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Abstract – All liquid three layer batteries are intended as large scale electrical energy storage. The 
paper investigates long wave interfacial instabilities driven by the electromagnetic forces during 
dynamic phases of the battery charging/discharging. The liquid metal battery of 20 cm size with 
sodium metal anode, which is a candidate for experimental and commercial implementation, is shown 
to be unstable at the discharge state when the top metal layer depth is reduced below a critical level. 
The numerical model includes the effects of viscous friction and the horizontal wave velocities. The 
instability does not depend on the initial interface perturbation type.  

Introduction. – With the advancement of renewable 

intermittent energy sources the idea of Liquid Metal Battery 
(LMB) as a device for stationary energy storage is gaining at-
tention [1]. The development of small-scale (about few cm) 

prototypes demonstrates technical feasibility of the battery and 
its advantages to existing solid batteries [1,2]. The liquid state 
of the main components necessitates consideration of the fluid 
dynamics in the LMBs. A number of recent publications are 
devoted to the problem: a possibility of the Tayler instability 
[3,4], the thermal convection [5], observation of a vortical flow 
in the LMB model [6], as well as the electromagnetically driven 
wave instability in the stratified three liquid layer system [7-

12]. The main motivation of these investigations is to gain 
understanding of the liquid mixing, the charge and mass 
tansfer, and a possibility of electro-magnetically driven 
destabilizing interface motion.  

   LMBs are thought to be easily scalable due to their simple 

construction using the natural density stratification of the liquid 

layers. The magneto-hydrodynamic stability of the liquid filled 

cells could be problematic with the upscaling. As it was shown 

in [7], large cells of several cubic meters total volume can be 

designed to operate safely at very high power value (~ 105 W). 

The same high power and storage capacity could be achieved 

using a large cluster of small LMBs [1,8]. However in both 

cases high current densities in the cells will be coupled to the 

total magnetic field (created by the currents in the cell, the 

supply bars and the neighbour cells) leading to significant 

electromagnetic forces. Such forces in stratified liquid layers 

with free surface areas may cause the long wave interfacial 

instability as it is well known in the case of Hall-Héroult Cells 

(HHC) [13-15]. The manifestation of this instability in the 

small scale LMB at various stages of discharge, when the metal 

levels change, is the subject of this paper. The previously 

developed theoretical and numerical models [12] will be 

applied to analyze the interfacial waves in the small scale LMB 

filled with three liquid layers (Fig. 1) composed of Na|NaF-

NaCl-NaI|Bi [1,2]. The liquid sodium is considered as one of 

attractive and relatively safe anodic materials to be used in the 

upscaling physical experiments. 

Fig. 1: Schematic representation of the 3-layer LMB model. 

The numerical models will be applied to answer the questions 

about the two interface coupling, the importance of the initial 
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perturbation conditions and the destabilizing effect of the metal 

level change during the charging/discharging process. 

The governing equations. – The model of battery 

consisting of three density stratified electrically conductive 

liquid layers contained in a rectangular box is schematically 

represented in Fig. 1. The full mathematical model derivation 

is presented in [12], therefore we will emphasize here only the 

main points leading to the coupled wave and electric current 

equations. 

   Coupled interfacial dynamics.  The incompressible laminar 

fluid flow in the presence of electro-magnetic fields is 

described by the equations 

𝜌𝜕𝑡𝑢𝑖 + 𝜌𝑢𝑗𝜕𝑗𝑢𝑖 = −𝜕𝑖(𝑝 + 𝜌𝑔𝑧) + 𝜌𝜈𝜕𝑗𝑗𝑢𝑖 + 𝑓𝑖 , (1) 

𝜕𝑖𝑢𝑖 = 0, (2) 

where the indices 𝑖, 𝑗 = 1,2,3 correspond to the coordinates 

(𝑥, 𝑦, 𝑧), the velocity components are given as (𝑢1, 𝑢2 , 𝑢3), the

summation over repeated indices is implied, 𝜌 represents the 

density, 𝜈 the kinematic viscosity, 𝑔 the gravitational 

acceleration, 𝑝 the pressure and 𝒇 = 𝒋 × 𝑩 stands for the 

electromagnetic force vector, whereas 𝒋 is the electric current 

density and 𝑩 the magnetic field. The horizontal dimensions of 

the cell are assumed to be much larger compared to the vertical 

depth of layers, so that the description can be based on a 

systematically derived shallow water approximation. The 

velocity components can be represented as an expansion in a 

small aspect ratio parameter 𝛿 = max(ℎ)/ min(𝐿), where ℎ is 

a typical depth (e.g. of the unperturbed layer) and 𝐿 is the 

characteristic horizontal dimension (width of the cell): 

𝑢𝑖 = 𝑢0𝑖(𝑥, 𝑦, 𝑡) + 𝛿𝑢1𝑖(𝑥, 𝑦, 𝑧, 𝑡) + 𝑂(𝛿2). (3) 

The leading horizontal components of (1) for 𝑖 = 1,2 are 

𝜌𝜕𝑡𝑢0𝑖 + 𝜌𝑢0𝑗𝜕𝑗𝑢0𝑖 = −𝜕𝑖𝑝 + 𝜌𝑘𝑓𝑈𝑖 + 𝑓𝑖 , (4) 

for the depth averaged velocity components when using the 

shallow water linear friction law (the value of 𝑘𝑓 is given below

in (26)). The depth averaged horizontal velocity components 

are defined as: 

𝑈𝑖𝑘 = ℎ𝑘
−1 ∫ 𝑢𝑖𝑘(𝑥, 𝑦, 𝑧)𝑑𝑧,

𝐻𝑘

𝐻𝑘−1

(5) 

where 𝑘 = 1,2,3 is the layer number, ℎ𝑘(𝑥, 𝑦, 𝑡) = 𝐻𝑘 − 𝐻𝑘−1

is the local variable depth, see the Fig. 1.  

   The vertical component 𝑖 = 3 of the equation (1) gives the 

hydrostatic pressure distribution in the liquid layers accounting 

for the variable interface shapes 𝐻1(𝑥, 𝑦, 𝑡) and 𝐻2(𝑥, 𝑦, 𝑡)

[12]. The depth averaged continuity equation (2) is accurate to 

all orders of approximation:   

𝜕𝑡ℎ𝑘 + 𝜕𝑖(𝑈𝑖𝑘ℎ𝑘) = 0. (6) 

The equations can be linearized if an additional approximation 

of a small wave amplitude is introduced: ℎ𝑘(𝑥, 𝑦, 𝑡) = ℎ0𝑘 +
𝜀ℎ𝑘

′ (𝑥, 𝑦, 𝑡) for the layer thickness, or equivalently 

𝐻𝑘(𝑥, 𝑦, 𝑡) = 𝐻0𝑘 + 𝜀𝐻𝑘
′ (𝑥, 𝑦, 𝑡) for the interface position,

𝜀 = max(𝐴)/ℎ, where 𝐴 is a typical wave amplitude and ℎ0𝑘,

𝐻0𝑘 are the unperturbed values. For typical geometries

considered in this paper 

 𝛿 = ℎ 𝐿 = (0.01 ÷ 0.05) m/0.2 m⁄ = 0.05 ÷ 0.25 < 1, 

and 𝜀 = 𝐴 ℎ =⁄ 0.001 m 0.01 m = 0.1⁄ ≪ 1. The small depth 

approximation 𝛿 ≪ 1 is just marginally satisfied in some cases 

considered below, however the 3 layer wave frequencies are 

mostly affected by the presence of the shallow intermediate 

layer (ℎ2 = 0.01 𝑚), therefore permitting a meaningful

approximation in the 3 layer problem. The wave equations for 

the coupled interfaces 𝐻1 and 𝐻2 can be derived following the

procedure described in [12]: 

𝛼1𝜕𝑡𝑡𝐻1 + 𝑘𝑓𝑒1𝜕𝑡𝐻1 − 𝜌2 ℎ02⁄ 𝜕𝑡𝑡𝐻2

− 𝜌2𝑘𝑓2 ℎ02⁄ 𝜕𝑡𝐻1 = 𝑅1𝜕𝑖𝑖𝐻1 + 𝜕𝑖(𝐹𝑖2 − 𝐹𝑖1)

+[𝜌1𝜕𝑖(𝑈𝑗1𝜕𝑗𝑈𝑖1) − 𝜌2𝜕𝑖(𝑈𝑗2𝜕𝑗𝑈𝑖2)],
(7) 

𝛼2𝜕𝑡𝑡𝐻2 + 𝑘𝑓𝑒2𝜕𝑡𝐻2 − 𝜌2 ℎ02⁄ 𝜕𝑡𝑡𝐻1

− 𝜌2𝑘𝑓2 ℎ02⁄ 𝜕𝑡𝐻1 = 𝑅2𝜕𝑖𝑖𝐻2 + 𝜕𝑖(𝐹𝑖3 − 𝐹𝑖2)

+[𝜌2𝜕𝑖(𝑈𝑗2𝜕𝑗𝑈𝑖2) − 𝜌3𝜕𝑖(𝑈𝑗3𝜕𝑗𝑈𝑖3)],
(8) 

where the depth averaged force density 𝐹𝑖 is defined similarly

to (5). The electromagnetic terms are of the same order of 

magnitude as the leading terms, while the nonlinear wave 

motion terms are of lower order (~𝜀). The boundary condition 

for the normal velocity 𝑢𝑛 = 0 at the side walls leads to the

condition [12]: 

𝜕𝑛𝐻𝑚 = (𝐹𝑛,𝑚 − 𝐹𝑛,𝑚+1) 𝑅𝑚⁄ , (9) 

for 𝑚 = 1,2. The constants introduced in the above equations 

are defined as: 

𝛼𝑚 = 𝜌𝑚 ℎ0𝑚⁄ + 𝜌𝑚+1 ℎ0𝑚+1 ,⁄  
𝑅𝑚 = (𝜌𝑚 − 𝜌𝑚+1)𝑔,

𝑘𝑓𝑒,𝑚 = 𝜌𝑚𝑘𝑓𝑚 ℎ0𝑚⁄ + 𝜌𝑚+1𝑘𝑓𝑚+1 ℎ0𝑚+1 .⁄
(10) 

Note, that in (7) and (8) the summation over repeated indices is 

limited to the two horizontal dimensions 𝑖, 𝑗 = 1,2. The 

equations (7), (8) include additional terms to the similar wave 

equations obtained in [11], particularly the viscous friction, 

generalised electromagnetic force and the horizontal velocity 

effects. The MHD wave model for the aluminium electrolysis 

cell [15] with the single interface 𝐻1(𝑥, 𝑦, 𝑡) can be recovered

from (7) if the top interface is constant in time: 𝐻2=𝐻2(𝑥, 𝑦).

If neglecting the electro-magnetic and the dissipation 

terms, the equations (7)-(9) can be solved to obtain the 

expressions for the 2 coupled interface gravity wave 

frequencies [9,11,12]: 



𝜔12,𝒌
2 =

−(𝜔1,𝒌
2 +𝜔2,𝒌

2 )±[(𝜔1,𝒌
2 −𝜔2,𝒌

2 )
2

+4𝑅𝑐,1𝑅𝑐,2𝜔1,𝒌
2 𝜔2,𝒌

2 ]
1 2⁄

2(1−𝑅𝑐,1𝑅𝑐,2)
,       (11) 

𝑅𝑐,𝑚 = 𝜌2 (𝛼𝑚ℎ02)⁄ ,   𝜔𝑚,𝒌
2 = 𝑅𝑚𝒌2 𝛼𝑚⁄ , 

showing the correlation between the uncoupled shallow layer 

gravity wave frequencies  𝜔𝑚,𝒌 and the coupled two interface

frequencies 𝜔12,𝒌 . The wave vector 𝒌 is defined as

𝒌 = (𝑘𝑥, 𝑘𝑦),  𝑘𝑥 = 𝑚𝜋 𝐿𝑥⁄ ,  𝑘𝑦 = 𝑛𝜋 𝐿𝑦⁄ ;  𝑚, 𝑛 ∈ 𝑁. (12)

The equation (11) describes the two sets of self sustained wave 

frequencies on both interfaces with the "−" sign corresponding 

to the so-called ‘slow’ mode and the "+" sign to the ‘fast’ mode 

[9,12]. This expression will be useful to compare the pure 

gravity wave frequencies to the electromagnetically modified 

waves and the frequency at which instability starts. 

   Electric current flow.  The LMB operates in a dynamic 

regime of charging or discharging, resulting in the current 

flowing upwards or downwards. The current flow at the 

discharging stage in the layered structure is illustrated in Fig. 1. 

We assume that the characteristic time-scale for the wave 

motion is much larger than the diffusion time of the magnetic 

field to satisfy the low magnetic Reynolds number 

approximation and the flow effect on the instantaneous current 

distribution can be neglected, so that the electric current can be 

described by a set of coupled Laplace equations for the electric 

potential 𝜑𝑘(𝑥, 𝑦, 𝑧, 𝑡):

𝜕𝑖𝑖𝜑𝑘 = 0, (13) 

where 𝑘 = 1,2,3 corresponds to the layer number. The conti-

nuity conditions for the electric potential and the normal current 
component 𝒋 ∙ 𝒏 at the interfaces 𝑧 = 𝐻𝑚 (𝑚 = 1,2) are

𝜑𝑚 = 𝜑𝑚+1 ,      𝜎𝑚+1𝜕𝑛𝜑𝑚+1 = 𝜎𝑚𝜕𝑛𝜑𝑚. (14) 

The normal derivatives at the deformed interfaces are defined 

as 

𝜕𝑛𝜑𝑘 =
𝜕𝑧𝜑𝑘 − 𝜕𝑖𝐻𝑘𝜕𝑖𝜑𝑘

(1 + 𝜕𝑖𝐻𝑘𝜕𝑖𝐻𝑘)1 2⁄ , (15) 

assuming the summation over the repeated index 𝑖 only. The 

side walls of the domain are considered to be electrically 

insulating. The applied current distributions at the top and the 

bottom of the cell could be given from the external circuit 

solution [13], however here for simplicity we assume the 

supply current to be uniform and equal: 

(𝑗)𝑧=𝐻0
= (𝑗)𝑧=𝐻3

= 𝑗0 . (16) 

The shallow layer approximation for the 3d electric current 

requires the expansion of the electric potential in terms of the 

parameters 𝛿 and 𝜀 [12,15]: 

𝜑𝑘(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑0𝑘 + 𝛿2𝜑1𝑘 + 𝑜(𝛿2). (17) 

𝜑0𝑘 = (𝑎𝑘 + 𝜀𝐴𝑘)𝑧 + (𝑏𝑘 + 𝜀𝐵𝑘), (18) 

𝜑1𝑘 = (𝑐𝑘 + 𝜀𝐶𝑘)𝑧 + 𝑧2𝜕𝑖𝑖(𝑏𝑘 + 𝜀𝐵𝑘), (19) 

where the 2d functions 𝑎𝑘 , 𝐴𝑘 , 𝑏𝑘 , 𝐵𝑘 , 𝑐𝑘 , 𝐶𝑘(𝑥, 𝑦) are

determined from the set of interfacial conditions (14). After a 

lengthy derivation the final equations for the perturbation 

potentials defined as Φ1 = 𝜀𝐵1 and Φ3 = 𝜀𝐵3 can be obtained

[12]: 

ℎ01ℎ02𝜕𝑖𝑖Φ1 +
𝜎2

𝜎1

(Φ3 − Φ1) =
𝑗0

𝜎1

(ℎ2 − ℎ02), (20) 

ℎ02ℎ03𝜕𝑖𝑖Φ3 +
𝜎2

𝜎3

(Φ3 − Φ1) = −
𝑗0

𝜎3

(ℎ2 − ℎ02). (21) 

According to (20) and (21), the perturbed current flow is 

determined by the electrolyte thickness variations and the ratio 

of the electrical conductivities. The dimensional current 

components in the three layers can be expressed as 

𝒋1 = −𝜎1 (𝜕𝑥Φ1 , 𝜕𝑦Φ1,
𝑗0

𝜎1
+ (𝐻0 − 𝑧)𝜕𝑖𝑖Φ1), (22) 

𝒋2 = −𝜎2 (0,0, (1 −
ℎ2 − ℎ02

ℎ02
)

𝑗0

𝜎2
+

Φ3 − Φ1

ℎ02
), (23) 

𝒋3 = −𝜎3 (𝜕𝑥Φ3 , 𝜕𝑦Φ3,
𝑗0

𝜎3
+ (𝐻3 − 𝑧)𝜕𝑖𝑖Φ3). (24) 

To the given perturbation accuracy the horizontal currents in 

liquid metal layers are depth independent and the vertical 

current is linearly varying from the imposed supply value to the 

wave perturbed distribution at the electrolyte. The current 

distribution in the electrolyte is almost purely vertical due to 

the relatively low conductivity 𝜎2 ≪ 𝜎1~𝜎3. The terms in the

left side of (20), (21) are of equal order proportional to 

ℎ2~𝜎2/𝜎1~𝜎2/𝜎3. Similar equations to (20), (21), however

without the terms containing the perturbed potential 

differences, have been derived in [11]. 

   Numerical solution construction.  The solution of the 

problem can be constructed using the spectral representation in 

Fourier space [12,15]. The following set of functions is 

introduced: 

{𝐻1, 𝐻2 , Φ1, Φ3}(𝑥, 𝑦, 𝑡) =

∑ {𝐻1,𝒌, 𝐻2,𝒌, Φ̂1,𝒌, Φ̂3,𝒌}(𝑡) 𝜖𝒌 cos(𝑘𝑥𝑥) cos(𝑘𝑦𝑦). ,
𝒌

(25) 

𝐻𝒌(𝑡) and Φ̂𝒌(𝑡) are the spectral wave amplitudes and the
perturbed potentials in Fourier space, 𝒌 is defined in (12) and 

𝜖𝒌  is the normalization coefficient. The equations (7), (8), (20),

(21) are represented in the spectral space using the expansions
(25). The second-order implicit central finite difference scheme 
is used to approximate the time derivatives when solving the 
wave evolution problem. The physical variables are 
reconstructed using (25). 
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Table 1: Material properties of a Na||Bi battery at the operating 

temperature 𝑇 = 5600C [1].

Liquid 𝜌𝑘, (kg/m3) 𝜈𝑘, (m2/s) 𝜎𝑘, (S/m)

Bi 9720 1.1·10-6 0.69·106 

NaF-NaCl-NaI 2540 0.67·10-6 200 

Na 831 0.26·10-6 3.5·106 

Results. – The following numerical study is intended to 

study a specific liquid metal battery proposed as a candidate for 
physical experiments and possible commercial implementa-
tion. The battery contains sodium metal as the anodic top layer, 
bismuth-sodium alloy as the bottom cathode and the liquid salt 
composed of NaF-NaCl-NaI (the material properties [1] are 
given in Table 1). The cell is square in the horizontal section 

with the dimensions: 𝐿𝑥 × 𝐿𝑦 = 0.2 × 0.2 m2, similar as pro-

posed in [8] for a circular cell of radius 0.2 m. The applied total 
electric current is fixed at the value 𝐼 = 130 A (𝑗0 =
3250 A m2⁄ ).  The magnetic field typical of this cell can be
estimated on the dimensional grounds: |𝑩|~ 𝜇0𝐼 𝐿⁄ ≈ 1 mT. In

accordance to the previous studies [8-15] the interfacial stabil-
ity is crucially affected by the vertical component of the mag-
netic field, therefore we choose the field as 𝑩 = (0,0, 𝐵𝑧), with

𝐵𝑧 = 1 mT. It is assumed that the flow is purely laminar, which

permits to use the shallow layer friction coefficient derived 

from the gravity wave damping rate for long waves according 
to [16] including the bottom and the side wall friction: 

𝑘𝑓𝑘 = (2ℎ0𝑘 + 𝐿)√𝜈𝑘𝜔12,(1,0) (2√2ℎ0𝑘𝐿)⁄ .     (26)

During the charge and discharge the liquid metal levels are 
changing, which can affect the interfacial stability at various 

stages. The effect was analysed considering three different 
metal layer thickness combinations: the fully charged case, in-
termediate situation, and the final discharged case. The total 
liquid height is assumed to be constant: ℎ01 + ℎ02 + ℎ03 =
8 cm, and the electrolyte thickness is constant: ℎ02 = 1 cm in

all cases. A small initial wave perturbation corresponding to the 
long gravity wave of the mode (𝑚 = 1, 𝑛 = 0) of amplitude 

𝐴 = 0.001 m was applied at the upper interface: 𝐻2(𝑥, 𝑦, 0) =

𝐻02 + 𝐴 cos(𝑘𝑥𝑥) cos(𝑘𝑦𝑦), while the lower interface was in-

itially unperturbed, but involved in the dynamic simulation fol-
lowing the top perturbation. The results of the direct wave evo-
lution problem solution are summarized in Fig. 2. On the left 
side the Figs. 2(a,c,e) demonstrate the interfacial oscillations at 
the fixed position in the left corner of the cell (𝑥 = 0, 𝑦 =
0 in the Fig. 1). The right side Figs. 2(b,d,f) show the respec-

tive computed Fourier power spectra appearing as vertical nar-
row peaks. The triangles located at the horizontal axis represent 
the theoretical three layer gravity frequencies defined by (11) 
in the absence of the electromagnetic interaction.  

When the cell is at the fully charged state the bottom metal 

layer is thinner than the top one: ℎ01 = 2 cm, ℎ03 = 5 cm. The

resulting motion of the waves generated at both interfaces is 
stable in this case (Fig. 2(a,b)). There is a single spectral peak 
which corresponds to the upper metal interface gravity wave  

Fig. 2: The coupled interface oscillations (left) and the Fourier 

power spectra (right) for different metal levels during the bat-
tery discharge: (a), (b) ℎ01 = 2, ℎ03 = 5 cm; (c), (d) ℎ01 =
ℎ03 = 3.5 cm; (e), (f) ℎ01 = 5, ℎ03 = 2 cm.

Fig. 3: The top interface instability onset when ℎ01 = 5,

ℎ03 = 2 cm for the uncoupled wave motion case: (a) 𝐻2(0,0, 𝑡)
and 𝐻1 = 𝑐𝑜𝑛𝑠𝑡, (b) power spectra and the gravity frequencies.

Fig. 4: The effect of the initial perturbation of multiple modes 

on the instability onset when ℎ01 = 5, ℎ03 = 2 cm.



mode ((11) with ‘+’ sign) at 𝑓 = 0.542 Hz. The bottom metal 

interface oscillates at the same frequency, while the corre-
sponding eigenmode frequency ((11) with ‘−’ sign) is not ex-

cited. The laminar damping in this case is sufficient to suppress 
the instability which would otherwise appear in a purely fric-

tionless case for the battery of square horizontal section 𝐿𝑥 =
𝐿𝑦 in the presence of the electric current [12].

In an intermediate stage of discharge the top layer de-
creases while the bottom layer increases in thickness. When the 
metal layers are of the same thicknesses: ℎ01 = ℎ03 = 3.5 cm,

the wave oscillation development is changing, see the Fig. 
2(c,d). In this case the unstable interfacial motion slowly sets 
in the upper metal. The Fourier spectrum indicates the instabil-

ity onset frequency 𝑓 = 0.549 Hz, which is the respective three 
layer gravity frequency for the upper metal interface defined by 

(11) for the present depth values.
When the cell is approaching fully discharged state, the lower

electrode is thicker than the upper one: ℎ01 = 5, ℎ03 = 2 cm.
The results shown in Fig. 2(e,f) demonstrate the unstable inter-
facial motion of  the upper metal, which eventually leads to the 
destabilization of the lower metal interface as well. In this case 
a complete rupture of the electrolyte, giving the current short-
circuit is reached after 1062 seconds. The Fourier spectrum, 
similarly to the previous example, contains the single low fre-

quency peak at the corresponding three layer gravity wave fre-
quency 𝑓 = 0.542 Hz (11). The oscillation of the lower metal 

is exactly at the same frequency. 

Fig. 5: The rotating wave unstable interfacial motion when 

ℎ01 = 5, ℎ03 = 2 cm: (a) 𝑡 = 498.33 s; (b) 𝑡 = 498.76 s; (c)

𝑡 = 499.27 s. 

   From these results it can be concluded that the interfacial mo-
tion becomes unstable when the cell approaches the discharged 
state. These results demonstrate also that the instability is de-

veloping on the upper metal interface. This agrees with findings 
in [9] where the condition for the upper interface dominant role 

was quantified as 𝜔1,𝒌
2 𝜔2,𝒌

2⁄ ≥ 2. In our case at ℎ01 = 5, ℎ03 =

2 cm: 𝜔1,(1,0)
2 𝜔2,(1,0)

2⁄ = 2.2 ≥ 2. 

The square section cell is particularly sensitive to the mag-
netic interaction, as noted in [10], where the instability onset 
was characterised by the parameter:  

Π = 𝑗0𝐵𝑧𝐿𝑥𝐿𝑦 ([𝜌2 − 𝜌3]ℎ02ℎ03𝑔)⁄ . For the square cell the in-

viscid instability threshold was found at Π → 0. The results in 

the Fig. 2 show that the viscous friction is the crucial factor 
between the stable and unstable states even for the critical 
square section cell.  

The role of the hydrodynamic coupling between the top and 
bottom interfaces can be further analysed if assuming that the 
bottom interface is fixed as 𝐻1 = 𝑐𝑜𝑛𝑠𝑡 at all time steps while

the electric current is computed for all three layers according to 
(20), (21). The results for the nearly fully discharged battery 
(ℎ01 = 5, ℎ03 = 2 cm) are presented in Fig. 3. In this case,

when the hydrodynamic coupling is neglected, the instability 

growth rate is even higher than in the coupled case (compare to 
the Fig. 2(e)). The respective Fourier spectra (Fig. 2(f) and Fig. 
3(b)), give different frequency values for the oscillation at 
which the instability sets in. The three layer frequency (𝑓 =
0.542 Hz) is lower than the corresponding two layer frequency 

(𝑓 = 0.596 Hz). 

Fig. 6: The electric current distribution at 𝑡 = 499.27 s for 

the interface shown in Fig. 5(c): (a) bottom metal, (b) top metal, 
(c) electrolyte layer.

The role of the different types of initial perturbations can 
be investigated by introducing a more complex set of the initial 
wave shapes defined as 𝐻2(𝑥, 𝑦, 0) = 𝐻02 +

𝐴′ ∑ cos(𝑘𝑥𝑥) cos(𝑘𝑦𝑦)4,4
𝑚,𝑛=0  at the upper metal interface. The
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numerical results are shown in Fig. 4, which can be compared 
to Fig. 2(e,f) for the single mode perturbation. When the com-
plex perturbation is applied, the growth of the oscillation am-

plitude is considerably slower compared to the case with the 
single mode perturbation at the critical frequency. However the 
unstable wave frequencies in both cases are exactly the same 
(𝑓 = 0.542 Hz). The similar outcome was observed when the 

lower metal interface perturbation is additionally included. 
These findings indicate that regardless of the initial condition 
combination the instability sets in at the critical frequency de-
termined by the upper metal interface. 

The unstable interfacial motion is illustrated in the Fig. 5 at 

consecutive time increments of a quarter of the period. It can 
be seen that the instability is in the form of a rotating wave 
along the cell perimeter. The top and bottom interfaces move 
in opposite phases. This observation is similar to results in [11]. 
Fig. 6 shows the electric current distribution at the time moment 
when the interfaces are in the position shown in the Fig. 5(c). It 
can be seen that the horizontal current flow in both layers is in 
opposite directions (Fig. 6 (a,b)), and the vertical current 𝑗𝑧

distribution in the electrolyte layer correlates mostly with the 
upper interface due to its more pronounced deformation. 

Conclusions. – The liquid metal battery of 20 cm size with 

sodium metal anode, which is a candidate for experimental and 
commercial implementation, is stable to magneto-
hydrodynamic waves for certain combination of the liquid layer 
depths and becomes unstable at the discharge state when the 
top metal layer depth is reduced below a critical level. The 
instability does not depend on the initial interface perturbation 
type. It was found that when the system is close to the critical 
discharge state when the top metal depth is reduced to 

approximately 3.5 cm (equal to the bottom metal depth) it will 
experience the rotating wave instability unless the metal depth 
reduction is strictly controlled.  
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