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Abstract

A classic SIR model with nonlinear state-dependent feedback control is proposed

and investigated in which integrated control measures, including vaccination,

treatment and isolation, are applied once the number of the susceptible popula-

tion reaches a threshold level. The interventions are density dependent due to

limitations on the availability of resources. The existence and global stability of

the disease free periodic solution (DFPS) are addressed, and the threshold con-

dition is provided which can be used to define the control reproduction number

Rc for the model with state-dependent feedback control. The DFPS may also

be globally stable even if the basic reproduction number R0 of the SIR model

is larger than one. To show that the threshold dynamics are determined by

the Rc, we employ bifurcation theories of the discrete one-parameter family of

maps, which are determined by the Poincaré map of the proposed model, and

the main results indicate that under certain conditions a stable or unstable in-

terior periodic solution could be generated through transcritical, pitchfork and

backward bifurcations. A biphasic vaccination rate (or threshold level) could

result in an inverted U-shape (or U-shape) curve which reveals some important

issues related to disease control and vaccine design in bioengineering including

vaccine coverage, efficiency and vaccine production. Moreover, the nonlinear
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state-dependent feedback control could result in novel dynamics including vari-

ous bifurcations.

Keywords: SIR model, Disease free periodic solution, Control reproduction

number, Poincaré map, Transcritical and pitchfork bifurcations, Backward

bifurcation
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1. Introduction

Although outbreaks of traditional infectious diseases have been prevented

or controlled in the recent past, outbreaks of emerging infectious diseases such

as SARS, H1N1 influenza, Dengue fever and Ebola, have provided new threat-

s and challenges. Comprehensive prevention and control strategies, including5

quarantine, isolation, vaccination and treatment, are widely used to reduce the

spread of such infectious diseases [1, 2, 3, 4] but evaluating the effectiveness of

the mitigating measures is also crucial. To address this problem, mathematical

models can play key roles by modelling the control tactics and revealing their

effectiveness.10

Recently, several mathematical models have been proposed to investigate

integrated control impacts [3, 4]. Existing approaches to modelling the impact

of integrated control measures have focused on how to include the tactics into

models and address their effects on the dynamics and disease control. There

are two types of important models to be chosen according to how the control15

measures are implemented: continuous models with a continuous control strat-

egy [1, 2, 3, 4] and continuous models with a discrete (pulse) control strategy

[5, 6, 7]. The two types of models with the continuous vaccination and pulsed

vaccination were compared with each other in epidemiological models [5]. The

results of that study were confirmed by the pulse vaccination campaigns against20

measles performed in 1994 in the UK, which revealed that a pulse vaccination

strategy had a dramatic impact on the development of the epidemic.

The pulse vaccination strategy was applied at a fixed period T , i.e. at dis-
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crete times nT (n = 1, 2, · · · ) a proportion of the susceptible population was

vaccinated and removed into the recovered or removed or vaccinated class instan-25

taneously, which action can be formulated by impulsive differential equations

with a fixed moment [8, 9, 10, 11, 12, 13, 14, 7]. The dynamical behaviour,

including the existence and local stability of the disease free periodic solution

has been investigated, which revealed that pulse vaccination was always capa-

ble of eradicating the diseases, usually doing better than continuous vaccination.30

Numerical bifurcation analyses depict that pulse vaccination can lead to very

complex dynamics including chaotic behaviour. In addition, this type of mod-

elling has been widely used for cancer treatment [15, 16, 17, 18, 19] and HIV

control [20, 21].

However, one common assumption of all the above models is that, regard-35

less of the size of the susceptible population, the pulse vaccination control is

implemented at fixed periods. The obvious conclusion is that as long as the

pulse period is small enough, the disease can be controlled and eradicated even-

tually. Moreover, from a mathematical point of view, fixed moment control

will result in a non-autonomous system which poses a considerable challenge to40

theoretical analysis. In particular, it is difficult to define the control reproduc-

tion number Rc and investigate the threshold dynamics of the proposed models

[8, 11, 12, 13, 14, 7]. In order to overcome the above shortcomings, a different

modelling method is proposed in the present paper, i.e. we consider whether

or not the integrated control strategy is implemented depends on the number45

in the susceptible population rather than having it applied at a fixed period.

This can be modelled by state-dependent impulsive differential equations (so

called impulsive semi-dynamical systems) [22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

Recently, impulsive semi-dynamical systems have been widely used to model

biological systems with threshold control strategies, such as biological resource50

and pest management programmes, and chemostat cultures in ecological sys-

tems [32, 33, 34, 27, 28, 35, 36, 37].

Therefore, in the present paper we extend the classic SIR infectious model

with a state dependent feedback control strategy. In particular, although state
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dependent impulsive models triggered by the infectious population size are rea-55

sonable, such models do not have a feasible disease-free equilibrium nor can the

disease be completely eradicated, so far as mathematical and epidemiological

points of view are concerned. Therefore, the time when vaccination strategies

are implemented should, perhaps, be dependent on the level of susceptibility in-

stead of disease infection rates. So, in this study, we propose a state-dependent60

impulsive model describing susceptible population-triggered vaccination and iso-

lation incorporating continuous treatment for the patients. We assume that

there exists a threshold level Sv for the susceptible population such that inte-

grated control measures (pulse vaccination, treatment or isolation strategies) are

implemented once the susceptible population number reaches Sv. Furthermore,65

the numbers in the susceptible and infected populations that are vaccinated

and treated (or isolated), respectively, depend on their densities. This indi-

cates that the pulse controls are nonlinear due to limitations on the amount of

resources available. Note that linear pulse control has been addressed in the

reference [38], from which the existence and stability of a disease free periodic70

solution were studied, and the bifurcations related to the key parameters were

also investigated.

The main purpose of this study is to develop analytical techniques and pro-

vide a comprehensive qualitative analysis of the global dynamics by analyzing a

planar impulsive SIR semi-dynamic model, and to address the effects of nonlin-75

ear feedback pulse control on the dynamics including the bifurcations in compar-

ison with the results obtained in [38]. To achieve these aims, the existence and

global stability of the disease free periodic solution (DFPS), which corresponds

to the disease free equilibrium, are first addressed. The control reproduction

number Rc for the model with state-dependent feedback control can be defined80

by the Floquet multiplier which ensures the local stability of the DFPS. It is

interesting that the DFPS may also be globally stable even if the basic repro-

duction number R0 of the classic SIR model is larger than one. In order to

depict the threshold dynamics determined by the Rc, we employ the bifurcation

theories of the discrete one-parameter family of maps, which is determined by85
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the Poincaré map of the planar impulsive SIR semi-dynamic model. We choose

the maximal vaccination rate, maximal treatment rate or isolation rate, thresh-

old level Sv and birth rate of the susceptible population to reveal transcritical

and pitchfork bifurcations, which can depict the threshold dynamics completely.

The main bifurcation results indicate that under certain conditions a stable or90

an unstable interior periodic solution could be generated through transcritical

and pitchfork bifurcations. In particular, the stable DFPS and the interior equi-

librium of the SIR model can coexist once an unstable interior periodic solution

has bifurcated (Rc < 1 < R0 here), i.e. backward bifurcation occurs. Further-

more, we discuss the corresponding biological implications related to the disease95

control and vaccine design in bioengineering.

2. The model

Let S(t), I(t) and R(t) be the densities of susceptible, infected and removed

parts of the population at time t, respectively, and then N(t) = S(t)+I(t)+R(t)

denotes the total population. Without loss of generality, we may assume that100

the total population N(t) is a constant or tends to a constant as t approaches

infinity. Therefore, for the classical SIR model we only need to consider the

following two dimensional system:
dS(t)

dt
= Λ− βSI − δS,

dI(t)

dt
= βSI − qI,

(1)

where Λ denotes the birth rate, δ is the death rate, γ represents the recovery

rate with q = γ + δ, and β denotes the transmission rate.105

It is easy to know that the region

D = {(S, I)|S ≥ 0, I ≥ 0, S + I ≤ Λ/δ}

is an invariant set of model (1). Solving Λ − βSI − δS = 0 and βSI − qI = 0

with respect to I yields two isolines as follows:

l1 : S =
q

β
, l2 : I =

−δS + Λ

βS

.
= h(S),
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where
.
= means definition in this paper.

By defining R0 = Λβ
δq , we have the following results for model (1) which are

useful for the coming qualitative analyses [38].

Lemma 1. If R0 ≤ 1 then model (1) has a disease free equilibrium (K, 0) with

K = Λ
δ which is a globally stable node; If R0 > 1 then there exists a unique110

interior equilibrium (S∗, I∗) with S∗ = q
β , I∗ = Λβ−δq

βq , which is a globally stable

node (when ∆ ≥ 0) or focus (when ∆ < 0). Further, if R0 ∈ (1, R1]∪ [R2,+∞)

then the unique endemic equilibrium P ∗(S∗, I∗) is a globally stable node; If R0 ∈

(R1, R2) then P ∗(S∗, I∗) is a globally stable focus, where ∆ = δ2R2
0 − 4δqR0 +

4δq, R1 =
2
(
δ+γ−

√
γ(δ+γ)

)
δ , R2 =

2
(
δ+γ+

√
γ(δ+γ)

)
δ and R2 > 2 > R1 > 1.115

2.1. The SIR model with state-dependent feedback nonlinear control

In order to consider the saturation phenomenon resulting from the limited

resources, we fix the two impulsive functions to be nonlinear continuously dif-

ferentiable functions
[
1− η1S(t)

S(t)+h1

]
S(t) and

[
1− η2I(t)

I(t)+h2

]
I(t). Here 1 > η1 ≥ 0

represents the maximal vaccination rate and h1 ≥ 0 denotes the half saturation120

constant for the susceptible population. 1 > η2 ≥ 0 represents the maximal

treatment or isolation rate and h2 ≥ 0 denotes the half saturation constant for

the infected population. We assume that the initial density of the susceptible

population is less than the threshold vaccination level Sv and the integrated mit-

igating measures including vaccination, treatment and isolation are conducted125

once the density of the susceptible population reaches the threshold Sv, when

the densities of both the susceptible and infected populations are updated to[
1− η1Sv

Sv+h1

]
Sv and

[
1− η2I(t)

I(t)+h2

]
I(t), respectively.

Based on the above, we propose the following SIR model with state-dependent
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feedback nonlinear control130 

dS(t)

dt
= Λ− βSI − δS,

dI(t)

dt
= βSI − γI − δI,

 S(t) < Sv,

S(t+) =
[
1− η1S(t)

S(t)+h1

]
S(t),

I(t+) =
[
1− η2I(t)

I(t)+h2

]
I(t),

 S(t) = Sv.

(2)

Denoting the following functions B1(S) = − η1S
2

S+h1
, B2(I) = − η2I

2

I+h2
and f(I) =

I +B2(I) < I, then by simple calculations we have

B′2(I) = −η2I(I + 2h2)

(I + h2)2
, f ′(I) =

(1− η2)I2 + 2h2(1− η2)I + h2
2

(I + h2)2
.

It is easy to see that f ′(I) > 0 for all I > 0, which indicates that f(I) is a

monotonically increasing function.

To prepare for the following definition and analysis of the Poincaré map, we

first define two straight lines as follows:

l3 : S = Sv and l4 : S = Su

with Su
.
=
[
1− η1Sv

Sv+h1

]
Sv. Given that 0 < Sv < K and substituting S = Sv

into h(S), yields the intersection point of two lines l2 and l3, denoted by QSv =

(Sv, ISv ) with

ISv =
Λ− δSv
βSv

.

ISv =
Λ− δSv
βSv

.

Similarly, we can get the intersection point of the two lines l2 and l4, denoted

by Q+
Su

= (Su, ISu) with ISu = Λ−δSu
βSu

.

2.2. Existence and stability of the DFPS135

Let I(t) = 0 and consider the following subsystem
dS(t)

dt
= Λ− δS, S(t) < Sv,

S(t+) =
[
1− η1S(t)

S(t)+h1

]
S(t), S(t) = Sv.

(3)
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Solving equation (3) with initial value S0 = S(0+) = Su we can obtain the

following periodic solution

ST (t) = K − (K − Su) exp(−δt)

with period

T =

∫ Sv

Su

1

Λ− δS
dS = −1

δ
ln

(
K − Sv
K − Su

)
.

This indicates that a DFPS exists for model (2) , denoted by (ST (t), 0), and

for its stability we have the following main results

Theorem 1. If R0 ≤ 1 then the DFPS (ST (t), 0) of model (2) is globally asymp-

totically stable.140

Proof 1. It follows from Lemma A.1 in the Appendix that we have φ(S, I) =

S−Sv, σ1(S, I) = − η1S
2

S+h1
and σ2(S, I) = − η2I

2

I+h2
. By simple calculation one has

∂σ2

∂I

∂φ

∂S
− ∂σ2

∂S

∂φ

∂I
+
∂φ

∂S
= 1− η2I(I + 2h2)

(h2 + I)2
,

∂σ1

∂S

∂φ

∂I
− ∂σ1

∂I

∂φ

∂S
+
∂φ

∂I
= 0

and ∆1 = (1− η2I(I+2h2)
(h2+I)2 )P+/P = (1− η2I(I+2h2)

(h2+I)2 )K−SuK−Sv . Moreover,

∫ T
0

(
∂P
∂S + ∂Q

∂I

)
dt =

∫ T
0

(
βST (t)− δ − q

)
dt

.
= J1 + J2 + J3,

where

J1 = −δT = ln

(
K − Sv
K − Su

)
,

J2 =

∫ T

0

βST (t)dt =

∫ Sv

Su

βS

Λ− δS
dS =

β

δ

(
K ln

K − Su
K − Sv

+ Su − Sv
)

and

J3 = −qT =

∫ Sv

Su

−q
Λ− δS

dS =
q

δ
ln

(
K − Sv
K − Su

)
.

In particular, if h2 = 0 then we have B′2(0) = −η2 with ∆1 = (1− η2)K−SuK−Sv ; If

h2 6= 0 then B′2(0) = 0 with ∆1 = K−Su
K−Sv . Therefore, we have µ2 = exp(J2 +

J3) > 0 for h2 6= 0, and µ2 = (1− η2) exp(J2 + J3) > 0 for h2 = 0.
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It follows from the monotonicity of the function ω1(x)
.
= ln(1 − x) + x and

inequalities 0 < Su < Sv ≤ K that we have J2 > 0. Obviously, J3 < 0 holds,145

and we have

J2 + J3 =
∫ Sv
Su

βS − q
Λ− δS

dS = −β
δ

(Sv − Su) +
1

δ
(βK − q) ln

(
K − Su
K − Sv

)
=

q

δ

[
(R0 − 1) ln

(
K − Su
K − Sv

)
− β

q
(Sv − Su)

]
=

q

δ

[
(R0 − 1) ln

(
R0 − Su

S∗

R0 − Sv
S∗

)
−
(
Sv
S∗
− Su
S∗

)]
<

q(R0 − 1)

δ
ln

(
K − Su
K − Sv

)
,

(4)

which indicates that if R0 ≤ 1 then we have µ2 < 1, and consequently the DFPS

is locally stable.

For the global stability, we only need to show that the DFPS (ST (t), 0) is

globally attractive. To do this, we assume, without loss of generality, that the150

impulsive point series I+
k of any solution starting from the l4 with I+

k ∈ [0, ISu ]

for all k ≥ 0. It follows from R0 ≤ 1 and Sv < K that we have dI
dt < 0 for

S ≤ Sv. Thus, it follows from the properties of the function f(I) that {I+
k }

is a strictly decreasing sequence with limk→+∞ I+
k = I0, as shown in Fig.1(B).

Moreover, we claim that I0 = 0 must hold, otherwise it contradicts dI
dt < 0 for155

S ≤ Sv. Therefore, the DFPS (ST (t), 0) is globally attractive. This completes

the proof.

Remark 1. It follows from the proof of Theorem 1 that R0 ≤ 1 implies µ2 < 1,

which means that the non-existence of the interior equilibrium for uncontrolled

system (1) indicates the existence and global stability of the DFPS (ST (t), 0) of

controlled system (2). Naturally, we can define the multiplier µ2 as the control

reproduction number, denoted by Rc with

Rc = exp(J2+J3) > 0 for h2 6= 0, and Rc = (1−η2) exp(J2+J3) > 0 for h2 = 0,

and interesting questions that arise are as follows: (a) whether or not the thresh-

old dynamical behaviour of model (2) is determined by Rc? (b) how to determine

the dynamics of model (2) when µ2 = Rc < 1 < R0 or Rc > 1?160
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Figure 1: The relationship between R0 and Rc in (A) and (C), and the global stability of the

DFPS and bi-stability in (B) and (D). The parameter values are as follows: Λ = 1 in (A) and

(B) with Sv = 6.78 and η1 = 0.2, Λ = 2.5 in (C) and (D) with Sv = 27 and η1 = 0.5. The

other parameter values are as follows: β = 0.015, δ = 0.08, γ = 0.3, h1 = 5, η2 = 0.1, h2 = 3.
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Remark 2. The relationships between R0 and Rc have been shown in Fig.1(A)

and (C) for R0 < 1 and R0 > 1, respectively. Although R0 ≤ 1 indicates

Rc < 1 (Fig.1(A)), we found that Rc could be larger than R0 once the threshold

Sv is less than the critical value S̄v. This confirms that the implementation of

integrated control measures is not conducive to the elimination of the disease165

when the control threshold level Sv is less than the critical value S̄v. While for

R0 > 1, the relations between the R0 and Rc could be more complex which will be

addressed in the Discussion section. It is interesting to note that the reproduc-

tion number Rc is a non-monotonic function of Sv, and there exists a critical

value, denoted by Ŝv, such that Rc reaches its minimal value. This clarifies170

that the correct selection of the threshold level Sv is beneficial to the control of

the disease. However, the DFPS and interior equilibrium P ∗ could coexist and

bi-stability occurs in this case, which reveals some interesting dynamics related

to the transcritical and backward bifurcations for model (2) (see more details in

the coming sections), as shown in Fig.1(D).175

3. Poincaré map and dynamics of model (2) for R0 ≤ 1

Although the global dynamics of model (2) for R0 ≤ 1 have been given in

Theorem 1, in order to address the threshold dynamics related to Rc and all

possible dynamics for R0 > 1 we need to develop new methods, described below.

3.1. The definition of the Poincaré map180

Denote VSv = {(S, I)|S = Sv, I ≥ 0} and VSu = {(S, I)|S = Su, I ≥ 0}. We

choose the section VSu as a Poincaré section. Assume that the point P+
k =

(Su, I
+
k ) lies in the section VSu , and the trajectory initiating from P+

k will

reach the section VSv in a finite time, denote the intersection point as Pk+1 =

(Sv, Ik+1), where Ik+1 is determined by I+
k . Without loss of generality, we can185

assume that Ik+1
.
= P(I+

k ) is determined by the trajectory of model (1). A

single state dependent feedback control action is implemented at point Pk+1

such that it jumps to point P+
k+1 = (Su, I

+
k+1) with I+

k+1 = Ik+1 +B2(Ik+1) on

11
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VSu . Therefore, we can define the Poincaré map PM as

I+
k+1 = P(I+

k ) +B2(Ik+1)
.
= PM (I+

k ). (5)

Now we define the impulsive set M as

M =
{

(S, I) ∈ R2
+|S = Sv, 0 ≤ I ≤ IM

}
,

which is a closed subset of R2
+, where IM = P(ISu) for R0 ≤ 1. Define the

continuous function F : (Sv, I) ∈M→ (S+, I+) = (Su, f(I)) ∈ R2
+, where f(I)

is continuous and increasing in [0, IM ]. Thus, the phase set can be defined as

follows:

N = F (M) =
{

(S+, I+) ∈ R2
+|S+ = Su, 0 ≤ I+ ≤ f(IM )

}
.

Meanwhile, the Poincaré map PM can be determined by the impulsive points190

in the phase set according to the phase portrait. To show this, we define a scalar

differential equation in phase space


dI

dS
=

I [−q + βS]

Λ− δS − βSI
.
= G(S, I),

I(Su) = I+
0 .

(6)

For model (6), we only focus on the region

195

Ω = {(S, I)|S > 0, I > 0, I < h(S)} , (7)

in which the function G(S, I) is continuously differentiable. Further we denote

I+
0
.
= Y with Y ∈ N and Y < ISu , i.e. we have (S+

0 , Y ) ∈ Ω. Then we have

I(S) = I(S;Su, Y ) = I(S, Y ), Su ≤ S ≤ Sv

and

I(S, Y ) = Y +

∫ S

Su

G(s, I(s, Y ))ds.

Thus, PM takes the form in Ω

PM (I+
k ) = I+

k+1 = I(Sv, I
+
k ) +B2(I(Sv, I

+
k )),

PM (Y ) = I(Sv, Y ) +B2(I(Sv, Y )) = f(I(Sv, Y )).
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Theorem 2. For R0 ≤ 1, the Poincaré map PM of model (2) satisfies the

following properties:

a) the domain and range of PM are [0, ISu ] ∪ (ISu ,+∞) and [0, PM (ISu)] re-

spectively. Moreover, PM is continuous and concave on the interval [0, ISu ].

b) PM has a unique fixed point I = 0 which is globally stable, i.e. the DFPS of200

model (2) is globally stable.

Proof 2. By simple calculations we have

∂G(S, I)

∂I
=

(Λ− δS)(−q + βS)

(Λ− δS − βSI)2
,

∂2G(S, I)

∂I2
=

2(Λ− βS)βS(−q + βS)

(Λ− δS − βSI)3
.

It follows from Su ≤ Sv < K and R0 ≤ 1 that Λ− δS > 0 and −q+ βS < 0 for

S ≤ Sv, while Λ− δS−βSI > 0 for I < ISu and Λ− δS−βSI < 0 for I > ISu .

All these results confirm that ∂G(S,I)
∂I < 0 and ∂2G(S,I)

∂I2 < 0 for all I < ISu .

According to the theorem of Cauchy and Lipschitz with parameters on the

scalar differential equation we have

∂I(S, Y )

∂Y
= exp

(∫ S

Su

∂

∂I
G(s, I(s, Y ))ds

)
> 0

and205

∂2I(S, Y )

∂Y 2
=
∂I(S, Y )

∂Y

∫ S

Su

∂2

∂I2
G(s, I(s, Y ))

∂I(s, Y )

∂Y
ds < 0. (8)

Furthermore, it follows from the definition of the function

PM (Y ) = I(Sv, Y )

(
1− η2I(Sv, Y )

h2 + I(Sv, Y )

)
= f(I(Sv, Y ))

that we have

∂PM (Y )

∂Y
=

(
1− η2I(Sv, Y )(I(Sv, Y ) + 2h2)

(h2 + I(Sv, Y ))2

)
∂I(Sv, Y )

∂Y

=

(
1− η2I(Sv, Y )(I(Sv, Y ) + 2h2)

(h2 + I(Sv, Y ))2

)
exp

(∫ Sv

Su

∂

∂I
G(s, I(s, Y ))ds

)
= f ′(I(Sv, Y )) exp

(∫ Sv
Su

∂
∂IG(s, I(s, Y ))ds

)
(9)
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and

∂2PM (Y )

∂Y 2
=

∂2I(Sv, Y )

∂Y 2
+
∂2I(Sv, Y )

∂Y 2

∂B2(I)

∂I

∣∣∣∣
I=I(Sv,Y )

+∂I(Sv,Y )
∂Y

(
∂
∂Y

∂B2(I)
∂I

∣∣∣
I=I(Sv,Y )

)
= (B′2(I(Sv, Y )) + 1)

∂2I(Sv, Y )

∂Y 2
+

(
∂I(Sv, Y )

∂Y

)2

B′′2 (I(Sv, Y ))

= f ′(I(Sv, Y ))
∂2I(Sv, Y )

∂Y 2
−
(
∂I(Sv, Y )

∂Y

)2
2η2h

2
2

(I(Sv, Y ) + h2)3
.

(10)

Note that if h2 = 0 then B′′2 (0) = 0, thus one term − 2η2

h2
will disappear from

the formula for ∂2PM (0)
∂Y 2 . Then, it follows from the monotonicity of the function

f(I) that if Y ∈ (0, Isu ] then ∂PM (Y )
∂Y > 0 and ∂2PM (Y )

∂Y 2 < 0, which indicate that210

PM (Y ) is continuous and concave on the interval (0, Isu ]. Further, according

to the monotonicity of PM (Y ) on the interval (0, Isu ] we see that PM (Y ) is

monotonically decreasing on the interval (Isu ,+∞). Therefore, it follows from

R0 ≥ 1 and Sv < K that dI
dt ≤ 0 for all S < Sv, which indicates that Y ≥

P(Y ) > PM (Y ) for all Y ∈ (0, ISu ]∪ (ISu ,K) due to f(I) < I. All these results215

confirm that the Poincaré map PM only has zero fixed point, i.e. PM (0) = 0,

which is globally stable. Consequently, for model (2) there exists a unique DFPS

which is globally stable.

Remark 3. It follows from the proofs of Theorems 1 and 2 that the global sta-

bility of the DFPS can be proved by using different methods, and the methods220

shown in Theorem 2 could be widely employed in generalized systems.

4. Bifurcation and reproduction number

Note that if R0 > 1, then for model (1) there exists a unique endemic

equilibrium P ∗(S∗, I∗). Thus, according to the positions among Sv, S
∗ and K

we consider the following two cases:225

(C1), Sv ≤ S∗ < K, i.e. R0 > 1 ≥ βSv
q ;

(C2), S∗ < Sv < K, i.e. 1 < βSv
q < R0.
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For case (C1), any solution initiating from the line l4 will experience infinitely

many impulsive effects. Moreover, it follows from βS−q
Λ−δS < 0 for all S ∈ [Su, Sv]

due to Sv ≤ S∗ that we have J2 + J3 < 0, i.e. Rc < 1. This indicates that the230

DFPS is locally stable for case (C1).

Moreover, for case (C1), the Poincaré map PM is well defined, which satisfies

all properties shown in Theorem 2 by using similar methods. Thus, for case (C1)

we have the following main results:

Theorem 3. If R0 > 1 ≥ βSv
q then the DFPS (ST (t), 0) of model (2) is globally235

stable.
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Figure 2: Illustration of the global stability of the DFPS for case (C1), i.e. R0 > 1 ≥ βSv
q

.

The parameter values are as follows: Λ = 2.5, β = 0.015, δ = 0.08, γ = 0.3, η1 = 0.4,

h1 = 5, η2 = 0.1, h2 = 3 and Sv = 20 in (A)-(C), Sv = 30 in (D).
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Remark 4. Under the conditions of Theorem 3, we see that the uncontrolled

ODE model will be stable in the endemic state P ∗(S∗, I∗), as shown in Fig.2(D).

If so, we only need to correctly choose the threshold of the susceptible population

Sv, i.e. Sv < S∗, then the disease can be successfully controlled such that it240

quickly declines towards extinction, as shown in Fig.2(A-C).

For case (C2), since the sign of J2 +J3 can vary, the DFPS could be unstable

in this case. Thus, interesting dynamics may occur as parameter values vary.

For convenience, we only need to assume that the Poincaré map PM is well

defined in the domain U(0+) = [0, ε) for ε > 0 small enough in the following,245

as shown in Fig.1(D), from which we can see that the PM is only well defined

in a small interval U(0+) = [0, ε). Based on this assumption, we address the

bifurcations related to the DFPS and discuss the threshold dynamics determined

by the R0 and Rc in the following.

4.1. Transcritical and pitchfork bifurcations for η1250

In this subsection we choose η1 as the bifurcation parameter and focus on

h2 6= 0 first. Thus, we consider J2 + J3 as a function of η1, i.e.

J12(η1)
.
= J2+J3 = −β

δ
(Sv−Su)+

1

δ
(βK−q) ln

(
K − Su
K − Sv

)
, Rc(η1) = exp(J12(η1))

with Su = Sv +B1(Sv, η1). By simple calculation we have

∂Su
∂η1

=
∂B1(Sv, η1)

∂η1
= − S2

v

Sv + h1
< 0

and
dRc(η1)

dη1
= exp(J12(η1))

∂B1(Sv, η1)

∂η1

(
−βSu − q

Λ− δSu

)
.

Solving dRc(η1)
dη1

= 0 with respect to η1 yields a unique root, denoted by η̄1,

which is equivalent to the unique root of the equation Su = S∗, i.e.

η̄1 =

(
1− S∗

Sv

)(
1 +

h1

Sv

)
> 0.

In order to ensure that η̄1 (i.e. 0 < η̄1 ≤ 1), we need Svh1

Sv+h1
≤ S∗ < Sv.
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Note that if η1 ∈ (0, η̄1) then we have Su > S∗ and dRc(η1)
dη1

> 0; if η1 ∈ (η̄1, 1)

then we have Su < S∗ and dRc(η1)
dη1

< 0. Moreover, it follows from Rc(0) = 1 and

Rc(η̄1) = exp(
∫ Sv
S∗

βs−q
Λ−δsds) > 1 that Rc(η1) > 1 for Su > S∗ (i.e. η1 ∈ (0, η̄1)).

Thus, the DFPS is unstable and bifurcation does not occur at all. If Su < S∗255

(i.e. η1 ∈ (η̄1, 1)), then the bifurcation could occur provided that there exists

an η∗1 ∈ (η̄1, 1) with Rc(η
∗
1) = 1, which means that we need Rc(1) < 1. Further,

according to the monotonicity of Rc(η1) we conclude that η∗1 is unique. All

these results confirm that if 0 < η1 < η∗1 then the periodic solution (ST (t), 0)

is unstable; if 1 > η1 > η∗1 then the periodic solution (ST (t), 0) is stable. This260

shows that the possible bifurcation could occur at η1 = η∗1 .

Furthermore, if η1 = 1 then Su = h1Sv
h1+Sv

. It follows from K−Su
K−Sv > 1 that

ln

(
K − Su
K − Sv

)
<

K−Su
K−Sv − 1√

K−Su
K−Sv

=
Sv − Su√

(K − Su)(K − Sv)
.

Therefore, we have

J12(1) = β
δ

[
−(Sv − Su) + (K − S∗) ln

(
K−Su
K−Sv

)]
< β

δ (Sv − Su)

[
−1 + (K−S∗)√

(K−Su)(K−Sv)

]
.

That is, in order to ensure that J12(1) < 0 (i.e. Rc(1) < 1), we only need

K−S∗ <
√

(K − Sv)(K − Su), i.e. h1Sv
h1+Sv

< K− (K−S∗)2

K−Sv with K− (K−S∗)2

K−Sv <

S∗. According to

0 <
h1Sv
h1 + Sv

< K − (K − S∗)2

K − Sv
= S∗

[
R0 −

(R0 − 1)2

R0 − Sv
S∗

]

we have S∗ > K−
√
K(K − Sv) (i.e. R0 >

1
2−Sv

S∗
> 1). Based on the above dis-

cussion, we have the following main results related to the bifurcation parameter

η1 and reproduction number Rc.

Theorem 4. If 1 < Sv
S∗ < R0, Rc(1) < 1 and M

.
= ∂2I(Sv,0)

∂Y 2 < 2η2

h2
, then265

PM (Y, η1) and the transcritical bifurcation occurs at η1 = η∗1 . That is, a stable

positive fixed point of the PM (Y, η1) appears when the parameter η1 changes

through η∗1 from right to left. Correspondingly, system (2) has a stable positive

17

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d



periodic solution if η1 ∈ (η∗1 − ε, η∗1) with ε > 0 small enough. However, if

M > 2η2

h2
, an unstable positive fixed point of the PM (Y, η1) appears when the270

parameter η1 changes through η∗1 from left to right. Correspondingly, system (2)

has an unstable positive periodic solution if η1 ∈ (η∗1 , η
∗
1 + ε) with ε > 0 small

enough.

Proof 3. Since PM (Y, η1) is well defined in the domain U(0+) = [0, ε), we

see that it is continuous and differentiable. In order to prove Theorem 4, we275

only need to verify that PM satisfies the four conditions of Lemma A.2 in the

Appendix.

Letting I(S;Su, Y ) = I(S, Y ), we have PM (Y, η1) = I(Sv, Y ) and PM (0, η1) =

I(Sv, 0) = 0, which indicates that the first condition of Lemma A.2 holds true.

According to the inequality (9) we have

∂PM (0, η1)

∂Y
= exp

(∫ Sv

Su

βS − q
Λ− δS

dS

)
= Rc(η1).

Thus,
∂PM (0,η∗1 )

∂Y = Rc(η
∗
1) = 1 and the second condition of Lemma A.2 follows.

By simple calculations we have

∂2PM (0, η1)

∂Y ∂η1
=

∂Su
∂η1

∂

∂Su

(
∂PM (0, η1)

∂Y

)
=
∂Su
∂η1

∂

∂Su

(
∂I(Sv, Y )

∂Y

)
=

(
∂I(Sv, Y )

∂Y

)
∂Su
∂η1

∂

∂Su

∫ Sv

Su

∂G(s, I(s, 0))

∂Y
ds =

dRc(η1)

dη1
,

(11)

which indicates that ∂2PM (0,η1)
∂Y ∂η1

=
dRc(η

∗
1 )

dη1
< 0, and the third condition of Lemma280

A.2 follows.

Further, it follows from inequality (10) that

∂2PM (0, η1)

∂Y 2
= exp(J12)

∫ Sv

Su

∂2

∂I2
(G(s, I(s, 0)))

∂I(s, 0)

∂Y
ds− 2η2

h2
exp(2J12).

(12)

Denote

l1(s) =

∫ s

Su

βs− q
Λ− δs

ds,

k1(s) =
∂I(s, 0)

∂Y
= exp

(∫ s

Su

βs− q
Λ− δs

ds

)
= exp l1(s),
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and it is easy to know that k1(Su) = 1 and k1(Sv) = Rc(η1). Taking the

derivative of l1(s) with respect to s yields

l′1(s) =
βs− q
Λ− δs

.

Letting

l2(s) =
∂2

∂I2
G(s, I(s, 0)) =

2βs(−q + βs)

(Λ− δs)2
, k2(s) =

l2(s)

l1
′(s)

=
2βs

Λ− δs
=

2

h(s)
,

and Suη∗1 = (1− η∗1Sv
Sv+h1

)Sv, then we have

∂2PM (0, η∗1)

∂Y 2
=

∂2I(Sv, 0)

∂Y 2
− 2η2

h2
, (13)

where

M
.
=
∂2I(Sv, 0)

∂Y 2
=

∫ Sv

Suη∗1

∂2

∂I2
(G(s, I(s, 0)))

∂I(s, 0)

∂Y
ds

=

∫ Sv

Suη∗1

l2(s)k1(s)ds

=

∫ Sv

Suη∗1

l2(s)

l′1(s)
l′1(s) exp l1(s)ds

=

∫ Sv

Suη∗1

k2(s)d(k1(s)).

(14)

Note that the function k1(s) is monotonically decreasing on the interval285

[Su, S
∗] and monotonically increasing on the interval [S∗, Sv], which indicates

that if η1 = η∗1 then k1(Suη∗1 ) = Rc(η
∗
1) = 1. Thus, k1(S∗) < k1(s) ≤ 1 for all

s ∈ [Suη∗1 , Sv]. According to k′2(s) = 2Λβ
(Λ−βs)2 > 0 for any s ∈ [Suη∗1 , Sv], k2(s) is

a monotonically increasing function. Moreover, we have∫ Sv

Suη∗1

k2(s)d(k1(s)) = k1(s)k2(s)|SvSuη∗1
−
∫ Sv
Suη∗1

k1(s)k′2(s)ds

= k2(Sv)− k2(Suη∗1 )−
∫ Sv
Suη∗1

k1(s)k′2(s)ds

=
∫ Sv
Suη∗1

(1− k1(s))k′2(s)ds,

(15)

which means that 0 < M < (1− k1(S∗))(k2(Sv)− k2(Suη∗)).290

Therefore, if 1 ≤ Sv
S∗ < R0, Rc(1) < 1 and M 6= 2η2

h2
, then the transcritical

bifurcation occurs at η1 = η∗1 . Furthermore, if M > 2η2

h2
, then PM (Y, η1) gen-

erates an unstable fixed point when η1 passes η∗1 from left to right. That is, for
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η1 ∈ (η∗1 , η
∗
1 + ε) with ε > 0 small enough, an unstable positive periodic solution

exists for model (2) , as shown in Fig.1(D). While, if M < 2η2

h2
, then PM (Y, η1)295

exists with a positive stable fixed point when η1 goes through η∗1 from right to

left. That is, for η1 ∈ (η∗1 − ε, η∗1) with ε > 0 small enough, a stable positive

periodic solution exists for model (2) .

Corollary 1. If 1 < βSv
q < R0, Rc(1) < 1 and M > 2η2

h2
, system (2) undergoes

the backward bifurcation at η1 ∈ (η∗1 , η
∗
1 + ε) with ε > 0 small enough.300

Note that the condition Rc(1) < 1 can be replaced by the inequality h1Sv
h1+Sv

<

K − (K−S∗)2

K−Sv . It follows from the conditions of Corollary 1 that the positive

equilibrium P ∗ exists which is stable for model (2) due to Sv > S∗. Moreover,

the DFPS (ST (t), 0) is stable for all η1 ∈ (η∗1 , 1), i.e. we have Rc(η1) < 1 for all

η1 ∈ (η∗1 , 1). Therefore, the stable DFPS (ST (t), 0) and stable equilibrium P ∗305

can coexist, as shown in Fig.1(D), and there exists an unstable order-1 periodic

solution which is bifurcated from (ST (t), 0) once the parameter η1 increases and

exceeds the critical value η∗1 . Obviously, the transcritical bifurcation generates a

backward bifurcation, which is a novel result generated by the state-dependent

pulse vaccination model (2).310

In the following, we address the special case, i.e. M = 2η2

h2
. For this special

case we only need to calculate
∂3PM (0,η∗1 )

∂Y 3 , i.e.

∂3PM (0,η∗1 )
∂Y 3 = ∂3I(Sv,0)

∂Y 3 + 3
∫ Sv
Suη∗1

k2(s)d(exp l1(s))B′′2 (0) +B′′′2 (0)

= ∂3I(Sv,0)
∂Y 3 − 6η2

h2
M + 6η2

h2
2

= ∂3I(Sv,0)
∂Y 3 − 12η2

2

h2
2

+ 6η2

h2
2
,

(16)

where

∂3I(Sv,0)
∂Y 3 =

4η2
2

h2
2

+ ∂
∂Y (

∫ Sv
Suη∗1

∂2

∂I2 (G(s, I(s, 0))) ∂I(s,0)
∂Y ds) (17)

and

∂
∂Y (

∫ Sv
Suη∗1

∂2

∂I2 (G(s, I(s, 0))) ∂I(s,0)
∂Y ds) =

∫ Sv
Suη∗1

l2(s)k1(s)[ 3
2k1(s)k2(s) + l1(s)]ds.

(18)
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Therefore, according to Lemma A.3 we have the following main results for315

this special case:

Theorem 5. If 1 < Sv
S∗ < R0, Rc(1) < 1,M = 2η2

h2
and

∂3PM (0,η∗1 )
∂Y 3 6= 0 then

the Poincaré map of system (2) occurs with a pitchfork bifurcation at η∗1 . Fur-

thermore, if
∂3PM (0,η∗1 )

∂Y 3 < 0, then the Poincaré map (2) occurs with a subcriti-

cal pitchfork bifurcation such that it appears as a stable positive fixed point; if320

∂3PM (0,η∗1 )
∂Y 3 > 0, then the Poincaré map (2) occurs with a supercritical pitchfork

bifurcation such that it appears as an unstable positive fixed point.

Note that the formula of Rc depends on the h2, in particular if h2 = 0 then

we have Rc(η1) = (1−η2) exp(J12(η1)), thus Rc(0) = 1−η2, Rc(η̄1) > 1−η2. It

follows from the monotonicity of J12(η1) that Rc(η1) is monotonically increasing

on the interval [0, η̄1] and monotonically decreasing on the interval (η̄1, 1). In

order to ensure that η∗1 exists and satisfies Rc(η
∗
1) = 1, we need Rc(η̄1) > 1

which indicates that η∗1 ∈ (0, η̄1). Further, if we have Rc(1) < 1 then there

exists a unique η∗∗1 ∈ (η̄1, 1) such that Rc(η
∗∗
1 ) = 1. Therefore, if both the η∗1

and η∗∗1 exist, then we have

∂2PM (0, η∗1)

∂Y ∂η1
=
dRc(η

∗
1)

dη1
> 0,

∂2PM (0, η∗∗1 )

∂Y ∂η1
=
dRc(η

∗∗
1 )

dη1
< 0,

∂2PM (0, η∗1)

∂Y 2
= M > 0,

∂2PM (0, η∗∗1 )

∂Y 2
= M > 0,

and consequently we have the following main result:

Corollary 2. If h2 = 0, 1 < Sv
S∗ < R0, Rc(η̄1) > 1 and Rc(1) < 1, then

PM (Y, η1) occurs with the transcritical bifurcation at η1 = η∗1 and η1 = η∗∗1 .325

That is, an unstable positive fixed point of the PM (Y, η1) appears when the pa-

rameter η1 changes through η∗1 from right to left or through η∗∗1 from left to

right. Correspondingly, system (2) has an unstable positive periodic solution if

η1 ∈ (η∗1 − ε, η∗1) or η1 ∈ (η∗∗1 , η∗∗1 + ε) with ε > 0 small enough.

Note that when h2 = 0, we could choose η2 as a bifurcation parameter. If

so, we have

Rc(η2) = (1− η2) exp(J1 + J2).
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Letting Rc(η2) = 1 and solving it one has η∗2 = 1 − exp(−J1 − J2) such that330

Rc(η
∗
2) = 1 which requires J1 + J2 > 0 to ensure that η∗2 is well defined. More-

over, Su > S∗ implies J1 + J2 > 0 holds true.

It follows from (4) that

J2 + J3 =
q

δ

[
(R0 − 1) ln

(
R0 − Su

S∗

R0 − Sv
S∗

)
− (

Sv
S∗
− Su
S∗

)

]
.

Denote the function ω4(x)
.
= (R0− 1) ln(R0−x) +x with ω′4(x) = 1−x

R0−x . Thus,

ω4(x) is monotonically increasing on the interval [0, 1), and decreasing on the

interval [1, R0). Moreover, x = R0 is an asymptote of the function ω4(x), and

both Su
S∗ and Sv

S∗ ∈ [0, R0), then we have

J2 + J3 =
q

δ

[
ω4(

Su
S∗

)− ω4(
Sv
S∗

)

]
.

It follows from the monotonicity of the function ω4(x) that if Su > S∗

then J2 + J3 > 0. Moreover, ω4(SvS∗ ) < ω4(0) = (R0 − 1) ln(R0) also indicates

that J2 + J3 > 0. Solving the inequality ω4(SvS∗ ) < (R0 − 1) ln(R0) one has

Sv
S∗ ≥ (R0 − 1)LambertW

(
− R0

R0−1 exp(− R0

R0−1 )
)

+R0
.
= ζ, and it is easy to see

that ζ ∈ (1, R0), where the definition and properties of the Lambert W function

can be found in references [27, 29, 31]. Therefore,

∂PM (0, η2)

∂Y
= Rc(η2),

∂2PM (0, η2)

∂Y ∂η2
=
dRc(η2)

dη2
= − exp(J1 + J2) < 0

and
∂2PM (0, η∗2)

∂Y 2
= M > 0.

By methods similar to those above we can evaluate the conditions of Lemma

A.2, to give the following main results:

Corollary 3. If h2 = 0, 1 < βSv
q < R0 and J2 + J3 > 0, then PM (Y, η2) oc-335

curs with the transcritical bifurcation at η2 = η∗2 . That is, an unstable positive

fixed point of the PM (Y, η2) appears when the parameter η2 changes through

η∗2 from left to right. Correspondingly, system (2) has an unstable positive

periodic solution if η2 ∈ (η∗2 , η
∗
2 + ε) with ε > 0 small enough. Particular-

ly, the condition of J2 + J3 > 0 can be strengthened to be 1 ≤ Su
S∗ or Sv

S∗ ≥340

(R0 − 1)LambertW
(
− R0

R0−1 exp(− R0

R0−1 )
)

+R0.
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4.2. Transcritical bifurcation for threshold level Sv

In this subsection, we choose the threshold level Sv as a bifurcation pa-

rameter, which can help us to evaluate how to determine the number in the

population to be vaccinated such that the disease could be eradicated. To do

this, we consider the control reproduction number Rc as a function of Sv, i.e.

we have Rc(Sv) = exp(J12(Sv)) and

J12(Sv)
.
= J2 + J3 =

∫ Sv
Su

βs− q
Λ− δs

ds

= −β
δ

(Sv − Su) +
1

δ
(βK − q) ln

(
K − Su
K − Sv

)
.

By simple calculations we have

dRc(Sv)

dSv
= exp(J12(Sv))

dJ12(Sv)

dSv

and
dJ12(Sv)

dSv
=

∂

∂Sv

∫ Sv

Su

βs− q
Λ− δs

ds,

where Su = Sv +B1(Sv). Letting ω3(x)
.
= βx−q

Λ−δx = β(x−S∗)
δ(K−x) , one has

dJ12(Sv)
dSv

= ω3(Sv)− (1 + I ′1(Sv))ω3(Su). (19)

If Su ≤ S∗, then ω3(Su) ≤ 0. It follows from 1+I ′1(Sv) > 0 that dJ12(Sv)
dSv

> 0;

If Su > S∗, then ω3(Su) > 0. Taking the derivative of ω3(x) with respect to x

yields

ω′3(x) =
q

δ

R0 − 1

(K − x)2
> 0.

Thus, we have

ω3(Sv)− (1 + I ′1(Sv))ω3(Su) > ω3(Su)− (1 + I ′1(Sv))ω3(Su)

= (−I ′1(Sv))ω3(Su) > 0.
(20)

In conclusion, no matter what the position between Su and S∗ is, we always

have dJ12(Sv)
dSv

> 0, i.e. J12(Sv) is a monotonically increasing function of Sv.

Moreover, we have

lim
Sv→S∗

J12(Sv) = lim
Sv→S∗

∫ Sv

Su

ω3(x)dx =

∫ S∗

S∗+B1(S∗)

ω3(x)dx < 0
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and

lim
Sv→K

J12(Sv) = lim
Sv→K

q

δ
[(R0 − 1) ln

(
K − Su
K − Sv

)
− β

q
(Sv − Su)] = +∞.

It follows from the continuity of the function J12(Sv) that there exists a

unique S∗v ∈ (S∗,K) such that J12(S∗v ) = 0, i.e. there is a unique S∗v ∈ (S∗,K)

such that Rc(S
∗
v ) = 1. Further, by simple calculations we have

∂PM (0, Sv)

∂Y
= Rc(Sv)

and
∂2PM (0, Sv)

∂Y ∂Sv
=
dRc(Sv)

dSv
> 0.

By employing similar methods to those shown in Theorem 4 we can address345

the signs of
∂2PM (0,S∗

v )
∂2Y and

∂3PM (0,S∗
v )

∂3Y . Therefore, we have the following main

results:

Theorem 6. If 1 < Sv
S∗ < R0 and M < 2η2

h2
, then PM (Y, Sv) occurs with the

transcritical bifurcation at Sv = S∗v . That is, a stable positive fixed point of

the PM (Y, Sv) appears when the parameter Sv changes through S∗v from left350

to right. Correspondingly, system (2) has a stable positive periodic solution if

Sv ∈ (S∗v , S
∗
v + ε) with ε > 0 small enough. Moreover, if M > 2η2

h2
, an unstable

positive fixed point of the PM (Y, Sv) appears when the parameter Sv changes

through S∗v from right to left. Correspondingly, system (2) has an unstable

positive periodic solution if Sv ∈ (S∗v − ε, S∗v ) with ε > 0 small enough.355

Theorem 7. If 1 < Sv
S∗ < R0, M = 2η2

h2
and

∂3PM (0,S∗
v )

∂Y 3 6= 0, then the Poincaré

map of system (2) occurs with a pitchfork bifurcation at S∗v . Furthermore, if

∂3PM (0,S∗
v )

∂Y 3 < 0, then the Poincaré map (2) occurs with a supercritical pitchfork

bifurcation such that it appears as a stable positive fixed point; if
∂3PM (0,S∗

v )
∂Y 3 > 0,

then the Poincaré map (2) occurs with a subcritical pitchfork bifurcation such360

that it appears as an unstable positive fixed point.

Similarly, for the special case h2 = 0 we have

Rc(Sv) = (1− η2) exp(J12(Sv))
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and according to the properties of the function J12(Sv) we have ∂2PM (0,Sv)
∂Y ∂Sv

=

dRc(Sv)
dSv

> 0, which indicates that there exists a unique S∗v such that J12(S∗v ) =

ln( 1
1−η2

) > 0, i.e. Rc(S
∗
v ) = 1. It follows from

∂2PM (0,S∗
v )

∂Y 2 = M > 0 and Lemma

A.2 that365

Corollary 4. If h2 = 0, 1 < βSv
q < R0, then PM (Y, Sv) occurs with the tran-

scritical bifurcation at Sv = S∗v , i.e. an unstable positive fixed point of the

PM (Y, Sv) appears when the parameter Sv changes through S∗v from right to

left. Correspondingly, system (2) has an unstable positive periodic solution if

Sv ∈ (S∗v − ε, S∗v ) with ε > 0 small enough.370

4.3. Trans-critical bifurcation for Λ

In this subsection we choose Λ as a bifurcation parameter, i.e. we denote

Rc(Λ) = exp(J12(Λ)) = PM (0,Λ) and

J12(Λ)
.
= J2 + J3 =

∫ Sv
Su

βs− q
Λ− δs

ds

= −βδ (Sv − Su) + 1
δ (−q + β(Λ

δ )) ln(−δSu+Λ
−δSv+Λ ).

with

lim
Λ
δ→+∞

J12(Λ) = 0, lim
Λ
δ→Sv

J12(Λ) = +∞.

By calculations we have

dRc(Λ)

dΛ
=
∂PM (0,Λ)

∂Y
= Rc(Λ)

dJ12(Λ)

dΛ
,

dJ12(Λ)

dΛ
= −

∫ Sv
Su

βs−q
(Λ−δs)2 ds

= −(Sv − Su)
βΛ
δ −q

(Λ−δSv)(Λ−δSu) + β
δ2 ln(−δSu+Λ

−δSv+Λ )

and limΛ→+∞
dJ12(Λ)
dΛ = 0. Moreover, we have

dJ2
12(Λ)

dΛ2
=

∫ Sv
Su

2(βs−q)
(Λ−δs)3 ds

= −β(Su − Sv)[(Su + Sv − 2S∗)Λ− (2SuSv − S∗(Su + Sv))δ]

(−Svδ + Λ)2(−Suδ + Λ)2
.

If S∗ = Sv+Su
2 , then we have 2

1
Sv

+ 1
Su

< S∗ and

dJ2
12(Λ)

dΛ2
=

∫ Sv

Su

2(βs− q)
(Λ− δs)3

ds =
β(Sv − Su)[−( 2

1
Sv

+ 1
Su

− S∗)(Su + Sv)δ]

(−Svδ + Λ)2(−Suδ + Λ)2
> 0,

25

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d



which indicates that dJ12(Λ)
dΛ is monotonically increasing on the interval (Svδ,+∞).

Moreover, it follows from limΛ→+∞
dJ12(Λ)
dΛ = 0 that dJ12(Λ)

dΛ < 0 for all Λ ∈

(Svδ,+∞), i.e. J12(Λ) is monotonically decreasing on the interval (Svδ,+∞).

All these results confirm that J12(Λ) > 0 (i.e. Rc(Λ) > 1) for all Λ ∈ (δSv,+∞),375

which means that the DFPS is unstable and no bifurcation occurs with respect

to Λ. If S∗ 6= Sv+Su
2 , then solving

dJ2
12(Λ)
dΛ2 = 0 yields Λ̃ = δ

(
2SvSu
Sv+Su

−S∗

(Su+Sv
2 −S∗) 2

Sv+Su

)
.

For the bifurcation related to the parameter Λ, we consider the following cases:

(i) If Sv+Su
2 > 2

1
Sv

+ 1
Su

> S∗ then we have Λ̃ > 0.

(a) For this case we first consider Λ̃ > δSv, and we have
dJ2

12(Λ)
dΛ2 < 0380

for Λ ∈ (δSv, Λ̃];
dJ2

12(Λ)
dΛ2 ≥ 0 for all Λ ∈ [Λ̃,+∞). Correspond-

ingly, the function dJ12(Λ)
dΛ is monotonically decreasing on the inter-

val (δSv, Λ̃] and monotonically increasing on the interval [Λ̃,+∞).

Moreover, limΛ→+∞
dJ12(Λ)
dΛ = 0, thus we have dJ12(Λ)

dΛ < 0 for al-

l Λ ∈ [Λ̃,+∞). Now we claim that dJ12(Λ)
dΛ < 0 for all Λ ∈ (δSv, Λ̃].385

Otherwise, we assume that there exists a unique Λ̂ ∈ (δSv, Λ̃) such that

dJ12(Λ̂)
dΛ = 0, then we have dJ12(Λ)

dΛ ≥ 0 for all Λ ∈ (δSv, Λ̂] and dJ12(Λ)
dΛ <

0 for all Λ ∈ (Λ̂,+∞). Consequently, J12(Λ) is monotonically increas-

ing on the interval (δSv, Λ̂] and decreasing on the interval (Λ̂,+∞),

which contradicts lim Λ
δ→+∞ J12(Λ) = 0 and limΛ

δ→Sv
J12(Λ) = +∞.390

Therefore, dJ12(Λ)
dΛ < 0 for all Λ ∈ (δSv,+∞) and J12(Λ) is monotoni-

cally decreasing on (Svδ,+∞), with J12(Λ) > 0 for all Λ ∈ (δSv,+∞).

All these results confirm that the DFPS is unstable and the bifurcation

does not occur at all for this case.

(b) When Λ̃ ≤ δSv, from which we have
dJ2

12(Λ)
dΛ2 > 0 for all Λ ∈ (δSv,+∞).395

Thus, dJ12(Λ)
dΛ is monotonically increasing on the interval (δSv,+∞)

with limΛ→+∞
dJ12(Λ)
dΛ = 0, which means that dJ12(Λ)

dΛ < 0 for all

Λ ∈ (Svδ,+∞) and J12(Λ) is monotonically decreasing on (Svδ,+∞).

According to lim Λ
δ→+∞ J12(Λ) = 0 we have J12(Λ) > 0 for all Λ ∈

(δSv,+∞) and then Rc(Λ) > 1 holds true, and again the DFPS is400

unstable and the bifurcation does not occur at all for this case.
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(ii) If Sv+Su
2 > S∗ ≥ 2

1
Sv

+ 1
Su

then Λ̃ < 0. For this case we have
dJ2

12(Λ)
dΛ2 > 0 for

all Λ ∈ (δSv,+∞). By using methods similar to those in (b) we can show

that J12(Λ) > 0 for all Λ ∈ (δSv,+∞) and Rc(Λ) > 1, which indicates

that no bifurcation occurs at all in such case.405

(iii) If S∗ > Sv+Su
2 > 2

1
Sv

+ 1
Su

then Λ̃ > 0. Now we claim that Λ̃ > δSv.

Otherwise, we assume that Λ̃ ≤ δSv, then we have
dJ2

12(Λ)
dΛ2 < 0 for all

Λ ∈ (δSv,+∞) and dJ12(Λ)
dΛ is monotonically decreasing on (δSv,+∞).

Moreover, we have limΛ
δ→+∞ J12(Λ) = 0, thus dJ12(Λ)

dΛ > 0 for all Λ ∈

(δSv,+∞), i.e. J12(Λ) is monotonically increasing on (Svδ,+∞), which410

contradicts limΛ
δ→+∞ J12(Λ) = 0 and lim Λ

δ→Sv
J12(Λ) = +∞.

Thus,
dJ2

12(Λ)
dΛ2 ≥ 0 for all Λ ∈ (δSv, Λ̃], and

dJ2
12(Λ)
dΛ2 < 0 for all Λ ∈ (Λ̃,+∞).

Moreover, according to limΛ→+∞
dJ12(Λ)
dΛ = 0 we have dJ12(Λ)

dΛ > 0 for

all Λ ∈ [Λ̃,+∞). It is easy to know that there exists a unique Λ̂ ∈

(δSv, Λ̃) such that dJ12(Λ̂)
dΛ = 0, and dJ12(Λ)

dΛ ≤ 0 for all Λ ∈ (δSv, Λ̂];415

dJ12(Λ)
dΛ > 0 for all Λ ∈ (Λ̂,+∞). According to limΛ

δ→+∞ J12(Λ) = 0 and

lim Λ
δ→Sv

J12(Λ) = +∞ we know that there exists a unique Λ∗ ∈ (δSv, Λ̂)

such that J12(Λ∗) = 0, i.e. Rc(Λ
∗) = 1 with dJ12(Λ∗)

dΛ < 0 and dRc(Λ
∗)

dΛ < 0.

By employing methods similar to those above, we can show that PM (Y,Λ)

will occur with the bifurcation as Λ = Λ∗ for this case, which depends420

on the magnitude of M , i.e. if M 6= 2η2

h2
then a transcritical bifurcation

occurs; if M = 2η2

h2
and ∂3PM (0,Λ∗)

∂Y 3 6= 0 then a pitchfork bifurcation occurs.

In summary, if Sv+Su
2 ≥ S∗ then J12(Λ) is monotonically decreasing on the

interval (Svδ,+∞); if Sv+Su
2 < S∗ then J12(Λ) is monotonically decreasing on

the interval (δSv, Λ̂] and increasing on the interval (Λ̂,+∞). Moreover, we have425

the following main results:

Theorem 8. Assume that h2 6= 0, 1 < Sv
S∗ < R0. If Sv+Su

2 ≥ S∗ then J12(Λ)

is monotonically decreasing on the interval (Svδ,+∞) and Rc(Λ) > 1 for all Λ,

which means that the DFPS (ST (t), 0) is unstable. If Sv+Su
2 < S∗ then J12(Λ) is

monotonically decreasing on the interval (δSv, Λ̂] and increasing on the interval430

(Λ̂,+∞). There exists a unique Λ∗ ∈ (Svδ,+∞) such that Rc(Λ
∗) = 1 and
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PM (Y,Λ) occurs with a bifurcation at Λ = Λ∗. Moreover, if M 6= 2η2

h2
then a

transcritical bifurcation occurs; if M = 2η2

h2
and ∂3PM (0,Λ∗)

∂Y 3 6= 0, then a pitchfork

bifurcation occurs.

In particular, if h2 = 0, we haveRc(Λ) = (1−η2) exp(J12(Λ)) with limK→+∞ J12(Λ) =435

0 and limK→Sv J12(Λ) = +∞, which indicate that there exists a unique Λ∗ ∈

(Svδ,+∞) such that J12(Λ∗) = ln 1
1−η2

> 0, i.e. Rc(Λ
∗) = 1 with dJ12(Λ∗)

dΛ < 0.

Based on the monotonicity of J12(Λ) we conclude that no matter what the rela-

tionship between Sv+Su
2 and S∗, critical value Λ∗ exists and is unique. Moreover,

according to ∂2PM (0,Λ∗)
∂Y 2 = M > 0 we have the following main results:440

Corollary 5. If h2 = 0, 1 < Sv
S∗ < R0, then PM (Y,Λ) occurs with the transcrit-

ical bifurcation at Λ = Λ∗, which indicates that an unstable positive fixed point

of the PM (Y,Λ) appears when the parameter Λ changes through Λ∗ from left to

right. Correspondingly, system (2) has an unstable positive periodic solution if

Λ ∈ (Λ∗,Λ∗ + ε) with ε > 0 small enough.445

Note that if h2 = 0 and PM (Y ) occurs with bifurcations with respect

to parameters η1, η2, Sv, Λ, then we must have
∂2PM (0,η∗1 )

∂Y 2 =
∂2PM (0,η∗2 )

∂Y 2 =

∂2PM (0,S∗
v )

∂Y 2 = ∂2PM (0,Λ∗)
∂Y 2 = M > 0. Thus, we conclude that:

Theorem 9. If h2 = 0 and PM (Y ) occurs with a bifurcation with respect to

the parameters η1, η2, Sv, Λ, then it must be a transcritical bifurcation and450

generates an unstable interior periodic solution, i.e. a backward bifurcation

occurs and bistability appears when the DFPS of model (2) and the interior

equilibrium P ∗(S∗, I∗) can coexist.

5. Discussion

The basic or control reproduction number plays a key role in analyzing dy-455

namics of epidemic models, but how to define and calculate it is challenging

due to the complexity of the various control measures involved in the models.

In particular, most control measures are implemented instantaneously, which
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can be modelled by impulsive differential equations with fixed or unfixed mo-

ments. Infectious disease models with pulse vaccination or treatment strategies460

have been widely studied recently [5, 19, 8, 10, 15, 20, 13, 7], and most of the

models assume that the pulse vaccination or treatment tactics occur at a fixed

period (i.e. fixed moment) resulting in non-autonomous periodic systems. If

so, we cannot employ the theories of dynamic systems, especially the theories

of impulsive dynamical systems, to study the dynamic behaviour of the model,465

and then to determine the threshold dynamic behaviour and bifurcation phe-

nomenon of the proposed model. Therefore, in order to overcome the above

shortcomings, in the present paper we have extended the classic SIR model of

infections by involving state-dependent feedback control guided by a threshold

size of the susceptible population, aiming to address the threshold dynamics470

and determine the threshold condition through the bifurcation theories of the

discrete one-parameter family of maps.

The existence and global stability of the DFPS, which corresponds to the

disease free equilibrium of the model without control actions, have been inves-

tigated in detail, and the main results show that R0 ≤ 1 indicates Rc < 1,475

which reveals that the non-existence of the interior equilibrium for the classical

SIR model (1) implies the existence and global stability of the DFPS (ST (t), 0).

Moreover, if R0 > 1, we conclude that the disease can still be completely erad-

icated provided that a proper choice of the threshold susceptible population

size Sv is made, i.e. if we choose the threshold level Sv < S∗ then the DFPS480

(ST (t), 0) could be globally stable even if R0 > 1 for the SIR model (1). All

these results confirm that state-dependent feedback control can be effectively

used for mitigating and eradicating infectious diseases [8, 12, 11, 13, 14, 7].

The control reproduction number Rc for model (2) could be defined based

on the threshold condition for the stability of the DFPS (ST (t), 0). Further,485

the bifurcation analyses of the discrete one-parameter family of maps, which is

determined by the Poincaré map of the proposed model (2), related to all in-

teresting parameters of model (2) confirm that Rc can determine the threshold

dynamics of model (2). In particular, the super-critical or sub-critical trans-
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critical and pitchfork bifurcations related to the maximal vaccination rate η1,490

treatment or isolation rate η2, threshold size Sv and model parameter Λ have

been shown when we assume that the Poincaré map PM is well defined in the

neighborhood of U(0+).

In fact, the Poincaré map PM (Y ) is well defined for all small Y shown in

Fig.2(D). Moreover, it can be confirmed from the properties of the phase portrait495

of model (1). It follows from Sv > S∗ that there exists a unique trajectory Γ2 of

model (1) which tangents to the line S = Sv (i.e. l3) at the point A = (Sv, IA),

and intersects with the line l4(S = Su) at the point C(Su, Ic) with IA = −δSv+Λ
βSv

.

Therefore, PM (Y ) is well defined on the domain [0, Ic] with range [0, f(IA)].

However, since the sign of ∂2PM (Y )
∂Y 2 on the interval [0, Ic] varies as parameters500

change, we cannot determine the convexity and concavity of PM (Y ), which

presents a major challenge when addressing the existence and stability of the

order-1 periodic solution by using the properties of the Poincaré map PM (Y ).

The existence of threshold parameter values of η∗1 , η
∗
2 , S

∗
v ,Λ

∗ for transcritical

bifurcations and backward bifurcations are shown in Fig.3, which further con-505

firm that the four interesting parameters chosen for bifurcation analyses can be

well defined. Meanwhile, the unstable interior order-1 periodic solution could

bifurcate from the DFPS through the transcritical bifurcation, i.e. the back-

ward bifurcation occurs, and consequently the stable DFPS of model (2) and

equilibrium P ∗ of model (1) could coexist. Note that it follows from the main510

Theorems in Section 4 that the necessary conditions for the occurrences of the

backward bifurcations are Rc < 1 < R0 and Sv > S∗, which show that the

disease will have outbreaks when the control measures are not involved (i.e.

the global stability of P ∗ of model (1)). Once the control measures are in-

volved in the model, we conclude that the disease can be controlled even if the515

threshold level is relatively large (Sv > S∗ here). Furthermore, the necessary

condition Rc < 1 < R0 for the occurrence of a backward bifurcation implies that

there must exist a threshold value R̄c such that the DFPS is globally stable for

Rc < R̄c, and the stable DFPS of model (2) and equilibrium P ∗ of model (1)

could coexist R̄c < Rc < 1 < R0. An interesting question is how to analytically520
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Figure 3: The existence of threshold parameter values for transcritical bifurcations for

η∗1 , η
∗
2 , S

∗
v ,Λ

∗. The base line parameter values are as follows: Λ = 2.5, β = 0.015, δ =

0.08, γ = 0.3, h1 = 5, η1 = 0.2, η2 = 0.1, h2 = 3 and Sv = 27 in (A), (D) and 29 in (B) with

h2 = 0.
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determine the threshold value R̄c, a challenge for future work.

Moreover, the relations between Rc and R0 for the four interesting param-

eters shown in Fig.1(A) and (C) and Fig.3 reveal that no matter whether the

R0 is greater than or less than 1, there is a certain parameter space that makes

Rc greater than R0. The results shown in Fig.1(A) confirm that the imple-525

mentation of integrated control measures is not conducive to the elimination of

disease when the control threshold level Sv is less than the critical value S̄v, and

the results shown in Fig.1(C) show the importance of selecting the threshold

level Sv for infectious disease control. Moreover, the results presented in Fig.3

provide an important way of thinking about how to control infectious diseases.530

For example, if −βδ (Sv −S∗) + 1
δ (βK− q) ln

(
K−S∗

K−Sv

)
> lnR0, i.e. Rc(η̄1) > R0,

then Rc(η1) > R0 for η1 ∈ U(η̄1, δ) (i.e. the δ domain of η̄1). Numerical simu-

lations reveal that this phenomenon occurs only when the maximal vaccination

η1 is very small, as shown in Fig.3(A). Note that the biphasic vaccination rate

results in an inverted U-shape curve for η1 shown in Fig.3(A), i.e. too low a535

vaccination rate increases the Rc and a relatively high vaccination rate decreases

the Rc. All these results confirm that increasing vaccination coverage is very

important in controlling infectious diseases, especially when the implementation

of the vaccination strategy depends on the size of the susceptible population.

Similarly, the biphasic threshold level Sv results in a U-shape curve shown in540

Fig.3(C), i.e. too small or too large a threshold level Sv is not beneficial for dis-

ease control. Moreover, Rc could be larger than R0 provided that the Sv is large

enough, which can be confirmed as follows: it follows from limSv→S∗ J12(Sv) <

0, limSv→K J12(Sv) = +∞ and the continuity of J12(Sv) that there exists a

Sv0 ∈ (S∗,K) such that J12(Sv0) = lnR0 > 0 (i.e. Rc(Sv0) = R0), and545

Rc(Sv0) > R0 for all Sv ∈ (Sv0,K). Moreover, the line Sv = K is an asymptote

of Rc(Sv). Thus, we conclude that the U-shape curve related to the Sv reveal-

s the importance of the correct selection of the threshold level to ensure the

best integrated disease control effect. Note that biphasic dose response curves

have been reported in many areas recently, including cancer treatment and pest550

control [39, 40, 41], but this is the first time that we have found that biphasic
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vaccination and threshold size responses occur in an infectious disease model

with state-dependent feedback control. In order to eradicate infectious diseases,

the size of the susceptible population (i.e. the critical level Sv here) plays a key

role, which provides important ideas and guidance for designing vaccine output555

and coverage according to population size and vaccine effectiveness.

The results shown in Fig.3(B) clarify that only high rates of effective treat-

ment or isolation could successfully mitigate or eradicate the infectious disease.

The birth rate Λ could also influence the Rc significantly, as shown in Fig.3(D).

For the parameter values given in Fig.3(D) we have Sv+Su
2 = 24.72 < S∗, where560

S∗ = 25.33, Su = 22.44 and the results correspond to Theorem 8. In particular,

if η1 ≤
2(Sv+h1)(1−S∗

Sv
)

Sv

.
= 0.147, then Rc(Λ) is monotonically decreasing on the

interval [δSv,∞) and tends to 1; If η1 >
2(Sv+h1)(1−S∗

Sv
)

Sv

.
= 0.147, then Rc(Λ)

is monotonically decreasing first and then increasing on the interval [δSv,∞)

which will tend to 1 eventually, and this is the case shown in Fig.3(D). The565

relations between η1 and
2(Sv+h1)(1−S∗

Sv
)

Sv
clearly reveal that how to design the

vaccination campaign (i.e. choosing the vaccination rate η1) should be based on

the threshold size Sv and stable population level S∗ without control measures.

Also, the results shown in Fig.3(D) demonstrate that for a relatively large birth

rate Λ we must choose a high vaccination rate η1 such that Rc < 1. In con-570

clusion, in order to effectively control the outbreak of infectious diseases, we

should take effective, timely, measures that are stronger than usual, including

vaccination, treatment and isolation, which should be adopted in relation to

monitored population births and growth.

The properties of the function f(I) = 1− η1I(t)
I(t)+h2

can significantly affect the575

monotonicity and concavity of the Poincaré map PM , which will result in the

complexity of the PM , and consequently various different methods have been

developed in the present paper to show the global stability of DFPS by con-

sidering nonlinear impulsive perturbations have in comparison with the results

obtained in [38]. Moreover, it is interesting to note that the control reproduction580

number Rc = (1−η2) exp(J2 +J3) for h2 = 0, which indicates that the nonlinear

pulse perturbation can significantly affect Rc and consequently influences the
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bifurcation of PM (Y ). In particular, PM (Y ) could only occur with a transcrit-

ical bifurcation when h2 = 0, and the pitchfork bifurcation could occur when

h2 > 0. Further, the Poincare map PM (Y, η1) can occur with a transcritical585

bifurcation at η1 = η∗1 when h2 > 0, i.e. there exists a unique bifurcation value

η∗1 when the nonlinear pulse is considered, while there may exist two bifurcation

values once h2 = 0.

Therefore, we conclude that the nonlinear impulsive perturbations addressed

in the present paper are not only more practical and can produce rich dynamic590

behaviour, but also required new analytical techniques and methods to investi-

gate their global dynamic behaviour. The idealized hypothesis proposed allowed

us to simplify our model and thus conduct a thorough theoretical analysis, but

undeniably it led to limitations to the application of our model to real events.

Thus, we leave the interesting question of how to apply our new methods and595

techniques to a more general model for our future research.
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Appendix A:

The following lemma shows the local stability of the T -periodic solution of

the plane impulsive semi-dynamical system.

Lemma A.1. The T -periodic solution (x, y) = (ξ(t), η(t)) of the system600 

dx(t)

dt
= P (x, y),

dy(t)

dt
= Q(x, y),

 if φ(x, y) 6= 0,

4x = σ1(x, y),

∆y = σ2(x, y),

 if φ(x, y) = 0,

(21)

is orbitally asymptotically stable if the Floquet multiplier µ2 satisfies the condi-

tion | µ2 |< 1, where

µ2 =

q∏
k=1

4k exp

[∫ T

0

(
∂P

∂x
(ξ(t), η(t)) +

∂Q

∂y
(ξ(t), η(t))

)
dt

]
(22)

with

∆k =
P+

(
∂σ2

∂y
∂φ
∂x −

∂σ2

∂x
∂φ
∂y + ∂φ

∂x

)
+Q+

(
∂σ1

∂x
∂φ
∂y −

∂σ1

∂y
∂φ
∂x + ∂φ

∂y

)
P ∂φ
∂x +Q∂φ

∂y

,

and P, Q,
∂σ1

∂x
,
∂σ1

∂y
,
∂σ2

∂x
,
∂σ2

∂y
,
∂φ

∂x
and

∂φ

∂y
are calculated at the point

(ξ(t), η(t)). P+ = P (ξ(t+k ), η(t+k ))and Q+ = Q(ξ(t+k ), η(t+k )). Here φ(x, y) is605

a sufficiently smooth function such that gradφ(x, y) 6= 0, and tk(k ∈ N) is the

time of the k-th jump.

The following two lemmas show the transcritical and pitchfork bifurcations

of the discrete one-parameter family of maps, which can be used to address the

stability and bifurcation of the Poincaré map determined by the impulsive point610

series of the impulsive semi-dynamical system.

Lemma A.2. (Transcritical bifurcation) Let G : U × I → R define a one-

parameter family of maps, where G is Cr with r ≥ 2, and U, I are open intervals

of the real line containing 0. Assume that
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(1) G(0, α) = 0 for all α; (2)
∂G

∂x
(0, 0) = 1;615

(3)
∂2G

∂x∂α
(0, 0) > 0; (4)

∂2G

∂2x
(0, 0) > 0.

Then there are α1 < 0 < α2 and ε > 0 such that

(i) If α1 < α < 0, then Gα = G(., α) has two fixed points, 0 and x1α > 0 in

(−ε, ε), then the origin is asymptotically stable and the other fixed point is

unstable.620

(ii) If 0 < α < α2, then Gα has two fixed points, 0 and x1α < 0 in (−ε, ε).

The origin is unstable, the other fixed point is asymptotically stable.

Note that the case
∂2G

∂x∂α
(0, 0) < 0 is handled by making the change of pa-

rameter α→ −α. If the inequality (4) is reversed (i.e.
∂2G

∂2x
(0, 0) < 0), then

(i) If α1 < α < 0, then Gα has two fixed points, 0 and x1α < 0 in (−ε, ε).625

The origin is asymptotically stable, the other fixed point is unstable.

(ii) If 0 < α < α2, then Gα has two fixed points, 0 and x1α > 0 in (−ε, ε).

The origin is unstable, the other fixed point is asymptotically stable.

Lemma A.3. (Supercritical pitchfork bifurcation) Let G : U × I → R be as in

Lemma A.2, except that G is Cr with r ≥ 3 and
∂2G

∂x2
(0, 0) = 0. Further, if630

∂3G

∂x3
(0, 0) < 0 then there are α1 < 0 < α2 and ε > 0 such that

(i) If α1 < α ≤ 0, then Gα = G(., α) has a unique fixed point, x = 0, in

(−ε, ε). It is asymptotically stable.

(ii) If 0 < α < α2, then Gα has three fixed points in (−ε, ε). The origin is

an unstable fixed point, the two others, x1α < 0 < x2α, are asymptotically635

stable.

Note that the case
∂2G

∂x∂α
(0, 0) < 0 is identical to the above after the change

of parameter α → −α. If
∂3G

∂x3
(0, 0) > 0, it is a so-called subcritical pitchfork

bifurcation. Then for α < 0, there are three fixed points near the origin, but

only x = 0 is asymptotically stable. For α ≥ 0, the origin is the unique fixed640

point near x = 0, and it is unstable.
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