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ABSTRACT 6 

Hourly PM2.5 concentrations have multiple change patterns. For hourly PM2.5 concentration prediction, it is beneficial to 7 

split the whole dataset into several subsets with similar properties and to train a local prediction model for each subset. 8 

However, the methods based on local models need to solve the global-local duality. In this study, a novel prediction 9 

model based on classification and regression tree (CART) and ensemble extreme learning machine (EELM) methods is 10 

developed to split the dataset into subsets in a hierarchical fashion and build a prediction model for each leaf. Firstly, 11 

CART is used to split the dataset by constructing a shallow hierarchical regression tree. Then at each node of the tree, 12 

EELM models are built using the training samples of the node, and hidden neuron numbers are selected to minimize 13 

validation errors respectively on the leaves of a sub-tree that takes the node as the root. Finally, for each leaf of the tree, 14 

a global and several local EELMs on the path from the root to the leaf are compared, and the one with the smallest 15 

validation error on the leaf is chosen. The meteorological data of Yancheng urban area and the air pollutant 16 

concentration data from City Monitoring Centre are used to evaluate the method developed. The experimental results 17 

demonstrate that the method developed addresses the global-local duality, having better performance than global 18 

models including random forest (RF), v-support vector regression (v-SVR) and EELM, and other local models based on 19 

season and k-means clustering. The new model has improved the capability of treating multiple change patterns. 20 

Keywords: PM2.5 concentration prediction; Local model; Classification and regression tree (CART); Extreme learning 21 

machine (ELM); Ensemble model 22 

1. Introduction 23 

Predicting concentrations of particulate matter in the air is important for control and reduction of airborne pollution. 24 

Particulate matter refers to small particles consisting of dust, dirt, soot, smoke, and liquid droplets suspended in the air. 25 

These particles vary widely in size (aerodynamic diameter). Particles with an aerodynamic diameter less than 2.5μm 26 

(PM2.5) are known as fine particulates, which are seriously harmful to human health because of its absorption of toxic 27 

substances such as carcinogenic organic compounds and heavy metals (Thomaidis et al., 2003; Zhou et al., 2014). 28 

Exposure to high concentrations of PM2.5 has been linked to many diseases, such as diabetes, lung cancer, respiratory 29 
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and cardiovascular diseases (Requia et al., 2017). It is thought that prediction of PM2.5 concentrations is beneficial to 32 

improve early warning procedures. 33 

   In recent years, a variety of models have been developed to predict PM2.5 concentrations (Niu et al., 2016; Wang et 34 

al., 2017). These models are basically classified into two categories: deterministic and statistical models. Deterministic 35 

models, called chemical transport models (CTMs) focus on understanding the underlying complex interactions among 36 

meteorology, chemistry and emission. CTMs simulate the atmospheric chemistry and physics in the emission, transport 37 

and transformation processes. Thus, CTMs require sufficient information of pollutant sources, reaction mechanisms and 38 

chemical kinetics and so on (Sun et al., 2013). Insufficient information of pollutant sources and improper representation 39 

of physicochemical processes limit their application in many places (Qin et al., 2014). Another disadvantage of CTM 40 

approaches is high computational cost (Doraiswamy et al., 2010). On the other hand, statistical models aim to develop 41 

the relationships between selected input variables and air pollutant concentrations using various regression models. 42 

These models usually need a sufficient amount of historical data from monitoring stations. Compared to deterministic 43 

models, statistical models have the advantage of easy, quick and economical implementation when given sufficient 44 

historical data (Wang et al., 2017). Furthermore, statistical approaches are generally more competent in capturing the 45 

underlying site-specific dependencies between air pollutant concentrations and selected variables. Therefore, statistical 46 

models are less complex, computationally intensive but more accurate (Perez, 2012). 47 

   Statistical models mainly include linear and generalized linear regression, nonlinear regression, autoregressive 48 

integrated moving average (ARIMA), hidden Markov model (HMM), random forest (RF), support vector regression 49 

(SVR) and artificial neural network (ANN). Vlachogianni et al. (2011) adopted the linear regression model to predict 50 

NOx and PM10 concentrations using NO, NO2, CO, O3 and PM2.5 concentrations. The generalized linear model was used 51 

to predict PM10 concentrations in urban areas (Garcia et al., 2016). Cobourn (2010) presented a PM2.5 prediction model 52 

based on nonlinear regression and back-trajectory PM2.5 concentrations. However, the methods based on linear, 53 

generalized linear and nonlinear regression tend to oversimplify the relationships between air pollutant concentrations 54 

and predictor variables. Ni et al. (2017) designed an ARIMA time series model to explore the prediction of PM2.5 in the 55 

short-term time series. However, the ARIMA model, being a linear model, cannot be well adapted to the nonlinear air 56 

pollutant series (Niu et al., 2016). Dong et al. (2009) developed a method based on the hidden semi-Markov model to 57 

predict PM2.5 concentration levels. Moreover, Sun et al. (2013) proposed an HMM with different emission distributions 58 

to predict 24-hour-average PM2.5 concentrations in Northern California. The HMM model, however, suffers from 59 

several inherent shortcomings, such as computationally expensive training and its sensitivity to initial condition 60 

(Budalakoti et al., 2009). Random forest is a substantial modification of bagging that builds a large collection of 61 

de-correlated trees, and then averages them (Breiman, 2001). Yu et al. (2016) used the random forest algorithm to 62 
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predict air quality for urban sensing systems. Support vector regression (SVR) is based on structural risk minimization, 63 

and it has a unique global optimal solution. Kernel function applied in SVR maps the original space into a 64 

high-dimensional feature space, where a linear regression model fits the data more appropriately. The SVR is widely 65 

utilized to predict PM2.5 and other pollutant concentrations (Lu and Wang, 2005; Niu et al., 2016; Xu et al., 2017). 66 

However, several model parameters in SVR play a critical role in prediction performance. SVR requires considerable 67 

computational cost to fine-tune the parameters. The ANN models have also gained popularity in their use for the 68 

prediction of PM2.5 concentrations due to the capability of detecting complex underlying nonlinear relationships 69 

(McKendry, 2002; Qin et al., 2014; Voukantsis et al., 2011). However, the results of an ANN model are sensitive to the 70 

selection of model parameters, and the model requires considerable expertise for fine-tuning the parameters. 71 

Extreme learning machine (ELM), proposed by Huang et al. (2006), is an efficient learning algorithm for 72 

single-hidden layer feedforward neural networks (SLFNs). In ELM, the parameters of the hidden layer are randomly 73 

initialized, and the weights of the output layer are analytically computed by using Moore-Penrose generalized inverse. 74 

Thus, ELM model can be run in an extremely low computational time. However, Moore-Penrose generalized inverse 75 

leads ELM to suffer from the overfitting problem. Wang et al. (2017) utilized differential evolution (DE) to optimize the 76 

parameters of the hidden layer for predicting air quality index. In addition to optimization algorithm, ensemble 77 

algorithm can also be used to improve the performance of ELM (Zhou et al., 2002). 78 

The selection of input variables for an ANN based prediction model is a critical issue, since irrelevant or noisy 79 

variables may result to an unnecessarily complex model and poor generalization (Voukantsis et al., 2011). The linear 80 

framework, including Pearson correlation coefficient, multiple linear regression and forward stepwise regression and so 81 

on, has been widely used to select a reduced set of input variables (Cobourn, 2010; Díaz-Roles et al., 2008; Ni et al., 82 

2017; Russo et al., 2013). However, the linear framework has the limited capability of stimulating the complex 83 

relationships between air pollutant concentrations and input variables. Voukantsis et al. (2011) employed a combination 84 

of linear regression and ANN to select input variables for air pollutant prediction. To be completely free from the usual 85 

linear framework, Poggi and Portier (2011) used the RF variable importance to determine input variables for PM10 86 

prediction. In the RF framework, the most widely used measure of importance of a given variable is the mean difference 87 

of prediction errors of the trees (mean squared error (MSE) for regression) before and after the values of this variable 88 

are randomly permuted in the out-of-bag (OOB) samples (Poggi and Portier, 2011). If a variable is important, a random 89 

permutation will degrade the prediction, and the mean difference will be a large value. 90 

Due to seasonal variations and diurnal variations, PM2.5 concentrations have multiple change patterns (He et al., 91 

2017; Kassomenos et al., 2014; Liu et al., 2015). McKendry (2002) suggested that for air pollution prediction, hybrid 92 

models and local multi-layer perceptions (MLPs) may be superior to a single global MLP. Hybrid models try to 93 
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construct a set of prediction models and combine them. Díaz-Roles et al. (2008) constructed a hybrid model, 94 

aggregating the outputs of ARIMA and ANN to capture different patterns in PM10 concentrations. The hybrid model 95 

developed by Perez (2012) used nearest neighbour model as a correction which was applied to the results obtained from 96 

the ANN model. Recently, hybrid models based on time series decomposition have been gradually developed, which 97 

mainly consist of the following three steps: (1) decompose the output time series into several components; (2) train a 98 

prediction model for each component; (3) aggregate the outputs from different component models. For air pollutant, 99 

some hybrid prediction models apply wavelet transform as a tool to decompose output time series (Bai et al., 2016; 100 

Osowski and Garanty, 2007). Additionally empirical mode decomposition (EMD) and its variations also have been used 101 

to decompose the original time series (Niu et al., 2016; Wang et al., 2017; Xu et al., 2017; Zhou et al., 2014; Zhu et al., 102 

2017). 103 

Compared to hybrid models, local models split the input space into subspaces with similar properties and construct a 104 

prediction model for each subspace. In this study, global models are referred as single models developed on the total 105 

training data wherein air pollutant concentrations are from an air quality monitoring station, but local models are trained 106 

on the subsets of the training data used for global models. The local models based on season divide the training set into 107 

seasonal subsets, and train a model for individual season. Perez and Gramsch (2016) developed an ANN model to 108 

predict hourly PM2.5 in Santiago de Chile for the season when high concentration episodes occur frequently, with the 109 

training data from the same season for years 2010 and 2011. To improve air pollutant prediction, Feng et al. (2011) used 110 

clustering method to divide the dataset into several clusters and built an ANN for individual cluster. However, the 111 

output was ignored when using clustering algorithm to split the dataset, which was unreasonable. Moreover, Bettenburg 112 

et al. (2012) found that balancing thinking locally and acting globally is important for local models. Normally global 113 

models have the risk of underfitting due to multiple patterns, while local models tend to suffer from the overfitting 114 

problem. Furthermore, a global model may be beneficial for learning some patterns. Consequently, air pollutant 115 

prediction based on local models needs to address the global-local duality. 116 

This study develops a framework based on CART and EELM to deal with the global-local duality. Through 117 

constructing a shallow regression tree by using CART, the whole dataset is divided into subsets in a hierarchical manner. 118 

For each node of the tree, the EELMs are trained using the samples belonging to the node, and hidden node numbers are 119 

selected to minimize validation errors respectively on the leaves of a sub-tree that takes the node as the root. For each 120 

leaf, there are a global and several local EELMs on the path from the root node to the leaf, and the EELM with the 121 

smallest validation error on the leaf is selected. Before the implementation of the CART-EELM, input variables are 122 

selected by using the RF model. The meteorological data of Yancheng urban area and the air pollutant concentration 123 

data from City Monitoring Centre are used to evaluate the capability of the CART-EELM model in dealing with the 124 
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global-local duality. 125 

The rest of this paper is organized as follows: CART and EELM are introduced, and CART-EELM is further 126 

proposed in Section 2. In Section 3, our CART-EELM is evaluated with comparison to several other models. Section 4 127 

draws the final conclusions. 128 

2. Methodology 129 

2.1. Selection of input variables using RF 130 

In Poggi and Portier (2011), input variables were selected for PM10 prediction through the analysis of the RF 131 

variable importance. In this study, the RF model is also employed to provide variable importance ranking, but the 132 

variable selection is performed based on the cross-validation error of the RF model. The selection of input variables 133 

consists of the following steps: 134 

Step1: Assess the OOB error of the RF model, compute the importance scores of input variable candidates, and rank 135 

the candidates in a descending order of importance. To minimize sampling effects, we run the RF ten times on the 136 

training set, and the importance score of each candidate is the mean of the scores observed from ten RF models. 137 

Step 2: Invoke the most important k variables at the beginning, implement sequential introduction, and use the 138 

cross-validation error of the RF model to evaluate the different combinations of input variable candidates. The 139 

combination with the lowest error is chosen. 140 

Step 3: Return to Step 1 until no further candidates can be rejected. 141 

2.2. CART 142 

CART, developed by Breiman et al. (1984), explores the structure of the training set and generates easily 143 

understandable decision rules for regression or classification. The basic idea of the algorithm is to recursively partition 144 

the input space into binary subsets where the output becomes successively more homogeneous. 145 

Let 1{( , )}l
i i iy =x  be a set of training samples, where m

i ∈Rx  is the ith input vector and iy ∈R  is the 146 

corresponding output. CART begins with the root node, which is associated with the entire input space mR . The root 147 

node contains all the training samples. The next step is calculating the first split. For a regression problem, the split is to 148 

minimize the expected sum variances for two resulting subsets: 149 
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where SL and SR are the sets of training indices going to left child node and right child node, Ly  and Ry  are the mean 151 
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values of the outputs of samples in two subsets. The optimal j and c can be easily determined by discrete search over the 152 

m input dimensions and l samples. The children of the root node are recursively split in the same manner until some 153 

stop criterion is satisfied. 154 

CART has low computational complexity because of its recursive computation. By moving from the root node to 155 

the terminal node (leaf), each example is then assigned to a unique leaf where the predicted value is determined. 156 

Normally, the mean value of the outputs of samples fallen into the leaf is chosen as the predicted value. So CART is 157 

nonparametric and can find complex relationships between input and output variables. Therefore, CART also has the 158 

advantage of discovering nonlinear structures and variables interactions in the training samples (Brezigar-Masten and 159 

Masten, 2012). 160 

Since the split in CART aims to minimize the diversity of outputs, the model is a natural fit for pattern segmentation. 161 

In this study, the results of CART are used to replace k-means clustering, where CART is used to segment the change 162 

patterns of hourly PM2.5 concentrations. The k-means clustering is a kind of unsupervised learning, while CART is a 163 

form of supervised learning. So CART has the advantage of considering the output when segmenting patterns. 164 

2.3. EELM 165 

In ELM, the hidden layer parameters are randomly initialized. ELM is mathematically modelled by 166 

T( )i io = g x µ ,                                          (2) 167 

where ( ) p
i ∈Rg x  is the output vector of the hidden layer, p∈Rµ  is the output weight vector, and p is the number 168 

of the hidden neurons. The RBF nodes are used in this study, therefore Eq. (2) is rewritten as 169 

2 2

1
exp( / 2 )

p

i j i j j
j

o bµ
=

= − −∑ x a ,                                (3) 170 

where m
j ∈Ra  and jb R+∈  are the centre and impact factor of jth RBF node. ELM computes the output weight 171 

vector †= yµ Η  by Moore-Penrose generalized inverse, where T
1( ), , ( )]lg g= [ x xΗ , and T

1= [ , , ]ly yy . Thus, 172 

the ELM has an extremely low computational time. However, Moore-Penrose generalized inverse leads ELM to suffer 173 

from the overfitting problem. 174 

Ensemble algorithm is one of methods to improve the generalization performance of ELM. Several practical works 175 

showed that the performance of a single ELM can be improved by using properly ensemble techniques, which develop a 176 

population of ELM-based learners and then combine them to create improved results (Xue et al., 2014). 177 

Bagging and boosting are typical representatives of ensemble methods. Khoshgoftaar et al. (2011) proved that 178 

bagging generally outperforms boosting. Xue et al. (2014) proposed a novel ensemble of extreme learning machine 179 

based on Genetic algorithms (GE-ELM), which outperforms both bagging and boosting. However, GE-ELM needs 180 
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considerably more training time. It is worth noting that in this study, any ensemble methods can be used. By considering 181 

performance and computational time, bagging is chosen to ensemble ELMs. If it is assumed that all ELMs in EELM 182 

have the same number of hidden neurons, there is only one parameter in the model, hidden neuron number, which needs 183 

to be optimized when using EELM. 184 

2.4. CART-EELM model 185 

For prediction of hourly PM2.5 concentration, a novel method on training local models based on combination of 186 

CART and EELM is developed, which aims at addressing the global-local duality and improving the prediction 187 

accuracy. The algorithm developed includes the following steps: 188 

Step 1: Construct the CART tree using the training set. The deeper branches in the tree may be affected by outliers. 189 

Moreover, local models are trained at each non-root node of the tree in our algorithm. Thus, a shallow tree is 190 

constructed to capture concentration change patterns and to ensure that each leaf has enough training samples for its 191 

local model. To generate a shallow tree, a large value of the minimum number of samples in a leaf is set. Furthermore, 192 

considering the fact that samples with the low-value outputs may take the most of the dataset, the maximum depth of 193 

the tree is also set to prevent these samples from being excessively split. A CART tree is constructed using the total 194 

training samples, and is then applied for splitting the validation samples. So each node has its own training and 195 

validation samples. 196 

Step 2: Train EELMs using the associated samples. Each node in the hierarchical tree trains EELMs using the 197 

associated training samples of the node. At the root node, global models use the total training set, but utilize different 198 

validation subsets from the leaves of the tree to respectively determine the model parameters. At each internal node, 199 

local EELMs are trained with its own training samples, and the model parameters are chosen to minimize the validation 200 

errors respectively on the leaves of a sub-tree that takes the node as the root. At each leaf node, a local EELM is 201 

obtained with its own training and validation samples. 202 

Step 3: Compare a global and local EELMs associated to the leaf. For each leaf of the tree, a global and several 203 

local EELMs on the path from the root node to the leaf are compared, and the one with the minimum validation error on 204 

the leaf is chosen. 205 

Given a testing sample, it is assigned into a unique leaf where its prediction model is determined. The testing 206 

procedure consists of two steps: 207 

Step1: Assign the testing sample to a unique leaf using the splitting rules of the developed tree. 208 

Step2: Make a predicted value for the testing sample using the prediction model chosen for the assigned leaf. 209 

Local models at deep levels (e.g., at the leaves) may suffer from the overfitting problem. A global model trained on 210 

the total dataset is hard to learn well all the patterns, but may be beneficial for capturing some patterns. Firstly, the 211 
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prediction model for a leaf is chosen based on the comparison of a global model and local models on the path from the 212 

root node to the leaf, which can address the global-local duality. For the testing samples in a leaf (an input subspace), 213 

training a prediction model in a larger input space and selecting the model parameter to minimize the validation error on 214 

the leaf samples may be beneficial. The CART-EELM model aims to seek the best training set for each subspace (i.e., 215 

each leaf) based on the hierarchical regression tree. Secondly, at each non-leaf node, we choose different model 216 

parameters for different leaves of a sub-tree that takes the node as the root node, since different leaves may have distinct 217 

patterns. Finally, benefitting from high computational efficiency of EELM, the CART-EELM model has acceptable 218 

computational cost. 219 

3. Data and model implementation 220 

3.1. Data 221 

The experiments on a real-world air pollution dataset are made to prove the effectiveness of the proposed model. 222 

The dataset is from Yancheng city, which is one of the 13 cities under the direct administration of Jiangsu Province, 223 

China. Yancheng city spans between northern latitude 32°34'-34°28', eastern longitude 119°27'-120°54'. As shown in 224 

Fig. 1, the city is located in the middle of the northern plain of Jiangsu, and on the east of the city is the Yellow Sea. 225 

Yancheng is fast growing urbanization. Increased energy consumption and the number of vehicles prompt the air 226 

pollutant exposure levels especially for the fine particulates. Although clean energy and green technologies are 227 

encouraged in Yancheng and neighbouring cities, this city still has experienced severe pollution events. 228 

 229 

Fig. 1. Location of Yancheng Environment Monitoring Central Station 230 
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To monitor air pollution, networks of monitoring stations in major cities of China have been established. The hourly 231 

average concentrations of six air pollutants (PM2.5, O3, PM10, SO2, NO2, CO) are automatically recorded at monitoring 232 

stations. In Yancheng urban district, there are five monitoring stations: Wenfeng Middle School, Yancheng Power Plant, 233 

Administrative Committee of Development Zone, Baolong Square and City Monitoring Centre. 234 

Since early 2013, the Environmental Protection Administration began to publish these real-time data to the public. 235 

Now the data from the station of City Monitoring Centre are used in this study, which is located in an area with the high 236 

population density. The air quality data encompasses July 1, 2015 to June 30, 2018. In addition, the meteorological data 237 

of Yancheng urban area from July 1, 2015 to June 30, 2018, which consists of surface wind speed (WS) and direction 238 

(WD), temperature (T), surface air relative humidity (RH) and rainfall (R), are also incorporated into the models. The 239 

data from July 1, 2015 to December 31, 2017 are used for training; the data from January 1, 2018 to June 30, 2018 are 240 

used for testing. The models involved are developed in Python 3.6 using Anaconda 3. The experiments are conducted 241 

on a computer with a Win10 64 bit OS running on Intel Core i5-7440HQ with 8 GB RAM. 242 

Some values in the air quality and meteorological data are missing for the studied period. The missing values are 243 

interpolated by using cubic spline interpolation when the missing gap is less than 3 hours and there is no missing value 244 

in 3 hours before and after. Let the observed PM2.5 value at time t+1, denoted as PM2.5(t+1), be the output of a sample. 245 

The corresponding input candidates include air pollutants at times t-2, t-1 and t, and the meteorological data at time t. 246 

Moreover, the meteorological data at time t+1 is also included as input candidates, since the predicted meteorological 247 

data for the next hour can be used in practical implementation. The -sine and cosine transformations are employed for 248 

the wind direction (Feng et al, 2015). Weekend indicator (1 if yes, 0 otherwise) for time t+1, abbreviated WEI(t+1), is 249 

added due to alterations in traffic patterns and industrial behaviours at weekends. The corresponding input candidates 250 

are given in Table 1. After the samples with any missing value are deleted, we have 19627 training samples and 3898 251 

testing samples. 252 

Table 1: The input variable candidates corresponding to the output PM2.5(t+1). 253 
Input candidate names Input candidate vector 

XC0,…,XC17 CO(t-2),CO(t-1),CO(t),NO2(t-2),NO2(t-1),NO2(t), 
O3(t-2),O3(t-1),O3(t),SO2(t-2),SO2(t-1),SO2(t), 

PM10(t-2),PM10(t-1),PM10(t),PM2.5(t-2),PM2.5(t-1),PM2.5(t) 
XC18,…, XC29 T(t) , T(t+1), cos(WD(t)), cos(WD(t+1)) ,-sin(WD(t)), 

-sin(WD(t+1)), WS(t), WS(t+1),R(t), R(t+1), H(t), H(t+1) 
XC30 WEI (t+1) 

3.2. Selection of input variables using RF 254 

We use 5-fold cross-validation error of the RF model to evaluate the different combinations of input variable 255 

candidates. The most important 15 variables are invoked in each iteration. In the first iteration, five candidates, 256 

including XC11, XC15, XC22, XC28 and XC31, are rejected. In the second iteration, another seven candidates (XC1, XC2, 257 
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XC4, XC10, XC14, XC21 and XC27) are rejected. No candidates can be rejected in the third iteration. The selected input 258 

variables are given in Table 2. Finally, we run the RF model to obtain the importance scores of the selected variables. 259 

As shown in Fig. 2, the variable X10 (the lagged 1-hour PM2.5 concentration) is far more important than any other 260 

variable. The variable X15 (the lagged 1-hour wind speed) is the second important variable, which is followed by the 261 

variable X16 (the wind speed of the next hour). Let us remark that both XC26 and XC27 are rejected due to the small 262 

importance. Similarly in Poggi and Portier (2011), the daily total rainfall was not retained in the prediction model of the 263 

daily mean PM10 concentration. 264 

Table 2: The selected input variables corresponding to the output PM2.5(t+1). 265 
Input variable names Input vector 

X0,…,X10 CO(t), NO2(t-1),NO2(t),O3(t-2),O3(t-1),O3(t), 
SO2(t),PM10(t-2), PM2.5(t-2),PM2.5(t-1),PM2.5(t) 

X11,…, X18 T(t) , T(t+1), -sin(WD(t)), -sin(WD(t+1)), 
WS(t), WS(t+1), H(t), H(t+1) 
 266 

 267 

Fig. 2. Importance scores of the selected input variables 268 

3.3. CART-EELM model 269 

3.3.1. Splitting the dataset by using CART 270 

This study constructs a shallow tree to capture concentration change patterns and ensure that each leaf has 271 

enough samples for its local model. To train a shallow regression tree, the minimum number of samples in a leaf 272 

and the maximum depth of the tree are set to 1000 and 3, respectively. In Fig. 3, the results of splitting the training 273 

set by using CART are given. The serial number for the root node is 0, and all the nodes choose X10 (the lagged 274 

1-hour PM2.5 concentration) to split its own dataset, since X10 contains the most information on next hour 275 

prediction (Lyu, et al, 2017). The persistence model is the simplest one, whose prediction for a given hour is the 276 

observed value of the previous hour. 277 

The number of samples in nodes #3 and #4 reaches 10209, accounting for 52.02% of the total training set. 278 

Non-leaf nodes indicate the splitting rules. The value in each node is the mean value of the outputs of samples 279 

fallen into the node. There are significantly different MSE values for different leaves, which sharply increase as 280 

the serial numbers of the leaves increase. 281 
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 282 
Fig. 3. Training results of the CART 283 

 284 

3.3.2. Prediction model based on the CART–EELM 285 

Each node in Fig. 3 has its own dataset. The hidden neuron numbers of EELM models are selected from286 

{30,45, ,300} . To seek the optimal numbers, 5-fold cross-validation is implemented. For each non-leaf node of 287 

the CART tree, EELMs are trained using the samples belonging to the node, and the hidden neuron numbers are 288 

selected to minimize validation errors respectively on the leaves of a sub-tree that takes the node as the root node. 289 

Before training EELMs, the input variables are normalized within [0,1] by 290 

1

1 1

min( )
,

max( ) min( )

d d l
i i id

i d l d l
i i i i

x x
x

x x
=

= =

−
=

−
                              (4) 291 

where l denotes the number of samples, p the number of numerical variables, d
ix  the origin value of the thd  292 

number variable, and d
ix  the normalized value of the thd  number variable. 293 

The root node has 7 leaves. In order to show the selection procedure clearly, an example of training a global 294 

model at node #0 for node #3 is given. The total training set (the training set that belongs to node #0) is first 295 

divided into 5 separate subsets with approximately equal size. A series of 5 models are then trained, each using a 296 

different combination of 4 subsets. For each candidate of hidden neuron numbers, the validation error on node #3 297 

is evaluated for each model, utilizing the subset of the data that are not used in training and belongs to node #3. 298 

Then the validation error is determined by averaging over all 5 validation subsets. The root mean square error 299 

(RMSE) is used as the error criterion, which is calculated by 300 

                                 2

1

1 ˆRMSE ( )
l

i i
i

y y
l =

= −∑ ,                                       (5) 301 

where ˆiy  is the predicted value. 302 
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The first subplot in Fig. 4 demonstrates the average validation error on node #3 when using different 303 

candidates of hidden neurons numbers. The same selection procedure is implemented for other 6 leaves at node #0. 304 

The top first 7 subplots in Fig.3 show the validation errors of all global models at node #0. For the global models 305 

trained at node #0 for 7 leaf nodes, the optimal numbers of hidden nodes are 105, 255, 120, 90, 210, 300 and 135, 306 

respectively. It shows that different leaves may require different numbers of hidden neurons. The last subplot of 307 

Fig. 4 gives the validation errors of a global EELM on the total validation set. Its optimal model parameter is 135, 308 

which is resulted from balancing different leaf validation errors to minimize the total validation error. 309 

 310 

Fig. 4. Validation errors of the global models 311 

 312 

Additional example of training local models is given at node #8 for nodes #10, #11 and #12. In Fig. 5, it shows 313 

the parameter selection results. For local models trained at node #8 for nodes #10, #11 and #12, the optimal 314 

numbers of hidden nodes are 60, 75 and 135, respectively. 315 
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 316 

Fig. 5. Validation errors of local models at node #8 317 

The models at all the nodes are organized in a hierarchical fashion, as shown in Fig. 6. #8
#10EELM , is shown as 318 

an example to clarify the information provided in the node. #8
#10EELM  represents the EELM model trained at node 319 

#8 for node #10. The optimal parameter is selected as 60 with the RMSE error of 13.13. For node #10 (a leaf), a 320 

global model and three local models, namely #0
#10EELM , #8

#10EELM , #9
#10EELM  and #10

#10EELM , are compared in 321 

terms of the RMSE error, and finally #0
#10EELM  is chosen. Consequently the prediction models for other 6 leaves 322 

are obtained. 323 
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Fig. 6. EELM models at all nodes of the CART tree 325 

For the input region of node #3, where X10 is not larger than 19.5μg·m-3, the prediction model is trained at 326 

node #2, where X10 is not larger than 33.5μg·m-3. Other three leaves in the left branch of the root node choose 327 

node #1, where X10 is not larger than 71.5μg·m-3, to train the prediction models. For nodes #10 and #11, the 328 

prediction models are trained at the root node. The prediction model of node #12 is trained at node #8, where X10 329 

is larger than 71.5μg/m3. The selection procedure provides the flexibility to address the global-local duality. 330 
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3.4. Global models 331 

In order to evaluate the model effectiveness, the model has been compared with the persistence model and 332 

global models, including RF, v-SVR and EELM. The model is also compared with local models based on season 333 

and clustering algorithm. In the RF model, it consists of 100 trees, and the model has a single parameter, i.e., the 334 

minimum number of samples in a leaf, which is selected from {1,2,…,8}. The value of ε  in SVR chosen as a 335 

prior, is hard to determine. To overcome the difficulty of ε  determination, the v-SVR (Schökopf et al., 2000) is 336 

used, whereby v controls the number of support vectors and training errors. In this study, Gaussian kernel function 337 

is applied in the v-SVR: 338 

2 2( , ) exp( / 2 ).i j i jk γ= − −x x x x                              (6) 339 

The v-SVR model owns three parameters: v, γ  and the regularization parameter C, which are selected from 340 

{0.3,0.4,…,0.7},{0.1,0.15,…,0.45} and {0.5,1,…,3}, respectively. Thus in the v-SVR, there are 240 combinations 341 

of three parameter values. The parameter selection based on 5-fold cross-validation is also applied to several 342 

global models. The optimal parameter of the RF turns out to be 1. The optimized parameters of the v-SVR are 343 

selected as v=0.4, γ = 0.45 and C = 1. For the EELM, the optimized parameter is 135, which is indicated in the 344 

last subplot in Fig. 4. 345 

3.5. Local models based on season and k-means 346 

The seasonal models split the training set into three subsets based on prevailing weather patterns that may 347 

influence the PM2.5 buildup. Fig. 7 presents the monthly mean temperatures, wind speeds and relative humilities as 348 

well as the monthly rainfalls over the period between July 1, 2015 and December 31, 2017. The monthly mean 349 

concentrations of PM2.5 are indicated in Fig. 8. The PM2.5 monthly mean concentration is negatively correlated to 350 

the monthly mean temperature and relative humidity as well as the monthly rainfall. The correlation coefficients 351 

are -0.88, -0.58 and -0.59, respectively. 352 

A winter season model is trained for the time period between December and February, in which the monthly 353 

mean temperatures and the monthly rainfalls were generally low. As shown in Fig. 8, the monthly mean 354 

concentrations of PM2.5 exceeded 60 μg·m-3 during this period. The data from March, April and November are 355 

used for the model corresponding to middle PM2.5 levels. It is should be noted that in October 2015, high 356 

concentration episodes occurred, and the data from this month are used for middle PM2.5 levels. Finally, the third 357 

model is trained for the time period between May and October. During this period, the monthly mean temperatures 358 

and the monthly rainfalls were generally high, and the monthly mean concentrations of PM2.5 were lower than 40 359 

μg·m-3. 360 
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 361 

Fig. 7. Monthly mean concentrations from July, 2015 to December, 2017 362 

 363 

Fig. 8. Monthly mean concentrations of PM2.5 from July, 2015 to December, 2017 364 

The k-means clustering model aims to partition the l samples into k sets S={S1,S2,…,Sk} in such a way that within 365 

each cluster the average dissimilarity of the samples from the cluster mean is minimized. Mathematically, the objective 366 

of the k-means clustering is to find 367 

                                     

2

1
arg min

i

k

i
i x S= ∈

−∑∑
S

x µ ,                                     (7)
 

368 

where iµ  is the mean of points in Si. Unfortunately, such optimization by complete enumeration is feasible only for 369 

very small data sets. The strategy based on iterative greedy descent is the most popular method to obtain a good 370 

suboptimal partition. In general, there are three steps involved in the strategy. Namely, 1. initialize k cluster centroids; 2. 371 

assign each training example to its closest centroid; 3. recalculate each cluster centroid using the examples assigned to it 372 

in Step 2, and go back to Step 2 until convergence. The algorithm repeats Step 2 and Step 3 until the centroids do not 373 

change between two consecutive iterations. 374 
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The prediction method based on k-means divides the dataset into several clusters using k-means and builds a 375 

local EELM for individual cluster. The number of clusters is critical to the performance of the local models. The 376 

value of k can be determined by various methods. In this study, 5-fold cross-validation is used to choose the 377 

optimal k ranging from 2 to 7. Firstly, the total training set is partitioned into k clusters. Secondly in each cluster, 378 

we train a local EELM, whose hidden neuron number is selected by 5-fold cross-validation. Then for a certain k, 379 

the validation error averaged over different clusters is obtained. Finally, the validation errors for different values 380 

of k are compared, and the one with the minimum validation error is chosen. In the study, the optimal number of 381 

clusters turns out to be 3. 382 

 383 
Fig. 9. Scatter plots between the lagged 1-hour PM2.5 concentration and the lagged 1-hour wind speed in three clusters 384 

To extract the characteristics in three clusters, the scatter plots between the lagged 1-hour PM2.5 concentration 385 

and the lagged 1-hour wind speed in three clusters are given in Fig. 9, since these two variables are the two most 386 

important predictors. In Fig. 9, cluster 1 tends to include more samples that have low lagged 1-hour PM2.5 (less 387 

than 30μg·m-3) but high lagged 1-hour wind speed (higher than 6 m·s-1). In three clusters, the two most important 388 

elements of the centroids are (33.17, 2.61), (52.47, 1.98) and (47.17, 1.78), respectively. It may be unreasonable 389 

that the latter two are closely spaced. 390 

3.6. Prediction results and discussion 391 

The training times required by different models are given in Table 3. The RF model has the shortest training 392 

time, while the v-SVR has the highest computational cost, since the v-SVR needs to solve a quadratic 393 

programming problem for each combination of parameter values. The training time of the k-means-EELM is more 394 

than four times that of the EELM. Due to high computational efficiency of the EELM, the training times of three 395 

kinds of local models are significantly shorter than that of the v-SVR. 396 

The testing errors from different models are also given in Table 3. The testing set is split by the CART in Fig. 397 

3. The errors in seven input regions, corresponding to the seven leaves, are also included in Table 3. The 398 

persistence model services as a benchmark for other models. Except in the nodes #3 and #4, the prediction 399 
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accuracy of the RF is inferior to those of the v-SVR and the EELM. Splitting the training set based on season 400 

increases the performance of the EELM, but the k-means-EELM is slightly inferior to the EELM in terms of 401 

accuracy on the total testing set. 402 

Table 3: Testing results of different models. 403 
Models Training 

time/m 
Testing 

RMSE/μg·m-3 
Testing RMSEs on the leaves/μg·m-3 

#3 #4 #6 #7 #10 #11 #12 
Persistence - 10.10 4.99 6.23 8.25 10.44 12.34 15.71 20.01 

RF 23.08 9.81 4.61 6.07 8.02 9.58 11.53 14.63 20.87 
v-SVR 1201.12 9.23 4.80 6.11 7.94 9.49 10.78 13.52 18.25 
EELM 38.03 9.22 4.82 6.10 7.92 9.57 10.97 13.30 18.10 

Seasonal EELM 35.42 9.12 4.86 6.06 7.88 9.45 10.86 13.28 17.69 
k-means-EELM 161.23 9.25 4.86 6.19 7.94 9.61 10.95 13.33 18.13 
CART-EELM 87.05 8.96 4.63 6.04 7.86 9.35 10.82 13.20 17.02 

For the results, the CART-EELM shows the most satisfactory accuracy on the total testing set. At leaves #4, #6 404 

and #7, the CART-EELM achieves the best prediction accuracy. At node #10, the prediction performance of 405 

CART-EELM is slightly worse than the v-SVR. At node #12, the prediction error of the CART-EELM drops by 406 

5.97% and 3.79% compared with the EELM and the seasonal EELM, respectively. To further compare the 407 

CART-EELM with other models, the mean absolute error (MAE), the mean absolute percentage error (MAPE) and 408 

correlation coefficient the on the total testing set are given in Table 4. The MAE and the MAPE are calculated by 409 

                                1

1 ˆMAE
l

i i
i

y y
l =

= −∑ ,                                     (8) 410 

                                1

ˆ1MAPE
l

i i

i i

y y
l y=

−
= ∑ .                              (9) 411 

The CART-EELM model has the lowest testing MAE and MAPE on the total testing set. It is found that the 412 

correlation coefficient has the lowest sensitivity. Among these statistical indicators, the RMSE is proposed as the 413 

key one for the description of the model skill (Thunis et al., 2012). 414 

Table 4: Other statistical indicators of different models. 415 
Models Testing MAE/μg·m-3 Testing MAPE/% correlation coefficient 

Persistence 6.43 16.85 0.97 
RF 6.24 16.76 0.97 

v-SVR 6.04 16.78 0.98 
EELM 5.99 16.46 0.98 

Seasonal EELM 5.99 16.51 0.98 
k-means-EELM 6.04 16.71 0.98 
CART-EELM 5.86 16.01 0.98 

According to the newly updated Ambient Air Quality Standard (GB3095-2012) and combined with the actual 416 

air pollution condition of three Chinese cities, the ambient air quality levels and the corresponding concentration 417 

ranges of PM2.5 were developed (Xu et al., 2017). Table 5 presents the levels and the corresponding ranges. The 418 

correct estimations, the underestimates and the overestimates are counted for the EELM, the seasonal EELM and 419 

the CART-EELM. Compared with an overestimation, an underestimation may bring more harm to the public. 420 

Statistical results of three models are indicated in Table 6. The first row of the CART-EELM, is taken as an 421 

example to clarify the information provided in Table 6. There are 437 samples with the actual levels being Ⅰ. 422 
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Among these, 279 samples are correctly estimated and the rest 158 samples are overestimated as level Ⅱ. From 423 

Table 6, it is found that the CART-EELM has the most correctly estimated samples and the least underestimated 424 

samples. 425 

Table 5: The ambient air quality levels and the corresponding concentration ranges 426 
Levels 

Good (Ⅰ) Regular (Ⅱ) Bad (Ⅲ) Very bad (Ⅳ) Extreme bad (Ⅴ) 
(0,15] (15,35] (35,75] (75,120] (120,+∞) 

Table 6: Statistical results of the estimated levels from the EELM, the seasonal EELM and the CART-EELM 427 
Actual 
levels 

EELM Seasonal EELM CART- EELM 
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

Ⅰ 280 157 0 0 0 280 157 0 0 0 279 158 0 0 0 
Ⅱ 77 1214 130 1 0 85 1212 124 1 0 70 1223 129 0 0 
Ⅲ 2 104 1068 62 0 1 104 1066 65 0 1 103 1071 61 0 
Ⅳ 0 0 79 414 27 0 0 78 417 25 0 0 69 423 28 
Ⅴ 0 0 0 38 245 0 0 1 39 243 0 0 0 35 248 

In this study, the CART-EELM model has better performances compared to the other models discussed. The 428 

global model trained on the total dataset is hard to fit well all the patterns, and the local models trained at the 429 

leaves have the overfitting risk. The current model presented aims to deal with the global-local duality for each 430 

leaf. The prediction model for a leaf is selected among a global and several local EELMs on the path from the root 431 

node to the leaf, in terms of the validation error on the leaf. The selection procedure provides the CART-EELM the 432 

flexibility to deal with the global-local duality. 433 

The evaluation results also show that splitting the dataset based on season increases the prediction accuracy of 434 

the EELM model. Compared to the global model based on the EELM, local models based on k-means cannot 435 

improve the performance. In the case, the CART-EELM model shows better effectiveness of the PM2.5 436 

concentration prediction. 437 

4. Conclusions 438 

The multiple change patterns of PM2.5 concentrations increase the difficulty of hourly PM2.5 prediction. As 439 

local models show great potential to improve the prediction accuracy, local prediction models based on the 440 

CART-EELM is proposed, which uses the CART to split the training set into subsets in the fashion of a 441 

hierarchical tree and EELMs are trained at each node with its own training samples. The prediction model for each 442 

leaf is then selected among a global model and local models on the path from the root node to the leaf in terms of 443 

the validation error on the leaf. 444 

For the experimental results of evaluation, it can be concluded: (1) the method can address the global-local 445 

duality for the prediction model on each leaf; (2) the CART-EELM method has better performances than the global 446 

models, including RF, v-SVR and EELM; (3) the CART-EELM method also show outperforms compared to the 447 

seasonal EELM and the k-means-EELM. 448 
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