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The paper develops a multiclass, multimodal dynamic traffic equilibrium model with consideration of the departure time choice
problem. Travelers choose the departure time and the route simultaneously with a Logit-based structure. The route travel cost is
a summation of travel time and schedule delay which is associated with arrival time at destination. In addition, the travelers are
classified into three groups according to their value of time. A variational inequality (VI) formulation is proposed based on the
equilibrium conditions. Two examples are given to testify the effectiveness of the model and the solution algorithm. The model
can give the optimal travel route as well as the best departure time, which would contribute to traffic control and dynamic route
guidance.

1. Introduction

Dynamic traffic assignment (DTA) models which explicitly
considered time varying flows in the traffic assignment were
first systematically formulated into analytical formulation by
Merchant and Nemhauser [1]. As dependent on the assump-
tions about the route choice criterion, DTA models can be
grouped into two categories: deterministic dynamic traffic
assignment (DDTA) models and stochastic dynamic traffic
assignment (SDTA) models [2]. DDTA models assume that
all travelers have perfect information of network condition
and they will make their best choice without any errors which
is found to be unrealistic in practice. SDTA models relax
these assumptions and consider that travelers will choose
their perceived best route based on their individualistic
understanding about the network condition. Since the SDTA
models are more credible, the idea was much developed in
the literature and in many cases researchers provided strong
mathematical properties, as discussed elsewhere [3–5].

Recently, there has been a significant interest in modeling
the combined departure time and dynamic user equilibrium
assignment (DDUE) problem in urban areas. DDUE models

can be classified into three groups based on the applied tech-
nique: analytical models [6–10], simulation models [11], and
cell models [12]. As the analytical models provide a theoret-
ical foundation and lend support to results obtained from
other models, it is always a popular topic in this field.
Hendrickson and Kocur [13] described this problem system-
atically and pointed out that if the dynamic stochastic user
equilibrium assignment (DSUE) and departure time problem
are combined, then the cost, including that of travel plus
penalties for timing of the journey, at which travel takes place
has a single value for each origin-destination pair in a net-
work. Ran andBoyce [14] andChen [15] have established vari-
ational inequality (VI)models to discuss the DDUE problem,
which require complex computing process as they include not
only the link variable but also the 𝑂𝐷 demand variable. Lam
and Huang [16] developed a path-based DDUE model with
deterministic queue assumption. Lim and Heydecker [8]
investigated a Logit-based combined departure time and
dynamic stochastic user equilibrium assignment (DDSUE)
model and showed the existence of DDSUE condition as well
as explored its properties. It extended the DDUE problem
into the stochastic case which is more realistic and has
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attracted much attention among researchers. Lam et al. [17]
proposed a time-dependent network equilibrium model that
simultaneously considers a traveler’s choice of departure
time, route, parking location, and parking duration in road
networks with multiple user classes and multiple parking
facilities. Li [18] presented a genetic algorithm for solving
dynamic simultaneous route and departure time equilibrium
problem. Not only can a flow-swapping process in the algo-
rithm guarantee the flow conservation constraints between
an𝑂𝐷 pair, but it also accelerates the convergence velocity of
the algorithm. Lately, Meng et al. [19] also proposed a path-
based DDSUE model in a multimodal network.

Most traditional traffic assignment models assume that
the travelers have the same value of time (VOT), namely, the
homogeneity condition [20–23]. In fact, however, the trans-
portation network has its heterogeneity as the travelers have
different requirement for travel time due to the social status,
economic income, and the nature of work. Multimodal net-
work equilibriummodels considering themulticlass travelers
who have different VOT have not received much attention in
the literature. Lu et al. [24] developed a bicriterion dynamic
user equilibrium (BDUE) model, which aimed to capture
users’ path choices in response to time-varying toll charges
and hence explicitly considers heterogeneous users with
different VOTpreferences in the underlying path choice deci-
sion framework. Zhang et al. [25] assumed that both travel
time disutility and time-irrelevant travel disutility depend
only on the particular link flow. The time-irrelevant travel
disutility allows the consideration of other travel expense
except travel time, for example, emission, noise, discomfort,
and insecurity. They developed a multiclass multicriterion
mixed equilibrium model, where drivers have multiple cri-
teria in evaluating the travel disutility and follow either user
equilibrium (UE) principle or Cournot-Nash (CN) principle.
Wang and Huang [26] provided a theoretical investigation of
the multicriterion traffic assignment, including the cost-
versus-time network equilibrium and system optimum in a
network with continuous VOT distribution and elastic
demand.

This paper, in turn, focuses on the development of a
newmulticlass, multimodal network equilibriummodel with
departure time.Themodel has the following novel significant
features.

(1) It extends the classical road network problem into the
multimodal network case, including four traffic
modes: car, subway, bus, and bicycle. Moreover, the
combined-mode trips are considered in which trav-
elers are allowed to transfer from one traffic mode to
another one. Such extension would be the advanced
step of the DDSUE problem towards the compre-
hensive transportation system and will contribute to
travel guidance in ITS (intelligent transportation
system) application.

(2) It investigates the multiclass travelers in the system
according to different VOT. Specifically, the relation
between daily volume of traffic and cost incurred
from traveling is also investigated. Hence, the model
has implications to different classes of travelers not
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Figure 1: Multimodal transportation network.

only for the route choice, but also for the departure
time choice.

This paper not only develops such a model, but also
provides solution algorithm and application examples. The
outline of the paper is as follows.Thenext section analyses the
multimodal network equilibrium condition and the dynamic
constraints. Section 3 develops the multiclass, multimodal
dynamic traffic network equilibrium model with departure
time. The algorithm which can be applied to solve the pro-
posed model is given in Section 4. Numerical examples are
provided in Section 5. The last section summarizes the
conclusions and major findings.

2. Multimodal Network
Equilibrium Condition

2.1. Multimodal Network. In this paper, the super network
structure in Wu and Lam [27] is adopted to represent the
multimodal transportation network. The super network is
constructed such that the method for each mode is repre-
sented individually on separate layers that are interconnected
by transfer links. This structure allows a complete represen-
tation of multimodal trips as well as the single mode trips.
Moreover, the transfer behavior is well modeled by the
interaction link.As an example, consider a simplifiednetwork
shown in Figure 1. It consists of four traffic modes: car, sub-
way, bus, and bicycle. Go on/off lines are virtual routes which
help us to describe the origin and destination line. The cor-
responding representation using the super network structure
is shown in Figure 2. The super network comprises the four
subnetworks covering all the traffic modes, starting from
node 1 and ending at node 17. The individual layers repre-
senting different traffic modes, in order, are car network,
subway network, bicycle network, and bus network.The solid
line denotes the driving/running line in each layer, while the
dotted line is the transfer or on/off link.

Given a multimodal transportation network 𝐺 = (𝑁, 𝐿),
where𝑁 is the set of node and 𝐿 is the set of link,𝑂 is the set
of origin node, 𝑂 ⊂ 𝑁, 𝐷 is the set of destination node, 𝐷 ⊂

𝑁, 𝑜 is an origin node, 𝑜 ⊂ 𝑂, 𝑑 is a destination node, 𝑑 ⊂ 𝐷,
𝑃
𝑜𝑑 is the set of path between 𝑂𝐷 pair 𝑜𝑑, each path 𝑝 is an

available travel “mode-route” super path, 𝑝 ∈ 𝑃
𝑜𝑑, [𝑠
0
, 𝑠
1
] is

the study period, 𝑠, 𝑡 ∈ [𝑠
0
, 𝑠
1
], 𝑇𝑜𝑑 is the traffic demand

between 𝑂𝐷 pair 𝑜𝑑, and 𝜃
𝑡
and 𝜃
𝑟
are the scale parameters,
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Figure 2: Super network.

where 𝜃
𝑡
is a positive dispersion parameter for departure time

choice and 𝜃
𝑟
is a positive dispersion parameter that controls

the assignment to routes of non-minimal cost.

2.2. Equilibrium Condition. In order to design the solution
algorithm, the discrete mathematics method is used herein
for analysis and formulation. Assume that study period
[𝑠
0
, 𝑠
1
] is sufficiently long such that all the vehicles departing

from the origin node in study period can leave the network in
the study period. Divide the study period into 𝑆 numbers of
small time interval with length of Δ = (𝑠

1
− 𝑠
0
)/𝑆. The rule in

the division is as follows: vehicle which drives into a segment
in a time interval cannot leave this segment in the same
time interval. The Logit model is introduced to describe the
departure time preference as follows:

𝑒
𝑜𝑑

(𝑠) = 𝑇
𝑜𝑑

𝜇
𝑜𝑑

(𝑠) = 𝑇
𝑜𝑑

exp [−𝜃
𝑡
𝑐
𝑜𝑑

(𝑠)]

∑
𝑆

𝑠=1
exp [−𝜃

𝑡
𝑐𝑜𝑑 (𝑠)]

∀𝑠, (1)

where 𝑒
𝑜𝑑

(𝑠) is the departure flow at time 𝑠 for 𝑂𝐷 pair 𝑜𝑑,
𝜇
𝑜𝑑

(𝑠) is the temporal density of departures from 𝑜 to 𝑑 at
time 𝑠, and 𝑐

𝑜𝑑

(𝑠) is the typical departure cost incurred by a
traveller that enters the network at time 𝑠 for 𝑂𝐷 pair 𝑜𝑑.
Based on the expected utility theory, 𝑐𝑜𝑑(𝑠) can be expressed
as

𝑐
𝑜𝑑

(𝑠) = −
1

𝜃
𝑟

ln ∑

𝑝∈𝑃
𝑜𝑑

exp [−𝜃
𝑟
𝑐
𝑝
(𝑠)] ∀𝑠, (2)

where 𝑐
𝑝
(𝑠) is the cost of travel using path 𝑝 entering the net-

work at time 𝑠, without regard to the influence of money cost,
the travel cost on path 𝑝 normalized to unity including the
path travel time 𝜏

𝑝
(𝑠) and the schedule delay𝑓𝑑(𝑠) that is

associated with arrival at the destination 𝑑 at time 𝑠 is given
by

𝑐
𝑝
(𝑠) = 𝜏

𝑝
(𝑠) + 𝑓

𝑑

(𝑠 + 𝜏
𝑝
(𝑠)) . (3)

The schedule delay in this paper is assumed to be continuous
in time and follows the piecewise linear form as follows:

𝑓
𝑑

(𝑠) =

{{

{{

{

(𝑠 − 𝛿 − 𝑠Δ)𝑚
𝑖

1
𝑠Δ < 𝑠 − 𝛿

0 𝑠 − 𝛿 ≤ 𝑠Δ ≤ 𝑠 + 𝛿

(𝑠Δ − 𝑠 − 𝛿)𝑚
𝑖

2
𝑠Δ > 𝑠 + 𝛿,

(4)

where 𝑠 is the ideal arrival time, Δ is an indifference time, 𝑖
is the class of travelers, and 𝑚

𝑖

1
and 𝑚

𝑖

2
are, respectively, the

unit penalties for early and late arrival.This kind of piecewise
linear schedule delay has been adopted by many researchers
including Vickrey [28], Hendrickson and Kocur [13], and
Arnott et al. [29] and satisfies the requirement of the present
analysis of being continuous in time.

Let the initial departing flow from 𝑜 to 𝑑 be 𝑒
𝑜𝑑

1
(𝑠) =

𝑒
𝑜𝑑

(1); then

𝑒
𝑜𝑑

(1) = 𝑇
𝑜𝑑

𝜇
𝑜𝑑

(1) = 𝑇
𝑜𝑑

exp [−𝜃
𝑡
𝑐
𝑜𝑑

(1)]

∑
𝑆

𝑠=1
exp [−𝜃

𝑡
𝑐𝑜𝑑 (𝑠)]

. (5)

Substitution (5) into (1) and rearranging,

𝑒
𝑜𝑑

(𝑠) = exp {−𝜃
𝑡
[𝑐
𝑜𝑑

(𝑠) − 𝑐
𝑜𝑑

(1)]} 𝑒
𝑜𝑑

(1) ∀𝑠. (6)

TheLogitmodel is introduced to describe the route choice
preference as follows:

𝑒
𝑝
(𝑠) = 𝑒

𝑜𝑑

(𝑠) 𝜇
𝑝
(𝑠) = 𝑒

𝑜𝑑

(𝑠)

exp [−𝜃
𝑟
𝑐
𝑝
(𝑠)]

∑
𝑝∈𝑃
𝑜𝑑

exp [−𝜃
𝑟
𝑐
𝑝
(𝑠)]

∀𝑠,

(7)

where 𝑒
𝑝
(𝑠) is the inflow to path 𝑝 at the time 𝑠, 𝜇

𝑝
(𝑠) is the

proportion of those travelers at time 𝑠 that enter path𝑝. Based
on the tree choice theory, 𝜃

𝑟
≥ 𝜃
𝑡
> 0.

Above all, we can conclude that the dynamic departure
time/stochastic user equilibrium condition in a multimodal
network can be described as follows: in equilibrium state of a
multimodal transportation network, no traveler can improve
his perceived travel cost by unilaterally changing his depar-
ture time and modal-route combination; the departure time
and modal route choices are calculated by (1) and (7).

2.3. Dynamic Constraint Condition

2.3.1. Link State Equations. In the dynamic traffic assignment
problem, traffic load is used to represent the traffic state on
the link. The basic formulation of discrete link state equation
is

𝑥
𝑎
(𝑠) − 𝑥

𝑎
(𝑠 − 1) = (𝑒

𝑎
(𝑠) − 𝑔

𝑎
(𝑠)) Δ, ∀𝑠, 𝑎, (8)

where 𝑒
𝑎
(𝑠) is the inflow to link 𝑎 at time 𝑠, 𝑔

𝑎
(𝑠) is the exit

flow from link 𝑎 at time 𝑠, and 𝑥
𝑎
(𝑠) is the number of vehicles

in the queue on link 𝑎 at time 𝑠. Equation (8) expresses the
marginal changes of vehicle numbers on link 𝑎 at time 𝑠 that is
equal to the difference value between inflow and exit flows on
link 𝑎 at time 𝑠.
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Based on the super network theory, we extend (8) to the
super path level as follows:

𝑥
𝑝
(𝑠) − 𝑥

𝑝
(𝑠 − 1) = (𝑒

𝑝
(𝑠) − 𝑔

𝑝
(𝑠)) Δ, ∀𝑠, 𝑎, (9)

where 𝑒
𝑝
(𝑠) is the inflow to path 𝑝 at time 𝑠 and 𝑔

𝑝
(𝑠) is the

exit flow from path𝑝 at time 𝑠. 𝑥
𝑝
(𝑠) is the number of vehicles

on path 𝑝. Equation (9) expresses the marginal change of
vehicles on path𝑝 at time 𝑠 that is equal to the difference value
between inflow and exit flows on path 𝑝 at time 𝑠.

2.3.2. Travel Time Function. Following the results of Lim and
Heydecker [8], we use a deterministic queuing model, which
depends only on the amount of traffic on that link. In the
deterministic queuing model, the link constitutes two parts:
free-flow part and queue part at the exit. Travel time on a link
can be expressed as

𝜏
𝑎
(𝑠) = Φ

𝑎
+

𝑥
𝑎
(𝑠)

𝑄
𝑎

∀𝑎, 𝑠, (10)

where 𝜏
𝑎
(𝑠) is the travel time on link 𝑎 and𝑥

𝑎
(𝑠) is the number

of vehicles in the queue on link 𝑎 at time 𝑠. For the driving
link, Φ

𝑎
is the free-flow travel time on link 𝑎 and 𝑄

𝑎
is the

traffic capacity of link 𝑎; for the transfer link, Φ
𝑎
is the travel

time on link 𝑎 including the walking time and waiting time
and 𝑄

𝑎
is a parameter reflecting the transfer difficulty.

In order to solve theDDSUEproblemas a path-based one,
we expand the link-based equations for the traffic model by
path𝑝. Most of the existing path travel time functions assume
that the links are independent with each other without con-
sidering the influence of bottleneck link.This assumptionwill
lead to the flow on the link being far greater than the link
capacity in DTAmodels. In fact, the bottleneck link will have
a serious impact on the smooth traffic operation. Assuming
that all the travelers will obtain the traffic information
through the traffic information systems in the multimodal
transportation network, the congestion of one mode will
affect the travel choice in a trip. Therefore, we should
determine the real path capacity after obtaining the effective
path set. Based on the concept in barrel theory, the capacity of
a barrel is determined not by the longest wooden bar or plank,
but by the shortest. Therefore, the path capacity is decided by
the link which has the minimal capacity on this path. For the
path 𝑝 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑖
, 𝑎
𝑖+1

, . . . , 𝑎
𝑛
}, the capacity can be

calculated by

𝑄
𝑜𝑑

𝑝
= min {𝑄

𝑎
1

, 𝑄
𝑎
2

, . . . , 𝑄
𝑎
𝑛

} ∀𝑝, 𝑜𝑑, (11)

where 𝑄𝑜𝑑
𝑝

is the real capacity of the path 𝑝.

Following the concept of deterministic queue model, the
path travel time consists of free travel time and bottleneck
travel time. As shown in Figure 3, 𝑎

2
is the bottleneck link and

𝑎
1
and 𝑎
3
are the free flow links; then the path travel time can

be calculated by

𝜏
𝑝
(𝑠) = ∑

𝑎

Φ
𝑎
𝛿
𝑎𝑝

+

𝑥
𝑜𝑑

𝑝
(𝑠)

𝑄𝑜𝑑
𝑝

∀𝑠, (12)

where 𝜏
𝑝
(𝑠) is the travel time on path 𝑝 given departure at

time 𝑠, 𝑥𝑜𝑑
𝑝
(𝑠) is the number of vehicles following path 𝑝 at

time 𝑠, and 𝑄
𝑜𝑑

𝑝
is the real traffic capacity of path 𝑝.

2.3.3. Flow Propagation Function. In order to describe the
dynamic characteristic of traffic flow, the discrete flow prop-
agation function is given by

𝑔
𝑎
(𝑠 + 𝜏
𝑎
(𝑠)) =

𝑒
𝑎
(𝑠)

1 + (𝜏
𝑎
(𝑠) − 𝜏

𝑎
(𝑠 − 1)) /Δ

∀𝑠. (13)

Under the deterministic queue assumption, the vehicle
will move with free-flow speed when the total amount of the
inflow into the link 𝑎 at time 𝑠 is less than the link capacity𝑄

𝑎
.

The exit flow rate can be expressed as

𝑔
𝑎
(𝑠 + 𝜏
𝑎
(𝑠)) = 𝑒

𝑎
(𝑠) ∀𝑠. (14)

Otherwise, when the total amount of the inflow into the link
𝑎 at time 𝑠 is more than the link capacity𝑄

𝑎
, the vehicles will

queue at the exit and the exit flow is equal to the link capacity
as

𝑔
𝑎
(𝑠 + 𝜏
𝑎
(𝑠)) = 𝑄

𝑎
∀𝑠. (15)

Finally, the formulation to calculate the exit flow can be
expressed as

𝑔
𝑎
(𝑠) = {

𝑒
𝑎
(𝑠) + 𝑥

𝑎
(𝑠 − 1) , 𝑄

𝑎
> 𝑒
𝑎
(𝑠) + 𝑥

𝑎
(𝑠 − 1)

𝑄
𝑎
, 𝑄

𝑎
< 𝑒
𝑎
(𝑠) + 𝑥

𝑎
(𝑠 − 1) .

(16)

The function (16) is expanded to the path level by satisfying
the requirements for conservation as

𝑔
𝑎
𝑛−1

(𝑠) = 𝑒
𝑎
𝑛

(𝑠) , (17)

where link 𝑎
𝑛
is the sequential link that follows link 𝑎

𝑛−1

directly. Moreover, the exit flow and inflow relationship from
the path level should be as follows:

𝑔
𝑝
(𝑠) = {

𝑒
𝑝
(𝑠) + 𝑥

𝑝
(𝑠 − 1) , 𝑄

𝑝
> 𝑒
𝑝
(𝑠) + 𝑥

𝑝
(𝑠 − 1)

𝑄
𝑝
, 𝑄

𝑝
< 𝑒
𝑝
(𝑠) + 𝑥

𝑝
(𝑠 − 1) .

(18)
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2.3.4. General Constraints. Except for the above constraints,
the DDSUE model should satisfy other general constraints
including flow constraints, boundary constraints, and non-
negative constraints, listed as follows:

(𝑙
𝑜𝑑

𝑠
)

𝑆

∑

𝑠=1

𝑒
𝑜𝑑

(𝑠) = 𝑇
𝑜𝑑

∀𝑠,

(𝑙
𝑜𝑑

) ∑

𝑝∈𝑃
𝑜𝑑

𝑒
𝑝
(𝑠) = 𝑒

𝑜𝑑

(𝑠) ,

𝑥
𝑎
(1) = 0 ∀𝑎,

(𝜆
𝑜𝑑

𝑝
) 𝑒
𝑝
(𝑠) ≥ 0, 𝑥

𝑎
(𝑠) ≥ 0 ∀𝑠.

(19)

3. Model Formulation

We assume that each class of travel 𝑖 has its own value of
time (VOT), which is used to calibrate the piecewise linear
schedule delay function. Consider three different types of
travelers, 𝑖 = 1, 2, 3, namely, the travelers who have high value
of time (HVOT), average value of time (AVOT), and low
value of time (LVOT).The variational inequality (VI) formu-
lation for the multiclass, multimodal traffic network equilib-
rium problem can be expressed as follows:

3

∑

𝑖=1

∑

𝑜𝑑∈𝑂𝐷

∑

𝑝∈𝑃
𝑚

𝑤

𝑆

∑

𝑠=1

{𝑐
𝑝
(𝑠) [𝑒
𝑝
(𝑠) − 𝑒

∗

𝑝
(𝑠)]

+
1

𝜃
𝑡

ln 𝑒
𝑜𝑑∗

(𝑠)

𝑇𝑜𝑑

× [𝑒
𝑜𝑑

(𝑠) − 𝑒
𝑜𝑑∗

(𝑠)]} ≥ 0,

(20)

where 𝑐
𝑝
(𝑠) = 𝑐

𝑝
(𝑒
𝑜𝑑∗

(𝑠), 𝑇
𝑜𝑑

) + (1/𝜃
𝑟
) ln(𝑒∗
𝑝
(𝑠)/𝑒
𝑜𝑑∗

(𝑠)), the
feasible set is Ω = {9, 12, 18–22}, variables marked with “∗”
are the solution of the model.

In order to prove the equivalence between (20) and the
equilibrium condition of (1) and (7), we derive and analyze
the Karush-Kuhn-Tucker conditions ofmodel (20), which are
given as

𝑐
𝑝
(𝑠) +

1

𝜃
𝑟

ln
𝑒
𝑝
(𝑠)

𝑒𝑜𝑑 (𝑠)
− 𝑙
𝑜𝑑

𝑠
− 𝜆
𝑜𝑑

𝑝
= 0, (21)

1

𝜃
𝑡

ln 𝑒
𝑜𝑑

(𝑠)

𝑇𝑜𝑑
+ 𝑙
𝑜𝑑

𝑠
− 𝑙
𝑜𝑑

= 0, (22)

𝑒
𝑝
(𝑠) 𝜆
𝑜𝑑

𝑝
= 0, (23)

𝜆
𝑜𝑑

𝑝
≥ 0. (24)

The form of (21) ensures that 𝑒
𝑝
(𝑠) > 0.We substitute (23)

and (24) into (21) and obtain

𝑒
𝑝
(𝑠)

𝑒𝑜𝑑 (𝑠)
= exp {𝜃

𝑟
[𝑙
𝑜𝑑

𝑠
− 𝑐
𝑝
(𝑠)]}

= exp (𝜃
𝑟
𝑙
𝑜𝑑

𝑠
) ⋅ exp [−𝜃

𝑟
𝑐
𝑝
(𝑠)] .

(25)

With summation of all the paths and all the kinds of travelers
with the consideration of conservation conditions, we can
conclude that

exp (𝜃
𝑟
𝑙
𝑜𝑑

𝑠
) ∑

𝑝∈𝑃
𝑜𝑑

exp [−𝜃
𝑟
𝑐
𝑝
(𝑠)] = 1. (26)

After substituting (26) into (25), the Logit model (7) can be
obtained. Similarly, the Logit model (1) can be derived from
(22). Therefore, the proposed VI formulation equation (20)
leads to a multiclass, multimodal transportation network
equilibrium model where the combined mode-route and
departure time choicemodel assume hierarchical Logit struc-
tures.

As the feasible set Ω = {9, 12, 18–22} consists of a
series of linear constraints, therefore the feasible set is a
compact convex set.Meanwhile, as 𝑐

𝑝
(𝑠), ln(𝑒

𝑝
(𝑠)/𝑒
𝑜𝑑

(𝑠)), and
ln(𝑒𝑜𝑑(𝑠)/𝑇𝑜𝑑) are continuous functions, model (20) exists at
least for one solution based on Brouwer fixed-point theorem.
Because the path travel time function 𝜏

𝑝
(𝑠) does not fit the

need of monotony property, it cannot ensure uniqueness of
model (20).

4. Solution Algorithm

The algorithm based on dynamic stochastic traffic network
loading is given to solve the proposed model. The detailed
steps can be described as follows.

Step 1. Initialization

(a) Enumerate all reasonable paths 𝑝 ∈ 𝑃
𝑜𝑑

based on
reasonable path searching technique [8] and calculate
the path capacity based on (11).

(b) Set the value of 𝑒𝑜𝑑(𝑠
1
), Δ and 𝜀.

(c) Set an empty network, where 𝑒
(0)

𝑝
(𝑠) = 0, ∀𝑝 ∈

𝑃
𝑜𝑑
, ∀𝑠 ∈ [1, 𝑆].

(d) Set the iteration number 𝑛 = 1 and the start time 𝑠 =

1.

Step 2. Dynamic Stochastic Network Loading

(a) Calculate the path travel time 𝜏
(𝑛)

𝑝
(𝑠) ∀𝑝 ∈ 𝑃

𝑜𝑑
with

(12).
(b) Calculate the path travel cost 𝑐

𝑝
(𝑠), ∀𝑝 ∈ 𝑃

𝑜𝑑
with (3).

(c) Compute the minimal expected travel cost {𝑐𝑜𝑑(𝑛)(𝑠)}
with (2).

(d) Calculate the departure flow rate 𝑒𝑜𝑑(𝑛)(𝑠)with (6) and
the path inflow rate with (7).

(e) Compute the path flow using (9) and (16).
(f) If 𝑠 < 𝑆, then 𝑠 = 𝑠 + 1 and go to Step 2(a).

Step 3. Convergence Judgment

If∑
𝑜𝑑

∑
𝑝∈𝑃
𝑜𝑑

∑
𝑆

𝑠=1
|𝑒
(𝑛)

𝑝
(𝑠) − 𝑒

(𝑛−1)

𝑝
(𝑠)|/ ∑

𝑜𝑑
∑
𝑝∈𝑃
𝑜𝑑

∑
𝑆

𝑠=1
𝑒
(𝑛)

𝑝

(𝑠) < 𝜀 (𝜀 is the convergence criterion), then stop; otherwise
𝑛 = 𝑛 + 1 and 𝑠 = 1 and go to Step 2.
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Table 1: Efficient path set.

Path Link Travel mode
1 1-2-3-5-17 𝑎

2 1-2-4-5-17 𝑎

3 1-2-3-4-5-17 𝑎

4 1-2-3-4-6-7-17 𝑐

5 1-2-4-6-7-17 𝑐

6 1-8-9-12-13-17 𝑓

7 1-8-10-6-7-17 𝑒

8 1-11-12-13-17 𝑏

9 1-14-15-16-6-7-17 𝑑

Table 2: Parameters of drive link and transfer link.

Link Φ
𝑎

𝑄
𝑎

Link Φ
𝑎

𝑄
𝑎

5 200 6 14 380 10
6 360 3 15 250 15
7 240 4 16 360 12
8 300 6 17 40 80
9 120 4 18 70 70
10 80 50 19 60 100
11 500 2 20 40 60
12 600 1 21 60 80
13 350 12

5. Numerical Example

In order to illustrate the performance of the model in this
paper, we apply it to two example works, which are a
small network and the Sioux Falls network [30]. Through
the analysis with these networks, we show that the model
produces a DDSUE condition and show the effectiveness of
the proposed algorithm.

5.1. A Small Network. First we apply the model to a small
network as shown in Figure 1 and link structure as shown
in Figure 2. It has 4 traffic modes with 1𝑂𝐷 pair. There are
six travel modes between the 𝑂𝐷 pair, where 𝑚 = 𝑎, 𝑏, 𝑐,

𝑑, 𝑒, 𝑓 represent the car, bus, car-subway, bus-subway, bicycle-
subway, and bicycle-bus travel modes, respectively. Modes 𝑎
and 𝑏 are the single-mode travel mode, while the others are
the combined travel mode. Nodes 1 and 6 are the origin and
destination nodes. Links 1 to 4 and 22 to 24 are the network
access/off links, which only express the travel process and
do not have the actual travel time. Since the network is
relatively small we assume that all feasible paths are used;
thus there exists 9 paths for the multimodal network listed in
Table 1. Parameters for drive link and transfer link are listed
in Table 2.

We suppose that there is no origin-specific cost and that
at the destination the unit penalty for early arrival is𝑚1

1
= 0.5,

𝑚
2

1
= 0.3, and𝑚

3

1
= 0, that for the late arrival is𝑚1

2
= 1,𝑚2

2
=

0.8, and𝑚
3

2
= 0.5, that the ideal arrival time is 𝑠 = 600 s, and

that the tolerance on the desired arrival time is 𝛿 = 100 s. We
take the initial departure rate 𝑒

𝑜𝑑

(1) = 0.1 trips/second and
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Figure 4: Departure flow for the 𝑂𝐷 pair with multiclass users.

the time incrementΔ = 10 s. Other parameters are as follows:
𝜀 = 0.01, 𝜃

𝑡
= 0.005, and 𝜃

𝑟
= 0.01.

After about 27 iterations, the program can reach the con-
vergence precision in 0.86 seconds. The departure flows cal-
culated from the algorithm are shown in Figure 4, while the
costs incurred on the 𝑂𝐷 pair are shown in Figure 5. These
two figures show that the LVOT travelers would begin their
trips early due to minimal penalty for early arrival at the
destination, while the trips of LVOT travelers decrease after
the on-time-arrival timewindow.The cost for LVOT travelers
also maintains a certain level and increases after the on-time-
arrival time window.Most HVOT travelers would begin their
trips so as to arrive at the destination within the on-time-
arrival time window because the penalties for being early and
late are both expensive. The departures for AVOT travelers
are somewhere in between.

For in-depth research, we discuss the results for different
modal paths by considering only one class of travelers: AVOT
travelers in the network. The departure flow for all the paths
in the 𝑂𝐷 pair is shown in Figure 6. It can be observed that
the function curve trends for different paths of departure time
are the same; most of the travelers choose to leave in order
to arrive within the on-time-arrival time window. Due to the
same cost of paths 1 and 2 and paths 3 and 4, the departure
flow curves coincide. In general, the travelers who choose the
car travelmode (paths 1, 2, and 3) are themost numerous as its
travel cost (in term of travel time) is the lowest. Subway trips
are more attractive than bus trips due to the punctuality and
low cost. The departure flow of the car trips among all travel
modes is the highest, followed by car-subway, bicycle-subway,
bus-subway, bus, and bicycle-bus.

The departure cost for all the paths in the 𝑂𝐷 pair is
shown in Figure 7. There exists strong relationship between
Figures 6 and 7. The departure cost for all travel modes
decreases at first then remains stable to a certain degree and
gradually increases. It is because that traveler will be enduring
the penalty by starting early due to the penalty cost function;
the cost becomes increasingly smaller and remains at the
minimum cost as the departure time approaches to ideal
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Figure 8: Normal medium-sized road network.

arrival time; travelers will also be penalized by the late depar-
ture time; the later they depart, the greater is the cost. As the
penalty coefficient of late arrival is larger than the one of early
arrival, the travel cost for early arrival is lesser than late arrival
for the same length of time deviation. For example, the travel
cost starting at 300 s is lesser than at 900 s, even though both
of them have the same 300 s time difference with respect to
the ideal arrival time 600 s.

5.2. The Sioux Fall Network. The second test is performed
with the Sioux Fall network [30], which has one 𝑂𝐷 pair (1,
26) and four traffic modes (car, bicycle, subway, and bus), 1
subway line, and 2 bus lines, as shown in Figure 8. Based on
the method in Section 2, the corresponding super network is
given in Figure 9. Nodes 1 and 48 are the origin and destina-
tion nodes. Links 1 to 3 and 66 to 68 are the network access/off
links, which only express the travel process and do not
have actual travel time.

Parameters for drive link and transfer link are listed in
Table 3. Parameters are given as [𝑠

0
, 𝑠
1
] = [0, 495],Δ = 5 s, 𝑠 =

350, and 𝛿 = 50, while the other parameters are the samewith
the previous experiment.

After about 34 iterations (see Figure 10), the program can
reach the convergence precision in 6.5 seconds and provides
54 effective paths. The experiment results demonstrate the
algorithm’s effectiveness in solving the DDSUE problem,
which can be applied in the medium and large networks.

6. Conclusions

In this paper, we have identified a new multiclass, multi-
modal equilibriumcondition for dynamic departure time and
stochastic user equilibrium (DDSUE), together with a model
formulation and solution algorithm.Three classes of travelers
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Table 3: Parameters of driving link and transfer link.

Link Φ
𝑎

𝑄
𝑎

Link Φ
𝑎

𝑄
𝑎

Link Φ
𝑎

𝑄
𝑎

Link Φ
𝑎

𝑄
𝑎

Link Φ
𝑎

𝑄
𝑎

4 210 5 17 85 4 30 120 3 43 40 25 56 90 7
5 75 5 18 70 4 31 75 3 44 90 25 57 160 8
6 70 4 19 280 5 32 70 5 45 300 1 58 25 40
7 80 4 20 150 4 33 85 6 46 250 1 59 20 35
8 70 4 21 120 3 34 70 6 47 65 6 60 25 40
9 65 5 22 80 5 35 75 6 48 70 5 61 20 30
10 155 5 23 80 5 36 85 3 49 75 6 62 20 50
11 85 3 24 90 4 37 70 3 50 80 6 63 30 35
12 80 5 25 75 4 38 320 3 51 65 5 64 25 40
13 65 4 26 70 3 39 45 25 52 150 6 65 30 40
14 80 3 27 80 4 40 50 25 53 85 6
15 70 5 28 150 5 41 50 25 54 80 6
16 90 4 29 85 4 42 45 25 55 130 8
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Figure 9: Super network.

with different values of time are considered in themultimodal
transportation network. All classes of travelers choose not
only the travel route, but also the traffic modes and the
departure time. The bottleneck restriction in the multimodal
network is taken into account to ensure the maximum use of
the network capacity. The network equilibrium condition is
analyzed by the Logit structure considering the time depen-
dent travel cost and schedule delay.The equivalent variational
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Figure 10: Convergence of the proposed algorithm.

inequality model is established and solved by an algorithm
based on dynamic stochastic network loading.

Results from numerical experiments show a continuous
monotonic decreasing relation between departure flow and
departure cost, which implies the existence of equilibrium.
Travelers with different values of time (VOT) have different
requirements for the departure time. Travelers with low value
of time (LVOT) would prefer to set the departure ahead as
they have minimal penalty for early arrival; conversely, trav-
elers with high value of time (HVOT)would start their trip on
time to avoid the early and late penalties. The departures for
average value of time (AVOT) travelers are somewhere in
between.Moreover, the application to the Sioux Falls network
shows that in a general transportation network, the model
and solution algorithm converges well within a reasonable
computing time.
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