsen P), AMF root coloni-
zation, pH, and bulk density. d Relationship between agricultural
intensification and mycorrhizal root colonization. Agricultural inten-
sification had a significantly (P < 0.01) negative impact on the root
colonization of AMF. Agricultural intensity was the highest under
conventional farming and the lowest under organic farming, which
was opposite for the AMF colonization
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nodes across farming-specific networks, and yet we observed
a clear difference in the network structure and number of
keystone OTUs. Moreover, the abundance of keystone OTUs
did not vary between the three farming systems but these
OTUs shared considerably more associations in organic
farming (Figure S10). The organic network without the key-
stone OTUs was similar to the conventional and no-till net-
works, highlighting the importance of these members for
network complexity. Our observations indicate that micro-
biome complexity is not necessarily determined by the
number of taxa in the community, but rather the number of
associations that those taxa share amongst them.

The majority of these keystone taxa were AMF belonging
to the orders Diversisporales, Glomerales, and Para-
glomerales. The symbiotic association of AMF that started
more than 400 million years ago is formed by ~80% of ter-
restrial plants [36, 96]. The observation that AMF can
enhance plant productivity [97] make them a crucial player in
agroecosystems. The importance of AMF for the root-
associated microbiota, particularly under organic farming, is
congruent with the higher abundance of AMF in roots and
soils observed in the organic farmlands in this study (Fig-
ure S8). While previous studies also found significantly
higher AMF abundance and diversity in organic farmlands
than in the conventional ones [98, 99], the important role of
AMF for the root fungal network structure is reported here.
One of the nonmycorrhizal keystone taxa in organic farming
belonged to the order Sebacinales. Members of this order are
highly diverse root endophytes and are thought to form
neutral and beneficial interactions with plants [100]. Our
observation of Sebacinales as keystone taxa is consistent with
a previous report that found a consistently higher abundance
of Sebacinales in organic farmlands [31]. Since keystone taxa
are linked to network complexity, beneficial endophytic
keystone taxa such as AMF and Sebacinales may enhance the
network connectivity and thereby the complexity of the root
microbiome. Several other keystone taxa in the overall and
organic networks belonged to the order Tremellales. This
widespread group of Basidiomycetes contains many yeast
species and have been reported in plant roots in temperate
regions [101]. Members of this fungal order were also
recently found as keystone taxa in the root microbiome across
eight forest ecosystems in Japanese Archipelago [53]. Inter-
estingly, we found that two of the keystone taxa (OTU_10,
OTU_11) were members of the Dioszegia genus, which was
also found as keystone by Agler et al. [51]. It was shown that
the effect of abiotic factors on microbiome was mediated via
Dioszegia in Arabidopsis thaliana. The consistent identifica-
tion of Dioszegia as a keystone taxon across studies suggests
its importance and highlights a potential that it can be har-
nessed for manipulation of the plant microbiome. Future
studies are now needed to specifically manipulate this group
to test how it influences microbiome composition and

functioning. There were no common fungal groups between
indicator taxa and keystone taxa. It should be noted that
indicator taxa are identified based on their exclusive abun-
dance (exclusivity) in all samples (fidelity) under a particular
habitat [79], whereas keystone taxa are identified using a
network algorithm that focuses on the number of associations
an OTU shares and its position in the microbiome [48]. Thus,
indicator taxa and keystone taxa reflect two different micro-
bial indices that target different members in the community.

An important question is how do farming practices and
land use intensity affect the structure and network complexity
of the root endophytic fungi? We speculate that there might
be two underlying mechanisms: the assembly of fungal
members in the soil, and their recruitment and colonization of
the plant root. It is well known that farming practices affect
the quality and quantity of important soil nutrients such as
carbon, nitrogen, and phosphorus [6, 8, 102, 103]. Reduced or
no-tillage can also alter the bulk density in the topsoil with
subsequent impact on the root architecture and elongation
[28]. These factors can modulate the assembly and evolution
of microbes in the soil [29, 104–106], thereby affecting
microbial recruitment into the root. Indeed, we found soil
phosphorus levels, bulk density and also pH to be the deter-
minants of keystone taxa, which are linked to network com-
plexity. The majority of keystone taxa were mycorrhizal in
nature, and phosphorus is well acknowledged for its impor-
tance for mycorrhizal associations [107]. Similarly, soil pH is
a known driver of fungal communities in soil, especially,
mycorrhizal fungi [108, 109]. Thus, the identification of soil
characteristic as the determinants of keystone taxa indicates
the importance of recruitment as a driver of network com-
plexity of the root endophytic microbiota.

Once recruited inside the plant body, microbial adapta-
tion and survival will depend on the host physiological
patterns [26, 58, 110]. Farming practices may also influence
crop physiological responses via water and nutrient avail-
ability, and pesticide application [103, 111, 112], which can
affect the maintenance of endophytic microbes inside the
plant body. For example, it is known that crops are able to
reduce carbon allocation to mycorrhizal fungi when grown
under high nutrient availability due to agricultural intensi-
fication [29]. Host genotypes may also affect plant phy-
siological responses and endophytic microbiota, although in
this study, we did not find a clear link between wheat
varieties and root fungi. However, our field sites had dif-
ferent wheat varieties growing, and whether or not host
genotypes influence root fungal community structure would
require a site-specific experiment with multiple varieties
growing under one field condition, which was beyond the
scope of this study. Previous studies also found that soil
conditions had a stronger effect on root fungal communities
than host species, while the opposite was true for bacterial
communities [113, 114]. Such mixed results highlight the
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complex nature of plant–microbe interactions [115] and the
need for further research targeting the factors influencing
crop endophytic microbial communities under different
farming practices. Moreover, soil and plant sampling in this
study were only conducted for one year, and thus repeated
sampling would be the next step to assess the temporal
consistency and predictability of these findings.

While the exact drivers of network complexity of root
endophytes remain unknown, it is possible that nutritional
status, tillage, manure application, and the absence of pesti-
cides might have created unique environments in each of the
three farming practices, potentially influencing the assembly
of fungi in the soil and their recruitment into the plant root.
Large amounts of chemical fertilizers in the conventional
farming system may foster fast-growing (r-strategists)
microbes without strong selection pressure for any particular
taxa and thus, creating a more random assemblage. In contrast,
the application of organic amendments with lower immediate
resource availability may act as a selective force on the
assembly of fungal communities, promoting slow-growing (K-
strategists) microbes [116]. It is possible that microbial
communities under organic farming may be dominated by the
K-strategists that establish themselves slower and have a
higher chance to coevolve. For such microbial communities
occurring under resource-limited conditions, microbial coop-
eration may be more important for survival. Cooperation
requires a high degree of connectivity, leading to networks
with higher complexity. Microbial communities with higher
network complexity may thus be more common under
extensive management where inputs are low and resources are
limited, which accords with a recent study on grasslands [47].
The number of keystone taxa was indeed the highest under
organic farming where agricultural intensity was the lowest,
and we also found a significantly strong negative association
between agricultural intensification and network connectivity.
Nonetheless, it should be noted that microbial taxa associating
in a co-occurrence network may not be due to their actual
interaction [41, 117]. Furthermore, we only considered root
fungi in this study, and a microbiome comprises bacteria,
archaea, and other members, the inclusion of which is
necessary for gaining insight into root microbial network
structure. It is also important to mention that identification of
keystone taxa are based on the analysis of correlations
(associations) among taxa, and further research is necessary to
show the causality, in terms of the impact of keystone taxa on
microbiome structure and functioning.

Conclusions

The structure and composition of root microbiota play an
important role in agroecosystems and yet there is a

significant dearth of knowledge about the effect of agri-
cultural intensification on the root microbiota. van der
Heijden and Hartmann [106] highlighted the importance of
network structure for the functioning of plant microbiomes
while Banerjee et al. [49] recently summarized keystone
taxa from various environments to emphasize their impor-
tance for microbiome structure and functioning. The present
study builds on and extends this conceptual framework to
demonstrate that the agricultural intensification has a
negative influence on root fungal network structure and the
abundance of keystone taxa. Our study shows that the
network connectivity and the abundance of keystone taxa
were the highest under organic farming where agricultural
intensity was the lowest. The higher co-occurrence of
members of microbial communities under organic farming
may be indicative of greater ecological balance and com-
plexity of the microbiome, which might be more resilient to
environmental stresses. A key strength of this study is that
the samples were collected from 60 farmlands and the
reported effects can be generalized because samples
were taken from an extensive range of fields at
different locations with different management regimes. The
recent concept of smart farming (Wolfert et al. [118])
emphasizes thinking outside the box. The potential for
harnessing plant microbiome for sustainable agriculture was
also highlighted recently [119]. Mycorrhizal fungi are well
regarded for their effects on plant productivity, and thus
mycorrhizal keystone taxa may be targeted as a tool for
smart farming.
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