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Abstract

A classic approach to computational fluid dynamics is to perform simulations with a fixed set of
variables in order to account for parameters and boundary conditions. However, experiments and
real-life performance are subject to variability in their conditions. In recent years, the interest
of performing simulations under uncertainty is increasing, but this is not yet a common rule,
and simulations with lack of information are still taking place. This procedure could be missing
details such as whether sources of uncertainty affect dramatic parts in the simulation of the flow.
One of the reasons of avoiding to quantify uncertainties is that they usually require to run an
unaffordable number of CFD simulations to develop the study.

To face this problem, Non-Intrusive Uncertainty Quantification (UQ) has been applied to 3D
Reynolds-Averaged Navier-Stokes simulations of an under-expanded jet from an aircraft exhaust
with the Spalart-Allmaras turbulent model, in order to assess the impact of inaccuracies and qual-
ity in the simulation. To save a large number of computations, sparse grids are used to compute
the integrals and built surrogates for UQ. Results show that some regions of the jet plume can
be more sensitive than others to variance in both physical and turbulence model parameters. The
Spalart-Allmaras turbulent model is demonstrated to have an accurate performance with respect
to other turbulent models in RANS, LES and experimental data, and the contribution of a large
variance in its parameter is analysed. This investigation explicitly outlines, exhibits and proves
the details of the relationship between diverse sources of input uncertainty, the sensitivity of dif-
ferent quantities of interest to said uncertainties and the spatial distribution arising due to their
propagation in the simulation of the high-speed jet flow. This analysis represents first numerical
study that provides evidence for this heuristic observation.
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1. Introduction

During the last twenty years, accurate industrial simulations were based on the use of Com-
putational Fluid Dynamics (CFD). To this end, a computational domain is first defined around
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the object, meshed and then the computation launched once boundary conditions are defined.
To compare numerical simulations and experimental data, the choice of boundary conditions is
most influential on the results and researchers generally choose the conditions according to data
provided by experimentalists. However, this data could be an incomplete input to simulations
if not precisely defined by accounting relevant variations. All these factors, in addition to the
solver errors (discretisation, numerical schemes, etc.), lead to differences between the ‘physical’
model and its numerical approximation.

To minimise the discrepancy between the computational and experimental analysis has be-
come important in the recent years, since trends indicate a growing reliance on computational
studies as opposed to experimental investigations. A good indicator of this trend is noticed in
modern design of aircraft engines, where these designs used to require a 90% of experimental
tests and 10% of computational approach, but nowadays the situation has been reversed [61].
Within this context, both accuracy and robustness of the design (low sensitivity to uncertain pa-
rameters) are necessary to assess the performance of the CFD representation of the real-world,
which is a relevant topic for certification [96]. Improvements in this field could also reduce the
certification costs, thanks to the availability of more reliable softwares. One of the key aspects
of CFD is that they are, generally, a cheaper option for product design and development than
experiments. Actually, CFD simulations are routinely used in fields like optimisation [88, 37],
aerospace & aerodynamic industry [55], fire safety modelling [94], heat transfer [65] or nuclear
energy [54], amongst many others. Much effort has been spent to develop such techniques, lead-
ing to the most reliable simulations for decision-making purposes.

To improve computational simulations, finding a proper way to provide measures of accu-
racy (as most experimentalists do) is of interest in its own right, since variations in real-life
performance must be accounted. This brings in the use to the concept of Uncertainty Quantifica-
tion (UQ). UQ is about determining how likely the outputs of a model (numerical or otherwise)
are when the inputs are not precisely defined [77]. Once the input uncertainties are modelled,
then it is necessary to find an appropriate UQ methodology. In essence, UQ may be defined as
the field of identifying, quantifying and reducing uncertainties and variabilities associated with
numerical algorithms, mathematical models, experiments and their predictions of quantities of
interest [86]. Regarding the predictions of quantities of interest, one of the central steps in the
UQ methodology is determining how likely the outputs of a model are when the inputs undergo
variability.

Let us consider a mathematical model symbolically represented by the function ŷ(ξ, x), of
the random variables ξ1, ξ2, . . . , ξNξ

, with Nξ the dimension of the random input space. These
variables can represent a large variety of parameters in a problem, such as temperatures, volume
flow rate, pressure, etc. When their variation is modelled by probabilistic functions based on
their own performance, the objective is to extract information of the imprecision or variation in
the output of ŷ(ξ, x), say x the spatial coordinate for instance. Another important study that can
be extended from UQ is the Sensitivity Analysis. According to [77], this is the study of how
uncertainty in the output of a model can be apportioned to different sources of uncertainty in the
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model input. Ideally, Sensitivity Analysis and UQ should be run one after another, with uncer-
tainty analysis usually preceding sensitivity analysis. This mathematical approach undoubtedly
helps to rank the most influential random inputs and provides decision-making solutions. Also,
understanding the sensitivity of model output to input parameter uncertainty can be exploited
to direct experimental work in order to reduce uncertainty in identified influential parameters,
neglecting the non-influential ones [85].

Regarding the sources of uncertainty, these are classified as aleatoric or epistemic. Aleatoric
uncertainty is considered as inherent to the variability in a physical quantity. Other terminologies
in the literature include irreducible uncertainty, inherent uncertainty, variability and stochastic
uncertainty [63]. Another source of inaccuracy is the epistemic uncertainty, which is due to a
lack of knowledge. This type of uncertainty could be reduced by the introduction of additional
information [75]. Epistemic uncertainty associated with the fidelity of the simulation can have
a remarkable impact on the performance. Discrepancies between these simulations and high fi-
delity data (e.g. Large Eddy Simulations or Direct Numerical Simulations) may be substantially
due to epistemic uncertainties in the turbulence closures used. For instance, in [14] uncertainty
is quantified by using both RANS and LES in a heat transfer problem demonstrating that there
is a strong interconnection between uncertainties related to the unknown conditions (aleatoric)
and those related to the physical model (epistemic). One can also find applications and defini-
tions for uncertainty in turbulent flows for instance in [58, 59, 53]. In these works, there are
two distinctions of the type of uncertainties from the turbulence modelling: in the selection of
the turbulence model closure (structural uncertainty) and in the value of the model coefficients
(parametric uncertainty). Regarding the turbulence analysis in this paper, a comparison between
different turbulent models is developed, but the main objective is focused on the parametric un-
certainty that arises in the selection of the appropriate value for the laminar viscosity ratio of
the Spalart-Allmaras turbulent model. Another important source of inaccuracy is the numerical
error. These can be consequence of the spatial discretisation, temporal discretisation or discrete
representation of nonlinear interactions [63]. To measure the spatial discretisation error due to
the selection of the mesh is a priority in CFD, and this study is developed in Section 2.2.

First of all, with the available information, a decision has to be made in terms of dealing
with uncertainty under either a probabilistic or non-probabilistic framework. In the probabilis-
tic approach, a more detailed (statistical) analysis is developed since the beginning, as the input
uncertainty are to be modelled as probabilistic distributions. In addition, not only statistical mo-
ments but also output probabilistic distributions of quantities of interest can be computed. As
in this manuscript only probabilistic uncertainty is of interest (probabilistic UQ will be referred
to as UQ throughout this paper), no more details are given on non-probabilistic approaches, but
the reader is suggested to see [86, 100, 23, 73, 108, 19, 48, 101] for further information and
applications.

Broadly speaking, there are two ways to implement UQ with a CFD solver. On one hand, the
solver can be adapted to deal with uncertain parameters that are related to a predefined probabil-

3



ity density function. This probability function can be introduced in the original set of equations.
With this approach, new equations are then derived, which requires alterations to the computa-
tional code of the CFD solver. In the literature, this methodology is known as intrusive, and the
new set of equations must be changed or adapted depending on the probability functions and on
which variables it is applied.

Of course, the introduction of UQ in the solver makes the approach efficient and direct. How-
ever, including it in industrial solvers composed of hundred of thousands of lines is cumbersome
and may introduce errors to a validated and verified code. Also, if the stochastic output has to be
adapted as input to other softwares (e.g. to use the CFD mean flow for uncertainty quantification
in stability analysis by means of Parabolised Stability Equations [35, 8, 7]) it is not recommend-
able to code inside all the softwares. Thus, non-intrusive UQ is a good alternative as it interacts
with the solver being treated as a black-box. In this case, the system of equations that governs
the problem is decoupled, and several deterministic computations are run (based on a Design of
Experiment which depends on the method) to compute the statistical moments and/or build sur-
rogate models. Non-intrusive and intrusive approaches have been studied in the literature. In [71]
Polynomial Chaos (PC) is applied both in an intrusive and non-intrusive way. When the method
is coded as an intrusive tool, all dependent variables and random parameters in the Euler equa-
tions were replaced with the PC expansions, and applied to three different problems matching
very well with the benchmark results. However, experience suggests that for complex problems
involving 3D Navier-Stokes computations of turbulent flows on complex surfaces might not be
straightforward and it is also time consuming to implement, being non-intrusive a more suitable
approach. In [64] intrusive and non-intrusive PC approaches are compared to develop an un-
certainty study on an airfoil with randomness in the Mach number and angle of attack. Results
obtained are very similar in the comparison, with minor differences.

Once the problem is properly defined, it is required to find the best methodology for uncer-
tainty/sensitivity analysis. Sampling methods are a very reliable non-intrusive technique, since
they deal with the solver/model as a black-box, simply requiring many model evaluations to con-
struct the desired output statistical information. Monte-Carlo simulations [56] are a very popular
and well established sampling approach. This well known method is generally described by a
random sequence of numbers to represent a sample of a population, from which statistical mo-
ments of the parameter of interest can be obtained [38]. There is a huge amount of work on
the application of the Monte-Carlo technique in many fields. Some examples can be found in
[62, 85, 29, 32]. However, in CFD this method has a disadvantage: the large number of model
evaluations often required in seeking convergence.
A good approach to deal with the problem of running a CFD simulation for each sample point is
to build a surrogate model. This model takes the form

y(ξ) = ŷ(ξ) + ε(ξ), (1)

with y being the exact model, ŷ the surrogate model and ε the difference between the surrogate
and the exact formulation, all defined in ξ space. Several possibilities are available in the litera-
ture and there are many examples of the use of surrogate models, such as [97, 83, 30]. Amongst
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them, Kriging (also known as Gaussian Process regression) has been preferred in this work be-
cause of its robustness, efficiency and simplicity in the implementation. Examples using this
method can be Sensitivity Analysis [102], topography [50] or prototyping [40]. Kriging is a
frequent approach in CFD. It is actually a well known method in optimisation studies because
of its ability to deal with many variables or complex scenarios, as in aircraft wing optimisation
involving 45 shape parameters [49], in [11] applied to aerodynamic optimisation of civil struc-
tures, and in CFD optimization of aeronautical combustion chambers [25] by means of Kriging
predictors combined with the NSGA-II optimisation algorithm [21]. Kriging is not only popular
in optimisation, but it is also frequently used in UQ. Successful applications can be found in the
literature as follows. In [26] a flexible non-intrusive Kriging approach is developed, aimed to
problems with many uncertain parameters and costly evaluations of a model. Gradients from the
adjoint of deterministic equations are used on the Kriging surfaces together with sparse grids, to
improve the efficacy of the approach. The method is successfully applied to a 2D NACA airfoil
problem with a random geometry parametrised by 4 variables. This gradient approach was also
presented in [20] related to the perturbation method, applied to the study of interaction of a fluid
and a flexible panel. In [47] a Kriging-model-based UQ method is presented for non-smooth
responses, which improves other popular approaches in the literature in terms of accuracy and
robustness, and it is successfully applied to a transonic RAE 2822 airfoil under normal uncer-
tainty sources. In [51] a UQ study is carried out on 15 normally distributed random variables
using Kriging surrogates and an adjoint approach for viscous hypersonic flows.

It is above mentioned that the use of surrogate models is an alternative to direct sampling.
However, it is not the only option to overcome the problem. The generalised Polynomial Chaos
(gPC) [91, 107] is a spectral method and as such, an important advantage is that one can de-
compose a random representation into a truncated expansion with deterministic and stochastic
components separated. It can be extended to a wider family of basis functions than the original
Polynomial Chaos method and it is a very popular approach in the literature with successful ap-
plications in many fields. An advantage of this method is that global Sensitivity Analysis can
be done without extra costs straightaway from UQ. Thus, in applications with high interest in
both UQ and Sensitivity Analysis, it is a very recommended method. The gPC has been suc-
cessfully applied to several CFD problems in the past and it is a very popular approach to UQ
in the literature. Some interesting applications in the literature could be [17], where the effect of
inlet uncertainties of swirling flows in pipes is analysed, or [27] where gPC performance is com-
pared to Stochastic Collocation method. In [41] gPC is applied to the stochastic CFD analysis
of a pressure probe designed for three-dimensional supersonic flow measurements with moder-
ate swirl, with three uncertain geometrical parameters, and results are successfully compared to
Monte-Carlo, with minor differences in the calculated Mach number, which may be product of
neglecting viscous effects in CFD simulations or experimental tolerances. In [69] uncertainty in
hot gas turbines is analysed. Since one of the most critical parameters in the design process of
cooled hot gas components is the Back Flow Margin, gPC is applied to measure the probability
of hot gas ingestion and the sensitivity to random parameters, since a deficient design may lead
to component failure.
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The present paper deals with the analysis on the influence of experimental and parametric
uncertainty from the turbulence intensity in the computation of an under-expanded jet flow in
the presence of shock-cells. For the Spalart-Allmaras turbulence model, the turbulent intensity
is taken into account through the turbulent to laminar viscosity ratio Rt defined for the injection
boundary condition. In the literature was pointed out that shock position can be sensitive to input
uncertainty as in [105], where transonic airfoils are under study. Actually, from a UQ method-
ology side, to have shock or series of expansions and compressions can add complexity to the
problem. In [82] the existence of a shock made necessary to test large values in the polynomial
chaos order expansion and many collocation points, again in a transonic airfoil, and based on
Mach number and angle of attack as uncertain. Converged solutions are obtained with few num-
ber of collocation points along most of the profile, except in the region of the shock movement
for the pressure, and also in the separated area zone for the skin-friction coefficient. All this
information is relevant for the application in the present paper. Moreover, in compressible super-
sonic jet flows, UQ can be specially interesting: the imperfectly expanded conditions generate
shock-cells and small changes in input parameters that may lead to relevant variations in shock-
cell position and then to noise emission [93, 66, 68]. This effect currently represents a major
concern in robust design because of environmental regulations and the challenge of perceived
noise reduction of 65% by 2050 with respect to the values dated from the year 2000 [16].

From the turbulence side, uncertainty associated to this modelling has been also matter
of study in CFD. In [78], epistemic uncertanty from turbulence modelling for transonic wall-
bounded flows is under study in several problems with different eddy-viscosity models. Simi-
larly, in [72] Probabilistic Collocation is employed to quantify uncertainty in CFD RANS simu-
lations of a turbulent flat plate and an airfoil. In [53], polynomial chaos is applied for Sensitivity
Analysis in parametric uncertainty in turbulent computations. In that paper it is investigated
that different turbulent scales of the LES solution respond differently to the variability in the
Smagorinsky constant, and indicates that small scales are mainly affected by changes in the
subgrid-model parametric uncertainty.

RANS simulations are still very popular amongst both academic and industrial design pro-
cesses. However, it is well known that these time-averaged simulations have important deficien-
cies to simulate turbulent flows, especially for high speed jets. For this reason, specific modified
two-equation turbulence models were investigated to improve simulations of turbulent jet flows.
A review of these can be found in [46]. Despite these improvements, RANS still lacks robustness
and consistency in their jet flow predictions. Factors like jet flow mixing, growth of instabilities
or potential core length simulation are challenging in RANS [33], and standard calibrations from
other CFD problems do not work often, being necessary to find an appropriate turbulent model
parameter setting [22]. All these drawbacks in the prediction, summed to the already mentioned
drawbacks inherent to using fixed values for physical conditions, lead to the necessity of provid-
ing extra metrics of reliability in the simulations. To this aim, Uncertainty Quantification and
Sensitivity Analysis in jet flows can be an interesting application.

There is a dearth of literature about UQ applied to compressible jets. Some examples on the
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use of uncertainty in jets will be described in the following. In [2] uncertainty analysis has been
applied to CFD simulations of synthetic jets by means of polynomial chaos. In that paper, two
cases are analysed: with and without a cross flow under uncertain velocity. In [34] an epistemic
uncertainty analysis of an under-expanded jet in a cross flow for turbulent mixing purposes is
analysed. In their work, the sources of uncertainty in RANS simulations of turbulent mixing are
the Reynolds stresses in the momentum equations and the scalar fluxes in the scalar transport
equations. The perturbation of the eigenvalues of the Reynolds stress anisotropy tensor is based
in the position in a barycentric triangle map, whose corners represent different limiting states of
turbulence anisotropy referred to by their corresponding number of components. This method
was also successfully implemented to high speed aircraft nozzle jets in [59], where uncertainty
envelopes are obtained for the SST k −ω turbulent model in four different jet flow problems and
compared to Particle Image Velocimetry data. Throughout their paper has been highlighted the
importance of providing uncertainty bounds in RANS simulations and the results suggest that
the uncertainty analysis can account most of the model inadequacy. This approach introduced in
[59, 34, 43] has been often used in the literature by certain authors. In [57] and [3] a similar anal-
ysis is carried out on a hypersonic jet flow. In [57], pressure and temperature are varied a ±5%,
and Monte Carlo is applied for the measure of aleatoric uncertainty. A study of the epistemic
uncertainty is developed as well. Variations on the turbulent kinetic energy and envelopes for the
coefficient of friction and pressure are shown. In [60, 43] some tests using enveloping models
are presented. These tests include several aerospace designs such as a turbulent flow through an
asymmetric diffuser, a turbulent flow over a backward facing step, a subsonic and a supersonic
jet flow and two airfoils. These analysis were run in the Stanford University Unstructured (SU2)
CFD suite. The supersonic jet corresponds to the axisymmetric convergent-divergent nozzle in
[79]. The jet efflux is a Mach 2.0 flow with Reynolds number Re = 1.3 × 106. The uncertainty
analysis on the Mach and pressure variation along the centreline shows that RANS models over
predicts the extent of the jet potential core, but with most experimental data points lying within
the computed envelopes. Additionally, in [92], the authors develop a data driven procedure to
quantify the structural uncertainty in RANS models when applied to heated supersonic jet flows.

The main objective of the present paper is to develop a study on the influence of both ex-
perimental and parametric uncertainty from the turbulence intensity in the computation of an
under-expanded jet flow. The one-equation Spalart-Allmaras turbulence model is not popular
for this type of jets, so a detailed analysis on its performance is envisaged. Non-Intrusive UQ
methods have been applied to 3D steady Reynolds-Averaged Navier-Stokes (RANS) simulations
with elsA solver [13], of which the set-up is described in Section 2. Due to the fact that popular
sampling methods such as Monte-Carlo are impractical in terms of computational cost, UQ is
deployed with two different approaches. First, generalised Polynomial Chaos [107] is applied to
quantify the uncertainty in Section 3. Second, for the purpose of comparison, Kriging surrogates
are built to ensure the quality of the analysis. In Section 4, a Sensitivity Analysis is conducted
with both methods, in order to assign to each input uncertainty its contribution to the total vari-
ance. This work-flow provides a useful framework to assess the influence of relevant parameters
in the CFD simulation.
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2. CFD simulations

2.1. Simulation set-up

The simulation is based on the cold supersonic under-expanded single jet that was tested
experimentally by André [6]. The jet is produced from a convergent nozzle with an exit diameter
of D = 38.0mm and a modelled nozzle lip thickness of t = 0.125D. The nozzle is operated
under-expanded at the stagnation to ambient pressure ratio NPR = ps/pamb = 2.27, with ps the
stagnation pressure and pamb the ambient one. The Reynolds number, Re, based on the jet exit
diameter is 1.25×106 and the fully expanded jet Mach number is M j = 1.15. The fully expanded
Mach number, i.e. the Mach number that would be reached if the jet was able to expand further
to ambient conditions, is related to the total pressure by

NPR =
ps

pamb
=

(
1 +

γ − 1
2

M2
j

)γ/(γ−1)

. (2)

For the boundary conditions used in the computations, the interior/exterior and lip walls
of the nozzle are computed with adiabatic no-slip wall conditions. A characteristic approach
is chosen to define the inflow conditions outside the nozzle. Such a condition works for all
configurations (inflow/outflow, subsonic/supersonic): the number of fields to impose (1, 4 or
5) is chosen according to the local analysis of the waves that travel across the interface. The
remaining lateral and outlet boundary conditions are set to a subsonic characteristic ones, where
the reference ambient pressure is defined.

The computational domain used for the RANS simulations extends 100D in the axial direc-
tion and 50D in the radial direction. The interior of the nozzle is modeled up to 6D while the
exterior up to 9D.

2.2. Mesh generation

The converged 3D mesh consists of a butterfly type mesh to avoid the singularity at the axis
as shown in Fig. 1 (b). It contains 20× 106 cells with roughly (900× 300× 64) cells in the axial,
radial and azimuthal directions respectively forward to the nozzle exit plane, (220 × 120 × 64)
inside the nozzle and (170 × 100 × 64) outside.

The nozzle is wall-resolved for all the conditions with y+ ≈ 1 and radially stretched up to the
end of the domain at a rate of 10% as can be seen in Fig. 1 (a). Axially, the mesh is uniform at
the exit of the nozzle, then it is stretched at 6% up to 0.25D. Next, it is kept constant up to 10D,
in order to have a minimum of around 40 cells per shock-cell (measured at the last cell, which
due to the flow physics, it is the most shortened shock-cell). The mesh is axially stretched again
up to the end of the domain at a rate of 10%.

In uncertainty quantification it is necessary to have a converged mesh for all deterministic
simulations. This requirement is particularly important for flows containing shocks. In this
under-expanded jet, the shock-cells are actually a series of expansion and compression waves
that look like widen shocks. The above mentioned mesh has been thoroughly tested and obtained
with the following convergence procedure using as reference parameter the Mach number profile
at the centreline for the deterministic base case and conditions with a higher NPR. First, the mesh
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Figure 1 Mesh cuts representing every fourth cells in the plane (a) z/D = 0 and the plane (b) x/D = 0.

has been converged azimuthally with 64 cells, obtaining a relative error with respect to a refined
mesh of less than 0.15% as shown in Fig. 2 (a). Second, the axial discretization is taken into
account by varying the starting position where the mesh topology is uniform. Axial convergence
is obtained with an error of 0.2% with respect to the most refined mesh for the position of 0.25D
as shown in Fig. 2 (b). Relative errors of the same order of magnitude are obtained for the axial
velocity at x/D=1. Finally, the y+ has been checked so that it still lays in the range smaller than
unity for the range of working conditions presented in Section 3.1.

2.3. Numerical formulation

The full three-dimensional compressible Reynolds-Averaged Navier-Stokes equations have
been solved by using the Finite Volume multi-block structured solver elsA (Onera’s software
[13]) and will be briefly explained here. The turbulence model used in the computations of this
work is the one-equation Spalart-Allmaras (S-A) standard model [89]. The convective flux is
computed using an upwind approach based on the Roe’s approximate Riemann solver [76]. The
scheme’s accuracy is increased by the use of either a second order MUSCL extrapolation [98]
coupled with the minmod limiter or a third order extrapolation technique [15]. The implicit
system is solved at CFL = 100 with a LU − S S OR algorithm with four sweeps [103]. In order
to accelerate the convergence for all the conditions, a converged deterministic base case solution
has been used as initial solution. The numerical ingredients considered in this study follow the
recommendations regarding the simulations of subsonic jet flows using the RANS modelling
shown in [24].

2.4. Turbulence model

In the literature, it is generally admitted that the k−ω turbulence model gives the best results
for jets. However, with respect to other turbulence models, the use of the one-equation turbulence
S-A model can be useful and the study of its performance for jet flows can be of interest. By
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Figure 2 Mach number profile relative error of the deterministic base case at the centreline for (a) different azimuthal
discretizations, where each line represents the number of azimuthal nodes, and (b) different axial discretizations, where
each line represents the starting position where the mesh is uniform. The refined mesh has been used as converged
solution.

a)

b)

c)

Figure 3 CFD RANS simulations of the deterministic base case of the under-expanded jet in elsA. The shown parameters
are (a) the dimensionless axial velocity, v∗x = vx/cre f , (b) dimensionless radial velocity, v∗r = vr/cre f and (c) dimen-
sionless static pressure, p∗ =

p
γre f pre f

, with γ = 1.4 the specific heat ratio, pre f = 98000 Pa the reference pressure and
cre f = 340.26 m/s the reference speed of sound.

means of UQ, an assessment of the accuracy of the simulation can be done. To use a one-
equation approach is also an advantage since, in uncertainty studies, the number of deterministic
simulations to run is usually large and becomes a cheaper approach. It is well known [42] that
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the S-A model needs improvement for subsonic jet flows however, Huang et al. [42] also showed
that the one-equation model is the second best option after the k − ω model in terms of relative
performances when tested in several subsonic academic cases. Moreover, the S-A model, gives
the best numerical performance based on grid spacing required for accurate solutions and y+

allowable at the first grid point off the wall. This is for sure a positive aspect of the model for
UQ simulations when changes in uncertain parameters lead to changes in the boundary layer
thickness. For supersonic flows such as the one of a supersonic jet in a transonic cross flow [70],
even though the S-A model gives the worst results in terms of surface pressure, it gives the best
agreement with experiments for the location and strength of vortical structures. Good agreement
is also found for a supersonic under-expanded ejector [12] and a supersonic under-expanded
impinging jet [4] for several turbulence models including the S-A model.

Nonetheless, different turbulence models have been tested for the base case to compare the
validity of our choice. To this end, RANS simulations are performed with Fluent in the two-
dimensional axisymmetric formulation. The Mach profiles at the centreline are shown in Fig.
4. Both codes give similar results for the S-A model in terms of shock-cell spacing and ampli-
tude, but Fluent results give a shorter potential core. The k − ε turbulence model gives similar
shock spacing and amplitude as the S-A model, but it correctly captures the potential core. When
comparing against the experimental results, the turbulence model k − ω gives the best results in
terms of shock amplitude, but it overestimates the length of the potential core by more than 50%.
Similar decays are found in the literature when using different turbulence models [28, 80, 1].
According to these results, the Spalart-Allmaras model has a similar performance than the other
turbulence models with the advantage of having only one equation, and thus being numerically
more efficient and less computationally expensive to simulate several cases for uncertainty quan-
tification purposes.

3. Uncertainty Quantification on 3D RANS simulations

One of the drawbacks in RANS is to replicate turbulence-based features reliably. Therefore,
to quantify the impact of inaccuracies in both the computational injection of turbulence and ex-
perimental jet performance is a plus. This provides extra metrics about the RANS simulation. For
this task Uncertainty Quantification and Sensitivity Analysis methods are applied. In this section,
the input uncertainties are described as well as the mathematical methods used for their handling.

3.1. Tests and Sources of Uncertainty

The parameters that are treated as stochastic inputs for uncertainty quantification are the stag-
nation pressure, ps, and the turbulent to laminar viscosity ratio, Rt = µt/µ, and are both imposed
at the inlet of the nozzle. These parameters have been selected because of their stochastic be-
haviour in nature. Other parameters could also be selected, but these are the most relevant ones
according to our experience and some preliminary testing.
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Figure 4 Mach number profile of the deterministic base case at the axis for different solvers and turbulence models. (a)
full view, (b) detailed view. Red dashed line: 3D elsA, S-A. Red solid line: 2D-axi Fluent S-A. Green solid line: 2D-axi
Fluent k − ε. Purple solid line: 2D-axi Fluent k − ω. Symbols: Experimental data.

One of the greatest sources of uncertainty that one can recognise in these jet flows is the mass-
flow rate, which is in fact related to other variables such as the nozzle diameter or stagnation
pressure, being this flow parameter an interesting and relevant random input to replicate realistic
conditions. Such decision was based on suggestions of experimentalists at von Karman Institute
for Fluid Dynamics (VKI), a partner in our funded project. During a single experimental run,
notable pressure variations are not yet expected due to emptying of the tanks. However, these
are expected during repeated tests. This is because the membranes of the valves are opening and
closing several times, and the displacements of these membranes can be slightly different for
each run, leading to variations in the mass-flow rate. Moreover, one has to take into account the
uncertainty of the measurement devices (pressure sensors).

As the test rig was not yet built to measure the stagnation pressure (ps) uncertainty, it was
agreed with the experimentalists to set a realistic range to compute the input uncertainty by a
conservative variation of a ±5% by means of a uniform probabilistic distribution. The aim is,
therefore, also to gain useful information, prior the first experimental test at VKI, by means of
simulations. The same conservative approach was followed for the second source of uncertainty,
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the laminar viscosity ratio (Rt), whose uncertainty was tested computationally. To sum up, the
chosen probabilistic distribution is ps ∼ U(0.95 p̄s, 1.05 p̄s) = U(211337, 233583) Pa, where p̄s

refers to the deterministic base value p̄s = 222460 Pa. For notation purposes in this paper, the
variation coefficient from 0.95 to 1.05 will be also referred to as cps .

As aforementioned, the second parameter is the laminar to turbulent viscosity ratio, Rt =

νt/ν, used for the injection of turbulence in the Spalart-Allmaras model [89], which is in fact
a computational input for the turbulence at the exit of the nozzle. This is more complicated
to handle than the stagnation pressure, since there is no experimental benchmark data available
for a calibration process, because this is a purely numerical. This parameter stays fixed when
simulating the operating conditions of an experimental facility. However, dealing with it as a
deterministic fixed parameter is not appropriate, as flow simulations are definitely sensitive to
their set value and to quantify the change in the simulations is relevant. The variation of the
parameter has been carefully chosen based on several tests on the CFD solver, for which the
solution is close to subsonic experimental results (used as guidance since there are no supersonic
experimental data available) even when it is largely varied.

According to the best practices proposed by Spalart & Rumsey [90], effective inflow condi-
tions for the parameter Rt should lie within the range (1, 10). However, simulations with higher
values still give accurate predictions while increasing the convergence at high Reynolds numbers.

This lack of exactness in defining this parameter encouraged us to deal with it as an uncer-
tainty source by means of an uniform probabilistic distribution. The CFD turbulent modelling
by means of this parameter is not linked to any compulsory particular order of magnitude of this
variable, and this freedom provides a very wide range of values that are almost equally valid
without prior knowledge. This might seem a broad estimation, but the preliminary tests sup-
ported the idea. The chosen probabilistic distribution is Rt ∼ Uni f (2.2, 220) where Rt = 2.2 is
considered the deterministic base value as this was the value used by the authors in the initiali-
sation of the flow for a Large Eddy Simulation [9]. Smaller values of Rt result in changes in the
injection of turbulence too small to have an effect on the flow. On the other hand, by increasing
this parameter at the inlet, it increases also the maximum dimensionless turbulent wall unit, y+,
achieved at the wall near the exit. Nevertheless, the y+ remains of order unity changing from
1 to 6 for the highest Rt value. Figs. 5 and 6 show the Mach and Rt profiles for different Rt

inlet values, respectively. Values greater than 220 are not part of the study as they present non-
physical velocity profiles as shown in Fig. 7 for the axial velocity profile at x = 2mm, which
are compared with the available experimental data. The values are non-dimensionalised by the
maximum values due to the fact that the experimental data corresponds to a subsonic test case
with a Mach number at the exit of the nozzle of Me = 0.9.

Other random inputs were discarded. Feasible parameters suffering from uncertainty might
be flow temperature or geometrical variations such as the diameter of the nozzle. Nevertheless, in
order to notice some effect on the simulations, these variations must be remarkably greater than
the expected variation effect (at least one order of magnitude). Other probabilistic distributions
could be tested too. However, as the main goal is to be conservative prior any experimental tests
at VKI and be aware of possible relevant variations in the quality of the jet flow computation,
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the uniform distributions were the best choice. This modelling suggest that all inputs are equally
likely to happen.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  1  2  3  4  5  6  7  8

M
ac

h

x/D

(a)

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0  0.2  0.4  0.6  0.8  1

M
ac

h

x/D

(b)

Figure 5 Mach number profile of the deterministic base case at the centreline for different Rt inlet values in a (a) general
and a (b) detailed view. Experimental ×, Rt = 0.022 �, Rt = 0.22 ◦, Rt = 2.2 4, Rt = 22 O, Rt = 220 �, Rt = 2200 D.
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Figure 6 Rt profile of the deterministic base case at the centreline for different Rt inlet values in a (a) general and a (b)
detailed view. Rt = 0.022 �, Rt = 0.22 ◦, Rt = 2.2 4, Rt = 22 O, Rt = 220 �, Rt = 2200 D.

3.2. Uncertainty Quantification Methods: Generalised Polynomial Chaos and Kriging Surro-
gates

Uncertainty quantification (UQ) has become a very influential field, due to the fact that meth-
ods developed in the recent years bring the possibility of understanding how the behaviour of
expensive (normally in terms of computation) mathematical models is being affected by impre-
cisely defined inputs. For a more formal description, let consider the differential operator on an
output of interest of a stationary problem, y(x, ξ(η)) as

L(x, ξ(η); y(x, ξ(η))) = Q(x, ξ(η)), (3)
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Figure 7 Axial velocity profile of the deterministic base case at the centreline for different Rt inlet values in a (a) general
and a (b)&(c) detailed view. Experimental×, Rt = 0.022�, Rt = 0.22◦, Rt = 2.2 4, Rt = 22 O, Rt = 220�, Rt = 2200
D.

with L and Q the differential operators on D × Ξ, where x ∈ D ⊂ Rd, d ∈ {1, 2, 3}. η denotes
events in the complete probabilistic space (Ω̂, F̂ , P̂), with F̂ ⊂ 2Ω̂ the σ-algebra of subsets of Ω̂

and P̂ a probability measure. Ξ ⊂ RNξ , is the stochastic space on which the random variables
ξ(η) are defined and Nξ stands for the number of random variables (two in our case under study).

The first approach presented in this section is the Polynomial Chaos method. This method
has been developed to solve Stochastic Differential and Stochastic Partial Differential Equations
(SDE and SPDE, respectively)[91]. It was first introduced by Wiener [104], in order to model
stochastic processes through Hermite polynomials with Gaussian random variables. Lately, Xiu
& Karniadakis extended the original version of Wiener to a wider family of basis functions lead-
ing to the known concept of generalized Polynomial Chaos (gPC) [107]. It is also known as
Askey-Chaos, due to the fact that is formed by the complete set of orthogonal polynomials from
the Askey scheme [10]. The objective of such extension is that for non-Gaussian random inputs,
the convergence of the Hermite-chaos is low, and in some cases, disastrous.

Polynomial Chaos is a spectral method. Thus, an important advantage is that one may de-
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compose a random representation into deterministic and stochastic components as

ŷgPC(x, ξ) =

∞∑
j=0

ym j (x) Ψ j(ξ), (4)

where ym j are the deterministic coefficients (also called modal coefficients) with x = (x, r) and
Ψ j(ξ) is the orthogonal base, in a tensor-like form by 1-D products of the orthogonal polynomials,
satisfying the orthogonality relation〈

Ψi,Ψ j

〉
=

〈
Ψ2

i

〉
δi j, (5)

with δi j the Kronecker delta function and 〈·, ·〉 the inner product. In Eq. (4), the expansion has
infinite terms. For practical reasons, this expansion has to be truncated accounting Nt − 1 terms,
with

Nt =
(Nξ + P)!

Nξ! P!
(6)

and P standing for the maximum order of the expansion. The chaos expansion is finally expressed
as

ŷgPC(x, ξ) =

Nt−1∑
j=0

ym j (x) Ψ j(ξ). (7)

In the following, x and ξ are removed in the notation for sake of simplicity. Polynomial
Chaos can be an Intrusive or Non-Intrusive approach. In this paper it is implemented as Non-
Intrusive, due to the fact that it takes into account the solver as a black-box not requiring to code
inside the CFD software. This has been a popular method in recent years with many success-
ful applications in the literature [17, 53, 27]. As the input uncertainties have been modeled by
Uniform Probabilistic Distributions, Legendre polynomial basis functions are chosen. For the
deterministic realisations required in the expansion, collocation points have to be carefully se-
lected if one wants to reduce the number of model evaluations. Regarding the selection of the
collocation point configuration, the use of tensor grids represents an expensive way. A much
efficient mean is the use of sparse grids [87]. In this work, Clenshaw-Curtis (C-C) quadrature
nested rule is applied [99] to generate the weights and nodes of the sparse grid. The coefficients
ym j can now be computed as

ym j =

〈
y,Ψ j

〉〈
Ψ2

j

〉 . (8)

The evaluation of Eq. (8) is in fact the computation of the multidimensional integral over the
domain Ω̂, on which deterministic simulations of y from the CFD solver are set by the sparse
grid. Moreover, this inner product is based on the measure of weights according to the choice of
the orthogonal polynomials Ψ, as the weight function is in fact the probabilistic distribution func-
tion. As input uncertainty is modelled by uniform distributions, the spectral method turns into a
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Polynomial Legendre Chaos. Once the coefficients are computed, the mean and the variance can
be found by

E(ŷgPC) = ym0 , (9)

V(ŷgPC) =

Nt−1∑
j=1

y2
m j

〈
Ψ2

j

〉
. (10)

An advantage of Polynomial chaos is that Sensitivity Analysis is straightforward from UQ ana-
lytics. This is discussed in Section 4.

The second approach is Kriging interpolation (also known as Gaussian Process regression
and in this paper under the acronym KG). This method is an interpolation surrogate method to
approximate sets of data. Despite the fact that surrogates can be also constructed via Polynomial
Chaos Expansion, the main idea of using Kriging is to try another method for comparison pur-
poses. It is also possible hence to test whether Kriging surrogates can have a reliable behaviour
with only a budget of 65 deterministic simulations from collocation methods.

In essence, Kriging is a two-step process: first a regression function f (ξ) is generated based
on the data set, and from its residuals a Gaussian process Z(ξ) is built, as can be seen in Eq. (11)

ŷKG(ξ) = f̂ (ξ) + Z(ξ) =

k∑
i=1

γi fi(ξ) + Z(ξ), (11)

where f (ξ) stands for the k × 1 vector of basis regression functions [ f1(ξ) f2(ξ)... fk(ξ)] and γi

denotes the coefficients. Depending on the regression function, Kriging can appear with different
names. Universal Kriging defines the trend function as a multivariate polynomial, as described
in Eq. (11). Simple Kriging refers to the use of a known constant parameter as regression func-
tion, i.e. f (ξ) = 0. A more popular version is Ordinary Kriging, which also assumes a constant
but unknown regression function f (ξ) = γ0. Universal Kriging with a second order polynomial
regression was our choice.

The Gaussian process Z(ξ) is assumed to have mean zero and cov(Z(ξi),Z(ξ′i )) =σ2
pRc(θ, ξi, ξ

′
i ),

where σ2
p is the process variance and Rc(θ, ξi, ξ

′
i ) is the correlation model or spatial correlation

function (SCF). In order to create an accurate Kriging surrogate it is important to pay attention
to the correlation function. This function only depends on the distance between the two points
ξi and ξ′i , and, for the general exponential case introduced in Eq. (12), also on p. The smaller
the distance between two points, the higher the correlation and, hence, the more the Kriging
predictor is influenced by the other. By the same token, if the distance is increased, the correla-
tion drops to zero. For these reasons, it is not useful to put several data points together, as the
prediction would not be influenced. Many correlations can be tried, but in the present work the
generalized exponential worked very well and was the final choice. From Eq. (12), exponential
(p = 1) and Gaussian (p = 2) correlations were not appropriate for the wave-like surrogates
since during tests these showed some bumped areas in the spaces between collocation nodes.

Rc(θ, ξi, ξ
′
i ) = e−θ|ξi−ξ

′
i |

p
(12)
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The essential difference between the two methods suggested in this paper is that whilst gPC
estimates the coefficients for the orthogonal polynomial basis functions chosen according to the
input distributions, Kriging is assuming that the output of the black-box model due to input vari-
able uncertainty behaves as realisations of a Gaussian random process. This Bayesian approach
intends to find probabilistic distributions over the functions, which are updated for new observed
data. The Gaussian distributions also permit to compute empirical confidence intervals that pro-
vide a guidance on the positions where one could put additional data to improve the fit. When
applying Kriging, it is assumed that data is spatially autocorrelated and statistical properties are
independent on exact locations [45]. Kriging is not an efficient choice for data with very abrupt
changes or discontinuities. For further information on Kriging (Gaussian processes), the reader
is suggested to see [74, 18]. To apply the method, functions from the Matlab toolbox DACE [52]
have been used.

Since shock-cells could create wavy changes in some features, the generation of surrogates
has been carefully tested. The best performance was observed for the general exponential corre-
lation, whose results for complicated data sets at different x/D locations to be interpolated can
be seen in Fig. 8. Note that the surrogates have a non-sharp shape, so it is not expected to have
substantial erratic contributions in uncertainty quantification when sampling across inter nodal
areas.

Once the Kriging surrogates are available, sampling techniques are affordable. Latin Hyper-
cube Sampling [39] and Random Sampling Monte Carlo are widely used non-intrusive methods
for propagation of uncertainty in models. These methods have been used for many applications
in science and a vast literature can be found. Because of the more stratified sampling, Latin Hy-
percube is preferred in this work. In Sections 3.3 and 4, the application of sampling techniques
and Sensitivity Analysis on Kriging surrogates is developed and a comparison between Kriging
and gPC results is discussed.

3.3. Comparison and Discussion of Uncertainty Quantification Results

The first step for uncertainty quantification is to test the convergence of each method with
our computational budget. The idea behind using two different methods with different procedures
(Kriging surrogate by sampling and gPC by quadrature on collocation points) is to provide two
different ways hopefully leading to the same conclusions. When focusing on more than one
method, conclusions can be contrasted. If a second approach is giving similar outputs, a more
reliable feedback is provided.

For this purpose, several samplings were tried on KG surrogates by Latin Hypercube Sam-
pling (LHS) and the results were compared with the gPC expansion of 4th order (as Nξ = 2, only
21 terms are required in the expansion). The accuracy of the methods has been tested along the
lipline for the dimensionless axial velocity, v∗x, and along the centreline for the Mach number, as
these are the most relevant parts of the jet (along the centreline the shock-cells are strong and
preliminary tests revealed that the nozzle lipline could have a sensitive part for v∗x variations). To
compute the integrals for the statistical moments of gPC, a sparse grid of 65 collocation points
based on Clenshaw-Curtis (C-C) nested rule was used (the 65 collocation points correspond to
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Figure 8 Examples of Kriging surrogates at several x/D distances on data sets with challenging shape. The blue points
correspond to the deterministic CFD solutions from the fourth level of accuracy in the Clenshaw-Curtis sparse grid. In
the plots cps stands for the coefficient of variation for ps (±5% ).

the fourth level of accuracy), having a good match with Kriging sampled surrogates as shown
in Figs. 9 and 10. The required number of collocation points was tested in [36], computing the
convergence of statistical moments with Stochastic Collocation Method, so that level of accuracy
of the sparse grid was intended here for gPC.

For convergence of gPC, the order of the expansion, P, and the number of collocation points,
Nq, have to be controlled. If Nq is fixed to the fourth level of accuracy (lvl4) as aforementioned,
it is now necessary to focus on the order of the expansion, P, to compute the statistical moments.
These undergo convergence up to P = 4. However, if P > 4, divergence occurs and this is due to
the fact that more collocation points are needed to compute the integrals. This has been tested nu-
merically by means of generating artificial deterministic solutions from Kriging surrogates (see
Fig. 11 and Table 1). With this procedure, the additional deterministic solutions of the sparse
grid required for the fifth and sixth level of accuracy (lvl5 arti f and lvl6 arti f in the legend of the
plots) are artificially generated and higher orders in the gPC expansion are tested. These plots are
revealing that, in fact, in the region of 3 < x/D < 4 more collocation points would be required
with higher P. As for lvl5 and lvl6 are required 145 and 321 collocation points respectively with
a not very relevant improvement in the accuracy, it is not worthy to perform such a large number
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of simulations with the CFD code and lvl4 is assumed to be enough. Moreover, an adaptive
refinement method [106] would not be worthy since the surrogates are different at each point of
the domain.

Table 1 Since the initial budget was 64 points, and C-C sparse grid are nested, the additional collocation points for lvl5
artif and lvl6 artif are artificially generated from the Kriging surrogates.

C-C level of the sparse grid Number of collocation points
lvl4 64

lvl5 artif 145
lvl6 artif 321

Regarding the convergence of sampling on Kriging surrogates, even with a reduced number
of samples, converged statistical moments can be obtained. This is because LHS is a sampling
strategy more efficient than Monte-Carlo and also due to the fact that the stochastic dimension is
low, requiring to sample less dimensions.
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Figure 9 Evolution of the v∗x stochastic means (a) and standard deviations (b) along the lipline for LHS on Kriging
surrogates with different number of samples, Ns, and its comparison with gPC results. Even for a small number of
samples, LHS is undergoing very good convergence.

For the purpose of visualising uncertainty, the contour plots of the stochastic mean and vari-
ance are represented for both methods. In Figs. 12, 13 and 14 these values are plotted for v∗x, v∗r
and p∗ for Kriging surrogates only. The absolute error difference between KG and gPC is only
shown for v∗x, since for all variables such difference is negligible. Despite the absolute error in
the variance can seem slightly notable, it is just illustrative. If attention is paid to v∗x along the
lipline close to the nozzle in Fig. 12.d, the absolute error seems to be notable, but in Fig. 9 the
difference is practically negligible. The differences take place because surrogates are sampled
with samples that do not take part in gPC analysis and, in gPC, statistical moments are obtained

20



x/D
0 1 2 3 4 5

M
ac

h 
S

to
ch

as
tic

 M
ea

n

1

1.1

1.2

1.3

Stochastic Mean N
s
=300

Stochastic Mean N
s
=1000

Stochastic Mean N
s
=1500

Stochastic Mean N
s
=2000

Stochastic Mean gPC P=4

(a)

x/D
0 1 2 3 4 5

M
ac

h 
S

to
ch

as
tic

 S
ta

nd
ar

d 
D

ev
ia

tio
n

0.02

0.04

0.06

0.08

0.1

0.12

0.14 Stochastic Std Dev N
s
=300

Stochastic Std Dev N
s
=1000

Stochastic Std Dev N
s
=1500

Stochastic Std Dev N
s
=2000

Stochastic Std gPC P=4

(b)

Figure 10 Evolution of the Mach stochastic means (a) and standard deviations (b) along the centreline for LHS on Kriging
surrogates for different number of samples and its comparison with gPC results. Even for a small number of samples,
LHS is undergoing very good convergence.
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Figure 11 Evolution of (a) Mach stochastic standard deviation for different P and levels of the sparse grid and (b) a zoom
of the hardest part in the convergence analysis. These results are compared with Kriging surrogates sampled by means
of LHS with Ns = 2000.
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by quadrature integrals, and not by sampling as in KG.

a)

b)

c)

d)

Figure 12 Contour plots of v∗x (a) stochastic mean and (b) variance by means of LHS on KG surrogates. Contour plots of
the absolute error between (c) stochastic mean and (d) variance between KG and gPC methods.

An objective of the analysis is to assess the simulation and to determine the regions of the jet
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a)

b)

Figure 13 Contour plots of v∗r (a) stochastic mean with detail of the nozzle lip exit and (b) variance by means of LHS on
KG surrogates.

a)

b)

Figure 14 Contour plots of p∗ (a) stochastic mean and (b) variance by means of LHS on KG surrogates.
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prediction which are more sensitive to the input uncertainties. The spatial variation in uncertainty
is not uniform across different quantities of interest. Diverse quantities exhibit diametric spatial
sensitivity to input uncertainty. This has been suspected in the CFD community for a while
[22], but no investigation has qualitative and quantitative proffered this before. From a careful
analysis, one can draw the following conclusions.

For the dimensionless axial velocity, v∗x, the most sensitive region is along the lipline, close
to the nozzle lip (see Fig. 12.b). This uncertainty is in fact high, as can be observed in Fig. 16.
Such large sensitivity nearby the nozzle lip makes sense due to the fact that small variations of
the inner boundary layer at the exit of the nozzle could potentially modify the features that take
place in the nozzle lip/lipline regions. It is observed that the percentiles are slightly far from the
S-A deterministic case. This does not happen in the Mach number (Fig. 15), and the axial veloc-
ity at the lipline seems to be affected by the Rt calibration (the deterministic case corresponds to
the lowest Rt value in the random input, being outside the plotted percentiles). This is actually
obvious in the sense that the turbulence model has a dramatical impact on the shear-layer. The
computation under uncertainty remarks that fact: even if Rt is chosen well enough according to
the Mach number at the centreline, the axial velocity can be underestimated. It is, thus, impor-
tant to look at the lipline if experimental or benchmark data is available for a proper calibration.
Two-equation turbulence models data and LES [9] are used here for comparison as there is no
experimental data available at the lipline, and only after x/D = 3 there is noticeable difference
between LES and S-A results. To support the observations, the tests with Rt fixed at its determin-
istic value and cps varied at its minimum and maximum are shown. Also the test when cps fixed
at its deterministic value and Rt maximum. When Rt minimum, that is the deterministic simu-
lation (with lower values of Rt = 2.2 the vx∗ does not change). It is guessed that the influence
of the large values of Rt with ps generate the lower values of vx∗. Also, when ps is large, it is
obvious that the amplitude of vx∗ is increased.

A good test could be to try a lognormal distribution for Rt, and check how the percentile plot
changes. However, since the objective of this work is simply to observe the sensitivity under
equal probability (most conservative case scenario), it is discarded. It is recalled that in the ini-
tial seek for values for Rt, the jet performance was slightly perturbed for one or two orders of
magnitude in the change. In UQ applied to higher fidelity simulations (e.g. Large Eddy Simu-
lations, LES, not affordable here) it would be interesting to observe whether similar parametric
uncertainty from the computation of turbulence intensity has an influence on the perturbations
in the shear layer that lead to the feedback loop for screech noise [67]. Along the centreline,
some uncertain regions can also be detected, but these can be better addressed when describing
the variance in p∗.

Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immediately
below the lipline (see Fig. 13.b). It can also be observed that the second and third shock-cell
compression are notoriously the most sensitive to input uncertainty. Although jet noise is not
studied in this paper because the available jet aeroacoustics models are not yet entirely reliable
in RANS, screech jet noise is usually generated in that zone [66].

For the dimensionless static pressure, p∗, the most sensitive region is along the centreline (see
Fig. 14.b). This is also observed for the Mach number in Fig. 15, where it can also be noticed
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some uncertainty in the position of the shocks. The percentile envelopes show a variation in both
the amplitude and position of the shock-cell, which makes sense due to the fact that shocks have
a strong relation with the variations in stagnation pressure, according to basic fluid dynamics of
compressible flows. The prescribed uncertainties would, as expected, be affecting the robustness
of the simulated case scenario. In this figure, the percentile envelopes show that, despite the fact
that the CFD RANS with Spalart-Allmaras (deterministic simulation) was not the most accurate
model, the percentile envelopes are able to cover the most relevant data (first four shocks-cell
bumps). This is interesting, since RANS simulations struggle to undergo a good match with
experiments (especially in high-speed flows with shocks and eddy-viscosity turbulence models).
The non enveloped data are possibly not remarkable outliers if experimental error bars are in-
cluded (not reported in [5]). In addition, the changes in the position of the shock-cells are well
featured. However, it can be observed that the oscillatory pattern is dissipated downstream, as
consequence of the variations in the shock-cell positions (bump effect widen) because of uncer-
tainty sources and the difficulty in RANS simulations to reproduce a realistic jet potential core.
It is interesting to point out that even LES data [9] has problems to match experimental data,
especially after the third shock-cell.
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Figure 15 Percentiles from KG surrogates sampled by means of LHS with Ns = 2000 samples.

4. Global Sensitivity Analysis by Means of Generalised Polynomial Chaos and Kriging
Surrogates

4.1. Principle of the Global Sensitivity Analysis

As explained in Section 1, an extension of UQ is the global Sensitivity Analysis. There are
different methods for global Sensitivity Analysis, such as Screening Method, Derivate Based
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Sensitivity Analysis or Variance-Based Analysis [95]. The scientist must choose appropriately
depending on the computational cost, dimension of the problem or the expected output, amongst
others. For the purposes of this work, a Variance-Based Analysis has been chosen [77]. One
of the main reasons of using this method is the possibility of ranking the influence of the input
factors by sensitivity indices.

The ANOVA decomposition of the variance is shown in Eq. (13), and sensitivity coefficients
are computed from Eq. (14) from its proportion with respect to the total variance. S i and S Ti , in
Eq. (15), are the first-order and total sensitivity index respectively. In the following equations the
multiple subscripts refer to second, third or higher order interactions, depending on the number
of subscripts. Given a model of the form y = ŷ(ξ1, ξ2, ..., ξk), with y a scalar, the decomposition
of the total variance, V(y), can be written as

V(y) =

Nξ∑
i=1

Vξi +

Nξ∑
i=1, j>i

Vξi j +

Nξ∑
i=1,k> j>i

Vξi jk + ... . (13)

The right hand side terms are the first and higher order contributions to the total variance. Divid-
ing by the total variance, the sensitivities can be computed as

1 =

Nξ∑
i=1

S i +

Nξ∑
i=1, j>i

S i j +

Nξ∑
i=1,k> j>i

S i jk + ... + S i jk,...,Nξ
. (14)
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This leads to the following expresion for the total sensitivity index for the i-th parameter

S Ti = S i + S i j + S i jk + ... + S i jk...m (15)

and the associated sensitivity measure (first order sensitivity coefficient) is computed as

S i =
Vξi (Eξ∼i

(y|ξi))

V(y)
, (16)

where ξi is the i-th factor and ξ∼i denotes the matrix of all factors but ξi. This index indicates by
how much one could reduce on average the output variance if a parameter could be fixed. On the
other hand, the total effect index can be computed as

S Ti =
Eξ∼i

(Vξi (y|ξ∼i ))

V(y)
. (17)

S Ti measures the total effect, i.e. first and higher order effects (interactions) of factor ξi. It rep-
resents a good measure to determine if a parameter is influential or not, and whether could be
neglected from the model. The use of this sensitivity technique can be seen in many fields such
as solar energy [81], wastewater treatment [84] or heat exchangers [31].

As the sensitivity indices are related to UQ, the approaches described in Section 3 are used
in this section as well. Particularly, the Kriging surrogates are sampled according to [44] and the
coefficients from gPC are used to compute the sensitivity indices. Despite that sampling could
also be done on the Polynomial Chaos Expansion, it is important to note that a second objective
in this work is to have two different methodologies to achieve the same results (sampling and
quadrature based approaches). It has been proceeded in this way due to the fact that one of the
interesting features of gPC is the possibility to perform Sensitivity Analysis straightforward after
uncertainty quantification. For such task, it is not difficult to realise that there is a clear relation
between Eqs. (10), (13) and (14). Eq. (10) that can be rewritten as

1 =
1

V(ŷgPC)

Nt−1∑
j=1

y2
m j

〈
Ψ2

j

〉
, (18)

and the first and higher-order sensitivity indices can carefully be extracted from the expression
above since the literal part of each monomial gives the hints of the interaction.

Regarding the Kriging surrogates, ŷKG, as they are available from the former uncertainty
analysis, it is now possible to compute the sensitivity indices from Eqs. (16) and (17). In order
to compute S i, ξi has to be fixed in several points ξi = ξ∗i along the possible values of the random
variable and compute the mean individually for a further computation of Vξi . This would require
a very large number of calculations since the number of fixed points has to be great enough to
compute reliable statistics. A less expensive method has been coded in Matlab by following the
procedure suggested in [44]. With this method, the first order sensitivity with Kriging surrogates,
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S KG
i , and the total effect, S KG

Ti , can be computed as

S KG
i =

1 − 1
2Ns

Ns∑
j=1

(
ŷKG(B) j − ŷKG(ABi) j

)2

V(ŷKG)
, (19)

S KG
Ti =

1
2Ns

Ns∑
j=1

(
ŷKG(A) j − ŷKG(ABi) j

)2

V(ŷKG)
. (20)

In these expressions, ŷKG(A), ŷKG(B) and ŷKG(AB) are matrices that contain model evaluations,
product of decomposition of the original matrices which contain the sample campaign. These
two original matrices, A and B, correspond to two different independent samples onto the same
surrogate and random variables, with Ns × Nξ dimensions. Eqs (19) and (20) are built upon the
original sensitivity indices shown in Eqs (16) and (17). These numerators come from the known
identity

V(y) = Vξi (Eξ∼i
(y|ξi)) + Eξi (Vξ∼i

(y|ξi)). (21)

A formal definition of the method requires some mathematical background in statistics and
will not be included in this section. The reader is referred to [44, 35] for further details. However,
for the sake of practical clarification, the procedure developed on the surrogates is broken down
as follows:

1. Generate two independent Design of Experiment with LHS: A and B.
2. For the i-th sensitivity index, only the i-th column in matrix A is swapped with the i-th

column in matrix B. The new matrix is referred to as ABi. This new version of the A
matrix clearly preserves its Ns × Nξ structure and can still be considered a sample matrix,
but without the original properties of a LHS.

3. Evaluate the Kriging surrogates with the elements from the matrices A, B and ABi.
4. Compute the sensitivity coefficients in Eqs. (19) and (20). j stands for the row of the

matrices.

This alternative approach dramatically decreases the number of model evaluations in com-
parison to brute force method.

4.2. Discussion of Global Sensitivity Analysis Results

Since uncertainty quantification results are compared by means of Kriging surrogates and
Polynomial Chaos in Section 3, attention is now paid on the sensitivity contours for the dimen-
sionless static pressure, p∗, plotted in Fig. 17.

One of the motivations of using two methods for Sensitivity Analysis purposes is that the
resulting contours for the sensitivity indices were not intuitive, which could be product of errors
when implementing the codes. Fortunately, both methods provided similar solutions, discard-
ing that. The explanation behind the contours appearance is that sensitivity is quantified simply
providing a ‘ratio’ of contribution to uncertainty at every point of the CFD domain with respect
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a)

b)

c)

Figure 17 Sensitivity indices contour plots by means of Kriging for p∗. a) and b) are the first-order sensitivities and c)
higher-order interaction.

to the total variance at such point. A solution to provide a more intuitive and useful insight is
to show the contribution to the total variance by each parameter as shown in Figs. 18-20. For
representation of the quantities of interest, now only gPC results will be shown, as the difference
between both gPC and KG was checked and found to be negligible.

Similarly for uncertainty quantification, in this section several interesting patterns have been
observed and some conclusions have been drawn.

For the dimensionless axial velocity, v∗x, the most sensitive region was detected along the
lipline, close to the nozzle lip (see Fig. 12.b). The associated uncertainty is mainly due to the
imprecision in the laminar to turbulent viscosity ratio, Rt, from the Spalart-Almaras turbulent
model (see Fig. 18.b). Therefore, it is envisaged that a proper selection of the S-A parameter
has only influence in the initial part of the lipline. One could also expect a remarkable sensitivity
along the lipline or spreading angle associated to Rt because of the propagation of uncertainty in
the downstream simulation of a turbulent jet, but it has not been observed such sensitivity with
RANS. The stagnation pressure uncertainty, ps, is also playing an influential role (Fig. 18.a), but
its impact is not as high as by Rt in the area immediately at the nozzle exit. The contribution to
uncertainty in the shock-cell areas close to the axis is done only by means of ps uncertainty. The
higher-order effect is not relevant.
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a)

b)

c)

Figure 18 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent viscosity ratio and c) their
interaction, for v∗x.

Regarding the dimensionless radial velocity, v∗r , the most sensitive region is immediately
below the lipline (see Fig. 13.b). This uncertainty is undoubtedly linked to ps as seen in Fig.
19.a, and its value is weak. The effect of Rt has no noticeable influence.

For the dimensionless static pressure, p∗, the most sensitive region is along the centreline
(see Fig. 14.b). As can be seen in Fig. 20.a, ps uncertainty is again the most influential one, and
the influence of Rt uncertainty is practically null. Closer to the lipline, Rt uncertainty is greater,
but not very significant. The reason of the dotted pattern related to Rt variance, also present in
vr∗ contours, is not clear.

5. Conclusions

The main objective of this analysis is to assess computationally the impact of uncertainties in
the simulation of an under-expanded jet flow with shock-cells from an aircraft exhaust by means
of RANS simulations with the Spalart-Allmaras turbulent model. Simulated data is compared to
k− ε and k−ω eddy-viscosity models, LES data and experimental data. This pretends to expand
the views of the popular deterministic approaches in RANS, which can lead to less reliable con-
clusions from simulations. As the Spalart-Allmaras turbulent model does not provide usually a
good performance in compressible jet flows (it is a one-equation eddy viscosity model), efforts
are focused on the analysis of the simulation. Experimental uncertainty is also present in the
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Figure 19 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent viscosity ratio and c) their
interaction, for v∗r .

computations, and by means of sensitivity analysis, the influence of each source of uncertainty
can be ranked and isolated. This analysis represents first numerical study that provides evidence
for the non-uniformity in spatial sensitivities of the quantities of interest to input uncertainty in
simulations of jet flows.
Specifically, Non-Intrusive Uncertainty Quantification techniques have been applied to 3D RANS
CFD simulations of a supersonic under-expanded jet. The computational analysis accurately
simulates the most relevant shock-cells with the Spalart-Allmaras turbulence model, in order
to understand how the impact of input uncertainty (experimental and in turbulence modelling)
affects to the simulated flow properties. A global Sensitivity Analysis was also carried out to
understand the relevance of each random input separately in the output uncertainty. The results
from the application of both methods (generalised Polynomial Chaos with quadrature and Krig-
ing with Latin Hypercube Sampling) were identical.

Large Eddy or Direct Numerical Simulations are unaffordable for uncertainty quantification
in shock-cell noise, and the use of RANS remains a recommended procedure in industry to
measure the impact of uncertainties in the computation of the jet flow. From the analysis on the
CFD simulations, the following conclusions can be drawn.

Firstly, despite the fact that shock-cells could be problematic in catching features in uncer-
tainty quantification, convergence was achieved with only 65 collocation points from a Clenshaw-
Curtis sparse grid. The shape of the Kriging surrogates looks appropriate to interpolate the train-
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Figure 20 Contribution to the total variance of a) stagnation pressure, b) laminar to turbulent viscosity ratio and c) their
interaction, for p∗.

ing data, as convergence was achieved, providing also the same results as Polynomial Chaos.
The variance in the Mach number is set by the contribution of the stagnation pressure uncer-

tainty. The connection is clear from basic fluid dynamics, but the relatively low impact of large
Rt uncertainty is of interest, since a bad calibration of such parameter may not be affecting the
jet flow simulation notably. This low effect of Rt in central parts of the jet was also noticed in the
contour plots of the variance in v∗x and v∗r . In addition, the experimental data of the Mach number
along the centreline was well matched by the uncertainty envelopes.

The area immediately after the nozzle lip is highly sensitive to input uncertainty, especially
from Rt, partly because of the difficulty to simulate this zone. This outcome is observed in the
variance of v∗x, where this behaviour can be product not only of turbulence sensitivity, but also
the pressure suction effect. Anyway, uncertainty in that region is something interesting to take
into account, as this is the beginning of the shear-layer development. It is envisaged that Rt

variation is actually dramatically affecting vx∗ along the lipline, with the percentile envelopes far
from LES data used as reference, as well as the two-equations turbulence models in RANS. Low
values of Rt provided very similar results to LES for the x/D < 3 area. Some light contributions
to uncertainty have been noticed along the lipline for the radial velocity, v∗r .

To summarise, the simulation of single under-expanded jets by means of RANS with the
Spalart-Allmaras turbulence model looks an appropriate alternative to other more expensive
methods if its accuracy is assessed by an uncertainty quantification framework. Future work
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would be a plus on UQ applied to higher fidelity simulations, unaffordable yet for such com-
putationally demanding task. Also noise emission uncertainty can be an additional scope not
achievable with sufficient accuracy by means of the current jet noise models available for RANS
simulations.
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