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Abstract: This paper analyzed auto commuter’s mode choice behavior under influence of 

simulated multimodal traveler information by developing two logit models. A combined Revealed 

Preference (RP) / Stated Preference (SP) travel behavior survey is administered on auto drivers to 

gather individual commuter’s travel decisions under integrated multimodal traveler information. 

Two SP scenarios are designed where the first scenario is to test the mode choice preference in a 

basic situation involving a congested work/school trip with information on several travel options, 

and the second scenario is to investigate the mode choice decision when certain incentives are 

given to public transport. Results showed that integrated multimodal traveler information can 

influence traveler’s mode choice decision. The influence factors that significantly affect the mode 

choice decision include socio-economic characteristics e.g. gender, age, level of education, and 

level of income, and multimodal traveler information attributes e.g. access mode to mass rapid 

transit (MRT) station, access time to MRT station, and transit seat availability. The findings 

are useful to traffic management agencies to better deign operational policy and information 

publication strategies.  

Key words: integrated traveler information; multi-modal transportation; mode choice; logit model 

1 Introduction 

Integrated traveler information as provided by traffic control center serves to assist 

travelers to better plan their trips. By leveraging on the most up-to-date information on 

network congestion, availability and status of transit modes, opportunities for easy transfer 

and parking availability, travelers can make smart travel decision, such as adjusting the travel 

mode, route and departure time, which shall result in saving travel time and alleviating traffic 

congestion. 
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A number of studies have attempted to explore the potential of traveler information 

provisions on influencing the ways commuters normally travel (Bifulco et al., 2011; Parvaneh 

et al., 2012). Jou et al. (2005) found that the effectiveness of traveler information depends on 

the types and format of how it is disseminated. Guo (2011) reported that travelers who use 

public transit had significant tendency to use the public transit information. Chorus et al. 

(2013) found that travelers pay more attention to the information type and the information 

cost. Travelers with high level of education spend less money than those with only primary 

school education for acquiring the traveler information. Research has also been conducted on 

the impacts of ATIS (Advanced Traveler Information System) on travel behavior, being 

mainly focusing on the study of auto commuter’s route choice behavior. The important 

factors that influence route choice include system performance attributes such as trip time and 

congestion; experiential factors such as scheduled delay and familiarity (Buliung et al., 2007) 

and the nature, extent, and quality of ATIS information (Adler, 2001; Golob, 2003; Qin et al., 

2013). ATIS information also indirectly influences route choice through users’ expectations 

of system performance and their perception of feedback on actual performance measures on 

alternative routes (Bradley, 2006). 

However, the afore-mentioned studies did not focus on the impacts of traveler 

information on commuter’s travel choice behavior, as highlighted by Lam and Memon (2003), 

Zito et al. (2011), and Balakrishna et al. (2013). More specifically, the interactions among 

mode choices, among others, were not satisfactorily captured in most studies, especially when 

the dynamic nature of traffic flows on the road network is considered. Furthermore, in most 

studies, the impacts of traveler information were observed by providing mode-specific 
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information to designated mode users, e.g. the impacts of ATIS were analyzed by providing 

traveler information regarding the private modes to private mode users only (Farag and Lyon, 

2008, 2012; Kenyon, 2003). In such a framework, where the information is provided for 

specific modes only, the possibility to study the auto’s mode choice behavior is very limited 

(Chorus et al., 2006). Considering the existing multimodal nature of transportation systems, 

e.g. in urban metropolises like Singapore, where the availability of different modes and the 

provision of integrated traveler information allows the commuters to plan their trips by 

integrating different modes or to choose between public and private modes of travel, it 

becomes relevant to study the commuter’s mode choice behavior (Luk and Yang, 2003). As 

such, this research sets out to explore a more efficient way to estimate the effects of 

multimodal traveler information, given by an information system like Advanced Multimodal 

Traveler Information Systems (AMTIS), on commuter’s mode choice behavior and how it 

quantitatively affects the transport network. 

The objective of this research study is to improve the understanding on travel 

characteristics of auto commuters in a multimodal transportation network and their behavior 

and preferences towards mode choice under integrated traveler information, using Singapore 

as a case study. The following sections are organized as follows: travel behavior survey is 

briefly described in Section 2. The preliminary analysis on the mode choice preference is 

discussed in Section 3. A detailed investigation regarding the influence of integrated traveler 

information is provided in Section 4. Lastly, conclusions are outlined in Section 5. 

2 Travel behavior survey 

The commuters’ mode decisions are usually dependent on their socio-economic 
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characteristics and travel attributes. It is thus important to understand the sensitivity of these 

attributes and their influence on individual’s mode choice behavior. To achieve such an 

understanding, a travel behavior survey was conducted. The goal of the survey was to analyze 

the commuters’ travel behavior under the influence of traveler information. 

In this regard, two kinds of survey technique were used in this paper: revealed preference 

(RP) survey and stated preference (SP) survey to gather the commuters’ travel choice 

decisions with respect to public versus private modes in congested but information-rich 

multimodal transportation environment, specifically considering the influence of integrated 

traveler information. In the RP section, data on actual choices were obtained from the 

respondents, so as to facilitate the selection of a reference trip for subsequent SP questions. In 

the SP section, the selected reference trip was customized in different SP scenarios for each 

individual respondent. These SP scenarios were then presented to the respondent for which 

the responses were recorded. 

Implementing a valid and reliable RP and SP study requires precise definitions of 

attributes, attention to presentation of preferential information (ratings, rankings, or semantic), 

efficient experimental design, and rigorous statistical analysis. Given the researchers’ 

intention to use the RP and SP data jointly, the desired data were provided in semantic format, 

and the choice experiment appeared the most suitable because: (a) preferences are expressed 

in a context similar to that of an RP survey; (b) choices are perceived to be more realistic than 

ratings or rankings, and (c) SP method allows in principle to test any discrete choice model 

structure. In spite of the fact that the choice context was quite typical, in order to ensure 

greater realism and reliability, a computer-assisted survey instrument was designed. Such an 
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approach provided the facility to customize each SP scenario for every specific respondent, 

according to the information provided in the RP section during the surveys. 

The RP component was divided into four parts in which information about auto 

commuter’s socio-economic characteristics, usual trip preferences, availability and usage of 

public and private modes were collected. The information gathered in RP component was 

then presented in the SP component while creating different hypothesized scenarios. The 

hypothesized scenarios were customized for each respondent based on the information 

provided in the RP section. This approach resulted in creating realistic scenarios which can be 

conceptualized by the auto commuters as they reflected on certain parameters which existed 

in actual situations. There were 2 SP scenarios, which were designed to collect the 

information on: the mode choice preference (SP1), and the mode choice behavior under 

certain incentives on public transport (SP2). The mass rapid transit (MRT) which is the 

railway system spanning the entire island state represented the public transit transport in the 

survey. 

The survey instrument was designed and developed using Visual Basic and Microsoft 

Access. A pilot survey was conducted to ensure that the survey questionnaire was well 

designed and to provide training to the survey staff. After the questionnaire was amended to 

satisfaction, the main survey was conducted. Surveyors were assigned to different locations in 

Singapore to collect data with portable computer notebooks. The participants were randomly 

selected within a continuous nine-day period, which served to cover all differential influences 

(by days of the week inclusive of weekend) of external events. A broad demographic mix of 

participants was selected to ensure that commuters in all major categories were represented. 
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The subjects were selected from the driver population located in the northern and eastern 

sides of Singapore. The selected subjects were required to have valid driving license, and 

commute regularly by private mode of transport. The central and northern parts were selected 

due to the reason that the transportation network simulation model mainly covered these parts 

of Singapore. The participants were contacted by the interviewers at various locations such as 

petrol stations, car parks of shopping centers, and food centers. The surveys took place when 

the subjects drove to these locations to fill up petrol, to do shopping or to have their meals. 

The discussions with the participants were firstly aimed at highlighting the modal choice and 

travel behavior to give an understanding of the decision-making process for the current modal 

choices. Then the use and influence of multimodal traveler information on the travel behavior 

and modal choice was discussed. After which they were required to provide their personal 

characteristics, and details about their usual travel plans. Later, hypothetical scenarios 

representing different traveler information schemes were presented to them and their 

preferences were gathered. Available data were collected from a total number of 479 

respondents.  

3 Mode choice preference modeling 

3.1 Variables selection 

To justify the model variables, a general analysis is conducted. The respondents’ 

socio-economic characteristics that were collected in the survey include: gender, age, level of 

education, level of income, car ownership, stoppage1, Electronic Road Pricing (ERP), and 

acceptable delay. The impact of each variable on respondent’s mode choice is presented in 

                                                             
1 Stoppage refers to a regular compulsory stop that the car driver makes to drop off kids at school, spouse at work, 

or have breakfast before reaching his/her destination. 
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Table 1, in which the information is provided about the market segment of each 

socio-economic variable, distribution with respect to each mode of transport, and the details 

of respondents’ mode switching behavior. 

Table 1. Influence of Socio-Economic Characteristics of Auto Commuters on Mode 

Choice Behavior 

Socio-Economic Variables 

(Code) 

Market 

Segment 

(Car 

Users) 

Mode Choice 

(Number) 
Mode Choice (%) 

Switch 

to 

Public 

Continue 

with 

Private 

Switch 

to 

Public 

Continue 

with 

Private 

Gender 
Female (0) 220 106 114 48.18 51.82 

Male (1) 259 45 214 17.37 82.63 

Age (years) 

18-35 (0) 48 8 40 16.67 83.33 

36-45 (1) 186 104 82 55.91 44.09 

46-55 (2) 235 37 198 15.74 84.26 

Above 55 (3) 9 1 8 11.11 88.89 

Education 

A Level2 (0) 

Bachelors (1) 75 55 20 73.33 26.67 

Masters (2) 142 67 75 47.18 52.82 

PhD (3) 162 24 138 14.81 85.19 

Income (S$) 

/ Month)3 

Below 1501 (0) 100 5 95 5 95 

1501 -3000 (1) 23 4 19 17.39 82.61 

3001-6000 (2) 69 25 44 36.23 63.77 

6001-12000 (3) 174 56 118 32.18 67.82 

Above 12000 186 59 127 31.72 68.28 

Car 

Ownership 

Yes (1) 418 128 290 30.62 69.38 

No (0) 60 23 37 38.33 61.67 

Stoppage 
Yes (1) 4 0 4 0 100 

No (0) 475 151 324 31.79 68.21 

Pay ERP Yes (1) 285 82 203 28.77 71.23 

 No (0) 194 70 124 36.08 63.92 

Acceptable 

Delay (min) 

5 (0) 161 43 118 26.71 73.29 

10 (1) 229 82 147 35.81 64.19 

15 (2) 90 27 63 30 70 

The mode switching column reflects the comparative percentage of mode switching 

                                                             
2 “A” Level in Singapore is pre-university education 
3 The median income in Singapore is S$3480 in 2012 based on the income summary table on Ministry of 

Manpower’s website (http://stats.mom.gov.sg/Pages/Income-Summary-Table.aspx). S$ 1≈ US $ 0.8. Singapore’s 

Big Mac index is -17, popularized by The Economist.  

http://stats.mom.gov.sg/Pages/Income-Summary-Table.aspx
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respondents within the specific category, e.g. based on the gender category, about 48% of the 

females exhibited certain degrees of mode switching behavior, whereas for males only 17% 

of them had any intention of switching their modes of travel. This may imply that females 

have higher mode switching propensity as compared to females. Similarly, age, education 

level and income all seems to influence the mode choice behavior.  

Car ownership also showed some influence on mode choice behavior. Respondents who 

did not own cars and drove to work were more inclined to change their mode as compared to 

those who did own cars. On the other hand, respondents who made regular stops were less 

willing to change their mode of transport. Such behavior can be due to the commitment that 

they might have such as dropping their kids at school or dropping their spouses at work. 

Surprisingly, those who did not have to pay ERP were more inclined towards mode switching. 

It can be observed that acceptable delay did influence the mode switching behavior, but not in 

direct relation to the magnitude of delay. By aggregating the data into two groups based on 

gender i.e. male and female, the influence of age, education, and income on mode choice 

behavior can be further analyzed.  

Two factors regarding the travel characteristics namely estimated time saving and 

estimated cost saving are recorded in the survey. The empirical findings as presented in 

Figure 1 show that information on both two factors attracted the respondents to switch from 

their usual mode. Information on increase in estimated time saving attracted the commuters 

towards higher degree of mode switching propensity, while the increase in cost saving also 

attracted the respondents to change their mode of transport. 
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(b) 

Figure 1. Impact of Estimated Time and Cost Saving on Auto Commuters’ Mode 

Switching Propensity 

To further explore the impact of public (transit) mode facility, respondents were given 

information on transit waiting time and seat availability. The impact of waiting time and seat 

availability is shown in Figure 2. It can be observed that information on waiting time and seat 

availability both had significant influence on the mode switching propensity. A high 
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proportion of the respondents i.e. 51% choose transit mode when they were given the 

information that the waiting time was 1 minute and seats were available, whereas 50% of the 

respondents chose transit mode with same waiting time, but without the availability of seats. 

At a lower waiting time, the seat availability did not show any significant impact on mode 

switching propensity. It reflects that commuters expect a higher level of service when waiting 

times are longer, and make a trade-off between the transit level of service and their usual 

mode of travel, while making any mode switching decision.  
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Figure 2. Impact of Waiting Time (min) and Seat Availability (1 if seat is available, else 

0) on Mode Switching Propensity 

3.2 Binary logit model development 

In order to extend the study on the impact of integrated traveler information on auto 

commuter’s mode choice behavior, it is necessary to identify whether the integrated traveler 

information can influence auto commuter’s willingness to switch his/her mode of travel in 

congested road environment or not. The auto commuter’s personal and travel characteristics 

that may influence the mode choice decisions, under the influence of multimodal traveler 
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information, shall be discussed firstly. With only public and private mode data in 

consideration, a binary logit model was estimated to analyze the effect of socio-economic and 

travel characteristics. 

The scenario SP1, which refers to a congested work/school trip with information on 

several travel options, was administered and the respondents were given a choice between 

private car on expressway, public rail transit, and their usual choices of transport (no 

inclination to make a choice for the latter). The total number of useable responses was 400, 

out of which 245 selected private (car) mode of transport, and 115 selected public (transit) 

mode of transport, and 40 opted for their usual pattern of travel. Excluding the 40 responses, 

the remaining 360 responses were used for estimating the model. With public and private 

mode data in consideration, binary logit models were developed based on two types of input 

parameters; the first was related to the auto commuter’s socio-economic characteristics, and 

the second was related to transport facility characteristics. Different socio-economic and 

transport facility related variables were considered while estimating the model, and based on 

their levels of significance some of them were incorporated into the final model, in which the 

socio-economic variables used were: gender, age, level of education, and level of monthly 

personal income. The transport facility characteristics were total trip time, and total travel cost. 

The estimated mode choice model is presented in Table 2. 

Table 2. Binary Logit Model Estimating the Commuter’s Mode Choice Behavior under 

Multimodal Traveler Information 

Socio-Economic Characteristics Coefficients (β) t-Statistics 

Constant 11.531 1.941 

Gender (ref=female) 2.472 1.863 

Age (ref=age group 18 to 35 years) 1.921 1.958 

Level of education (ref= “A” level and below) 2.076 2.735 

Level of income (ref = income group less than 0.503 1.832 
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S$1500) 

Transport Facility Attributes Coefficients (β) t-Statistics 

Travel time -3.36 -2.464 

Travel cost (S$)  -0.985 -1.937 

Summary Statistics 

Number of observations 360 

Log likelihood function -11.39 

Restricted log likelihood -249.53 

Degrees of freedom 354 

χ2 100.665 

ρ2 0.815 

All the estimated coefficients were significant at the 10% significance level. The value 

of ρ2 was very high, and it implied that the model could describe the mode choice process 

well. The utility functions for the private (UPR) and public (UPB) modes of transport were: 

 
( ) ( ) ( )

( ) ( ) ( )

11.531 3.361 0.985 2.472

1.921 2.076 0.503

PR PR PR
U Travel Time Cost Gender

Age Education Income

= − − +

+ + +
 (1) 

 ( ) ( )3.361 0.985PB PB PB
U Travel Time Cost= − −  (2) 

The results as presented in Table 2 showed that in a non-congested road environment, 

auto commuters preferred to take private mode of transport, but with increase in travel time 

the likelihood of taking private mode of transport decreased. The constant term reflected that, 

if all the variables in Eq(1) and Eq(2) were equal, the auto commuters would choose private 

mode of transport, which corroborated with other study results. It may be due to the higher 

level of comfort and freedom in car mobility (Beirão and Cabral, 2007; De Witte et al., 2013). 

Among the socio-economic variables, the coefficient for gender had a positive sign, which 

reflected that males were more inclined to use private mode as compared to females. It may 

be that men had higher access to vehicles. Similarly, the estimated coefficients for age, 

income and education had positive sign, which reflected that with the increase in age, income 

and education the probability of choosing private mode became higher. Thus, it can be 
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concluded that in a congested environment and with higher car cost, auto commuters who 

belonged to younger age groups, lower income groups and lower level of education might 

show higher likelihood towards public mode of transport, which is more reliable than private 

car in Singapore under congestion condition. Higher income commuters have lower 

probabilities of choosing public transit, which might be attributed to comfort consideration, 

ready availability of a car and lesser sensitivity to travel cost. The public mode of transport 

has two main attributes: travel time and travel cost. In a congested environment, the transit 

mode may be attractive if it has a shorter travel time and lower travelling cost as compared to 

the private mode of transport. The public mode can become attractive by increasing the 

travelling cost of private mode. For example, increasing the Electronic Road Pricing (ERP) or 

parking charges can directly increase the attraction of public mode of transport.  

The estimated model shown in Table 2 indicates a potential for multimodal traveler 

information to influence auto commuters mode switching propensity from private to public 

mode of transport. In essence, all the surveyed socio-demographic attributes affect the auto 

commuter’s mode switching propensity; these attributes are: gender, age, education, income, 

travel time and travel cost. 

4 Impact of integrated traveler information on commuter’s mode choice behavior 

This section examines the impacts of integrated traveler information on auto commuter’s 

mode choice behavior in a congested travel environment. In this regard, the auto commuters 

were presented with a hypothesized scenario (SP2), which presented the same delayed 

work/school trips along with the integrated traveler information as in SP1. But in this scenario 

(SP2), certain incentives were given to public mode of transport. The information provided by 
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the auto commuters regarding the access time to public mode of transport was randomly 

reduced by 10%, 30%, and 50%. Similarly, the parking cost and ERP charges were randomly 

increased by 50%, 75%, and 100%. The auto commuters were given a choice between private 

mode, public mode, and their usual mode of transport. A total of 400 commuters participated, 

and they were those commuters who had either chosen private mode or public mode of 

transport in the previous SP. A binary logit model was developed to capture the mode choices 

based on two types of input parameters; the first one was related to the commuter’s 

socio-economic characteristics, while the second one was related to transport facility 

characteristics. 

Different socio-economic and transport facility related variables were considered while 

estimating the model, and based on their levels of significance some of them were 

incorporated into the final model. The levels of each transport facility attribute were entered 

into the model and were assumed to be provided by an AMTIS according to the SP design.  

This effort would enable the identification of two important aspects of the disseminated 

integrated traveler information. First, the usage of the provided information by the commuters, 

and second the significant attributes that are considered important by the commuters. The sign 

convention, estimated coefficient values, and their corresponding significance levels, are 

presented in Table 3. All the included variables were significant at 90% confidence level. The 

likelihood static ratio shows that the model was significantly different from the null or 

intercept-only (or know-nothing) model by the χ2 value (74.8 with 10 degrees of freedom). All 

the variables have coefficients significantly different from 0, as judged by the size of β 

relative to its estimated asymptotic standard error, and further indicated by the column labeled 
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P, which gives the upper bound of the probability of making Type 1 error. The lower value of 

log likelihood function and the estimated value of ρ2 reflect the robustness of the estimated 

model (Cramer, 1999; Rana et al., 2010). These test statistics show that the model can 

describe the mode choice process well. 
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Table 3. Mode Choice Logit Model Estimating the Commuter’s Mode Choice Behavior, 

given Integrated Multimodal Traveler Information 

Socio-Economic β t-Stat SE P 

Constant 5.731 2.253 2.544 0.024 

Gender (ref=male) -1.97 -1.833 1.075 0.067 

Age (ref=age group 18 to 35 years) 1.929 3.016 1.303 0.003 

Level of education (ref= “A” level and below) 1.137 2.066 0.55 0.039 

Level of income (ref = income group less than S$1500) 1.402 2.287 0.613 0.022 

Transport Facility Attributes β t-Stat SE P 

Access mode to MRT station (ref=walk) 2.478 2.108 1.176 0.035 

Access time to MRT station 1.759 1.65 1.087 0.105 

Waiting time at MRT station 2.514 2.212 1.137 0.027 

Seat availability (ref= seat is not available) -3.161 -2.163 1.462 0.031 

Travel time difference (min) -0.656 -2.172 0.302 0.03 

Travel cost difference(S$)  -0.33 -2.585 0.128 0.01 

Summary Statistics 

Number of observations 400 

Log likelihood function -56.343 

Restricted log likelihood -225.522 

Degrees of freedom 390 

χ2 74.808 

ρ2 0.663 

The utility functions for the private (UPR) and public (UPB) modes of transport are: 

 
( ) ( )

( ) ( ) ( ) ( )

5.731 0.665 0.330

1.970 3.929 1.137 1.402

PRU Travel Time Difference Travel Cost Difference

Gender Age Education Income

= − −

− + + +
 (3) 

 
( ) ( )

( ) ( )

2.478 1.759

2.514 3.161

PBU Access Mode Access Time

Waiting Time Seat Availability

= − −

− +
 (4) 

The estimated model consists of one alternative specific constant, four socio-economic 

variables, and six transport facility attributes. The sign convention of each variable provides 

the information from which the commuters’ mode switching behavior can be analyzed. The 

positive value of alternative specific constant shows that the commuters’ tended more towards 

the private mode of transport as compared to public mode. The model results show that 

female commuters were more likely to continue using their usual modes of transport as 

compared to male commuters. Such behavior can be interpreted as follows: with the provision 
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of information, male commuters showed higher tendency of switching from private to public 

mode of transport as compared to females.  This may be due to a lower tolerance level of 

congestion among males. Higher age group commuters with high level of education showed 

higher tendency to use private mode. It could be due to their cohort’s value as discussed in 

Sun et al. (2012), and/or the level of comfort and/or privacy that they may desire with respect 

to their socio-economic status. The commuters with lower income level tended to switch from 

private mode to public mode. This may be due to cost saving, as the parking cost and ERP 

charges were increased in the scenario presented to respondents.  

Among the transport facility attributes, commuters prefer to have MRT stations nearby 

their residence, within their walking distance, as walk is the preferred access mode. It can be 

due to the reason that travelling by bus to MRT stations increases the overall waiting time and 

the number of transfers. Lower access time is preferred, as it can save the effort utilized in 

travelling. Commuters naturally prefer less waiting times. Increased waiting time at MRT 

stations decreases the tendency to take public mode of transport.  

The negative signs of Travel Time Difference (TTD) and Travel Cost Difference (TCD), 

which refer to the travel time difference between private and public modes of transport, and 

travel cost difference between private and public modes of transport, show that commuters’ 

likelihood of mode switching can be increased by increasing the absolute values of these 

variables. The TTD and TCD can be estimated as:  

 
,  and                                                   (5a)

,                                                         (5b)

PR PB

PR PB

TTD TT TT

TCD TC TC

= −

= −
 

where TTPR is the travel time by private mode of transport, TTPB is the travel time by public 

mode of transport, TCPR is the travel cost by private mode of transport, and TCPB is the travel 
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cost by public mode of transport. Increasing the value of travel time on private mode of 

transport as compared to public mode of transport would increase the TTD, resulting in less 

likelihood for the private mode of transport. In other words, increasing the value of TTD 

would result in higher mode switching as compared to a lower value TTD. Thus, by analyzing 

the TTD and TCD, it is can be inferred that increasing travel time or cost on any mode will 

decrease its utility. Furthermore, increase in travel time or cost of private mode would 

enhance commuters’ mode switching propensity.   

4.1 Marginal Effect of the Estimated Logit Variables 

The exponential values of β give the odds of having an event occurring versus not 

occurring, per level change in the explanatory variables, other things being equal. The same 

interpretation applies to both the dummy and the continuous variables. From Table 3, it can be 

observed that the estimate for gender is -1.97. The resulting exponential value of P, which is 

exp(1.97)=7.17, indicates that the odds for males are 7.17 times as high as females, to switch 

their usual mode of travel. Hence, males have higher probability of switching their modes of 

travel as compared to females. 

The level of income has a negative impact on mode switching propensity. Increasing the 

level of income decreases mode switching, and vice versa. The effect of each stage of income 

(i.e. 0, 1, 2, 3 and 4) on the odds of maintaining travel usual mode under the influence of 

integrated traveler information is 1.402.  

 The transport facility characteristics, the travel time difference and travel cost 

difference, both affected significantly the auto commuter's mode switching propensity under 

the influence of the integrated traveler information. It is estimated that each minute increase 
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in travel time difference increases the mode switching propensity by a factor of 

exp(0.656)=1.927. Similarly, each dollar increase in cost difference increases the mode 

switching by a factor of exp(0.33)=1.392. 

4.2 Predicted Probabilities based on the Explanatory Variables 

The predicted probabilities based on the explanatory variables can provide estimates, 

upon which different policies can be designed and analyzed. It should be noted that variables 

such as travel time and travel cost can be utilized to design policies which can cause diversion 

effect on shifting the ridership from private to public mode of transport. There are several 

measures to reduce travel time by public mode of transport, such as improvement in 

accessibility or service frequency etc. Similarly, increasing parking cost and ERP charges can 

directly influence the public mode ridership. To analyze the impact of such policy sensitive 

variables, pivot point modeling approach was adopted. The results are presented in Table 4. 

Table 4. Impact on Modal Split by Increasing Travel Time and Travel Cost of Private 

Mode of Transport 

Unit Change 

(%) 

Travel Time Travel Cost 

Private 

Mode (%) 

Public 

Mode (%) 

Diff 

(%) 

Private 

Mode (%) 

Public 

Mode (%) 

Diff 

(%) 

10 80.01 19.99 1.07 80.52 19.48 0.52 

20 78.94 21.06 1.07 80 20 0.52 

30 77.82 22.18 1.11 79.46 20.54 0.53 

40 76.67 23.33 1.15 78.92 21.08 0.54 

50 75.48 24.52 1.19 78.36 21.64 0.56 

60 74.24 25.76 1.23 77.8 22.2 0.57 

70 72.97 27.03 1.27 77.22 27.78 0.58 

80 71.66 28.34 1.31 76.64 23.36 0.59 

90 70.31 29.69 1.35 76.04 23.96 0.6 

100 68.92 31.08 1.39 75.43 24.57 0.61 

Average   1.22   0.56 

The results in Table 4 reveal that every 10% increase in travel time in private mode, on 
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average, decreased the modal share of private mode by 1.22%. Similarly, every 10% increase 

in travel cost of private mode decreased its modal share by 0.56%. 

4.3 Marginal Effect on the Probability of Commuter’s Mode Switching Propensity 

Instead of examining the marginal effect of an x variable on the odds, one can also 

examine the marginal effect of the variable on the probability of the event. Such marginal 

effect is given by the following equation: 
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Table 5 present the marginal effects of the variables on the probability of auto commuter’s 

mode switching propensity. Observing the marginal effect column, it can be seen that among 

the socio-economic variables, the most significant effect is gender and age, followed by 

income and education respectively.  

Table 5. Effects of the Variables on the Probability of Commuters’ Mode Switching 

Propensity 

Variable Coefficient () Mean Marginal Effect 

Socio-economic     

Gender 1.970 0.543 0.725 

Age (years) -1.930 1.491 -0.710 

Level of education -1.137 1.750 -0.418 

Level of income (S$) -1.402 2.241 -0.516 

Transport facility    

Access mode to MRT station -2.479 0.578 -0.912 

Access time to MRT station -1.760 0.750 -0.647 

Waiting time at MRT station -2.514 0.664 -0.925 

Seat availability 3.162 0.690 1.163 

Travel time difference (min) 0.656 2.414 0.241 

Travel cost difference (S$) 0.330 2.202 0.122 

Among the transport facility, the sensitive variable is the waiting time for transit service. Each 
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single minute increase in travel time reduces the mode switching propensity by a factor of 

0.925. This analysis can also be viewed in another perspective i.e. any improvement in the 

waiting time reduction can cause a significant impact on transit ridership, such that 1 minute 

reduction in waiting time will increase the mode switching propensity by a factor of 0.925. A 

similar kind of effect can be observed for the access time variable. The time difference and 

cost difference, which in this case represent the time savings and cost savings on public mode 

of transport respectively, also show positive effect on auto commuter’s mode switching 

propensity.  

It can be concluded from this analysis that auto commuters show a certain level of mode 

switching propensity under the influence of integrated traveler information. Younger male 

auto commuters with lower level of income are more willing to switch their usual mode as 

compared to richer and better educated auto commuters. The cost factor also influences the 

mode choice, such that if the auto commuter belongs to a lower level income group he/she 

may show higher mode switching propensity. Richer auto commuters with a higher level of 

education are less willing to switch. The time and cost saving is appreciated by all auto 

commuters. In time context, auto commuters are more sensitive to waiting time than 

travelling time. They choose modes with overall shorter journey times. The cost saving 

enhances the attraction of public mode, which the auto commuters compare with higher 

private mode cost. Thus, the provision of integrated information regarding the transport 

facility variables can enhance the mode switching propensity in the auto commuters. 

5 Conclusions 

The main objective of the travel behavior survey was to determine the factors that 
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influence the commuter’s mode choice decision. It is clear from the estimated travel behavior 

models (2 SP scenarios) that the socio-economic characteristics that significantly influence 

the mode choice decision are: gender, age, level of education, and level of income. The 

attributes related to multimodal traveler information that significantly influence the mode 

choice decision in congested road environment are: access mode to MRT station, access time 

to MRT station, and transit seat availability. Estimated time saving, estimated cost saving and 

waiting time at MRT station also have certain influence on the travel mode choice decision. 

The information regarding delayed travel time generated the desire in commuters to access 

multimodal traveler information, and information on estimated time saving allowed the 

commuters to analyze different modes of travel. Information about transit facility, also 

significantly influenced the mode choice decision, such that improved transit level of service 

can increase the transit ridership. The knowledge gathered from the travel behavior survey 

provides valuable expertise to select variables that significantly influence the mode choice 

decision.  

However, the model still has several limitations. There are also cases where the proposed 

model could not properly describe the traveler behavior under other situations. For instance, 

different cities may have different influence factors; certain policy may strengthen or 

eliminate the effect from certain influence factors. A model cannot be perfect and provide the 

best fit for all possible cases. Future studies will contribute to better understanding of the 

traveler behavior in more cases.  
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