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Abstract 

Manual weeding is the predominant weed control practice and the most labor‐
consuming activity in smallholder, rainfed rice systems in sub‐Saharan Africa. 

This study investigates the technical inefficiency of weeding labor, other labor, and 

overall inputs, and identifies sources of technical inefficiency of weeding labor in 

the context of parasitic weed infestation. The analysis applies a two‐stage 

approach. First, a directional input distance function DEA approach was used to 

compute input‐specific technical inefficiencies. Second, sources of technical 

inefficiency of weeding labor were identified using a truncated bootstrap 

regression. Data from 406 randomly selected smallholder farmers from Benin (n = 

215) and Côte d'Ivoire (n = 191) were used. The technical inefficiency of weeding 

labor was high in both countries (58% in Côte d'Ivoire and 69% in Benin). This 

implies that a substantial fraction of weeding labor could be saved without 

reducing rice productivity or increasing the use of other inputs. A decrease in the 

technical inefficiency of weeding labor with an increase in production scale was 

observed. In addition, weeding regime and education level were each associated to 

significant changes in the technical inefficiency of weeding labor. 

1. Introduction 

In sub‐Saharan Africa (SSA), cereal crop production, in particular rainfed rice, is negatively 

affected by weeds (Becker and Johnson, 2001; Oerke, 2006; Oerke and Dehne, 2004; 

Waddington et al., 2010). Among biotic constraints, weeds are consistently cited to cause the 

highest crop damage (Demont et al., 2009; Oerke, 2006). Damage due to weeds results in 

both direct and indirect yield losses (Chambers et al., 2010), as weeds are known to attract 

other biotic yield‐reducing factors such as viral diseases and grain‐feeding birds (Demont and 

Rodenburg, 2016; Heinrichs et al., 1997). Smallholders with weed‐infested fields also have 

higher on‐farm workloads, reduced time for other productive activities, and higher production 

costs (Adesina et al., 1994; Demont et al., 2007). The predominant weed control practice in 

smallholder rainfed rice systems consists of manual weeding (Adesina et al., 1994; N'cho 

et al., 2014; Tippe et al., 2017a), while herbicides are only used by one‐third of the 

smallholder farmers in SSA (Rodenburg et al., 2019). This explains why for the majority of 

farmers in these systems, weeding take up more than 50% of the available farm labor 

(Akobundu, 1981; Stessens, 2002). Manual weeding is time consuming (Ogwuike 

et al., 2014) and the amount and costs of weeding labor is a primary concern 

(Ruthenberg, 1980). More efficient weeding strategies could save farmers’ time and money to 

be allocated to other activities. In addition, the damage caused by weeds is another important 

concern. Weed‐inflicted damage is particularly problematic in case of parasitic weed species. 
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Parasitic weeds form a special weed group. In addition to the ordinary crop‐weed competition 

for resources, they parasitize their host (the crop) to extract resources (water, nutrients, and 

metabolites). By changing the host plant's hormone balance, they negatively affect the crop 

(Parker and Riches, 1993). Parasitic weeds cause important yield losses across crops and 

regions throughout the world (N'cho et al., 2017; Parker, 2012). In rainfed rice systems in 

SSA, the parasitic weed species Rhamphicarpa fistulosa (Rice vampire weed), Striga 

asiatica, Striga aspera, and Striga hermonthica (Witchweed) cause increasing problems 

(Rodenburg et al., 2010, 2015). These weeds affect rice production in at least 30 countries in 

SSA, causing crop losses that amount up to U.S. $200 million each year, even using 

conservative estimates (Rodenburg et al., 2016). As hand weeding is the most used 

management option in rainfed rice systems (Ogwuike et al., 2014), rethinking the role of 

weeding labor is crucial to improve productivity of these systems. Labor, and in particular 

weeding labor, is the most constraining input factor in smallholder rainfed rice production 

systems in SSA. However, the current understanding of the manual weeding efficiency or the 

effects of weeds or parasitic weeds on input use efficiencies is limited. 

Manual weeding is tedious, highly labor‐intensive, time consuming, and often not completed 

in time (Gongotchame et al., 2014; Rodenburg and Johnson, 2009). The delay results in high 

yield losses, as weeds will unduly compete with the crop for resources, and therefore in 

increased technical inefficiency (Akobundu, 1981). Because of the additional yield‐reducing 

effects of parasitism, weed infestations might cause an even higher technical inefficiency. 

Hence, it is worthwhile to investigate the efficacy of weeding labor in smallholder, rainfed 

rice production systems and to explore how parasitic weed infestation affects the overall 

efficiency of weeding labor. 

This study aims to investigate (1) the technical inefficiency of weeding labor, other labor, and 

overall inputs, and (2) the main determinants of technical inefficiency of weeding labor in the 

context of rainfed rice production in the presence of parasitic weeds. Published empirical 

studies that deal with the efficiency of manual weeding or with the effects of parasitic weeds 

on the efficiency of input use are scant. This article uses a directional distance function and 

Data Envelopment Analysis (DEA) to measure technical inefficiency of weeding labor, other 

labor, and overall inputs, and it identifies the main determinants of technical inefficiency in 

weeding labor using a truncated bootstrap regression model (Simar and Wilson, 2007). The 

analysis in this article is based on farmer‐specific data collected in parasitic weed‐infested 

rainfed rice production regions of Benin and Côte d'Ivoire during the cropping season of 

2011–2012. 

2. Methods 

2.1. Input‐specific DEA model 

DEA is a nonparametric approach to measuring efficiency. The method has been widely 

applied in a variety of industries including agriculture (Simar and Wilson, 2007). In this 

study, the input‐specific efficiency is estimated using a directional input distance function 

DEA to compute subvector inefficiency scores pertaining to a particular input. This allows an 

estimation of the extent to which the target input can be saved, keeping the observed output 

constant and using the same quantity of other inputs (Färe et al., 1994; Oude Lansink 

et al., 2002; Oude Lansink and Silva, 2004). Using this specification, the inefficiencies of the 

target inputs (i.e., weeding labor, other labor, or overall inputs) were computed directly. The 
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subvector technical inefficiencies were measured using the directional input distance function 

as defined by Chambers et al. (1996). Assuming that the production technology of rainfed 

rice systems is appropriately represented by the directional input distance function, and that 

farmers produce a vector of outputs y from a vector of inputs x, decomposed in the target 

input ( ) and nontarget inputs ( ), the input requirement set of the farming system 

technology is given by: 

(1) 

Following Chambers et al. (1996) and assuming convexity and free disposability of inputs for 

the farming system technology, the directional input distance function is defined 

as , 

(2) 

where  is a vector of outputs,  is a vector of target input,  is a vector of 

nontarget inputs, the technology is represented by the input 

correspondences  which define input sets  (Fig. 1), and  is a nonzero 

vector in  defining the direction in which  is defined. In the short run, the directional 

input distance function gives an estimation of the maximum contraction in the specific 

input(s) (second line of Eq. 2) or the maximal translation of L(y) (third line of Eq. 2) along

 that permits keeping the input (x) feasible (to reach the frontier) while keeping output (y) 

and nontarget inputs ( ) constant (Fig. 1). 

 
Figure 1 
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Directional input distance function. 

In this study, the optimal input set varies for each farmer. Therefore, the realized input‐output 

vector ( ,y) was used for the input‐specific technical inefficiency measurement (Chambers 

et al., 1998; Singbo and Oude Lansink, 2010). For the technical inefficiency relative to 

variable returns to scale (VRS), the function used in the directional distance function 

technology is described across the k (k = 1,…, K) inputs and outputs as: 

(3) 

where, Y is the (N × 1) vector of observed outputs, y is the observed output 

level, Xi and Xk−i are the (N × K) matrix of target and nontarget inputs, β is a scalar, I is the 

(N × 1) unitary vector, and λ is an (N × 1) vector of constants (firms weights). Constraints 2 

and 3 ensure that the solution of the model finds a value of  representing the maximum 

reduction in the target input i within the technology set holding all nontarget inputs and the 

output constant. Constraint 4, (I´λ = 1), is the convexity constraint which imposes VRS to the 

model. Using the unknown parameters λ andβ, the model is solved once for each farmer. The 

estimates lie between zero and one. An estimated value of zero for β represents a fully 

efficient farmer, located on the efficient frontier (Fig. 1). For such a farmer, there is no 

possibility to reduce the target input use without reducing rice production level or increasing 

the nontarget inputs. An estimated value greater than zero indicates the existence of technical 

inefficiencies. This implies that a share of the target input can be saved. The VRS 

specification allows farming systems to exhibit increasing, constant, or decreasing returns to 

scale (DRS). However, Coelli et al. (2002) and Haji (2007) found that economies of scale 

were absent in smallholder farming systems such as the one considered in this study. Hence, 

a constant returns to scale (CRS) specification may suffice. For this reason, both the VRS and 

CRS specifications were considered, allowing the computation of scale inefficiency.1 The 

CRS specification ( ) was computed as in Eq. 3 by removing the 

convexity constraint, I´λ  =  1 from the model. This specification assumed that farms operate 

at their optimal scale (Speelman et al., 2008). 

The convexity restriction I´λ⩽1 in  and I´λ≥1 

in  displays Non‐Increasing (NI‐RS) and Non‐Decreasing (ND‐RS) 

Returns to Scale, respectively. Hence, to determine the nature of the returns to scale,2we used 

the directional technology scale efficiency definition 2 as proposed by Fukuyama (2003). The 

DMU (Decision Making Unit) exhibits a: 

1. DRS for (x; y) if 

 

2. Increasing returns to scale (IRS) for (x; y) if 
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3. CRS for (x; y) if 

 

where  is the Farrell input‐oriented NI‐primal formulation, 

and  and  are VRS and CRS formulations, respectively. 

The overall input technical inefficiency and subvector inefficiencies were estimated3 in 

R3.0.1 using the routine dea.direct of FEAR.2.0 (Frontier Efficiency Analysis with R) 

package (Wilson, 2008). The overall input inefficiency (INIE) was estimated as in Eq. 3 by 

pulling together all variable inputs including weeding labor, in constraint 2, while only fixed 

inputs remained unchanged in constraint 3. Since the two countries operate in different 

environments and crop management settings, we estimated separate frontiers. Moreover, 

results from the Meta frontier (single frontier for both countries together) estimation were not 

consistent with the sample data. 

2.2. Comparing technical efficiency of parasitic weed‐infested farms to 

noninfested farms 

To show the correlation between the distributions of inefficiency scores on infested and 

noninfested farms, equality of distribution was tested for the overall technical inefficiency 

and weeding labor technical inefficiency for the subsamples of parasitic weed‐infested farms 

and noninfested farms. Since the technical inefficiency scores are unobserved, the statistics 

provided by the nonparametric independence tests (Person's chi‐square, likelihood ratio, and 

Kendall tau rank correlation tests) are not valid (Simar and Zelenyuk, 2006). Hence, to test 

the equality of distribution of technical inefficiency scores on parasitic weed‐infested farms 

against noninfested farms in this study, the adapted Li test by Simar and Zelenyuk (2006) was 

most appropriate and performed in R3.0.1. 

2.3. Truncated bootstrap model 

To examine the existing correlation between efficiency and economic agent characteristics, 

several studies regressed the estimated efficiencies on a set of environmental variables (Simar 

and Wilson, 2007). However, the input‐specific inefficiency estimate for a farmer is defined 

relative to the frontier representing the best practice. Consequently, the estimated DEA 

inefficiency scores are serially correlated (Hirschberg and Lloyd, 2002; Simar and 

Wilson, 2007; Xue and Harker, 1999). The structures of these complex correlations are 

unknown (Simar and Wilson, 2007). Hence, using these inefficiency scores in a second‐stage 

regression analysis to explain the variation in technical inefficiency among farmers would 

produce invalid inference because of a violation of the basic assumption of independence 

within sample values. Xue and Harker (1999) and Hirschberg and Lloyd (2002) attempted to 

address this problem by using a naive bootstrap approach (Simar and Wilson, 2007). 

Unfortunately, this naive bootstrap approach appeared to be inconsistent in the context of 

nonparametric efficiency estimations (Simar and Wilson, 1999a, 1999b). Moreover, Simar 

and Wilson (2007) argued that none of these studies have described a clear data generation 

processes (DGP) for which these two‐stage estimates would be appropriate. To overcome 

these difficulties, Simar and Wilson (2007) proposed single and double bootstrap procedures 
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with a clear DGP. Smoothed bootstrap (Simar and Wilson, 2000) allows for heterogeneity in 

the distribution of the inefficiency (δ). The smoothed bootstrap permits to correct the serial 

correlation among the estimated inefficiency scores. And, both single and double bootstrap 

procedures permit valid inference for the second‐stage estimation (Simar and Wilson, 2007). 

Hence, to identify the determinants of the inefficiency, the single bootstrap suffices. 

Therefore, in this study, a single bootstrap truncated regression method was used to evaluate 

sources explaining differences between weeding labor inefficiency among farmers (Simar 

and Wilson, 2007; Singbo and Oude Lansink, 2010). Following Algorithm #1 in Simar and 

Wilson (2007), 

1. We computed subvector4 inefficiency scores pertaining to weeding labor input using 

the DEA procedure as described above. 

2. We regressed the estimated inefficiency scores larger than zero ( ) on selected 

environmental variables (zi) using a truncated normal regression with the maximum 

likelihood estimator. Since inefficiency scores were used, the truncation was done at 

the lower bound of 0. 

3. We integrated these estimates into the smoothed bootstrap procedure of Simar and 

Wilson (2000) to bootstrap the truncated regression model. We draw iid bootstrap 

sample (see Simar and Wilson, 1999a, 1999b, 2000) data from the truncated empirical 

normal distribution of the estimated inefficiency scores, each of the 

size m < n observations (m is the number of observations with inefficiency scores 

larger than zero ( ), m  =  178 < 215 for Benin and m  =  154 < 191 for Côte 

d'Ivoire). We looped over the next three steps (parametric bootstrapping) L times (L = 

2,000) to obtain a set of bootstrap estimates A . The choice 

of L determines the number of bootstrap replications used to construct the estimates’ 

confidence intervals, which requires more information (Simar and Wilson, 2007). 

Hall (1986) suggests 1,000 replications, Balezentis et al. (2014), Simar and Wilson 

(2007), and Yu (2003) used 2,000 replications. A larger number of replications can be 

used to achieve more accurate estimates at the cost of waiting time depending on the 

CPU power of the computer (Simar and Wilson, 2007; Yu, 2003). 

 In step 3.1, for each i  =  1,…, m, we draw  (the residual) from the N (0, ) 

distribution with left‐truncation at (0− ). 

 In step 3.2, for each i = 1,…, m, we computed . 

 In step 3.3, we used the maximum likelihood method to estimate the truncated 

regression of  on , yielding estimates parameters  and marginal effects of 

explanatory variables. 

 4. 

We used the bootstrap values in A and the original estimates, ,  to construct a 

bootstrap‐based confidence interval at 95% for each parameter estimate.5 

3. Data description 

Via a multistage sampling process, we selected rice‐producing regions and districts where 

parasitic weeds were present. In Benin, five districts were selected in three regions, i.e., 

Dassa and Glazoue in the Collines region, Kandi in the Alibori region, and Boucoumbe and 

Tanguieta in the Atacora region. In Côte d'Ivoire, eight districts were selected in two regions 
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in the North of the country, i.e., Korhogo, Sinématiali, Karakoro, and Tioro in the Poro 

region, and Boundiali, Ganaoni, Siempurgo, and Kolia in the Bagoue region. The three 

regions in Benin accounted for 80% of the national rice area and 85% of the paddy 

production (DPP/MAEP, 2009). In Côte d'Ivoire, parasitic weed infestation is limited to the 

northern regions of the country. In Benin, we considered only Rhamphicarpa and in Côte 

d'Ivoire we considered both Rhamphicarpa and Striga. Both parasitic weeds are found 

exclusively in rainfed rice systems. Rhamphicarpa is found only in rainfed lowlands 

and Striga in rainfed uplands (Kabiri et al., 2015). Consequently, in Côte d'Ivoire, farmers 

were selected among the whole (rainfed) rice growing community, whereas in Benin only 

farmers of inland valleys (rainfed lowland areas) were selected. In Benin, 18 (12 infested and 

6 not infested) cropped lowlands within the five districts were randomly selected. In Côte 

d'Ivoire, 24 villages within the 8 districts (3 villages per district) were randomly selected. At 

the village level in Côte d'Ivoire and at the lowland level in Benin, farmers were selected 

randomly. The samples comprised farmers who used manual weeding at least once during the 

cropping campaign 2011–2012 (n = 215 for Benin and n = 191 for Côte d'Ivoire). In the 

random sample in Côte d'Ivoire, 43% of farmers had fields infested by either the parasitic 

weeds Rhamphicarpa fistulosa or Striga hermonthica (mainly) and Striga aspera. In the 

sample for Benin, 65% of farmers had fields infested by Rhamphicarpa fistulosa. The 

samples comprised 75% female rice farmers, in Benin, and 15%, in Côte d'Ivoire. Farmers 

were asked about their use of farming inputs, measured by quantities and costs. The 

following characteristics were collected based on farmers’ estimations: field infestation status 

(infested or not infested) and infestation intensity (low, medium, high), surface area covered 

by parasitic weeds, the location of the field along the upland‐lowland continuum, the weeding 

methods, and corresponding number of weeding operations. 

3.1. Input‐specific DEA model data 

The best practice frontier was estimated using one output and five inputs. The output and 

inputs6 were defined based on farmers’ cropping practices in rainfed rice production systems. 

Paddy (unhusked) rice production was the output, measured in kilogram per farm. The 

defined inputs consisted of (1) manual weeding labor, (2) labor used for other activities and 

other services, (3) intermediate inputs (seed and chemical inputs)—defined as variable inputs, 

(4) land, and (5) capital—the latter two reflecting fixed inputs. Fertilizer and herbicide costs 

were aggregated into intermediate input costs to avoid “zero‐observation” as many farmers 

did not use all of them. Fertilizer costs included expenditures (computed based on farmer 

declaration) on organic manure and mineral fertilizer. Labor was measured in hours and 

included family labor as well as hired labor. Labor was computed based on the number of 

men, women, and children involved and their time spent in each rice farming operation. Time 

investment was converted into a quality‐adjusted measure of labor, using the ratio 0.5 for 

children, 0.75 for women, and 1 for men (CIRAD‐GRET‐MAE, 2002, p. 323). Area under 

rice was measured using a global positioning system (GPS) device (GARMIN, Model 

GPSMAP 60CSx). To account for the quality of seed, the costs of seeds coming from 

farmers’ harvest were computed using the average price of paddy in each country while the 

actual (market) prices were used in case seeds were purchased. Herbicides, other inputs and 

other service costs were measured at their actual prices. Capital costs related to the use of 

machinery and small materials (hoes, axes, machetes, etc.) were expressed in terms of their 

annual (linear) depreciation costs (N'cho et al., 2017). Table 1 presents the mean and standard 

deviation of the output and each input, based on the farmer‐specific data of the two surveyed 

countries. 
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Table 1. Mean of farms households and standard deviation of outputs and inputs used in the 

DEA model 
 Benin Côte d'Ivoire 

Variables Mean (n = 215) Std. Dev. Mean (n = 191) Std. Dev. 

Paddy production (kg/farm) 426 (463) 1,756 (1,819) 

Land (ha) 0.24 (0.25) 1.53 (1.09) 

Capital (FCFA)a 2,959 (3,526) 21,347 (37,703) 

Weeding labor (hour) 195 (170) 573 (515) 

Other labor (hour) 333 (275) 1,904 (1,637) 

Intermediate inputs (FCFA) 19,735 (26,610) 108,576 (98,679) 

 Note: a West African CFA franc, the fixed exchange rate is €1 = 656 FCFA. 

3.2. Data used in bootstrap regression models 

Studies by Haji (2007), Speelman et al. (2008), Singbo and Oude Lansink (2010), Kokoye 

et al. (2013), Theriault and Serra (2014), Ayenew et al. (2017), Pede et al. (2018), and Piesse 

et al. (2018), showed that farmers’ technical efficiency is determined by a set of 

socioeconomic, institutional, and farm‐specific factors. Such factors included household size, 

education, gender, age, years of experience in rice farming, access to agricultural 

information, land tenure, area under rice, and number of fields. These factors affect farm 

management and, therefore, are expected to impact technical inefficiency levels (Haji, 2007). 

To capture the effect of parasitic weed infestation on rice farmers’ technical inefficiency, 

variables such as the parasitic weed infestation level (measured by the proportion of farm 

area under rice affected by parasitic weeds), manual weeding modalities,7 and interaction 

effects of parasitic weed infestation and manual weeding modalities were introduced in the 

models. Manual weeding consisted of hand or hoe weeding. Four manual weeding modalities 

were considered to account for differences in timing and frequency: (1) weeding once early 

(up to 30 days after sowing (DAS)), (2) weeding once late (>30 DAS), (3) weeding twice, 

and (4) weeding three times or more. Based on the research by Ekeleme et al. (2009), Toure 

et al. (2011), and Ogwuike et al. (2014), we expected that weeding once early and/or weeding 

twice would reduce farmers’ technical inefficiency. However, since weeding more than twice 

significantly reduces the severity of Rhamphicarpa in Benin (N'cho et al., 2014), we expected 

this to reduce the technical inefficiency even more than weeding once, in case 

of Rhamphicarpa infestation. The infested area of the rice farm was expected to increase 

farmers’ inefficiency as a larger area infested may require additional work. The complete list 

of variables used in the truncated bootstrap regression model with their expected signs is 

presented in Table 2. 

Table 2. Expected sign, mean, and standard deviation of variables used in truncated bootstrap 

regressions 
  Benin Côte d'Ivoire 

Variables 
Expected 

sign 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Weeding labor inefficiency (dependent 

variable) 
 0.69 0.35 0.58 0.35 

Gender of farmer (1 = female farmer) ± 0.73 0.45 0.15 0.35 
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  Benin Côte d'Ivoire 

Variables 
Expected 

sign 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Education (number of years completed) – 2.21 3.33 1.16 2.48 

Household size (number of individuals) – 7.76 5.24 10.86 5.80 

Area under rice (ha) – 0.24 0.24 1.53 1.09 

Area infested (%) + 35.01 36.39 15.22 22.70 

MW once early – 0.03 0.18 0.28 0.45 

MW once late ± 0.01 0.1 0.10 0.30 

MW more than twicea ± 0.52 0.50 0.14 0.34 

MW once*area infested (interaction effect) ± 1.44 9.48 3.20 10.66 

MW more than twice*area infested 

(interaction effect) 
– 22.36 33.59 3.28 12.71 

Access to information (1 = access, 0 = no 

access) 
– 0.86 0.35 0.69 0.46 

 Notes: MW = Manual Weeding. aMW twice is used as base for comparison. 

4. Results 

4.1. Technical and scale inefficiencies 

The average overall input technical inefficiency, labor technical inefficiencies, and the 

overall scale inefficiencies are presented in Table 3. 

Table 3. Technical and scale inefficiencies of specific inputs 
 Benin Côte d'Ivoire 

Inefficiencies Mean 
Std. 

Dev. 
Min Max 

2.5–97.5 

pct. 
Mean 

Std. 

Dev. 
Min Max 

2.5–97.5 

pct. 

WLIEa (VRS) 0.69 0.35 0 0.99 0.63–0.73 0.58 0.35 0 0.98 0.53–0.63 

OLIEa (VRS) 0.64 0.34 0 0.98 0.60–0.69 0.60 0.34 0 0.97 0.55–0.65 

INIEa (VRS) 0.53 0.31 0 0.95 0.49–0.57 0.41 0.28 0 0.92 0.37–0.45 

WLIEa (CRS) 0.82 0.25 0 0.99 0.78–0.85 0.71** 0.30 0 0.99 0.66–0.75 

OLIEa (CRS) 0.84 0.25 0 0.99 0.80–0.87 0.82** 0.29 0 0.99 0.77–0.86 

INIEa (CRS) 0.68 0.26 0 0.99 0.64–0.71 0.58 0.28 0 0.97 0.54–0.62 

OSIE 0.15 0.20 0 0.92 0.12–0.17 0.17 0.21 0 0.90 0.14–0.20 

 Notes: pct. = percentile, WLIE = weeding labor technical inefficiency, CRS = 

constant returns to scale, OLIE = other labor technical inefficiency, INIE = overall 

inputs technical inefficiency, VRS = variable returns to scale, OSIE = overall scale 

inefficiency. aEstimated values were obtained in the directional 

vectors  for WLIE,  for OLIE, 

and  for INIE, wlab = weeding labor, olab = other labor, xv = variable 

inputs, (**) statistically significant at 5% (2.5th and 97.5th pct. do not overlap), 

comparing weeding labor use to other labor use. 
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The average overall input technical inefficiency was 41% and 53% for the VRS model, and 

58% and 68% for the CRS models in Côte d'Ivoire and Benin, respectively. The mean 

technical inefficiency of weeding labor was 58% and 69% for VRS, and 71% and 82% for 

CRS in Côte d'Ivoire and Benin, respectively. The mean technical inefficiency of other labor 

was 60% and 64% (for VRS), and 82% and 84% (for CRS), in Côte d'Ivoire and Benin, 

respectively. 

In both countries, weeding labor technical inefficiencies were not significantly different from 

other labor use inefficiencies (OLIE), except in Côte d'Ivoire for the CRS specification where 

weeding labor technical inefficiency (WLIE) was smaller than OLIE (Table 3).8 

The overall scale inefficiency (OSIE) was 17% in Côte d'Ivoire and 15% in Benin. In Benin, 

only 6% of farmers were scale efficient (OSIE = 0, i.e., operating at constant return to scale). 

In Côte d'Ivoire, only 10% of farmers were scale efficient. Hence, most farmers in the sample 

in both countries were scale inefficient. Fig. 2 shows the distribution of technical inefficiency 

scores among the farmers in the sample for overall inputs and weeding labor. The distribution 

of technical inefficiencies of weeding labor indicated the presence of two rather extreme 

clusters of farmers in both countries. On the one hand, farmers were clustered at a higher 

inefficiency level (WLIE > 80%), while at the same time there was a cluster of very efficient 

farmers (WLIE < 20%). The intermediate cluster (20% ≤ WLIE ≤ 80%) was less represented 

in both countries, indicating a divergence between farmers with respect to their weed 

management abilities. 

 
Figure 2 
Open in figure viewerPowerPoint 
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Distribution of overall inputs and weeding labor technical inefficiency scores per country. 

a. Variable returns to scale (VRS), Benin. 

b. Variable returns to scale (VRS), Côte d'Ivoire. 

c. Constant returns to scale (CRS), Benin. 

d. Constant returns to scale (CRS), Côte d'Ivoire. 

Notes: INIE = overall inputs technical inefficiency, WLIE = weeding labor technical 

inefficiency, CRS = constant returns to scale, VRS = variable returns to scale, TIE= 

Technical Inefficiency. 

Since the focus of this study is on weeding labor inefficiency in the presence of parasitic 

weeds, we drew the distribution of weeding labor inefficiency for farms infested with 

parasitic weeds and compared it to that of farms not infested by these weeds (Fig. 3). The two 

distributions appear identical in both countries for the VRS as well as the CRS specification. 

The distributions for the subsamples of parasitic‐infested and noninfested farms both 

followed cluster shapes similar to what was observed for the whole sample. In order to test 

whether the distribution of overall input inefficiencies were the same for the parasitic weed‐
infested farms and the noninfested farms, we ran the adapted Li test. 
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Figure 3 
Open in figure viewerPowerPoint 

Distribution of weeding labor technical inefficiency scores per farm infestation status per 

country. 

a. Variable returns to scale (VRS), Benin. 

b. Variable returns to scale (VRS), Côte d'Ivoire. 

c. Constant returns to scale (CRS), Benin. 

d. Constant returns to scale (CRS), Côte d'Ivoire. 

While for the Benin sample, the test results were not significant (P > 0.1; not reported) for 

either overall inefficiency or weeding labor inefficiency, in Côte d'Ivoire both inefficiency 

distributions were significant for the VRS specification only (P = 0.0097 for INIE and P = 

0.0249 for WLIE). Hence, the null hypothesis of equal distributions for the subsamples of 

parasitic weed‐infested and noninfested farms was not rejected for Benin, while it was 

rejected for Côte d'Ivoire for the VRS specification. This suggests that the distributions of 

farmers’ overall inefficiency and weeding labor inefficiency were independent of the 

parasitic weed infestations of farms in Benin, while the opposite was observed in Côte 

d'Ivoire. 

Furthermore, the difference of mean inefficiency scores between the subsamples of infested 

and noninfested farms was checked using the 2.5th and 97.5th percentiles of their respective 

mean inefficiency scores (Table 4). Significant differences (P < 0.05) were found only for 

INIE and WLIE for the VRS specification in Côte d'Ivoire (Table 4), indicating that for 

overall input and weeding labor, the technical inefficiency for noninfested farms is generally 

lower than that for infested farms. 

Table 4. Mean values of specific technical inefficiencies of noninfested and infested farms 

and their 2.5th and 97.5th percentiles 
  Benin Côte d'Ivoire 

Technical 

inefficiencies 

Infestation status (1 = yes, 0 

= no) 
Mean 

2.5‐97.5 

pct. 
Mean 

2.5‐97.5 

pct. 

INIE (VRS) 1 0.53 0.48–0.58 0.48** 0.42–0.54 
 0 0.53 0.46–0.61 0.36** 0.31–0.42 

WLIE (VRS) 1 0.70 0.65–0.76 0.66** 0.59–0.73 
 0 0.66 0.57–0.74 0.52** 0.45–0.59 

OLIE (VRS) 1 0.65 0.59–0.70 0.66 0.59–0.73 
 0 0.63 0.55–0.72 0.55 0.49–0.62 

INIE (CRS) 1 0.67 0.63–0.71 0.59 0.53–0.65 
 0 0.70 0.64–0.76 0.57 0.51–0.63 

WLIE (CRS) 1 0.82 0.77–0.86 0.74 0.68–0.80 
 0 0.81 0.76–0.87 0.68 0.62–0.74 

OLIE (CRS) 1 0.84 0.80–0.88 0.83 0.77–0.89 
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  Benin Côte d'Ivoire 

Technical 

inefficiencies 

Infestation status (1 = yes, 0 

= no) 
Mean 

2.5‐97.5 

pct. 
Mean 

2.5‐97.5 

pct. 
 0 0.83 0.76–0.89 0.81 0.75–0.86 

 Notes: pct. = percentile, INIE = overall inputs technical inefficiency, WLIE = 

weeding labor technical inefficiency, OLIE = other labor technical inefficiency, CRS 

= constant returns to scale, VRS = variable returns to scale, (**) statistically 

significant at 5% (2.5th and 97.5th pct.). 

4.2. Determinants of inefficiency of weeding labor 

The results of the truncated bootstrap regression showing the sources of weeding labor 

inefficiency are displayed in Table 5. The scale inefficiency estimates showed that less than 

10% of the farmers in both countries operated at CRS. Moreover, results from the VRS, CRS, 

and NI‐RS estimation (in Benin DV(0.7) < DNI(0.9)  =  DC(0.9) and in Côte d'Ivoire DV(0.6) < 

DNI(0.7)  =  DC(0.7)) confirmed that the technologies exhibit IRS in both countries. Hence, 

only the technical inefficiency estimates of the VRS specification were used for the second 

stage regression. 

Table 5. Results of the truncated bootstrap regression for sources of weeding labor technical 

inefficiency 

Variables Benin Côte d'Ivoire 

Inefficiency effect 

variables 
Coefficients 

Std. 

Err. 
95% CI Coefficients 

Std. 

Err. 
95% CI 

Constant 0.80** 0.10 [0.60, 0.99] 0.81** 0.08 [0.66, 0.97] 

Female farmer 0.08 0.06 
[−0.04, 

0.20] 
0.05 0.07 

[−0.08, 

0.18] 

Education 0.01 0.01 
[−0.01, 

0.02] 
−0.02** 0.01 

[−0.04, 

−0.002] 

Household size 0.003 0.005 
[−0.01, 

0.01] 
−0.002 0.004 

[−0.01, 

0.01] 

Area under rice −0.32** 0.12 
[−0.57, 

−0.10] 
−0.02 0.03 

[−0.07, 

0.03] 

Area infested 0.001 0.001 
[−0.001, 

0.003] 
0.003* 0.001 

[4e‐04, 

0.005]b 

MW once early −0.20 0.28 
[−0.77, 

0.32] 
−0.14** 0.07 

[−0.28, 

−0.02] 

MW once late −0.36 0.35 [−1.1, 0.18] −0.07 0.10 
[−0.26, 

0.11] 

MW more than twicea −0.03 0.07 
[−0.17, 

0.11] 
0.12 0.10 

[−0.06, 

0.30] 

MW once* area 

infested 
0.001 0.005 

[−0.01, 

0.01] 
0.001 0.003 

[−0.004, 

0.007] 

MW more than 

twice*area infested 
−0.0001 0.001 

[−0.003, 

0.003] 
−0.001 0.003 

[−0.01, 

0.005] 
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Variables Benin Côte d'Ivoire 

Inefficiency effect 

variables 
Coefficients 

Std. 

Err. 
95% CI Coefficients 

Std. 

Err. 
95% CI 

Access to information 0.004 0.07 
[−0.14, 

0.15] 
−0.07 0.05 

[−0.17, 

0.04] 

Log likelihood −56.497823 −31.893233 

Prob > chi2 0.00 0.00 

 Notes: MW= manual weeding, CI = confidence interval. aMW twice is the base 

category. bThe 90% CI was reported. **P < 0.05 and *P < 0.1 based on the bootstrap 

95% and 90% CI (L = 2,000 replications). 

In Côte d'Ivoire, weeding once (early) decreased technical inefficiency (P > 0.05), while the 

effect of a single late weeding intervention was not significant (Table 5). Weeding early once 

and having a higher education were associated with a lower technical inefficiency. A larger 

share of plot infested was associated with a higher inefficiency. Ceteris paribus, an increase 

of 1% in area infested by parasitic weeds increases the WLIE by 0.3%. An additional year of 

education decreases the WLIE by 2%. In Benin, only larger farms were associated to a lower 

inefficiency (P < 0.05) while, contrary to Côte d'Ivoire, the technical inefficiency of weeding 

labor did not increase with an increase in infested area (P > 0.1). Weeding more than twice 

had no significant effect on inefficiency (P > 0.1%) in either of the two countries. 

5. Discussion 

The results of the directional input distance function show that smallholder, rainfed rice 

farming systems are overall technically inefficient in their use of inputs. This is consistent 

with findings by N'cho et al. (2017), indicating that substantial amounts of production 

resources can be saved, while preserving the current level of output. The technical 

inefficiency of weeding labor was high. This was expected because manual weeding is highly 

labor intensive and farmers do not have many effective alternatives (Rodenburg et al., 2019). 

The high technical inefficiency found in this study is consistent with previous studies that 

indicate rice production is constrained by inefficient use of inputs in SSA (Mujawamariya 

et al., 2017). For example, Sherlund et al. (2002) found high technical inefficiency in 

smallholder rice farm systems in Côte d'Ivoire. Mujawamariya et al. (2017) argued that in 

SSA, the risk perceived by rice farmers aggravates inefficiency. The high technical 

inefficiency of weeding labor can be explained by its crucial role in the production. In rainfed 

rice systems of SSA, a lack of proper weeding results in high production losses (Rodenburg 

and Johnson, 2009). Farmers rely mainly on manual weeding due to the limited number of 

effective and affordable weed management practices available to them (Rodenburg 

et al., 2019). Parasitic weeds are expected to cause a higher damage level to the crop 

compared to ordinary weeds because, in addition to the ordinary crop‐weed competition, they 

also parasitize host crop plants. Therefore, in order to prevent serious production losses, 

farmers in parasitic weed‐infested fields apply substantially more labor resources for 

weeding. The majority of that labor is family labor (Singbo and Oude Lansink, 2010), which 

is not reflected in actual expenditures and farmers may not consider the opportunity costs of 

this. Similar to the case of herbicide use, as underlined by Olson and Eidman (1992), weeding 

labor might be used more to manage risks than to maximize profits. Farmers who perceive a 

high risk of production losses for their farms infested by parasitic weeds may overreact, 
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resulting in an excess use of labor for weeding and thereby increase technical inefficiency 

more significantly than in the case of ordinary weeds. This is particularly true for Côte 

d'Ivoire where weeding labor inefficiency was higher on infested farms than on noninfested 

farms (Section 4.1). Since manual weeding is labor‐intensive, the completion of this task is 

often delayed, resulting in lower rice yields despite the large amount of labor (Ogwuike 

et al., 2014; Rodenburg and Johnson, 2009). To be efficient, timing of weeding interventions 

in rice is very important as was shown by Johnson et al. (2004). A relatively small time 

investment (e.g., one or two weeding operations) at critical early crop stages may result in a 

higher technical efficiency of weeding labor and lower weed‐inflicted yield losses compared 

to a relatively large time investment (e.g., more than two weeding interventions) at later, less 

critical crop stages (Toure et al., 2011). In the case of parasitic weeds, an early intervention 

may be even more important as it will reduce the period of parasitism. In the case 

of Rhamphicarpa fistulosa, a facultative parasitic weed that starts as an ordinary weed and 

only starts parasitizing its host once it has developed into a seedling, early weeding may even 

completely avert parasitism (Kabiri et al., 2016). 

The large difference observed between CRS and VRS overall technical inefficiency scores 

suggests the presence of significant scale inefficiencies in the sample. More than 92% of the 

farmers did not operate at their optimal scale. The results of the bootstrap regression 

indicated that technical inefficiencies of weeding labor indeed decreased with larger farms 

(mainly in Benin). A possible explanation of this observation is that larger farms are realizing 

IRS. This is supported by Coelli et al. (2002), who showed that if farms were realizing IRS, 

the area cropped is expected to have a significant positive impact on efficiency levels 

(decreasing inefficiency). Similar results were obtained by Balezentis et al. (2014) using a 

DEA bootstrap approach, suggesting that increasing area under rice may raise the technical 

efficiency. This implies that increasing the scale of farming systems could improve the 

efficiency of the use of inputs. This is consistent with the first stage estimates that the 

farming systems are exhibiting IRS. A substantial scale inefficiency was also reported by 

Singbo and Oude Lansink (2010) in lowland farming systems in Benin. However, the results 

are not consistent with Haji (2007) who found that scale inefficiency was nearly absent in the 

more traditional farming systems of smallholder farms in Eastern Ethiopia. 

Farmers with parasitic weed‐infested rice fields recognize that hand weeding may be 

effective (in particular against the facultative parasite Rhamphicarpa fistulosa), but also 

consider these interventions overly laborious (Tippe et al., 2017a). An important implication 

of the results of the current study is that, with the actual level of technology, farmers can 

substantially reduce weeding labor and still produce the observed output (conditional on the 

use of other inputs too). This implies that by improving the technical efficiency of weeding 

labor, farmers could reallocate a significant fraction of labor to other productive activities of 

the household without decreasing rice production or increasing the use of other inputs. 

Improving technical efficiency of weeding labor might require training of farmers in Good 

Agricultural Practices (GAP) for rainfed rice systems and in labor saving strategies (e.g., 

optimized weeding timing). Although recent efforts already resulted in defining feasible 

parasitic weed control strategies for subsistence rice farmers in SSA (e.g., Randrianjafizanaka 

et al., 2018; Tippe et al., 2017b), more strategies need to be developed and disseminated. 

While such strategies should preferably be labor saving, other important criteria for increased 

adoption potential are affordability, accessibility, feasibility in terms of implementation, and 

control efficacy (Tippe et al., 2017a). 
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The large difference in the distributions of technical inefficiency scores of weeding labor and 

overall inputs indicates that farmers performed differently in managing their overall 

production process compared to managing weeds. The fact that a large fraction of the farmers 

in both countries exhibit a high level of inefficiency suggests that the majority of farmers did 

not perform well with regards to weed management. This finding suggests the need for 

actions that focus on solving the general weed management problem in rainfed rice systems 

in SSA. The majority of subsistence rice farmers has limited resources and limited weed 

management capacities. The farmers operating fully efficiently may have different profiles 

with respect to weed management compared to the farmers that are operating less efficiently. 

For example, they may be exposed to agricultural training and learn possible labor‐saving 

strategies such as optimal timing of weeding. Education was linked to decreased technical 

inefficiencies, and this is in line with empirical findings in SSA. For instance, a study by 

Ayenew et al. (2017) showed that literate smallholder farmers are more likely to be 

technically efficient in agriculture than their illiterate counterparts. Sherlund et al. (2002) 

showed that education is positively and significantly correlated with technical efficiency for 

smallholder rice farmers in Côte d'Ivoire. Furthermore, college level or higher education was 

associated to higher technical efficiency than secondary and elementary education. Likewise, 

Schut et al. (2015) identified agricultural education and awareness raising among farmers and 

extension agents as one of the most important drivers for innovation to better address 

parasitic weed problems in rice. Finally, for extension services to be more effective in 

training farmers on new technologies, the quality and mode of service delivery should also 

improve. Achandi et al. (2018) showed that extension services for rice production systems in 

SSA are not yet gender inclusive enough to reach all farmers effectively. 

The results of the second stage truncated bootstrap regression suggest that farmers can reduce 

the technical inefficiency of weeding labor by increasing their area under rice (mainly in 

Benin) or by adjusting their weeding operation to one early manual weeding (in Côte 

d'Ivoire). In Côte d'Ivoire, weeding once but early had a significant negative effect on 

technical inefficiency of weeding labor while weeding once but late did not. These results 

again confirm the importance of the development of adapted weeding regimes9 with proper 

timing of interventions (see Ekeleme et al., 2009; Johnson et al., 2004; Toure et al., 2011). 

The insignificant coefficient of weeding more than twice indicates that, in both countries, it 

has similar effects on technical inefficiency of weeding labor as weeding thrice or more 

(weeding twice is the base category). This means that at the current technology level, keeping 

all other inputs constant, there might not be a need to weed more than twice to produce the 

current output level. Ogwuike et al. (2014) concluded that weeding an upland rice crop more 

than once increases the weeding labor efficiency (by about 37%) and rice productivity (by 

more than 27%); hence, the optimum number of weeding operations is most likely two. In 

Côte d'Ivoire, the effect (interaction effect) of one manual weeding on weeding labor 

inefficiency of a field infested by parasitic weeds was positive while the effect of weeding a 

parasitic weed‐infested field more than twice was negative. This means that, when rice farms 

become infested by parasitic weeds, the effect of weeding once on technical inefficiency 

changes from negative to positive, while the opposite effect is observed with weeding more 

than twice. However, these joint effects were not significant. In Benin, both corresponding 

effects remain negative and nonsignificant regardless of the infestation status of the fields. 

These nonsignificant effects indicate that both weeding once and weeding more than twice 

might not be effective when plots become infested by parasitic weeds. The negative and 

nonsignificant joint effects of weeding more than twice and infestation by parasitic weeds 

indicate that, in the presence of parasitic weeds, farmers tend to weed more than twice in their 

attempt to secure their harvest. This suggests that future research on parasitic weed 
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management strategies needs to investigate both the appropriate weeding timings and the 

number of weeding interventions, as well as alternative cost‐effective strategies to hand 

weeding. Since the research solely used the efficiency analysis approach to account for 

economic benefits of alternative parasitic weed management methods in rice farming, future 

research should use bioeconomic simulation models which combine biological and 

economical outcomes to provide better insights in the composition of strategies that provide 

the most accurate and most cost‐effective control. 

6. Conclusion 

This article analyzes the technical inefficiency of weeding labor and other inputs in rainfed 

rice systems in the presence of parasitic weeds in Côte d'Ivoire and Benin. In the first stage, a 

directional input distance function with DEA approach was used to estimate the inefficiency 

scores pertaining to a specific input. In the second stage, a robust truncated bootstrap 

regression was used to identify sources of technical inefficiency of weeding labor. 

We found that substantial inefficiency exists in both countries for overall input, weeding 

labor, and other labor, suggesting that at the current technology level farmers can maintain 

their production level and still save inputs. In addition, substantial overall scale inefficiencies 

were found in both countries, suggesting that an increase in the scale of production systems 

will reduce the technical inefficiency. Results from the truncated bootstrap regression further 

suggest that the currently used manual weeding regimes and number of weeding interventions 

on farms infested by parasitic weeds are not efficient in controlling the parasitic weeds. 

Operating fully efficiently would save a substantial amount of labor that can be allocated to 

other productive activities of the household without decreasing the current rice production 

levels. 

To the best of our knowledge, this study is the first to explicitly raise the crucial issue of 

weeding labor inefficiency in smallholder rainfed rice farming systems of SSA. Overall, the 

study contributes to the broader literature on production efficiency of rice systems by 

showing that in smallholder rainfed rice farming systems of SSA, coping with parasitic weed 

infestations, there is scope for improving the technical efficiency of weeding labor. 

These findings have significant policy implications since the extent of estimated technical 

inefficiency prevailing in an agricultural economy matters when determining whether scarce 

agricultural development funds are best spent to develop improved technologies or to train 

farmers on how to better use existing improved technologies. We therefore recommend that 

National Agricultural Research and Extension Systems (NARES), in collaboration with 

international organizations in agricultural research, develop research and extension programs 

aiming at reducing technical inefficiency of weeding labor. The current study suggests this 

can be achieved by increasing the scale of production, using effective alternative weeding 

modalities, enhancing agricultural education of farmers, raising awareness on the parasitic 

weeds among farmers and agricultural extension agents, and exploring labor‐saving and cost‐
effective parasitic weeding technologies. This could enhance rainfed rice systems 

productivity and contribute to improving food security in countries affected by parasitic weed 

problems. 

Although the second stage truncated bootstrap estimation of the study aimed at identifying 

factors significantly affecting the inefficiency of weeding labor, covariates available in the 



data set were restricted to farm and farm household characteristics. Future research may 

explore and develop models that combine biological, ecological, and economical outcomes to 

enhance our understanding of what the most cost‐effective and accurate management 

strategies are for parasitic weed‐infested rice farms. Moreover, since the study only focused 

on the technical relationship between inputs and outputs, future studies could include the cost 

of input and investigate the economic efficiency of weeding labor. 
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 1 The overall input scale inefficiencies were computed following Färe et al. (1985). 

 2 Since the CRS and VRS specification alone are not able to determine whether the 

technology exhibits decreasing or increasing returns to scale, an additional 

computation of either the nondecreasing (ND)‐primal or the nonincreasing (NI)‐
primal is required (Fukuyama, 2003). 

 3 In the estimation of each directional input distance function model, only the target 

input changes. Thus, for overall input inefficiency (INIE), all variable inputs (xv) 

varied, including weeding labor, while fixed inputs remained unchanged. For 

Weeding Labor Inefficiency (WLIE), only weeding labor (wlab) altered and all other 

inputs remained constant. For Other Labor Inefficiency (OLIE), only Other Labor 

(olab) was considered variable, while all other remaining inputs were kept constant. 

 4 In defining the subvector inefficiency, only the target input changes while other 

inputs and the output remain unchanged. 

 5 Details on the algorithm used in Stata for the bootstrap are available upon request 

from the authors. 

 6 An outlier test was performed in FEAR, and outliers (only 6) were removed from 

the analysis 

 7 Weeding modalities are defined by 1 the number of days between sowing and each 

weeding operation and 2 the number of weeding operations required. 

 8 Weeding labor inefficiency was compared to other labor and overall inefficiency 

using the range of 2.5th–97.5th percentiles. The compared mean values are different if 

the range of 2.5th–97.5th percentile did not overlap, otherwise the difference was not 

significant. 

 9 This refers to the number of DAS at which each weeding operation is conducted. 
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