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Abstract—In future UAV-based services, UAV (Unmanned
Aerial Vehicle) fleets will be managed by several independent
flight operation service providers in shared low-altitude airspace.
Therefore, Conflict Detection and Resolution (CDR) methods that
can solve conflicts—possible collisions between UAVs of different
service providers—are a key element of the Unmanned Aircraft
System Traffic Management (UTM) system. As our CDR method,
we introduce an adaptation of ORCA, which is a state-of-the-art
collision avoidance algorithm hitherto mainly used in a limited
theoretical scope, to realistic UAV operations. Our approach,
called Adapted ORCA, addresses practical considerations that
are inherent to the deployment of UAVs in shared airspace, such
as navigation inaccuracies, communication overhead, and flight
phases. We validate our approach through simulations. First,
by empirically tuning the ORCA parameters look-ahead time
window and deconfliction distance, we are able to minimize the
ORCA generated deviations from the nominal flight path. Second,
by simulating realistic UAV traffic for delivery, we can determine
a value for separation distance between UAVs that uses airspace
efficiently.

Index Terms—UAV Coordination, UTM, Conflict Detection and
Resolution, Task Allocation, Path Planning

I. INTRODUCTION

ONE of the preconditions for the successful real-world
deployment of Unmanned Aerial Vehicle (UAV) fleets

is the development of a safe and efficient Unmanned Aircraft
System (UAS) Traffic Management (UTM) system [1]. In
the near future, several independent UAS Service Providers
(UASSPs) will task multiple UAVs with limited capacities to
visit specific locations, and operate in low-altitude and possi-
bly high-density airspace that is shared among the UASSPs.

For safety, the path of each UAV must avoid static obstacles,
such as terrain elevation and no-fly zones, and dynamic obsta-
cles, such as other UAVs controlled by other service providers.
With dynamic obstacles, Conflict Detection and Resolution
(CDR) methods become indispensable for safe air traffic. In
UTM, and similar in ATM (Air Traffic Management), CDR
methods refer to different levels of “redundancy” [1], [2], [3].
• Pre-Flight CDR: here, conflicts are detected and resolved

based on flight plans submitted to the UTM, before the
actual flights. In ATM, such method is called Strategic
Conflict Management.
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• In-Flight CDR: because of changing weather conditions,
or some emergency, sone conflict-free paths created
pre-flight CDR might not be safe anymore. Therefore,
in-flight CDR methods are required that adapt UAVs
movement in real-time, during the flight. In ATM, such
techniques are called Separation Provision.

• See and Avoid (SAA): those methods provide a final
failsafe and might be based on video processing or other
sensing technology

In this paper, we will focus on In-Flight CDR methods.
Please note that those methods might be centralized (as in our
paper), or decentralized, e.g., running onboard the vehicle.

Additionally, the design and specification of a complete
UTM system will require many considerations [2], [1], some
of which are not yet determined, such as requirements for com-
munication, application of dynamic airspace configuration, and
so on.

Our implementation of the UTM system simulator com-
prises the following main components of a real UTM system.1

• UAS Service Provider (UASSP): all UAS Operators use a
UASSP for task assignment (incl. path planning) of UAVs
given service requirements;

• Core UTM: all UASSPs connect to a central Core UTM
that hosts the CDR (Conflict Detection and Resolution)
service for in-flight CDR.

In this paper, we focus on airspace shared among UAVs
from different, independent UAS service providers, whereby
all UAVs are assumed to be connected to the UTM via
UASSPs. Moreover, in the low-altitude shared airspace, in-
teractions with manned aircraft are limited, and airports are
considered as no-fly zones for UAVs, so we do not consider
manned aircraft in this setting. We adopt a partly simplified
setting with respect to UAV types, and consider only one
model of quadcopter for which we take realistic flight pa-
rameters into account.

The operational scenarios considered in this paper are
mainly the delivery of goods by UAVs from different UASSPs,
including commercial and public services. For that purpose,
we present a two-stage approach to UAVs delivery operations
in shared airspace [4]. First, in the preparatory phase, for
all UAVs connected to an UASSP, paths are planned that
avoid collisions with static obstacles, such as terrain elevation
and no-fly zones. Note that in this step, we do not consider
the possibility of conflicts, even within the fleet of UAVs
controlled by one UASSP. Second, in the in-flight phase, as
a standard approach in UTM [2], the CDR method modifies

1This setup is also realistic in terms of current regulatory environment.



trajectories of those UAVs, within or across fleets, that are at
risk of collision.

While most of the recent works focus on adapting ORCA’s
computations to obtain collision-free maneuvers for UAVs, the
novelty of our approach is in proposing a practical integration
of ORCA as an in-flight CDR mechanism to the UTM system.
The Standard ORCA algorithm is usually applied in theoretical
simulations with simplifying assumptions that do not hold in
practice, such as instant velocity changes or perfect commu-
nication. So, the main challenge of our work is to effectively
adapt Standard ORCA to address real-world constraints and
thus make ORCA applicable to the UTM context.

We also conduct simulations of a real area in Japan with
realistic settings regarding the demand for UAVs and delivery
tasks.

Specifically, this paper makes three main contributions:
1) We are the first to adapt Standard ORCA to the practical

UTM context, where quadcopter UAVs operate in shared
low-altitude airspace. With our new version of ORCA,
called Adapted ORCA, we address the communication
overheads induced by Standard ORCA, the UAV navi-
gation inaccuracies, and the distinct UAV flight phases,
such as take-off and landing.

2) For super-conflict scenarios, we propose an empirical
tuning of ORCA parameters, namely the look-ahead time
window τ , and the deconfliction distance dec dist, to
reduce the path deviation generated by ORCA.

3) We also evaluate the performance of our approach in a
series of realistic simulations based on real-world delivery
scenarios. With the collected simulation data, we show
that our approach ensures zero percent physical collisions.

The rest of the paper is structured as follows. Section II
presents related works and provides some background on the
techniques used in this paper. Section III introduces our prob-
lem. Sections IV and V describe our two-phase process that
comprises a preparatory phase and an in-flight phase. Further
we also introduce our adaptation of ORCA in the presented
setting. Section VI presents our simulations scenarios, and
Section VII shows the overall results and analysis. Section
VIII concludes our paper.

II. RELATED WORKS

A. Task Allocation and Path Planning

The occupancy of airspace by UAVs is determined by
their flight paths, which are established through a two-step
process: first, task allocation decides on the sequence of
destinations for the UAV (and associated actions) and second,
path planning designs an optimal trajectory under terrain and
airspace constraints.

The task allocation problem is a widely studied combi-
natorial optimization problem, which has generated many
approaches and variants that have mostly been studied in
isolation, independently of the constraints of real-world de-
ployment, such as route planning for UAVs.

In our context, for each UASSP, the objective is to task
UAVs to go to several locations, which is a Multi-Depot Ve-
hicle Routing Problem (MDVRP) [5]. It is a generalization of

the Traveling Salesman Problem (TSP) for multiple vehicles.
In most of the formulations, the costs of going from one
location to another are known beforehand [5], [6]. In our
case, a single UAV has to avoid static obstacles on its path,
such as no-fly zones, and it is necessary to take into account
terrain elevation, which is relevant considering the altitude
at which UAVs operate. Thus, a path planning process that
computes collision-free paths representing the real costs in-
between locations is necessary [7], [8].

We propose to incorporate this information through an
elevation map, thereby implementing 2.5D path planning on
top of a cell-based discretization for optimal coverage [9].
Preparatory (static) path planning can be solved traditionally
with a heuristic search algorithm using distance-based heuris-
tics such as A*. Our discretization method produces paths
that may not constitute optimal trajectories from a kinematic
perspective as often reported in robotics [10]. In the specific
case of UAVs, despite their additional movement abilities, an
optimized trajectory is likely to be more energy-efficient by
limiting hovering and turning. We have thus resorted to the
Theta* [11] variant of A*, as this any-angle approach is more
suitable for quadcopters.

B. Conflict Detection and Resolution (CDR)

Kuchar and Yang [12] provide an extensive survey on in-
flight CDR methods for aircrafts and defined the notion of con-
flict as “an event in the future in which two or more aircrafts
will experience a loss of minimum separation between each
other” ([12], p. 4). Airspace segregation and corridor concepts
are already applied for aircrafts [3] and can also reduce the
number of conflicts. However, the possibility of conflicts is still
non-negligible in the presence of dynamic events such as wind,
tracking errors, or flight delays. Several works centered on
UAV deployment have recently emerged, such as the ORCHID
project [13], [14], which focuses on optimally assigning tasks
to UAVs in a disaster response context. However, their work
targets only one single UAS Operator, who is in control
of the entire UAV fleet, whereas we focus on an airspace
shared among multiple independent service providers, so that
conflicts cannot be ruled out beforehand. [15], [16] and [17]
proposed a coupling of task allocation and path planning for
UAVs. Yet, they did not address collision avoidance between
moving UAVs. Moreover, they only consider a 2D context,
thus assuming UAVs keep a constant altitude. By contrast,
we take into consideration 3D elements, based on a realistic
elevation map.

Regarding UAV collision avoidance methods, several ap-
proaches have been proposed. [18] apply a speed change
method to solve conflicts but are limited by frontal conflicts
and uncertainties. In a similar way, [19], [20] use speed
and heading changes restricted to 2D; hence they do not
consider any altitude change. In the AgentFly project, [21],
[22] propose decentralized algorithms for collision avoidance
based on game theory, but they do not consider a realistic UTM
setting with task allocation or static obstacles. With priority-
based techniques [23], [2], UAVs are ordered into a sequence
and planning is done one-by-one, such that each UAV avoids



collisions with the higher-priority UAVs. This greedy approach 
tends to perform well in uncluttered environments, but it is in 
general incomplete and often fails in dynamic environments. 
With knowledge-based methods [24], a lookup table of conflict 
resolution is generated offline w ith t he u se o f a  Markov 
decision process [24] and then applied online. The generation 
usually requires large computation time.

Recently, the computation of collision-avoiding velocities
with the use of velocity obstacles shows widespread adoption
[25], [26], [27], [2], [28], [29]. Among them, Optimal Re-
ciprocal Collision Avoidance (ORCA) [30] is the prominent
approach.

In our UTM context, we focus on developing in-flight CDR
methods for UAVs. ORCA is a method originally applied in
simulations of collision avoidance for holonomic agents, such
as pedestrians or ground robots. In this paper, we propose an
adaptation of ORCA, so it can be incorporated into a multi-
layer CDR approach.

Several other works have recently also applied ORCA to
the case of UAVs by adapting its computations. For instance,
Alonso-Mora et al. [31] have incorporated motion equations
for quadcopters into ORCA’s computations to obtain more
precise collision-free maneuvers for UAVs. Yet, all these works
focus on designing a local collision avoidance method without
considering aspects of the UTM context, such as automated
UAVs that carry out missions, position uncertainty, or safe
separation between UAVs. By contrast, we propose a novel
version of ORCA that supports CDR in a realistic UTM
context.

III. PROBLEM FORMULATION

In this section, we define the overall problem. Our main
objective is to ensure safe UAV operations in shared airspace,
i.e., no collisions between any UAVs or with static obstacles,
and compliance with UTM requirements while providing
minimum evasive behavior in case of conflict.

The environment is assumed to be known and the state
space is in three dimensions. Hence a location will have
three coordinates: latitude, longitude and altitude relative to
the elevation from mean sea level. UAVs are allowed to fly
between legal bounds that are hereby fixed to minalt = 30
meters (m) for the minimum altitude, and maxalt = 150m for
the maximum altitude relative to the elevation of a point of
given latitude and longitude coordinates.

Our problem is directly motivated by several practical
applications like delivery or surveillance tasks. We assume the
dynamic situation where an operator in charge of a given fleet
of UAVs continuously receives tasks requests at regular time
intervals.

A. Task Allocation

We consider the sub-problem of task allocation for each
UAV fleet. In this sub-problem, the objective is to minimize
the total sum of traveled distances for all considered UAVs of
the fleet.

For each UAV fleet, we define:

Fig. 1: Safety layers considered for the determination of the
total separation distance

• A set of m UAVs U = {1, . . . ,m}: each UAV i ∈ U has
an initial location li considered as the first take-off point
and also the final location, since typically each UAV has
to return to its hub once its mission is completed.

• The battery capacity of each UAV Di > 0 which allows
the UAV to travel a maximum distance.

• The payload capacity of each UAV Pi > 0 for carrying
goods.

• A set of n tasks T = {T1, . . . , Tn}: each task Tj ∈ T
has a required payload pj ≥ 0 and a given location.

• The cost function we use in the following is defined as
the distance to travel from one given task location Ti to
the location of another task Tj : d(Ti, Tj).

We denote the path of a UAV i as being the set of p ordered
waypoints: πi = {(x1, y1, z1), . . . , (xp, yp, zp)} . The altitude
constraints are defined as:

∀(xk, yk, zk) ∈ πi, elevation(xk, yk) +minalt ≤ zk
zk ≤ elevation(xk, yk) +maxalt

(1)

The following assumptions apply to the sub-problem:
• Each UAV returns to the same initial location of depar-

ture.
• Each task is considered as a destination location and is

reached exactly once by a UAV.
• The total distance traveled does not exceed the UAV’s

battery capacity.
• The payload demand does not exceed a UAV payload

capacity.
These are the assumptions used in our task allocation

algorithm.

B. Conflict Detection and Resolution

As previously mentioned, a conflict is the predicted loss of
minimum separation between two or more aerial vehicles [12].

In the UTM context, similar to the ATM context, no
physical collisions are ever acceptable. For that purpose, the
actual body radius of each UAV is enlarged by adding extra
layers that represent (i) different uncertainty margins, such
as navigation system error and flight technical error, and (ii)
the minimum separation distance determined as as a UTM
airspace constraint (see Fig. 1).



To accurately determine the individual radii, we introduce
an expression that incorporates a first layer that we call
the Constructor layer, whose value can be retrieved from
UAV manufacturers data (see Eq. 2). It includes the actual
size of a UAV, BodyRadius, and several navigation error
factors relating to operational risk as listed in [32], such as
the Navigation System Error NSE, which is the difference
between the true position of a UAV and its displayed position,
the Flight Technical Error FTE, which is the difference
between the required flight path and the displayed position
of a UAV, and the SafetyFactor, an arbitrary safety margin
coefficient.

Constructor = (BodyRadius+NSE+FTE)·SafetyFactor
(2)

Then, a second safety layer called SeparationMinimum
is added, which is an arbitrary distance whose value is
evaluated in this paper. Such layer is also adopted by the
UTM regulation [1], [33]. In the case of quadcopters, which
can be considered as holonomic agents, the impact of using a
specific PID controller and an adaptive fuzzy method would
be minimal and have little influence on our CDR approach.

Finally, the UAV-specific radius r is shown in Eq. 3.

r = Constructor + 0.5 · SeparationMinimum (3)

Now, a near-collision happens when the spheres repre-
senting the separation minima of all involved UAVs actually
intersect.

Conflict resolution is triggered when a conflict is predicted
and has to ensure that there is no loss of minimum separation,
i.e., the separation minima of UAVs never intersect.

C. Approach

While recent works using UAVs focus on the specific
computations of collision-free maneuvers, the novelty of our
work is the integration of ORCA as a CDR mechanism in the
UTM context, which features special requests that need to be
addressed.

We first present our two-stage approach used for UAV
operations in shared airspace. An example of the overall
pipeline is shown in Fig. 2. In the preparatory phase, for each
fleet of UAVs connected to an UASSP, paths are generated that
avoid collisions with static obstacles, such as terrain elevation
or no-fly zones. In this step, we do not consider the possibility
of conflicts, even within each fleet of UAVs controlled by an
UASSP. Then, in the in-flight phase, as a standard approach
in UTM [2], [33], our CDR method modifies the nominal
trajectories for UAVs of all fleets, to avoid loss of minimum
separation.

IV. PREPARATORY PHASE: TASK ALLOCATION AND
FLIGHT PATH GENERATION

We present our Preparatory procedure (see Fig. 2), which
aims at generating a feasible sequence of tasks for each UAV
according to a defined cost function.

The simultaneous computation of task allocation and path
planning can quickly become intractable even for relatively

small problem instances [17]. However, due to scalability con-
siderations, an optimal planner is not necessary. To improve
the efficiency of the computations, we first prune unlikely
allocations with a soft clustering approach [34]. Such soft
clustering is advantageous, as it encodes uncertainties on data,
namely the unknown real distance to be computed by path
planning, and allows tasks to belong to more than one cluster.

As mentioned in Section II, we use Theta* [11] for any-
angle path planning to match with quadcopters motion. For
each pair of locations of the same cluster, we compute all paths
with Theta* and their associated costs. We use a generated
elevation map, thus the search space is comparable to a
2.5D representation and each node in the grid contains its
latitude, longitude, and elevation. Also, no-fly zones can be
incorporated by putting an infinite cost in the evaluation
function. The corresponding waypoints and costs for the paths
between every pair of task locations are stored in a lookup
table for each UAV.

Finally, we apply Tabu Search (TS), a metaheuristic that
efficiently solves large sized optimization problems [35]. TS
is an improved version of the Local Search which incorporates
a memory of a fixed number of recent moves used, called
“tabu list”. The size of the tabu list is dynamically adjusted
in function of the improvement of the current solution [35].
With the real path costs previously computed by Theta*, TS
determines the sequences of tasks to be allocated to each UAV
with respect to the constraints presented in Section III and
detailed in Algorithm 1.

One important step in the TS metaheuristic is the neigh-
bourhood selection process. This step determines the strategy
to guide successively the search process towards an optimum.
In our case, a move means assigning a task from one UAV
to another, or changing the order of assignment between two
tasks assigned to the same UAV.

This layered approach between task allocation and path
planning prevents from a combinatorial growth in the number
of possible permutations with the number of UAVs and tasks.
The result is a set of task allocations and individual flight
paths for each UAV, which is compatible with their real-world
speed, payload and battery life.

V. IN-FLIGHT PHASE: CONFLICT DETECTION AND
RESOLUTION (CDR)

The flight paths associated to task allocations are calcu-
lated without any consideration of potential airspace conflicts
between UAVs. Hence there is a need to implement suitable
in-flight CDR mechanisms.

In this section, we introduce our CDR process called
Adapted ORCA, which improves over the existing ORCA algo-
rithm [30] hereby referred to as Standard ORCA. Importantly,
Adapted ORCA is compatible to real-world UAV deployment.
The proposed centralized method can be complemented by
decentralized on-board CDR methods as a redundancy mech-
anism.

We first introduce the ORCA parameter notation in Table 1.
For a detailed description of the ORCA velocity computations,
we refer to [30] .



Fig. 2: Example application of our two-stage approach with 2 UASSPs. Preparatory Phase: (1.a) Tasks requests are received
by each UASSP at regular time intervals and path costs are precomputed with 2.5D path planning; (1.b) Tasks are allocated
and paths are generated for each UAV; In-flight Phase: (2) UAVs start flying in shared airspace and all UAVs transmit their
telemetry to the Core UTM system that hosts the in-flight CDR algorithm that resolves conflicts for all UAVs in the given
area.

Standard ORCA has been proven (i) to guarantee collision-
free motion for the given time window τ and (ii) to generate
a local minimum deviation path [30]. Our proposed CDR
method, Adapted ORCA, conserves the theoretical properties
of Standard ORCA, while supporting its application to real-
world UAV deployment.

In the following, we describe in detail the features of
our Adapted ORCA as a CDR approach and discuss the
differences with Standard ORCA.

A. Conflict Detection in Adapted ORCA

In this section, we describe our conflict detection process
that improves upon Standard ORCA. As previously mentioned,
a conflict is defined as a predicted loss of minimum separation.

In Standard ORCA, each agent applies the velocity com-
puted by the algorithm at each time step. Velocity obstacles
are computed at each time step to detect possible conflicts
as shown in Fig. 3, and a new velocity is computed with
respect to these constraints. However, this approach results
in a possible overhead of computations and communication.
If there is no conflict, the same velocity as the current velocity
agent is computed.

Thus, we propose to avoid this overhead by introducing a
conflict detection mechanism that is composed of two steps:
a shallow step and a detailed step.The mechanism is also
described in Algorithm 2.

1) Shallow Step in Conflict Detection: The shallow step
identifies potential conflicts by the use of a fixed distance

called deconfliction distance dec dist, which is a center to
center point distance between two UAVs. It is a basic threshold
distance, also originally used in Standard ORCA to filter
agents that are too far apart, such that at time t, if the positions
of two UAVs A and B are such as: dist(pA(t), pB(t)) >
dec dist, no computations are made and thus any potential
conflict is ignored. Based on the physical interpretation of
dec dist, we can define a lower bound on its value as follows:

dec dist ≥ sep dist+ τ · (2 ·MaxSpeed) (4)

with MaxSpeed the given maximum speed of each UAV.
However, the use of the deconfliction distance dec dist

alone cannot identify false-positives, i.e., a potential conflict
was declared, but the UAVs would never collide, e.g., because
they fly in parallel. We refine the conflict detection phase to
address this issue.

2) Detailed Step in Conflict Detection: At time t, if the
shallow step identified a potential conflict, we perform a more
precise conflict detection computation over the τ time window
by comparing the difference in magnitude between the velocity
vORCA and the preferred velocity of the UAV vpref , which
is also the current velocity, as in Eq. 5. This assumes that a
UAV will keep its current velocity during the time window τ ,
which is generally the case as delivery UAVs tend to travel at
constant speeds for most of their journey and external effects
such as wind operate on a larger timescale than our sampling
rate.



Fig. 3: Standard ORCA: ORCA loop at each iteration and an example of the ORCA computation of the collision-free half-spaces
and the obtained collision-free velocities for three UAVs in conflict.

Algorithm 1: Task allocation process with Tabu Search
Data: T : tasks ; U : UAVs
Result: zbest ← (Ti,Πi)∀i∈U : solution as a sequence of

tasks and associated paths for each UAV i
(Ci)∀i∈U ← FuzzyClustering(U, T, γ); // Cluster
of tasks locations for UAV i
M ← PathP lanning((Ci)∀i∈U ); // Lookup table
containing all costs and paths
computed by Theta* between pairs of
tasks locations for UAV i

Generate an initial feasible solution z0 of cost(z0) with a
greedy search;
zbest ← z0;
z ← z0;
TabuList ← ∅;
iter ← 0;
while (iter < Maxiter) do

Find the best solution z′ of the current neighbourhood
with move m′ /∈ TabuList and cost(z′) in M ;
TabuList.push(m′);
if cost(z′) ≤ cost(zbest) then

zbest ← z′ ;
if TabuList.size > MaxTabuSize then

TabuList.removeFirst();
z ← z′;
iter++;

if (||vORCA − vpref || > ε) then inConflict = true (5)

In case of conflict, the velocity computed by ORCA is
transmitted to the given UAVs to avoid a loss of minimum
separation in τ seconds, else nothing is transmitted and the
UAV keeps its current velocity.

Parameter Description
Preferred velocity vpref Velocity of a UAV directed towards its goal

if there was no conflict
Time step ∆t Time step of each ORCA iteration which is

set to the same value as the UAV telemetry
update rate (5Hz)

Time horizon τ Arbitrarily fixed time window in which the
velocity computed by ORCA is guaranteed to
be collision-free.

Radius r Radius of the sphere surrounding a UAV
Separation distance sep dist = 2r Center to center point distance between

2 UAVs which is used to declare a near collision
in case of violation

Deconfliction distance dec dist Center to center point distance between
2 UAVs which is used to filter unlikely
conflicts.

Reciprocity coefficient λ Percentage of the repartition in deviation
between 2 UAVs in conflict: λ = 0.5 for
each UAV in case of equal reciprocity

ORCA velocity vORCA Velocity computed by ORCA algorithm at
each time step, which is guaranteed to be
collision-free for a fixed time horizon τ

TABLE 1: ORCA parameters

B. Conflict Resolution in Adapted ORCA

Following the conflict detection phase, the conflict res-
olution phase is triggered. ORCA computes collision-free
velocities iteratively and transmits them to the given UAVs at
a fixed rate (see Fig. 3). Note that ORCA avoids any knock-on
or “domino” effect since it takes into account all the UAVs that
are in conflict with each other during the time window τ in
the area considered. A new collision-free velocity is computed
with the intersection of the collision-free spaces for each UAV
involved in a conflict at each iteration of Adapted ORCA.

Next, we turn to explaining concepts that have been newly
integrated to Adapted ORCA, and were not present in Standard
ORCA.

1) Start and End of Conflict Resolution: While conflict
detection runs permanently, conflict resolution is a conditional
event triggered by conflict detection. This creates an alternative
behavior between a non-conflict state where a UAV follows its
initially planned trajectory, and a conflict state, where a UAV



Algorithm 2: Adapted ORCA
Data: U : UAVs
for ui ∈ U do

while pi! = Goali do
Update pi;
for uj(j 6= i) ∈ U do

// Conflict Detection
if dist(pi, pj) ≤ dec disti then

if ||vORCA
i − vprefi || > ε then
// Conflict Resolution
if ui.State == uj .State == In-flight
then
λi/j = 0.5;

else if ui.State == In-flight
&& uj .State! = In-flight then
λi/j = 1;

else
λi/j = 0;

iter = 0
while iter ≤ ∆T do

vi ← vORCA
i ; // Apply

corresponding ORCA
computations to UAV i
iter + +;

Fig. 4: Example of Adapted ORCA solving a conflict between
2 UAVs.

follows newly generated instructions to avoid potential loss of
minimum separation.

So, we formalize the notion of “start and end of conflict
resolution”, i.e., when and how a path should be modified
by ORCA. The start of the CDR step is dependent on the
fixed dec dist parameter that defines the distance from where
a UAV will receive ORCA velocities to change its original
trajectory in case of conflict, as shown in Fig. 4.

When the condition in Eq. 5 turns false, i.e., the velocity
computed by ORCA vORCA for a UAV in conflict becomes
sufficiently close to its preferred velocity vpref , the conflict

Fig. 5: Example of three UAVs in conflict in a top down
view. The state (in-flight, take-off or landing) of each UAV
is indicated together with the corresponding values of λ. The
velocity of UAV B is not shown as it has vertical direction.

is declared as solved and the UAV resumes its initial path
towards its next waypoint.

In order to not create an oscillating behavior between non-
conflict and in conflict states, this check is done after an
arbitrarily fixed minimum conflict duration ∆T , i.e., number
of ORCA iterations.

2) UAV Flight States: UAVs can have three flight states.
(1) Take-off, (2) In-flight, and (3) Landing. Because Standard
ORCA was initially applied to ground robots, the take-off and
landing phases were not considered. There may be conflicts
occurring between UAVs that are in-flight and UAVs that are
taking-off or landing.

In the UTM context, those specific phases of a UAV flight
plan cannot be interrupted. Adapted ORCA addresses this
situation by dynamically adapting the reciprocity coefficient
λ parameter to each type of conflict situation considering the
status (in-flight versus take-off or landing) of each UAV as
also described in Algorithm 2. When a UAV is in take-off or
landing state, it should not be deviated as a rule, since these
phases can require specific and more constrained maneuvers.
So the UAV in in-flight state takes full responsibility to avoid
lack of minimum separation.

For this purpose, the value of the λ reciprocity coefficient
of ORCA has to be dynamically changed depending on the
conflict situation, since it constrains the set of permitted
velocities when computing the solution velocity vORCA for
a UAV (Fig. 5). Currently, we do not consider scheduling to
avoid such conflicts.

3) UAV Acceleration Constraints: UAVs have physically
imposed limits both on their speed and on their acceleration.
Hence, we add a constraint taking into account the maximum
acceleration MaxAcc, so that the new velocity v generated
by ORCA is reachable:

||vORCA − v(t)|| ≤MaxAcc ·∆t (6)

C. Empirical Tuning of Parameters in Adapted ORCA

Standard ORCA has several parameters that can affect
its performance. Specifically, the look-ahead time window τ



associated with the deconfliction distance d ec dist can affect 
the performance of an ORCA based CDR method because it 
influences t he v elocity c omputations, a nd t hus t he deviation 
trajectory.

Thus, unlike Standard ORCA, which arbitrarily fixes the 
values of these parameters, Adapted ORCA can be empirically 
tuned to perform optimally in certain scenarios. Section VII 
will introduce a super-conflict scenario and demonstrate such 
empirical fine-tuning.

VI. SIMULATION SCENARIOS

To determine the potential of a real world deployment of
our CDR approach, we developed a simulation platform that
simulates realistic service UAV operations. We use Monte
Carlo simulations to provide a statistical evaluation of our
method. Those simulations allow to assess the extent of the
losses of minimum separation by varying the values of the
minimum separation. Since real-world flight experiments are
not practical at this time, Monte Carlo simulations are the most
viable method to validate our CDR approach.

The following control parameters were used both in the
super-conflict scenario and the real-world scenario. First, the
total separation distance sep dist = 2r (assuming same-
type vehicle) with possible values of UAV-specific radius r
as presented in Eq. 3 are determined with:
• BodyRadius = 0.3m (size of a DJI Phantom 4 UAV)
• NSE = 2.0m (GPS standard accuracy)
• FTE = 0.5m (empirically measured for DJI Phantom 4)
• SafetyFactor = 1.1 (arbitrarily fixed)

Hence, the resulting Constructor layer has 3m radius.
Then, the SeparationMinimum values hereby tested

range from 4m to 24m. Thus, applying Eq. 3, we consider
a range of values for r from 5m to 15m in the following
simulations.

Second, for the time window τ , the optimal value to trigger
our CDR method is empirically determined in our simulations.
We have been experimenting with values between 4s to 10s.

Third, for the deconfliction distance dec dist, the value of
must satisfy the lower bound in Eq. 4, and thus we consider
a range of values from 30m to 45m in our experiments.

A. Super-Conflict Scenario

We created extreme conflict scenarios in which up to 10
UAVs placed in antipodal positions and located in a small area
of 200m × 200m are heading to a single collision point. We
aim to derive performance parameters for ORCA, whereby the
values of dec dist and τ efficiently trigger conflict resolution
and show that deviation from the initial trajectory can even be
reduced.

In this scenario, the ε parameter used for conflict detection
in Eq. 5 is fixed to 0.05, and the minimum conflict duration
∆T is fixed to 10 iterations of ORCA algorithm.

B. Real-world delivery Scenario

We propose experimental scenarios based on a real world
setup of the specific region of Okutama, a rural area in Japan
as shown in Fig. 6.

Fig. 6: Map visualization of the Okutama area showing the
UAVs initial take-off locations and task locations used in our
simulations. There are fleets of three UAS Service Providers
(indicated by red, blue, green) with 35 UAVs in total. UAVs are
dispatched to three distinct zones that have commercial and/or
health facilities. A total of 39 task locations are positioned in
isolated areas that are within the range of the UAVs of each
fleet. There is also one no-fly zone (red square to the left).

We performed our simulations in an area of about 8km2.
The rural area of Okutama can be a first potential candidate
for real-world deployment since airspace in urban areas is not
available under current legislative requirements.

Our scenarios were conceived based on a real-world pre-
liminary study conducted on Okutama. We collected statistics
on various aspects of the region such as age range, population
density and repartition. With these figures and through various
interviews with local authorities, also considering the topog-
raphy of the area, we have designed our delivery scenarios as
shown in Fig.6.

Consequently, our study reflects realistic expectations for
UAV service in a given airspace. For instance, the number
of simultaneous UAVs in the airspace was derived from the
expected number of deliveries, average flying time and hours
of operation. The considered initial take-off locations for all
UAVs are derived from the locations of shops, hospitals and
other service facilities in the area.

In those scenarios, several UASSPs are in the same area,
each in charge of their own fleet of UAVs. We fix each UAV
capacity (26 min of maximum flight duration as a lower bound
with a maximum speed of 5m/s, and a maximum acceleration
of 3m/s2), and maximum payload (1kg), as defined by current
quadcopters manufacturers specifications.

The UAVs used in our simulations are DJI Phantom 4
copters have an average battery capacity of 26 min. We put a
margin of 10 % on the actual battery consumption limit in the
generated flight paths of each quadcopter to ensure that there
is sufficient battery in case of deviation during the flight. The
reliability of these parameters have been tested in real world
experiments with experimental flight tests.

The telemetry update time step ∆t is fixed at 0.2s. We
located each task so that at least one UAV of the corresponding
fleet can reach it as shown in Fig. 6. We also added the



constraint that two UAVs’ initial locations and tasks locations 
cannot be closer to each other less than the defined s ep dist.

During the simulations, batches of tasks among the possible 
task locations of Fig. 6 are randomly generated for each fleet
at fixed time intervals. We ran 100 simulation samples for each 
experiment.

Each simulation represents a 4-hour service scenario, and 
we assume a fixed small amount of time for battery recharging 
every time the UAV returns to its initial location. Simulations 
were ran with an accelerated timeframe so as to reduce 
simulation time.

In order to avoid a ‘consumption ’of UAVs by collisions
that would hinder the production of simulation results, we
determine that whenever a near-collision takes place (where
no CDR is active), those UAVs disappear, and “spare” UAVs
are automatically created at the same initial take-off locations
of the involved UAVs, but at a different time for each, to not
potentially recreate the same collision.

In the scenarios, UAVs are tasked mostly to transport small,
light and valuable items, such as medicine, equipment and
specific food items. There are three UAS Service Providers
(see Fig. 6):
• UASSP1 (UAVs positions in red): Health related delivery

and transport (medicines, biological samples) (10 UAVs;
12 tasks locations)

• UASSP2 (UAVs positions in blue): Daily items and food
(12 UAVs; 13 tasks locations)

• UASSP3 (UAVs positions in green): Daily items and food
(13 UAVs; 14 tasks locations)

All terrain information is provided via the elevation map
generated by the existing Mapzen Terrain Tile Service.

The quadcopters flight motions are simulated by our own
in-house simulator which uses data acquired from physical
trials. At the moment, available UAV simulators are single-
computer stand-alone systems that do not scale well and are
thus impractical for our broader purpose of simulating large-
scale UTM scenarios. Hence, we built our own distributed
networked simulator that scales simulations up to thousands
of concurrent UAVs.

All algorithms previously described are implemented in Java
and we ran our experiments on a 2.9 GHz Intel Core i5-
4210 CPU with 16 GB RAM. In our setting, Adapted ORCA
exhibits fast runtimes (100ms in average), on the same order of
magnitude as Standard ORCA, which has already shown high
scalability with applications involving thousands of agents.

VII. EXPERIMENTAL RESULTS

A. Super-Conflict Scenario

The two metrics used in the high density experiment are:
• Average time optimality per UAV. This study aims to

evaluate the optimality, or degradation of optimality, in
UAVs’ evasive behavior.

• Deviation in distance. This study investigates the amount
of detour required to avoid loss of minimum separation.

Average time optimality per UAV is formalized as follows.
For a UAV j, time optimality degradation is defined as the
ratio of the time it would have taken for j to reach its goal

Fig. 7: Evolution of average time optimality for Adapted
ORCA in extreme conflict scenarios with MaxSpeed = 5m/s
and different values of r relative to τ and associated dec dist
values.

Fig. 8: Evolution of average deviation in distance for Adapted
ORCA in extreme conflict scenarios with MaxSpeed = 5m/s
and different values of r relative to τ and associated dec dist
values.

location if there was no conflict tideal to the actual total time
taken tactual. Then, the average time optimality per UAV with
N referring to the total number of UAVs considered is defined
as:

Optj =
tideal

tactual
; AverageT imeOptimality =

∑N
j=1Optj

N

Deviation in distance, similar to time optimality, measures
the difference between the actual distance traveled and the
ideal distance a UAV would have traveled based on their initial
(optimal) paths.

In our first study, we will investigate the influence of τ
and dec dist parameters on ORCA resolution. The value of
the look-ahead time horizon τ , and by extension dec dist,
influence the quality of the resolution.

Since those parameters are used in the computation of the
new velocity by ORCA (in case of conflict), our hypothesis
is that there is a value or interval of values of τ and hence
dec dist for which the deviation from an initial trajectory is
minimal while ensuring no loss of minimal separation.

We propose to determine those values empirically through
our simulated experiments. We fix MaxSpeed to 5m/s and vary



τ with dec dist and the separation radius r values. In Fig. 7 
and 8, we show that choosing the appropriate values of τ 
and dec dist can minimize the deviation with the considered 
UAVs.

In the case of super-conflict s cenarios, t hese v alues allow
us to initiate Adapted ORCA velocity computations with more 
informed values than choosing an arbitrary value.

With a larger radius r, the UAVs are then considered to be 
larger moving agents, so the deviation in trajectory is larger,
as shown in Fig. 8. Further, the average time optimality in 
Fig. 7 is inferior for the values of r ranging from 9m to 15m 
compared to the 5m and 7m values.

We also observe that a larger r value requires a larger τ with
the associated dec dist value to minimize the deviations from
the initial trajectories. For instance, for r = 9m, the highest
time optimality is reached for a value of τ = 6s (with dec dist
= 35m), whereas for r = 11m, it is reached for τ =8s (with
dec dist = 40m).

Otherwise, for smaller values of τ , we observe a larger
degradation in time optimality, since UAVs in conflict do not
have sufficient time to react and tend to get slower. For higher
values of τ , the UAVs tend to react too early and hence take
unnecessary detour.

B. Real-world Delivery Scenario

In the delivery scenario, we study three types of setups:

• Frequency of loss of minimum separation with and with-
out CDR. This study provides an empirical estimation of
the likelihood of safety issues in shared airspace.

• Influence of the separation radius on occurrences of loss
of minimum separation with and without CDR. Note that
only the value for separation minimum is varied, while
we take the entire separation radius to allow center point
to center point distance measurement.

• Influence of the distribution of UASSPs’ fleets on loss of
minimum separation with and without CDR.

First, we investigate the frequency of loss of minimum
separation with and without CDR. We fix the number of fleets
(UASSPs) to 3, the total number of possible task locations to
39 and vary the total number of UAVs from 15 to 35 among
the possible locations shown in Fig. 6. The maximum number
of UAVs is derived from the preliminary UTM studies in [2]
given the rural area and its population density.

We first simulate scenarios without the use of our CDR
method and report the near-collisions (violations of minimum
separation distance sep dist) that occurred.

In Fig. 9, considering a separation radius r of 15m, as
expected, the total number of near-collisions observed in all
the simulations increases with the number of UAVs in the same
area, hence with a higher density. More precisely, the number
of near-collisions observed increases in a quadratic manner.

As shown in Fig. 9, these realistic simulations also assessed
the safety provided by our CDR approach, Adapted ORCA,
in particular with the separation distance to ensure no loss
of minimum seperation (no near-collisions) and hence 0% of
physical collisions.

Fig. 9: Impact of CDR on the number of total near-collisions
(loss of minimum separation) considering r = 15m.

Let’s look at the situation where no CDR method is in place.
Most of the near-collisions that happened were in-flight, but
near-collisions while one UAV is taking-off or landing also
happened to a fewer extent (Table 2) All cases of loss of
minimum separation was observed in those scenarios were
between 2 UAVs only.

Between UAVs in in-flight state 94 %
Between UAVs in in-flight and take-off/landing state 6 %

TABLE 2: Average % of near-collisions in UAVs’ states (with
no CDR method implemented).

Moreover, Table 3 shows that most near-collisions happened
between UAVs of fleets from different UASSPs. Based on the
minimum cost objective of the task allocation, it is unlikely
that a conflict occurs between UAVs of the same UASSP,
unless there is a large number of tasks concentrated on a
particular area, and visiting them all would exceed the capacity
of one UAV.

Between UAVs of the same fleet 11.1 %
Between UAVs of different fleets 88.9 %

TABLE 3: Average % of near-collisions within same fleet and
between different fleets (with no CDR method implemented).

Second, we study the influence of the separation radius r
on the number of near collisions, i.e., violations of minimum
separation. We fix the number of fleets (UASSPs) to 3, the
total number of UAVs to 35 and the total number of possible
task locations to 39, as shown in Fig. 6. Then, we analyze
the number of near-collisions for the different values of r =
5,. . . , 15m, as presented in Fig. 10. The total number of near-
collisions increases with the considered radius r.

Given the rationale adopted by UTM regulations, even for
the minimum value of r = 5m, near-collisions happen if no
CDR method is in place. The use of a CDR method, such as
Adapted ORCA, prevents such violations.

Finally, we investigate the influence of the distribution of
fleets (UASSPs) on loss of minimum separation. We keep the
same scenario with 35 UAVs in total, with r = 15m, and the
39 existing tasks locations in total. Here, we vary the number
of UASSPs from three UASSPs with 12 or 13 UAVs each,



Fig. 10: Total number of near-collisions relative to the radius
r

to six UASSPs with 5 or 6 UAVs each, so that there are 35
UAVs in total. We observe in Table 4 that the number of near-
collisions increases with the number of UASSPs in the same
area. Hence, losses of minimum separation would happen with
a larger number of UASSPs rather than having more UAVs in
each UASSPs.

Number of fleets 3 4 5 6
Number of collisions 22 22 23 25

TABLE 4: Total number of near-collisions with different
number of fleets (with no CDR method implemented).

VIII. CONCLUSIONS

Future UAV-based services will require a fully implemented
UTM system to ensure safe and efficient operations in low-
altitude airspace. UAS Operators will choose from several
UASSPs to use flight operation services such as automated task
allocation and generation of collision-free flight paths. Yet, the
Conflict Detection and Resolution (CDR) method hosted by
the Core UTM is needed to solve in-flight conflicts among
UAVs of different, independent service providers.

The contribution of this paper is a new CDR method based
on ORCA, called Adapted ORCA, which is a practical and
effective CDR mechanism for a realistic UTM operational
context.

To validate our CDR method, we designed and implemented
a simulation platform that runs realistic service UAVs oper-
ations. First, we looked at extreme-conflict simulations, and
conducted an analysis of ORCA parameters that can affect its
solution quality. The simulations yielded optimized values for
the key parameters look-ahead time window and deconfliction
distance. Those values can be reused in similar situations, such
as disaster situation, to optimize the performance of our CDR
method based on Adapted ORCA.

Second, we performed extensive simulations on realistic
scenarios based on a real world study. With the sample
collected, we obtained safety parameters, i.e., the frequency
of loss of minimum separation, if no CDR method is imple-
mented. With those simulated scenarios, we were able to study

and evaluate the impact of the minimum separation distance
value in a realistic set of operations in a rural environment,
with the purpose of ensuring physical safety between all UAVs.

Future work will address some simplifying assumptions in
this paper. First, we currently assume homogeneous UAV
fleets consisting entirely of same-type quadcopters. Here,
we plan to work on an heterogeneous airspace with UAVs
having different dynamics and capabilities, including plane-
type UAVs. This will require the study of a generalized CDR
system. Second, we currently assume reliable communication.
So we also want to address situations with no or delayed
communication, where vehicle-to-vehicle (V2V) communi-
cation with decentralized CDR methods is required. Third,
we plan to address situations where automated UAVs may
encounter human-controlled aircraft, such as hobby drones, or
helicopters.

Finally, we hope that our work can provide a first assessment
into the research challenges of future UTM-based services and
their management via a UTM system.
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