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1. Introduction 

The effect of knowledge externalities on productivity has direct relevance for public policy and 

welfare. In early modelling efforts (e.g., Arrow, 1962; Chipman, 1970; Meade, 1952; 

Sheshinski, 1967; Simon, 1947), the externality is due to ‘learning from others’ and the latter 

is a positive function of the learner’s capital stock. Griliches (1979; 1992) has contributed to 

the debate by introducing the notion of external knowledge capital, proxied by the level of 

external R&D capital stock. This approach ties in with macro-level endogenous growth 

modelling efforts, where investment in innovation is associated with increasing returns 

(Grossman and Helpman, 1991; Romer, 1990). 

Of the narrative reviews that evaluate the empirical research, Griliches (1992) acknowledges 

the risk of publication selection bias but goes on to conclude that the elasticity estimates of the 

spillover effect are practically significant and usually larger than those of own R&D capital. 

Mohnen (1996) acknowledges that the rates of return on external R&D are estimated less 

precisely than elasticities, but he also affirms that returns on external R&D are larger than those 

of own R&D by 50%-100%. Similarly, Cincera and Van Pottelsberghe de La Potterie (2001) 

report that: (i) international spillovers contribute to productivity growth substantially; (ii) the 

productivity effects are larger in countries with a higher degree of openness to imports; and 

(iii) the spillover effects are often larger than those of domestic (own) R&D. Only a more recent 

review by Hall et al. (2010) reports elasticity estimates that are similar to those of own R&D.  

The aim of this study is to contribute to existing knowledge and inform evidence-based policy 

by providing unbiased effect-size estimates for different spillover types, verifying the statistical 

power in the evidence base and accounting for sources of heterogeneity therein. Our findings 

are based on data from 60 primary studies that report 983 spillover and 501 own-R&D effects 

on productivity at the firm, industry or country/region levels.  

Drawing on best practice in meta-regression analysis (Stanley et al., 2013), we address a 

number of research questions with relevance for public policy, business decision-making and 

future research: (i) What is the average productivity effect of spillovers after controlling for 

publication selection bias and choosing the appropriate estimation method? (ii) How does the 

average effect vary between spillover types (e.g., knowledge spillovers, rent spillovers, and 

mixed spillovers) and between cross-section units of the analysis (firms, industries, 

countries/regions)? (iii) How do spillover effects compare to those of own R&D?  (iv) Does 
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the evidence in this research field have adequate statistical power and what are the implications 

for average effect size when only adequately-powered evidence is used?  (v) What moderating 

factors related to publication type, sample characteristics, estimation methods, etc. are 

significant in explaining the heterogeneity in the evidence base?   

To address these questions, the paper is organised in six sections. In section 2, we present the 

theoretical/empirical framework that characterises the research field. Here, we introduce the 

primal approach adopted in the primary-studies; the different notions of external knowledge 

stock that yield knowledge, rent or mixed spillover effects; the different cross-section units for 

which spillover effects are estimated (firm, industry, country/region); the channels through 

which spillover effects unfold (technological proximity, patent citations/flows, intermediate 

inputs, imports, etc.); and the weights used for calculating the spillover pools. In section 3, we 

present our search strategy, inclusion/exclusion criteria and an overview of the evidence base.  

Our meta-regression methodology is presented in section 4, where we first make the case for 

hierarchical models (HMs) that allow for flexibility in modelling unobserved heterogeneity and 

take account of nested nature of the data.1 Then we verify the statistical power of the effect-

size estimates in the literature and report the proportion of the adequately-powered evidence in 

the sample. Third, we compare the average effect-size estimates from the full sample with those 

obtained from adequately-powered evidence only. Finally, we go beyond the ad hoc manner in 

which the covariates (moderating variables) are selected in the multivariate meta-regression 

models (MVMRM). We propose a weighted average least squares (WALS) routine that 

provides information similar to a Bayesian model averaging (BMA) approach (De Luca and 

Magnus, 2011).  

Section 5 presents the empirical findings on: (i) average effect-size estimates from the full 

sample, broken down by spillover types and cross-section units in the data; (ii) the proportion 

of adequately-powered estimates in the research field; (iii) average effect-size estimates based 

on adequately-powered evidence; and (iv) MVMRM estimates that provide information about 

observed sources of heterogeneity in the evidence base. Finally, in the conclusions, we distil 

the main findings and discuss their implications for public policy, business decision-making 

and future research.  

                                                        
1  We consider the effect-size estimates as nested within primary studies or within clusters of different spillover 

types such as knowledge, rent or mixed spillovers. We model heterogeneity as random intercepts, random slopes 

or both – depending on likelihood ratio tests.  
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2. Spillovers and productivity: the theoretical/empirical framework  

The effect-size estimates we analyse adopt the so-called primal approach, which draws on a 

Cobb-Douglas production function augmented with own-R&D capital and external R&D 

capital (Griliches, 1979). The augmented production function can be stated as follows:  

𝑌𝑖𝑡 =  𝐴𝑖𝑒𝜆𝑡𝐶𝑖𝑡
𝛼𝐿𝑖𝑡

𝛽
𝐾𝑖𝑡

𝛾
𝑆𝑖𝑡

𝜑
𝑒𝑢𝑖𝑡          (1a)  

 

Here, Y is real output; C is deflated physical capital stock; L is labour (number of employees 

or hours worked); K is own R&D capital stock; S is the spillovers pool (as specified below); λ 

is the rate of disembodied technological change; and A is a unit-specific constant. Subscripts t 

and i denote time and cross-section units (firms, industries or countries/regions), respectively. 

Two standard assumptions underpinning (1a) are constant returns to scale and continuous 

optimisation by the production unit. 

The spillover pool (S) available to unit i is the weighted sum of the R&D capital stock in other 

units (j) where j ≠ i; and can be unscaled (1b) or scaled (1c).  

𝑆𝑖𝑡 =  ∑ 𝑊𝑖𝑗𝐾𝑗𝑡
𝑛
𝑗=1          (1b)  

𝑆𝑖𝑡 =  ∑ 𝑎𝑖𝑊𝑖𝑗𝐾𝑗𝑡
𝑛
𝑗=1          (1c) 

 

The weight 𝑊𝑖𝑗 (or 𝑊𝑖𝑗𝑡 if the weight is calculated for each year rather than as an average for 

the analysis period) is a vector that captures either technological proximity or transaction 

intensity between i and j. In (1c), 𝑎𝑖  is an additional weight that captures the spillover-

recipient’s openness to international imports from or to ‘intermediates trade’ with units in j. 

Several studies (e.g., Coe et al., 1997; Keller, 1998; Krammer, 2010; Lee, 2005) utilize the 

additional weight arguing that the productivity effects of spillovers depend not only on bilateral 

import or transaction shares but also on the beneficiary’s openness to import or transaction 

with the ‘rest of the world’. Finally, 𝐾𝑗𝑡 is the R&D capital of unit j in period t.  

Taking natural logarithms and using lower-case letters to denote logged values, we obtain (2a) 

below. The log of technical progress (𝐴𝑒𝜆𝑡) yields a unit-specific effect (ηi) and a time effect 

(λt). The coefficient of main interest is 𝜑 - the elasticity of output with respect to external R&D. 

For comparison, however, we also extract the estimates of γ, the elasticity of output with respect 

to own R&D. 

𝑦𝑖𝑡 =  𝜂𝑖 + 𝜆𝑡 + 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝑢𝑖𝑡       (2a) 
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Some studies utilise total factor productivity (TFP) instead of output as the outcome variable. 

This is obtained either by estimating the model with conventional inputs (C and L) and 

obtaining TFP as the residual; or by constructing an input-based TFP index a la Malmqvist, 

Tornqvist or Caves et al. (1982). Then the model is: 

𝐿𝑜𝑔𝑇𝐹𝑃𝑖𝑡 =  𝜂𝑖 + 𝜆𝑡 +  𝛾𝑘𝑖𝑡 + 𝜑𝑠𝑖𝑡 + 𝑢𝑖𝑡      (2b)  

Coefficient estimates from (2a) and (2b) will be consistent if the assumptions of perfect 

competition and constant returns to scale are satisfied.  

Some studies estimate rates of return to own and external R&D investment by assuming rate-

of-return equality between cross-section units. We exclude such studies (e.g., Griliches and 

Lichtenberg, 1984; Mansfield, 1980; Wolff and Nadiri, 1993) for two reasons. First, rate-of-

return estimates are biased if the assumption of zero depreciation for R&D does not hold 

(Griliches, 1979). Secondly, rate-of-return estimates for both own and external R&D are much 

less precise than the elasticity estimates; and the imprecision is more evident with respect to 

external R&D (Hall et al., 2010).  

Focusing on the primal-approach and only elasticity estimates allow for pooling comparable 

evidence derived from a common model. Nevertheless, such demarcation does not eliminate 

the risk of heterogeneity among reported findings for several reasons. First, R&D spillover is 

a theoretical construct that is not observable in the data at hand. The common practice is to 

construct a stock of external R&D (knowledge) capital, S, which may capture different types 

of spillovers depending on the channels through which external knowledge is diffused and the 

weights (W) used (Griliches, 1992; Hall et al., 2010).  

One channel is technological proximity between the sources and recipients of the spillover 

effects. In this case, the weight captures the recipient’s proximity to its counterparts in the 

technology space. External R&D pools constructed with such weights are considered as sources 

of knowledge spillovers because the latter are not mediated through bilateral transactions 

between the sources and recipients of the knowledge externalities (Cincera and Van 

Pottelsberghe de La Potterie, 2001; Griliches, 1992; Hall et al., 2010; Mohnen, 1996; 

Verspagen, 1997). We have also described the reported estimates as knowledge spillovers if 

the spillover pool is constructed with equal weights (pure knowledge spillovers) or with 

weights that reflect geographical distance between units (spatial knowledge spillovers). 
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A large number of studies use bilateral import shares (see, Coe and Helpman, 1995) whereas 

some utilise intermediate input flows between industries (see, Biatour et al., 2011). In line with 

the literature, we classify the effect-size estimates based on such weights as rent spillover 

effects, which arise from the wedge between market prices paid by the buyers and the quality-

adjusted true prices not observed in the data (Griliches, 1979; 1992).2  

There is less clarity about how to characterise the external knowledge pools when the weights 

capture the intensity of bilateral transactions in knowledge-intensive goods/services (e.g., 

patent flows/citations; R&D collaborations, movements of R&D personnel, etc). Mohnen 

(1996) and Verspagen (1997) are in favour of classifying such pools as knowledge spillovers. 

However, Griliches (1992) and Hall et al., (2010) are less sanguine. They draw attention to the 

difficulty of classifying them as such because externalities mediated through bilateral 

transactions do not fit the theoretical concept of knowledge externalities – even though the 

transactions may involve knowledge-intensive goods/services. Therefore, we have coded for a 

third category of mixed spillover effect when the primary-study estimates are based on weights 

reflecting transaction intensity in knowledge-intensive goods/services (e.g., Branstetter, 2001; 

Griffith et al., 2006; Lee, 2005; Los and Verspagen, 2000).  

Some primary studies (e.g., Keller, 1998; Krammer, 2010; Lee, 2005) argue that the level of 

rent and/or mixed spillovers would depend on two parameters: bilateral import/purchase shares 

and the spillover recipient’s openness to ‘trade’. The argument here is that the spillover 

recipient that is more open to ‘trade’ would derive a higher level of benefit from R&D 

externalities compared with another that is less open to trade. Hence a further source of 

heterogeneity is whether the weight is unscaled (i.e., reflects only bilateral import or purchase 

shares as in 1b above) or scaled (as in 1c above).  

A third source of heterogeneity is due to different cross-section units in the panel datasets. 

Some studies use firm-level data while others use industry or country data. Hence we are faced 

with different levels of aggregation in the construction of the external knowledge stock and 

this may lead to different effect-size estimates. Also, the productivity effect of external 

knowledge may coexist with different countervailing effects that differ by the level of analysis. 

For example, at the industry level, knowledge externalities may co-exist with creative 

destruction effects (Aghion et al., 2014; Aghion and Howitt, 1992; Schumpeter, 1942) or 

                                                        
2 Market prices are expected to be lower than quality-adjusted prices unless the innovative supplier has full 

monopoly power. 
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market-stealing effects (Bloom et al., 2013). Such adverse effects may take longer to unfold 

when the analysis is at the country level. 

Finally, heterogeneity in the evidence base can result from between-study and within-study 

variations with respect to sample characteristics (e.g., high versus low R&D-intensity firms or 

industries), model specification (e.g., number of spillover types included in the model), 

estimation methods (standard OLS, dynamic OLS, panel cointegration, instrumental variable 

estimations, etc.), data period (relatively old or recent data),  and publication types (journal 

articles, working papers, reports, etc.).  

 

3. Inclusion/exclusion criteria and overview of the research field  

To identify the eligible studies, we began with studies cited in the existing narrative reviews 

mentioned above. This sample was augmented with potentially eligible studies identified 

through electronic search in Google Scholar and in the Science & Technology Management 

Bibliography (STMB). 3 The search period is set from 1980 to 2016, using keywords such as 

R&D spillovers, knowledge spillovers, productivity, R&D externalities, knowledge capital, 

etc. Following the best-practice recommendations for meta-analysis of economics and business 

research in Stanley et al. (2013), we have screened 2,324 potentially-relevant studies on the 

basis of title and abstract information. Screening decisions identified a sample of 106 studies 

that we then evaluated on the basis of full-text information.4 We included studies that adopt the 

primal approach as indicated above.  We excluded studies based on translog production 

functions (e.g., Aiello and Cardamone, 2008; Mairesse and Mulkay, 2008), those that adopt a 

dual approach (e.g., Bernstein and Nadiri, 1988) and those that estimate the effect of own R&D 

capital only.  

Studies that adopt a translog model report coefficient estimates for both linear and non-linear 

terms for the spillovers variable. We excluded such studies because their estimates of the 

spillover effects are conditional on the level of the spillover stock and on the interaction of the 

                                                        
3 The STMB database contains references to more than 20,000 articles, books and conference proceedings on 

R&D management, the management of technological innovation & entrepreneurship, science & technology 

policy, technology transfer. See, http://tomeclarke.ca/science.htm  
 
4 Screening decisions were made by two researchers whilst a third researcher conducted random checks on the 

former’s decisions. Evaluation and the following inclusion/exclusion decisions were taken unanimously by three 

researchers.   

http://tomeclarke.ca/science.htm
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latter with other inputs. Studies that adopt the so-called dual approach (e.g., Bernstein and 

Nadiri, 1988; Bernstein and Yan, 1997) are also excluded because they draw on different 

specifications for factor-demand and cost functions and thus yield more heterogeneous 

estimates. Another reason is that the dual-approach studies use ex-post (as opposed to 

expected) output on the right-hand-side of their models, and hence are suspected of reporting 

upward-biased estimates of both spillover and own-R&D effects (Griliches, 1992: S40). 

Finally, we also excluded studies that report starred coefficients without standard errors or t-

values (e.g., Ang and Madsen, 2013; Coe and Helpman, 1995; Müller and Nettekoven, 1999).   

At the end of the full-text evaluation, we obtained a sample of 76 studies that adopt the primal 

approach. Further evaluation indicated that some of these studies reported rate-of-return 

estimates instead of elasticity estimates (e.g., Griliches and Lichtenberg, 1984; Hanel, 2000; 

Mansfield, 1980). Excluding these studies for reasons indicated in section 1, we have obtained 

a sample of 60 studies on which this meta-analysis is based.   

We have extracted all reported effect-size estimates to ensure full use of existing information 

and avoid the risk of reviewer-induced selection bias. Data extraction led to a sample of 983 

elasticity estimates for the effects of spillovers on productivity and 501 elasticity estimates for 

the effect of own-RD on productivity at the firm, industry and country/region levels. We coded 

each estimate to capture the observed sources of heterogeneity, which include: (i) publication 

characteristics (publication type and date, journal quality, etc.); (ii) model specification (control 

for own R&D, time dummies, industry/country dummies, etc.); (iii) data and sample 

characteristics (unit of analysis, data origin, etc.); (iv) spillover types; and (v) estimation 

methods (GMM, 2SLS, 3SLS, OLS, panel cointegration, FE, etc.).  

Tables A1 and A2 in the Appendix provide an overview of the primary-study characteristics. 

Most of the included studies (97%) are journal articles while the remaining 3% are working 

papers. All studies report one or more coefficient estimates for knowledge, rent, or mixed 

spillovers) but only 53 studies report estimates for own-R&D effects. It is also worth noting 

that 22 studies utilise firm-level data whilst 11 focus on industries and 25 focus on countries. 

One study (Acharya and Keller, 2009) focuses on both countries and industries while another 

(Bronzini and Piselli, 2009) focuses on Italian regions.  
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The median effect-size estimate and t-value, respectively, are 0.070 and 3.323 for the spillovers 

sample and 0.061 and 4.050 for the own-R&D sample.5 The within-study median of the effect 

size is positive in most spillover studies, with the exception of four studies (Braconier and 

Sjöholm, 1998; Harhoff, 2000; Kwon, 2004; McVicar, 2002). Similarly, the within-study 

median of the effect size for own-R&D is also positive, with the exception of two studies 

(Biatour et al., 2011; Braconier and Sjöholm, 1998). The distribution of both effect sizes and 

associated t-values can be seen in Figure 1. 

Figure 1: Histograms of effect-size estimates and associated t-values in primary studies 

 

 

 

The descriptive information in Tables A1 and A2 and Figure 1 indicate that the majority of the 

effect-size estimates are positive; and the majority of the associated t-values are greater than 2. 

However, this summary information conceals a high degree of heterogeneity and may be 

affected by publication selection bias. Funnel graphs in Figure 2a and 2b provide visual 

evidence on heterogeneity and selection bias, by spillover type and unit of analysis.  

 

 

                                                        
5 The number of effect-size estimates reported by each study varies significantly, ranging from 1 to 102 in the 

case of spillover effects and from 1 to 45 in the case of own-R&D effects. 
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Figure 2a: Funnel graphs for productivity effects of spillover types and own RD 
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Heterogeneity: 97.82% 

2. Mixed spillover effects 

Heterogeneity: 98.08% 

 

 

  
3. Rent spillover effects 

Heterogeneity: 97.37% 

4. Own R&D effects 

Heterogeneity: 97.87% 

 

 

Funnel graphs in Figure 2a depict the distribution of the effect-size estimates for three spillover 

types (knowledge, mixed and rent spillovers) and own R&D. The vertical line indicates the 

fixed-effect weighted mean (FEWM), estimated with weights equal to the reciprocal of the 

squared standard error. The dotted lines represent the lower and upper limits of a 95% pseudo 

confidence interval that demarcates the range of heterogeneity due to sampling variations. 

Hence, effect-size estimates beyond the 95% confidence interval reflect residual heterogeneity 

that cannot be explained by sampling variations. The proportion of residual heterogeneity to 

sampling-related variation is obtained from a meta-regression model proposed by Harbord and 
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Higgins (2008) and reported under each graph.6 Finally, the skewness in the distribution of the 

effect-size estimates around the FEWM provides indication of publication selection bias. 

 

Figure 2b: Funnel graphs for units of analysis - spillover and own R&D effects 

 

  
1. Spillover effects – country level 

Heterogeneity: 97.93% 

2. Own R&D effects – country level 

Heterogeneity: 94.79% 

 

 

  
3. Spillover effects – industry level 

Heterogeneity: 98.16% 

4. Own R&D effects – industry level 

Heterogeneity: 99.03%  

 

  

  
5. Spillover effects – firm level 

Heterogeneity: 98.03% 

6. Own R&D effects – firm level 

Heterogeneity: 92.72% 

                                                        
6 There is no agreed-upon threshold for heterogeneity that is too high to yield a reliable confidence interval for 

the average effect-size, but Higgins et al. (2003) suggest that heterogeneity is low when I2 is between 25%–

50%, moderate for 50%–75%, and high for ≥75%.  
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Hence, the funnel graphs indicate that the proportion of residual heterogeneity that cannot be 

explained by sampling variation is high – around 97%-98%.7 Also, the FEWM is usually 

smaller for the spillover effects compared to own R&D effects. Third, a larger proportion of 

the effect-size estimates reported in the primary studies are to the right of the vertical line that 

represents the FEWM. This is an indication of publication selection bias, the risk of which is 

acknowledged only in the narrative review by Griliches (1992).   

These patterns are similar when we cluster the evidence by the cross-section units (see Figure 

2b). In these clusters too, residual heterogeneity is high, the FEWMs of spillover effects is 

smaller or similar to the FEWMs of own R&D effects, and there are indications of selection 

bias. In the next section, we conduct formal tests to verify if selection bias exists, estimate the 

average effect size after taking account of selection bias and discuss the routines through which 

unobserved heterogeneity can be modelled.  

 

4. Meta-regression methodology 

The meta-regression model we utilise is based on the selection model proposed by Egger et al. 

(1997), who postulate that researchers search across model specifications, econometric 

techniques and data measures to find sufficiently large (hence statistically-significant) effect-

size estimates. Assuming that the ‘true’ average effect is 𝛽, effect sizes reported in primary 

studies will vary around the true effect as follows:  

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 =  𝛽 + 𝛼𝑆𝐸𝑖 + 𝜉𝑖       (3a) 

In model 3a, the effect size in primary studies is subject not only to an idiosyncratic error (𝜉𝑖) 

but it is also conditional on the selection bias (𝛼). The model in (3a) raises several estimation 

issues, some of which have been addressed in Stanley (2005; 2008) and Stanley and 

Doucouliagos (2012) among others. For example, heteroskedasticity is addressed through a 

weighted least squares (WLS) estimator where precision-squared (1/𝑆𝐸𝑖
2) is used as analytical 

weight. This is equivalent to dividing both sides of (3a) with the standard error (multiplying 

both sides with precision) (Stanley and Doucouliagos, 2012), leading to:  

                                                        
7 There is no agreed-upon rule for when heterogeneity is too high for obtaining a reliable confidence interval for 

the average effect-size, but Higgins et al. (2003) suggest that heterogeneity is low when I2 is between 25%–

50%, moderate for 50%–75%, and high for ≥75%. 
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𝑡𝑖 = 𝛼 + 𝛽 (1
𝑆𝐸𝑖

⁄ ) + 𝜔𝑖        (3b) 

Here 𝑡𝑖 is the t-value associated with the effect-size estimate as reported in the primary study 

and 𝑣𝑖 is the error term in (1) divided with the standard error. Testing for 𝛽 = 0 is referred to 

as precision-effect test (PET), whilst testing for 𝛼 = 0 is the funnel asymmetry test (FAT). 

Rejection of the null hypothesis in PET indicates ‘genuine’ effect after controlling for 

publication selection. On the other hand, rejecting the null in FAT indicates the presence of 

selection bias, which can be interpreted as over-reporting of findings with larger standard errors 

(low precision).  

The second issue is whether the relationship between primary-study estimates and their 

standard errors is linear or non-linear. Stanley and Doucouliagos (2014) provide evidence that 

a quadratic specification is preferred if the PET rejects the null hypothesis. Then, the non-linear 

Egger model and its WLS equivalent are:   

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 =  𝛾 + 𝜑𝑆𝐸𝑖
2 + 𝜗𝑖       (4a) 

𝑡𝑖 = 𝛾 (1
𝑆𝐸𝑖

⁄ ) + 𝜑𝑆𝐸𝑖 + 𝜀𝑖        (4b) 

Model (4b) is estimated without a constant term and is referred to as precision-effect test 

corrected for standard errors (PEESE). The average effect-size estimate is 𝛾. The latter is 

shown to have smaller bias and mean square error (Stanley and Doucouliagos, 2014). 

The third issue relates to multiple effect-size estimates reported by primary studies. Because 

studies that report large number of estimates may dominate the informational content of the 

evidence base, we estimate (3b and 4b) with frequency weights, which are equal to the 

reciprocal of the number of estimates reported in each study.  

One of the remaining four issues is within-study dependence, which may arise because the 

multiple effect-size estimates reported in each primary study are usually based on the same 

data set (or part thereof) and as such they are not necessarily random realizations of the true 

effect-size estimate. In the presence of within-study dependence, WLS would yield biased 

estimates for two reasons: (i) the sample size is exaggerated as the effect-size estimates within 

a study are treated as independent; and (ii) there will be a higher risk of committing type-I error 

(i.e., rejecting the null hypothesis when the latter is true) irrespective of the sample size 

(Snijders and Bosker, 2012). 
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The fifth issue is heterogeneity, which is a common feature of the empirical findings in 

economics (Stanley and Doucouliagos, 2017) and medical research (Turner et al., 2012). To 

address heterogeneity, we propose a hierarchical model (HM) framework that allows for 

nesting the effect-size estimates (Level 1 observations) within primary studies (Level 2 groups) 

that may, in turn, be nested within a spillover type (Level 3 cluster).  

Stanley and Doucouliagos (2015; 2017) make a strong case for addressing heterogeneity 

through a weighted least-squares (WLS) estimator, as opposed to random-effects (RE) or fixed-

effects (FE) estimators. In the WLS, between-study heterogeneity is modelled as a multiple of 

the variance of the individual effect size, whereas it is an additive term in the RE variance 

structure. In the FE, only within-study heterogeneity matters and therefore between-study 

heterogeneity is assumed as zero. Because simulations in Stanley and Doucouliagos (2015; 

2017) exclude the HM estimator, we do not have evidence on how the latter would have 

performed in comparison to WLS, RE, and FE estimators. However, HMs allow for testing 

different assumptions about the variance structure through a likelihood ratio (LR) test. Hence, 

we choose a HM specification only if the LR tests indicate that a particular HM specification 

is preferable to WLS (the best-performer in Stanley and Doucouliagos, 2015; 2017) and other 

(more restricted) HM specifications.  

The suite of HMs we test allow for different sources of heterogeneity, including: (i) between-

cluster (Level 3) variation modelled as cluster-specific intercepts; (ii) between-study (Level 2) 

variation modelled as study-specific intercepts; (iii) within-study variation modelled as random 

slopes at Level 2; and (iv) any combination of the above. Formal HMs that correspond to such 

specifications are stated in Box 1 in the Appendix.8 

The bivariate HM framework can be extended easily to multivariate meta-regression models 

(MVMRMs), which allow for modelling observed sources of heterogeneity indicated in section 

3 above. These are binary variables with a value of 1 if a particular source is observed and 0 

otherwise. Augmented with these additional covariates, the WLS and HM versions of the 

multivariate meta-regression are given in 7a and 7b in Box 1 in the Appendix. 

The fifth sixth issue is whether the evidence base is adequately powered and what would the 

average effect size be when only adequately-powered effect-size estimates are used in the 

estimation. As indicated in Ioannidis et al. (2017), adequate power in social-scientific research 

                                                        
8 See also Ugur et al. (2016; 2018) for further discussion. 
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has been conventionally set at 80% or over. This corresponds to a probability of a Type II error 

that is not larger than four times the probability of the Type I error (usually, 0.05). With a 5% 

significance level, this ‘power rule’ implies the following relationship between the estimate of 

the ‘true effect’ (𝛾)  and its standard error (SE): |𝛾| / 𝑆𝐸𝑖 ≥ 2.80   or  𝑆𝐸𝑖 ≤ |𝛾|/2.80 

(Ioannidis et al., 2017: F239).  

First, we use this condition to report the percentage of the effect-size estimates with adequate 

power. We do this for all evidence pools where the PET/FAT/PEESE tests indicate significant 

effect. To obtain the weighted average of the adequately-powered (WAAP) evidence, we use 

the average effect-size estimates form the HM specification of the PEESE model (model 4b 

above).9 The WAAP evidence satisfies the 80% power rule – i.e., it consists of primary-study 

estimates with associated standard errors (SE) that satisfy the inequality that 𝑆𝐸𝑖 ≤ |𝛾|/2.80.  

The seventh issue relates to the choice of the moderating variables in the MVMRM. The 

challenge here is the absence of a theory on which moderating factors should be included in 

the MVMRM. To address this issue, we follow a model averaging routine that allows for 

identifying the relevant (robust) covariates. Tomas Havránek and his co-authors have already 

suggested a Bayesian model-averaging (BMA) method for this purpose (see, e.g., Havránek, 

2015; Iršová and Havránek, 2013). In this study, we utilise a weighted-average least squares 

(WALS) routine that provides similar results to the BMA but at a much lower time cost (De 

Luca and Magnus, 2011; Magnus et al., 2010).  

Both the WALS and BMA compute a weighted average of the conditional estimates taking into 

account all possible combinations or subsets of the explanatory variables and the regressions 

parameters (De Luca and Magnus, 2011). The BMA calculates posterior inclusion probabilities 

(PIPs) that indicate which variables are relevant for inclusion in a ‘true’ model. The common 

rule is to include the covariates with PIPs > 0.5. WALS does not report PIPs, but the t-values 

in WALS provide an indication about which variables would have PIP ≥ 0.5 in the BMA. As 

demonstrated in Masanjala and Papageorgiou (2008), a 𝑡-ratio of 1 in absolute value in the 

                                                        
9 Because Ioannidist et al. (2017) use the average effect-size estimates from WLS specification of the PEESE 

model, we replicate their approach. The results, not reported here but can be provided on request, are similar to 

what report in Table 3 below. 
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WALS corresponds to a PIP of 0.5 in BMA. Therefore, variables with absolute t-values of 1 

or over in the WALs routine are eligible for inclusion in the multivariate meta-regression.10  

 

5. Meta-regression results 

Table 1 presents the estimates of the average effect size by spillover types and own R&D; 

while Table 2 presents the results by unit of analysis. In both Tables, Panel A presents the 

PET/FAT results while Panel B presents the PEESE results.11 In Panel A of Table 1, the 

selection bias is substantial for spillover effects (columns A-1 to A-3) but moderate for own 

R&D effects (A-4). The bias is positive and consistent with the funnel plot asymmetry in 

Figures 1 and 2 above. These results indicate that researchers are predisposed to report 

empirical results that are statistically significant in the ‘right’ direction – i.e., in the direction 

of detecting positive spillover effects. Given this finding, the simple summary measures relied 

upon in narrative reviews would be biased and lead to incorrect conclusions. 

 

                                                        
10 This approach is more tractable and statistically-coherent compared to the general-to-specific modelling 

routine where insignificant covariates are excluded one by one until all remaining covariates are significant. 
11 We do not use frequency weights in estimations in Tables 1 and 2. Estimations with frequency weights in 

Tables A4 and A5 in the Appendix; and are largely similar to what is reported in Tables 1 and 2.  
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Table 1 – Effects size estimates by spillover types  

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 (A-1) (A-2) (A-3) (A-4) (A-5)  (B-1) (B-4) (B-5) 

Effect (β in PET/FAT, γ in PEESE) 0.048*** 0.074 0.007 0.064*** 0.038***  0.069*** 0.073*** 0.036*** 

 (0.017) (0.050) (0.023) (0.012) (0.014)  (0.016) (0.011) (0.014) 

Selection bias 2.065*** 1.377 2.751*** 0.808*** 2.195***     

 (0.572) (1.030) (0.541) (0.402) (0.380)     

Standard error      

 

-0.835 3.588 

-

2.736*** 

       (1.540) (3.543) (1.247) 

          

Obs.  557 96 327 501 983  557 501 983 

Studies 46 6 30 26 60  46 26 60 

Log-likelihood (LL) -1760.941 -306.995 -932.755 -1472.789 -3064.777 

 -

1766.875 

-

1474.265 

-

3067.101 

LL (comp. model) -1853.435 -323.953 -1051.853 -1685.547 -3321.677 

 -

1933.186 

-

1714.120 

-

3449.187 

LR chi2 184.987 33.915 238.196 425.516 513.8  332.623 479.709 764.173 

P > LRc2 0 0 0 0 0  0 0 0 
***, **, * indicates significance at 1%, 5% and 10%. LR chi2 is based on likelihood ratio test where the null hypothesis is that the WLS model is nested within the HM. 

Column (A-1 and B-1) is knowledge spillovers; (A-2) is mixed spillovers; (A-3) is rent spillovers; (A-4 and B-4) is own R&D; and (A-5 and B-5) is all spillovers types.  

 



18 
 

  

After controlling for selection bias, the average effect size in Table 1 is positive and significant 

for knowledge spillovers (column A-1), own R&D (A-4) and all spillover types (A-5). In 

contrast, the average productivity effect of mixed spillovers (A-2) and rent spillovers (A-3) are 

insignificant. With PEESE correction (columns B-1, B-4 and B-5), the average effects for 

knowledge spillovers and own R&D remain similar at 0.69 and 0.073, respectively. The 

corrected estimate for all spillover types (B-5) is smaller (0.036). These results are in line with 

those obtained with frequency weights in Table A4 in the Appendix, where the average 

productivity effects of rent and mixed spillovers remain insignificant and the difference 

between the PEESE-based average effects for knowledge spillovers and own R&D is small.12 

A similar pattern is evident in Table 2, where we report average effect-size estimates by the 

type of the cross-section units in the primary studies – i.e., by the beneficiary of the spillover 

effects. Here, spillovers have a positive and significant effect (0.058) only at the country level 

(columns A-1 and B-1). However, own R&D has positive and significant effects at the country 

and firm levels (A-4 and A-6). With PEESE correction, the own-R&D effects are 0.060 at the 

country and 0.057 at the firm level.  The results obtained with frequency weighting (Table A5 

in the Appendix) are mostly in line with those in Table 2. The only difference is that the 

average spillover effect at the country level (0.135) is larger than the rest. However, we need 

to treat spillovers at the country level with caution because Keller (1998) has demonstrated that 

the weights based on bilateral import shares, generally used in the construction of the country-

level spillover pools, are open to criticism.13  

                                                        
12 The difference between spillovers and own R&D effect is insignificant as the confidence intervals for both 

estimates overlap. 
13 Keller (1998) has demonstrated that the spillover effect on country-level productivity remains positive and 

significant when random weights are used instead of weights based on import shares.  
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Table 2 - Effects size estimates by unit of analysis  

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 (A-1) (A-2) (A-3) (A-4) (A-5) (A-6)  (B-1) (B-4) (B-6) 

Effect (β in PET/FAT, γ in 

PEESE) 0.058*** -0.019 0.040 0.056*** 0.088 0.049*** 

 

0.058** 0.060*** 0.057*** 

 (0.015) (0.038) (0.029) (0.007) (0.059) (0.016)  (0.016) (0.006) (0.016) 

Selection bias 1.641*** 2.370*** 2.637*** 0.623* 1.412 1.748**     

 (0.590) (0.908) (0.538) (0.345) (1.601) (0.733)     

Standard error        -8.955** 13.934* -0.047 

        (4.115) (8.208) (2.587) 

           

Obs.  459 223 299 283 89 126  459 283 126 

Studies 26 12 22 25 9 19  26 25 19 

Log-likelihood (LL) 

-

1408.742 -678.214 -955.515 -705.504 -313.91 -265.875 

 

-1408.060 -705.669 -268.303 

LL (comp. model) 

-

1541.737 -756.472 -1008.283 -817.222 -333.312 -342.706 

 

-1592.711 -824.433 -378.428 

LR chi2 265.989 156.515 105.535 223.437 38.805 153.662  369.302 237.530 220.250 

P > LRc2 0 0 0 0 0 0  0 0 0 

***, **, * indicates significance at 1%, 5% and 10%. LR chi2 is based on likelihood ratio test where the null hypothesis is that the linear model is nested within the multi-level model. (A-1 

and B-1) is all spillovers – country-level; (A-2) is all spillovers – industry-level; (A-3) is all spillovers – firm-level; (A-4 and B-4) is own R&D – country-level; (A-5) is own R&D – 

industry-level; and (A-6 and B-6) is own R&D – firm-level.    
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The findings in Tables 1 and 2 do not support the claims in large majority of the narrative 

reviews that the productivity effects of spillovers are larger than those of own R&D.14 Also, 

our findings lend support to Griliches (1992: S36), who expresses doubt about whether rent or 

mixed spillovers capture true knowledge externalities or just measurement errors. The latter 

may be the case because “true spillovers are ideas borrowed by research teams of industry i 

from the research results of industry j” - and it is not clear whether this kind of borrowing is 

related to transactions between the parties involved. 

 

Results in Tables 2 also indicate that the spillover effects are insignificant when the analysis 

is at the industry level. This is in line with the Schumpeterian models of innovation and growth, 

where the external R&D stock can be a source of positive productivity effect due to spillovers 

or a source of adverse effects due to creative destruction that reduces innovation rents. The 

latter arises if the existing knowledge and technology in an industry becomes obsolete at a 

faster speed when other industries increase their investment in R&D (Aghion et al., 2014; 

Aghion and Howitt, 1992). 

In what follows, we probe another issue that has not been addressed so far in meta-analyses of 

economics research: the extent to which the existing evidence is adequately powered; and what 

would the average effect be when only adequately-powered evidence is used for estimations.15 

The proportion of adequately-powered primary-study estimates and the weighted average of 

adequately powered (WAAP) estimates are in Table 3, obtained in accordance with the method 

explained in section 4.16 We take the average effects in Panel B of Tables 1 and 2 (the PEESE 

estimates from the HM estimator) as the ‘true’ population effect and identify the primary-study 

estimates with a statistical power of 80% or more on that basis.  

  

                                                        
14 It must be reiterated that Hall et al. (2010) is the only review that does not conclude in favour of larger 

spillover effects compared to own-R&D effects.  
15 Ioannidis et al., (2017) is the only exception, where statistical power is investigated ex post using evidence 

from 159 meta-analysis studies.  
16 Here we report the results only for the evidence pools in which PET/FAT and PEESE estimations yield 

statistically-significant average effects. These are the pools in Panel B of Tables 1 and 2 above.  
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Table 3 – Weighted average effects from adequately-powered (WAAP) evidence:  

By spillover type and unit of analysis 

 

      Panel A: Spillover type and own R&D        Panel B: Unit of analysis 

 (A-1) (A-2) (A-3) (B-1) (B-2) (B-3) 

       

WAAP Effect 0.009*** 0.029*** 0.012*** 0.027*** 0.060*** 0.012*** 

 (0.002) (0.001) (0.002) (0.004) (0.003) (0.002) 

       

Obs. 229 365 293 253 198 93 

R-sq. 0.088 0.793 0.095 0.183 0.702 0.216 

% of 

adequately 

powered† 

41 73 30 55 67 74 

***, **, * indicates significance at 1%, 5% and 10%. In panel A and B, (A-1) is knowledge 

spillovers; (A-2) is own R&D; (A-3) is all spillover types.  In Panel B, (B-1) is all spillovers 

– country; (B-2) is own R&D – country; and (B-3) is own R&D – firm. † = (number of 

adequately-powered estimates / all observations in sample)*100 

 

As can be seen in the last row of Table 3, the percentage of adequately-powered evidence is 

41% for knowledge spillovers and 30% for all spillover types. If the average effects in Tables 

1 and 2 are unbiased estimates of the true population effects, our results indicate that 59% of 

the evidence base is low-powered in the knowledge spillover pool and 70% is low-powered in 

the all-spillover pool. The percentage of adequately-powered estimates is 55% when the 

spillover effect is at the country level. However, this is still lower than those related to own-

R&D at the country level (67%) or firm level (74%).  

These findings indicate that the level of selection in favour of low-powered estimates is more 

prevalent in spillover pools compared to own-R&D pools. The low-power findings we report 

for this research field are consistent with those reported by Ioannidis et al. (2017), who also 

detect low-power and exaggerated effect-size estimates in 159 research areas in economics.  

Low power does not invalidate the estimates reported in primary studies, but it does suggest 

that average effect-size estimates based on low-powered evidence may be inflated. Indeed, this 

can be seen in the main results in Table 3, where the weighted averages of the adequately-

powered (WAAP) effect sizes are much smaller than those based on effect sizes in the full 

sample (Panel B of Tables 1 and 2 above). Although statistically significant, the WAAP of the 

effect-size estimates for knowledge spillovers (A-1) and all spillover types (A-3) is very small 

(0.009 and 0.012, respectively). The WAAP result for spillovers at the country level (0.027 in 
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column B-1) indicates a moderate effect, but this is still half of own-R&D effect (0.06 in 

column B-2).  

Findings so far allow for two interim conclusions. First, they indicate that the claims that 

external knowledge externalities are substantial and larger than own-R&D effects are based on 

low-powered evidence that reflects a higher degree of selection bias. Secondly, both in the full 

sample and in evidence pools with adequate statistical power, the productivity effects of 

spillovers is usually smaller than that of own R&D. This finding is in line with Cohen and 

Levinthal (1989), who demonstrate that firms need to invest in R&D and develop absorptive 

capacity before they can reap the benefits of knowledge spillovers. The finding also suggests 

that the gap between the actual and optimal levels of R&D investment may be narrower than 

what is usually assumed in the public policy debate on the need for subsidizing R&D 

investment. Put differently, the additionality effects of the public support for privately-funded 

R&D investment may be smaller than what is implied by the public good characterisation of the 

R&D investment in Arrow (1962) and the following neoclassical literature.  

Given prior considerations regarding heterogeneity, in what follows we investigate how the 

observable sources of heterogeneity affect the effect-size estimates in primary studies. First, 

we consider whether journal quality17 or journal articles as opposed to working papers have 

systematic effects on reported estimates. Second, we consider differences in model 

specification mentioned above. Third, we examine if data and sample characteristics matter. 

Here, we verify if data types, type of the cross-section unit (firm, country or industry), level of 

R&D intensity and country or region of origin of the data influence the primary-study 

estimates. Fourth, we examine if different weights used to construct the measures of external 

knowledge matter and whether there are effect-size differences when R&D investment is used 

instead of R&D capital stocks as envisaged in the theoretical model. Lastly, we verify if 

different estimation methods are associated with different estimates.  

We fit the MVMRM (model 8a or 8b in Box 1 in the Appendix) with covariates that capture 

these sources of heterogeneity. The covariates take the value of 1 if the primary-study estimate 

is associated with the controlled characteristic and zero otherwise. 18  All covariates are 

                                                        
17 We adopt the Scimago Journal & Country Rank (SJR) ranking system (http://www.scimagojr.com/), which is 

arguably the most comprehensive journal ranking system which cuts across all fields, to capture journal quality. 

Specifically, we collect information on the H-index of each journal and categorize journals with an H-index above 

100 as high quality journals.     
18 Descriptions of and summary statistics for the binary moderating variable are presented in Table A3 in the 

Appendix. 

http://www.scimagojr.com/
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interacted with precision (1
𝑆𝐸𝑖

⁄ ) to capture their influence on the effect-size estimates rather 

than their effects on selection bias. Hence, a significant positive (negative) coefficient on a 

covariate indicates that primary-study estimates characterized by the included dummy variable 

are larger (smaller) than those associated with the excluded categories.  

We have chosen the moderating variables from a large list generated from the coding procedure 

described in section 3. The choice is made through a model averaging routine (a weighted 

average least squares routine -WALS) described in the methodology (De Luca and Magnus, 

2011; Magnus et al., 2010). The decision rule is to include the covariate in the MVMRM if its 

t-value in WALS estimation is greater than one in absolute value (De Luca and Magnus, 2011).  

It must be noted here that the WALS routine (or the BMA routine) does not preclude the risk 

of multicollinearity among the covariates in a multiple regression. In classical linear regression, 

high levels of multicollinearity could lead to well-known statistical problems such as unstable 

coefficients, large standard errors, and sign reversals in the estimated parameters. However, 

simulation results have shown that HMs have better tolerance to multicollinearity, particularly 

when the latter is at Level 1 (i.e., between effect-size estimates nested within studies). It has 

been reported HMs yield unbiased coefficient estimates, particularly for the ‘fixed-effects’ 

coefficients – i.e., for the coefficients on the covariates as opposed to random-effect parameters 

(see, Shieh and Fouladi, 2003; Yu et al., 2015). Therefore, we are of the view that the 

coefficient estimates we discuss below are reliable even in the presence of multicollinearity.19  

In Table 4, we report four estimation results based on: a random intercepts and slopes HM 

without frequency weights (column 1); the same specification with frequency weights (column 

2); a random-intercept-only HM without frequency weights (column 3); and a random-

intercept-only HM with frequency weights (column 4). Based on log-likelihood values, our 

preferred estimates are in columns 1 and 2. Because the log-likelihood values differ only 

marginally between the specifications, we also report results from two random-intercepts-only 

HM specifications in columns 3 and 4. As can be seen in the bottom part of Table 4, both LR 

tests and log-likelihood values favour the HM specifications against WLS.  

                                                        
19 Apart from other advantages of the HMs discussed above, better tolerance to high multicollinearity is another 

feature that makes them preferable to WLS. True, meta-analysts using WLS do try to address multicollinearity 

through a general-to-specific modelling routine. The latter, however, is more likely to lead to model 

misspecification as the insignificant covariates dropped in the routine may well be relevant to the MVRM at hand. 
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We categorize conclusions from Table 4 as supported by: (i) highly consistent evidence if the 

coefficient on the moderating variable reflects sign and significance consistency across all 

columns; (ii) moderately-consistent evidence if sign and significance consistency is observed 

in one of the preferred specifications and two of the secondary specifications; and (iii) weakly-

consistent if the coefficient is significant in one of the preferred specifications OR in two of 

the secondary specifications.  

We start with moderating factors that capture publication characteristics (top part of Table 4). 

Here, we find moderately-consistent evidence that journal articles report relatively smaller 

spillover effects on productivity compared to working papers. Also, there is weakly-consistent 

evidence that studies published in higher ranked journals (journals with an h-index of over 100) 

report relatively smaller spillover effects. These findings indicate that journals in general, and 

high-ranked journals in particular, do not seem to be affected by the “winner’s curse” – i.e., by 

the tendency to exploit reputation and accommodate highly-selected evidence (Costa-Font et 

al., 2013).  We have also found weakly-consistent evidence that studies published after 2000 

tend to report relatively smaller spillover effects compared to previous studies. This finding 

indicates a competition-related attenuation effect, which arises from method development 

and/or exploitation of richer datasets in the research field.  

With respect to model specification, we find no systematic difference between studies that use 

total factor productivity (TFP) as the dependent variable instead of output or net sales. This 

finding indicates that coefficient estimates based on the output and TFP versions of the primal 

approach are consistent. In contrast, there is highly-consistent evidence that studies that control 

only for one or two spillover types instead of three tend to report relatively larger spillover 

effects. There is also moderately-consistent evidence that studies that control for own R&D in 

their models would report relatively smaller estimates than those that do not.  
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Table 4 - Multivariate meta-regression analysis: observed sources of heterogeneity 

 

Dependent Variable: 𝒕-Value (1) (2) (3) (4) 

Publication characteristics     

Precision  0.209** 0.089 0.247*** 0.194* 

 (0.100) (0.123) (0.046) (0.113) 

Journal article -0.189** -0.116 -0.239*** -0.236*** 

 (0.082) (0.088) (0.036) (0.079) 

Journal quality -0.033 -0.077** -0.014 -0.021 

 (0.031) (0.035) (0.012) (0.033) 

Publication date after 2000 -0.043 -0.008 -0.103*** -0.120*** 

 (0.031) (0.039) (0.012) (0.033) 

Model specification     

TFP – Estimation based on total 

factor  

-0.005 -0.055 0.007 -0.036 

productivity (0.025) (0.040) (0.012) (0.031) 

SPO coefficients in model <=2 0.039*** 0.023** 0.043*** 0.054** 

 (0.010) (0.012) (0.008) (0.024) 

Control for own R&D in model -0.058*** -0.025 -0.036*** -0.008 

 (0.019) (0.018) (0.011) (0.033) 

Industry/country dummies in model 0.040 0.101*** 0.026*** 0.054** 

 (0.031) (0.024) (0.010) (0.023) 

Year dummies in model 0.036 0.087** 0.031*** 0.056*** 

 (0.029) (0.038) (0.007) (0.020) 

Data and sample characteristics     

Unit of analysis: country 0.073** 0.175*** 0.032** 0.058 

 (0.032) (0.061) (0.014) (0.050) 

Unit of analysis: industry -0.204*** -0.138 -0.224*** -0.222*** 

 (0.061) (0.086) (0.026) (0.075) 

High R&D-intensity firm, industry  -0.031 -0.053* -0.029** -0.048 

 (0.025) (0.027) (0.014) (0.031) 

North American (US&Canada) data 0.127** 0.119* 0.153*** 0.169** 

 (0.053) (0.066) (0.024) (0.071) 

OECD data 0.048 -0.006 0.094*** 0.121** 

 (0.037) (0.053) (0.014) (0.052) 

Data mid-point < 1991 -0.066** -0.085* -0.048*** -0.059 

 (0.033) (0.049) (0.012) (0.037) 

Spillover characteristics     

Based on asymmetric weights 0.024*** 0.044 0.021*** 0.041 

 (0.006) (0.036) (0.006) (0.026) 

Unweighted  0.003 0.003 0.005* 0.006 

 (0.003) (0.005) (0.003) (0.006) 

Based on R&D investment as  0.075 0.007 0.193*** -0.010 

opposed to R&D capital (0.064) (0.052) (0.029) (0.115) 

Estimation method     

Estimation with differenced data -0.005* -0.005*** -0.005* -0.004*** 

 (0.003) (0.001) (0.003) (0.001) 

Estimation takes account of panel  -0.008 -0.009*** -0.010* -0.014* 

cointegration  (0.005) (0.002) (0.005) (0.008) 

Instrumental variable (IV) -0.011 0.007 -0.003 0.030 
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estimation 

 (0.007) (0.020) (0.007) (0.035) 

Constant 2.426*** 2.577*** 2.416*** 3.275*** 

 (0.398) (0.372) (0.682) (1.208) 

Observations 983 983 983 983 

Studies 60 60 60 60 

Log-likelihood (HM) -3013.228 -174.221 -3050.514 -185.478 

LR Test chi2 101.770 1284.973 405.049 303.962 

P> chi2 0.000 0.000 0.000 0.000 

converged Yes Yes Yes Yes 

Log-likelihood (least-sqaures) -3128.805 Not 

available† 

-3128.805 Not 

available† 
*** p<0.01, ** p<0.05, * p<0.1. (1) is random intercepts and slopes HM, without frequency weights; (2)  is 

random intercepts and slopes HM, with frequency weights; (3) is  random intercepts only HM, without frequency 

weights; (4) is random intercepts only HM, with frequency weights. † log-likelihood statistics for the comparative 

model is not reported when the HM is estimated with frequency weights. 

 

 

The theory is silent on whether different types of spillovers should enter the empirical model 

as complements (in which case all spillover types should be in the model) or as substitutes (in 

which case they should be summed up).  Hence primary studies are justified in making different 

choices. However, those that overlook complementarity when the latter is true run the risk of 

omitted variable bias. Therefore we call for sensitivity checks reflecting the two assumptions 

of complementarity and substitutions between different spillover types.  

In the case of own R&D, however, the knowledge capital model is explicit: own-R&D capital 

should be treated as complement to external R&D capital and both should be included in 

empirical models (Griliches, 1979; 1992). A number of studies in this research field do not 

follow this recommendation (e.g., Jaffe, 1988; Ke and Luger, 1996). Our finding suggests that 

larger effect-size estimates from such studies may be due to omitted variable bias. 

The final moderating factor in the ‘model specification’ category concerns controlling for 

industry/country or year dummies. We find that the spillover effects are larger when primary-

study authors control for industry/country or year dummies. As indicated in Hall et al. (2010), 

the case for including industry/country or year dummies in panel data models is not clear-cut. 

On the one hand, such dummies can allow for taking account of erroneous omission of 

industry/country or year characteristics. On the other hand, however, the dummies may be a 

source of bias if productivity effects differ because of different technological opportunities in 

different industries or during different phases of the business cycle.  
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Concerning moderating factors that reflect data and sample characteristics, we find moderately-

consistent evidence that data at the country level is associated with larger spillover effects 

compared to data at the industry or firm levels. As indicated above, the weights used for 

constructing country-level spillover pools are usually based on bilateral import shares, about 

which Keller (1998) has raised a serious concern. Using randomly-created trade patterns (hence 

random bilateral import shares), he demonstrates that the latter also give rise to international 

R&D spillover estimates that are even larger in magnitude. Therefore, and in line with Keller 

(1998), we call for caution against claims that bilateral trade patterns are highly important in 

driving international R&D spillovers.20  

In contrast, the productivity effects tend to be smaller when the primary studies utilise industry-

level data. Smaller or insignificant spillover effects at the industry level may be due to the 

adverse effect of creative destruction (Aghion et al., 2014; Schumpeter, 1942), which is more 

evident at the industry level. 

We find moderately-consistent evidence that the spillover effects are relatively smaller when 

the data relate to firms with high R&D intensity. This finding is also in line with insights from 

Schumpterian models of innovation, where the productivity of firms/industries closer to the 

technology frontier is driven by own investment in R&D rather than emulation (Aghion et al., 

2014). However, at the country-level, we find that data related to North American or OECD 

countries is associated with larger spillover effects. Given that these countries are known to 

have higher R&D intensities than the rest, this finding indicates that countries must invest in 

R&D to reap the benefits of external R&D (knowledge) stock. Combining both sets of findings, 

we conclude that industries and/or countries need to keep investing in own R&D either to 

reduce the creative destruction effects of the R&D investments by others or to increase the 

scope for benefiting from the spillover effects of the external R&D stocks they face.  

Turning to spillover characteristics, there is moderately-consistent evidence that studies that 

adopt a scaled spillover weight tend to report relatively larger estimates compared to those that 

use symmetric weight. This finding lends support to Coe and Helpman (1995), who first makes 

the case for weighted spillovers scaled by openness to import (import/GDP ratio). However, it 

must be noted that the relatively larger productivity effect of the scaled spillover measure may 

                                                        
20 This is particularly the case when the weights are based on bilateral import shares only. Unlike Keller (1998), 

however, we think that inter-country spillovers through bilateral imports would still remain a vulnerable 

construct even when they are scaled with openness to trade as an additional weight.  
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be a measurement construct: the scaled spillover measure is just a fraction of the weighted sum 

of the external knowledge stock, where the fraction is equal to the imports/GDP ratio. Other 

findings in Table 4 indicate that there is no systematic difference; (i) between weighted and 

unweighted spillovers and (ii) between spillover pools constructed with R&D capital srock and 

those based on current R&D investment only. Given these findings, we argue that there may 

be several candidates for measuring R&D (knowledge) externalities, which are essentially 

unobserved in the data. However, some measures (e.g., those based on technology proximity) 

may be better in terms of their theoretical underpinnings (Griliches, 1992).  

With regards to estimation methods, we find highly-consistent evidence that effect-size 

estimates obtained from estimators that take account of panel cointegration and those based on 

time-differenced data are smaller than their respective reference categories. Both findings are 

in line with what econometric theory suggests. First-differencing is known to produce an 

attenuation bias because mismeasurement errors in the level variables are exacerbated when 

they are time-differenced (Draca et al., 2007; Ugur et al., 2016). Also, in the presence of a 

cointegrating relationship between panels, effect-size estimates from estimators such as 

dynamic OLS or similar methods converge on the true effect values much faster compared to 

cases where the variables are assumed stationary (Stock, 1987).  

 

6. Conclusions 

Griliches (1992) reports that the elasticity of output with respect to external R&D capital is 

between “about a half and double of the elasticity of output with respect to private R&D”. 

Given that the own-R&D elasticity from the literature he reviews is 0.1, he suggests that the 

range for elasticity estimates of external R&D is between 0.05 and 0.20. Based on this scenario, 

Griliches concludes that about half of the productivity growth can be explained by returns on 

R&D; and “most of the explanatory effect” is due to the “spillover component.” As a 

distinguished pioneer of this research field, however, Griliches is aware of the risk of “upward 

selectivity bias in the results” he relies upon. Therefore, he calls for further work to discover 

the actual magnitude of the spillover effects.  

In this study, we have responded to Griliches’ call using rigorous meta-analysis methods and 

a rich dataset. We find that, after controlling for selection bias, the average productivity effect 

of rent or mixed spillovers isinsignificant. On the other hand, the effect of knowledge spillovers 
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is small (0.069) and similar to the productivity effect of own-RD (0.073). To put in context, 

the magnitude of the spillovers’ productivity effect is nearer the minimum of the interval in 

Griliches (1992). When the average effect is based on adequately-powered (WAAP) estimates, 

however, the productivity effect of knowledge spillovers is much smaller that own R&D: the 

ratio is 1:3 in the case spillovers at all (firm, industry and country) levels and 1:2 when the 

evidence is at the country level only.  

Our findings do not necessarily indicate that R&D spillovers do not exist. However, they do 

suggest that the existing evidence suffers from low power and own-R&D effects are perhaps 

stronger determinants of productivity compared to external R&D. Hence the case for direct or 

indirect public support aimed at inducing firms to undertake the optimal level of business R&D 

investment should be qualified along two dimensions. On the one hand, policy-makers should 

acknowledge that the ‘true’ productivity effects of spillovers are likely to be smaller than what 

is suggested by summary measures or vote counting. On the other hand, they should take 

account of excess heterogeneity in the evidence base and of the concomitant need for targeting 

firms/industries where the spillover effects are higher.  

With respect to future research, our findings allow for three recommendations. First, there is a 

case for taking account of the distance to the technology frontier when constructing the external 

R&D stock. Both neoclassical and Schumpeterian theories of innovation suggest that 

firms/industries/countries closer to (further away from) the technology frontier are less (more) 

likely to benefit from external knowledge. This is confirmed to some extent in our findings 

indicating that the productivity effect of spillovers is relatively smaller when the firm or 

industry is characterised by high R&D intensity. Therefore, we call for scaling the stock of the 

external knowledge by an additional weight that reflects the distance to technology frontier. 

The procedure for this is simple and already applied to bilateral import shares, which are scaled 

by openness to trade (see equation 1c above).  

Secondly, we call for further attention to the lagged effects of both own-R&D and external-

R&D capital, which are rarely discussed in the primary studies. Yet the perpetual inventory 

method used for obtaining the R&D stock presumes that the latest addition to the stock becomes 

productive immediately. However Griliches (1992) and Hall et al. (2010) question this 

assumption because of the time-lags between R&D expenditure and innovation, between 

innovation and commercialization, and in the case of spillovers, between innovation and 

diffusion. Therefore, we recommend either inclusion of distributed lags for own and external 
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R&D capital in a given empirical model or experimentations with different lags as sensitivity 

checks.  

Our third recommendation relates to explicit modelling of heterogeneity in the productivity 

effects of spillovers. This is in line with the “new growth” literature where the homogenous 

technology (i.e., homogeneous slope coefficients) assumption of the Cobb-Douglas production 

function is questioned (Azariadis and Drazen, 1990; Banerjee and Newman, 1993; Eberhardt 

and Teal, 2013). In studies based on firm-level data with shorter time spans, it is difficult to 

rely on panel time-series estimators such as mean group or common correlated effect mean 

group estimators that allow for heterogeneous technology and heterogeneous unobservable 

effects. However even with firm-level data, it is possible to control for observed sources of 

heterogeneity through interaction dummies, which provide information on how the spillovers’ 

productivity effect differs by firm size, R&D intensity, competition in own industry, or whether 

the firm is incumbent or a new entrant. Evidence from such models can inform differentiated 

public policy designs that target public support to firms associated with characteristics 

conducive to higher levels of externalities.  

Another way in which heterogeneity can be modelled more explicitly in firm-level studies is 

to adopt a hierarchical modelling (HM) approach (Aiello and Ricotta, 2016). HMs allows for 

nesting the firms within industries and/or regions and estimating the spillover effects after 

controlling for between-industry or between-region variations modelled as random intercepts, 

random slopes or random intercepts and slopes. There are remedies for endogeneity that may 

be due to correlations between the firm-level covariates and industry- or region-specific 

random-effect components (Hanchane and Mostafa, 2012).  

In studies based on industry or country data, the case for modelling heterogeneity is even 

stronger because the number of cross-section units is relatively small and this calls for panel 

time-series models instead of standard panel-data models (Eberhardt, 2012). The former allow 

for heterogeneous slope coefficients and can take account of cross-sectional dependence, which 

may be due to common unobservable factors but is assumed away in the standard panel-data 

models (Eberhardt et al., 2013). For these reasons, we call for explicit modelling of 

heterogeneity with respect to technology as well as unobserved common factors.  

Our findings also offer some insights into business decision making about R&D investment 

and the latter’s implications for public policy design. On the one hand, the gap between the 
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actual and optimal levels of R&D investment can be expected to be small even in the absence 

of public support. This is due to the need for own R&D investment as a basis for benefiting 

from the external knowledge stock. Secondly, public support for R&D would induce 

heterogeneous firm efforts towards closing the gap between actual and optimal R&D 

investment. Our findings suggest that the additionality effect of the public support would be 

small if the firm is R&D-intensive and the level of creative destruction in its industry is high.  
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Appendix 
 

Table A1 - Spillovers and Productivity: Overview of the Evidence Base  

Study 

Pub  

type 

Data  

type 

Estimation  

method 

Unit of  

analysis 

Unit  

count Country 

Data  

start 

Data  

end 

Mean  

effect  

size 

Median  

effect  

size 

median  

t-value 

No.  

of est. Spillover type Spillover weight 

Acharya and Keller (2009) Jnl Panel OLS Country/Industry 17 Mixed 1973 2002 0.151 0.129 5.083 102 Knowledge Unweighted 

Adam and Jaffe (1996) Jnl Panel Non Linear LS Firm 80 US 1974 1988 0.175 0.215 9.150 6 Knowledge Tech proximity 

Aiello and Cardarmone (2005) Jnl Panel GLS/GMM Firm 1017 Italy 1995 2000 0.011 0.012 3.995 4 Knowledge Tech proximity 

Aldieri and Cincera (2009) Jnl Panel GMM Firm 808 US 1988 1997 0.500 0.500 17.777 4 Knowledge Tech proximity/Distance 

Belitz and Molders (2016) Jnl Panel Cointegration/FE Country 77 Mixed 1990 2008 0.034 0.036 3.500 19 Knowledge/Rent FDI/Import shares shares 

Biatour et al (2011) WP Panel Dynamic Industry 21 Belgium 1987 2007 0.089 0.090 1.630 27 Mixed/Rent Patent/Input-Output Flows 

Bitzer and Geishecker (2006) Jnl Panel GLS Industry_Country 170 Mixed 1973 2000 0.009 0.017 4.375 8 Rent Import shares shares 

Bitzer and Kerekes (2008) Jnl Panel GLS Industry_country 10 Mixed 1973 2000 0.019 0.015 7.103 18 Rent/Knowledge Import shares shares/FDI 

Bloch (2013) Jnl Panel FE Firm n.a. Denmark 1997 2005 0.052 0.062 2.952 5 Knowledge Tech proximity 

Bloom et al. (2013) Jnl Panel OLS/2SLS Firm n.a. US 1981 2001 0.165 0.191 4.125 5 Knowledge Tech proximity 

Braconier and Sjoholm (1998) Jnl Panel OLS Industry 49 Mixed 1979 1991 -0.015 -0.014 1.260 7 Knowledge Unweighted 

Braconier et al. (2001) Jnl Panel OLS/FE/RE Firm 66 Sweden 1978 1994 0.009 0.017 0.850 19 Knowledge Tech proximity/FDI 

Branstetter (2001) Jnl Panel Diff Firm 209 Japan/US 1985 1989 0.371 0.449 1.412 4 Mixed Patent 

Bronzini and Piselli (2009) Jnl Panel Cointegration Region 19 Italy 1985 2001 0.405 0.405 13.824 2 Knowledge Distance 

Cincera (2005) Jnl Panel Diff/GMM/FE Firm 625 Mixed 1988 1994 0.573 0.590 3.582 9 Knowledge Tech proximity 

Coe et al (1997) Jnl Panel Diff Country 77 Mixed 1971 1990 -0.010 0.061 2.813 15 Rent/Knowledge Import shares /Unweighted 

Coe et al (2009) Jnl Panel FE Country 24 Mixed 1971 2004 0.079 0.049 3.300 24 Knowledge/Rent Unweighted/Import shares 

del Barrio-Castro et al (2002) Jnl Panel Cointegration Country 21 Mixed 1966 1995 0.117 0.117 2.485 2 Rent Import shares shares 

Edmond (2001) Jnl Panel FE Country 21 Mixed 1971 1990 0.222 0.200 8.429 7 Rent/Knowledge Import shares/Unweighted 

Engelbrecht (1997) Jnl Panel GLS/OLS Country 21 Mixed 1971 1985 0.280 0.249 4.304 11 Rent Import shares 

Frantzen (2000) Jnl Panel Cointegration/OLS Country 21 Mixed 1991 1980 0.271 0.219 3.914 10 Rent Import shares 

Frantzen (2002) Jnl Panel Cointegration/OLS Industry_Country 308 Mixed 1972 1994 0.169 0.164 9.765 42 Rent Import shares 

Funk (2001) Jnl Panel Cointegration/OLS Country 22 Mixed 1971 1990 0.112 0.059 2.530 15 Rent Import shares 

Griffith et al (2006) Jnl Panel GMM/OLS Firm 188 UK 1990 2000 0.174 0.154 1.582 46 Mixed/Knowledge Patent/Unweighted 

Guellec and Van Pottelsberghe (2001) Jnl Panel 3SLS/GLS Country 16 Mixed 1980 1998 0.094 0.092 7.885 6 Knowledge Tech proximity 

Guellec and Van Pottelsberghe (2004) Jnl Panel 3SLS Country 16 Mixed 1980 1998 0.398 0.398 39.015 2 Knowledge Tech proximity 

Gutierrez and Gutierrez (2003) Jnl Panel Coint./FM/DOLS Country 47 Mixed 1970 1992 0.517 0.531 3.068 4 Rent Import shares 

Harhoff (2000) Jnl Survey OLS Firm 439 Germany 1977 1989 -0.016 -0.013 -0.412 4 Knowledge Tech proximity 

Hejazi and Safarian (1999) Jnl Panel OLS Country 20 Mixed 1971 1990 0.081 0.089 3.615 8 Rent/Knowledge Import shares/FDI 

Higon (2007) Jnl Panel Coint/MG/PMG Industry 8 UK 1970 1997 0.598 0.215 0.578 8 Rent Import shares 
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Jacobs et al (2002) Jnl Panel FE Industry 11 Netherlands 1973 1992 0.962 0.926 5.144 5 Rent Import shares/Input-Output Flows 

Jaffe (1988) Jnl CrS OLS Firm 391 US 1972 1977 0.082 0.094 2.102 4 Knowledge Tech proximity 

Jaffe (1989) Jnl Panel OLS Firm 432 US 1973 1979 0.128 0.128 3.368 1 Knowledge Tech proximity 

Johnson and Evenson (1999) Jnl Panel OLS Country 6 Mixed 1973 1987 0.143 0.143 2.875 2 Knowledge Unweighted 

Kao et al. (1999) Jnl Panel Coint/Dyn/OLS Country 22 Mixed 1971 1990 0.167 0.114 3.269 16 Rent Import shares 

Ke and Luger (1996) Jnl CrS OLS Firm 210 US 1991 1991 0.094 0.093 1.529 6 Knowledge Unweighted 

Keller (1998) Jnl Panel OLS Country 22 Mixed 1971 1990 0.186 0.156 11.167 9 Rent Import shares 

Krammer (2010) Jnl Panel Cointegration/FE Country 47 Mixed 1990 2006 0.065 0.029 4.322 42 Rent/Knowledge Import shares/FDI 

Kwon (2004) WP Panel GLS Industry 34 Japan 1970 1998 -0.440 -0.378 -0.595 8 Knowledge/Rent 

Tech proximity/Input-Output 

Flows 

Lee (2005) Jnl Panel Coint/OLS/Dyn/FE Country 17 Mixed 1971 2000 0.031 0.032 2.569 40 Mixed/Knowledge/Rent 

Patent/Tech Proximity/Import 

shares 

Lee (2006) Jnl Panel Cointegration/OLS Country 16 Mixed 1981 2000 0.049 0.031 2.302 27 Rent/Knowledge Import shares/FDI 

Lehto (2007) Jnl Panel 2SLS/OLS/GLS Firm 2171 Finland 1987 1998 -0.013 0.014 3.400 39 Knowledge Unweighted 

Lichtenberg and Van Pottelsberghe (1998) Jnl Panel FE Country 22 Mixed 1971 1990 -0.514 0.058 2.926 14 Rent Import shares 

Lopez-Pueyo et al (2008) Jnl Panel Cointegration/OLS Industry_country 10 Mixed 1979 2000 0.125 0.123 3.962 26 Knowledge Tech proximity 

Los and Verspagen (2000) Jnl Panel Unspecified/FE/RE Firm 680 US 1977 1991 0.389 0.393 8.485 48 Knowledge/Mixed Tech proximity/Unweighted/Patent 

Lumenga-Neso et al (2005) Jnl Panel OLS Country 22 Mixed 1971 1990 0.156 0.200 3.774 9 Rent/Knowledge Import shares/Unweighted 

Lychagin et al (2016) Jnl Panel OLS/GMM Firm 1383 US 1970 2000 0.462 0.654 3.250 29 Knowledge Tech proximity/Distance 

Mcvicar (2002) Jnl Panel Non Linear LS Industry 7 UK 1973 1992 0.464 -0.288 -1.889 4 Rent/Knowledge Import shares/FDI/Unweighted 

Negassi (2009) Jnl Panel 3SLS Firm 2763 France 1990 1996 0.093 0.094 1.806 6 Knowledge/Rent Tech proximity/Import shares 

Orlando (2004) Jnl Panel/CrS Diff/FE/OLS Firm 515 US 1972 1995 0.006 0.003 0.875 24 Knowledge Unweighted/Distance 

Ornaghi (2006) Jnl Panel GMM Firm 3151 Spain 1991 1999 0.033 0.019 2.035 12 Knowledge Size proximity 

Parameswaran (2009) Jnl Panel Unspecified Firm 2100 India 1992 2001 0.057 0.044 3.192 3 Knowledge Tech proximity 

Park (1995) Jnl Panel RE/OLS/FE Country 10 Mixed 1970 1987 0.167 0.172 2.679 16 Knowledge Tech proximity 

Park (2004) Jnl Panel OLS Country 22 Mixed 1971 1990 0.079 0.072 5.224 14 Rent/Knowledge Import shares/Student Flows 

Raut (1995) Jnl Panel RE/FE/OLS/3SLS Firm 192 India 1975 1986 0.120 0.095 3.340 19 Knowledge Unweighted 

Van Pottelsberghe and Lichtenberg (2001) Jnl Panel Diff/FE Country 13 Mixed 1971 1990 0.065 0.053 5.308 19 Rent/Knowledge Import shares/FDI 

Verspagen (1997) Jnl Panel FE/RE Industry_country 22 Mixed 1974 1992 0.073 0.061 2.905 48 Knowledge/Mixed Tech proximity/Patent 

Wang and Chao 2008 Jnl Panel OLS Firm 72 Taiwan 1994 2000 0.195 0.195 1.710 2 Knowledge Unweighted 

Xu and Wang (1999) Jnl Panel OLS Country 21 Mixed 1983 1990 0.063 0.062 2.241 30 Knowledge/Rent Distance/Import shares/Export 

Zhu and Jeon (2007) Jnl Panel Cointegration/OLS Country 22 Mixed 1981 1998 0.072 0.064 5.525 18 Knowledge/Rent FDI/Import shares/Total Trade 

TOTAL         0.126 0.070 3.323 983   
Notes Jnl is Journal article, WP is working paper, CrS is Cross Section 
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Table A2 - Own R&D and Productivity: Overview of the Evidence Base  

Study Pub type Data type Estimation method 

Unit of  

analysis Unit count Country Data start Data end 

Mean  

effect size 

Median  

effect size 

median  

t-value No. of est. 

Acharya and Keller (2009) Jnl Panel OLS Country 17 Mixed 1973 2002 0.112 0.108 7.286 45 

Adam and Jaffe (1996) Jnl Panel Non Linear LS Firm 80 US 1974 1988 0.043 0.040 8.750 6 

Aiello and Cardarmone (2005) Jnl Panel GLS/GMM Firm 1017 Italy 1995 2000 0.070 0.068 5.410 4 

Aldieri and Cincera (2009) Jnl Panel GMM Firm 808 US 1988 1997 0.230 0.230 14.706 3 

Belitz and Molders (2016) Jnl Panel Cointegration/FE Country 77 Mixed 1990 2008 0.008 0.009 1.550 14 

Biatour et al. (2011) WP Panel Dynamic Industry 21 Belgium 1987 2007 0.076 -0.030 -0.460 11 

Bitzer and Geishecker (2006) Jnl Panel GLS Industry_Country 170 Mixed 1973 2000 0.043 0.043 3.720 5 

Bloch (2013) Jnl Panel FE  Firm n.a. Denmark 1997 2005 0.212 0.206 6.629 4 

Bloom et al. (2013) Jnl Panel OLS/2SLS Firm n.a. US 1981 2000 0.046 0.043 6.143 5 

Braconier and Sjoholm (1998) Jnl Panel OLS Industry 49 Mixed 1979 1991 -0.071 -0.062 1.820 6 

Braconier et al. (2001) Jnl Panel RE/FE/OLS Firm 66 Sweden 1978 1994 0.038 0.043 4.150 8 

Branstetter (2001) Jnl Panel Diff Firm 209 Japan/US 1985 1989 0.187 0.187 1.607 2 

Bronzini and Piselli (2009) Jnl Panel Cointegration Region 19 Italy 1985 2001 0.029 0.029 2850 2 

Cincera (2005) Jnl Panel FE/diff/GMM Firm 625 Mixed 1988 1994 0.250 0.245 11.074 6 

Coe et al (2009) Jnl Panel FE  Country 24 Mixed 1971 2004 0.098 0.096 8.685 22 

del Barrio-Castro et al (2002) Jnl Panel Cointergration Country 21 Mixed 1966 1995 0.043 0.043 1.298 2 

Edmond (2001) Jnl Panel FE Country 21 Mixed 1971 1990 0.060 0.064 7.789 8 

Engelbrecht (1997) Jnl Panel GLS/OLS Country 21 Mixed 1971 1985 0.090 0.090 6.700 11 

Frantzen (2000) Jnl Panel Cointegration/OLS Country 21 Mixed 1991 1980 0.079 0.091 3.176 10 

Funk (2001) Jnl Panel Cointegration/OLS Country 22 Mixed 1971 1990 0.077 0.075 5.080 12 

Griffith et al (2006) Jnl Panel GMM/OLS Firm 188 UK 1990 2000 0.022 0.024 2.039 12 

Guellec and Van Pottelsberghe (2001) Jnl Panel GLS/3SLS Country 16 Mixed 1980 1998 0.024 0.024 5.400 6 

Guellec and Van Pottelsberghe (2004) Jnl Panel 3SLS Country 16 Mixed 1980 1998 0.116 0.116 61.190 2 

Gutierrez and Gutierrez (2003) Jnl Panel Coint./FM/DOLS Country 47 Mixed 1970 1992 0.236 0.062 3.046 4 

Harhoff (2000) Jnl Survey OLS Firm 439 Germany 1977 1989 0.068 0.068 2.429 4 

Hejazi and Safarian (1999) Jnl Panel OLS Country 20 Mixed 1971 1990 0.097 0.096 8.665 6 

Higon (2007) Jnl Panel Coint/MG/PMG  Industry 8 UK 1970 1997 0.309 0.313 2.617 4 

Jacobs et al. (2002) Jnl Panel FE  Industry 11 Netherland 1973 1992 0.315 0.336 8.205 4 

Jaffe (1989) Jnl Panel OLS Firm 432 US 1973 1979 0.031 0.031 2.583 1 

Johnson and Evenson (1999) Jnl Panel OLS Country 6 Mixed 1973 1987 0.052 0.052 4.410 1 

Kao et al. (1999) Jnl Panel Coint/Dyn/OLS Country 22 Mixed 1971 1990 0.089 0.091 4.688 16 

Keller (1998) Jnl Panel OLS Country 22 Mixed 1971 1990 0.054 0.047 10.778 9 



42 
 

Krammer (2010) Jnl Panel Cointegration/FE Country 47 Mixed 1990 2006 0.071 0.063 4.286 21 

Lee (2005) Jnl Panel Coint/Dyn/OLS/FE Country 17 Mixed 1971 2000 0.040 0.026 3.922 20 

Lee (2006) Jnl Panel Cointegration/OLS Country 16 Mixed 1981 2000 0.039 0.033 0.848 10 

Lehto (2007) Jnl Panel 2SLS/OLS/GLS Firm 2171 Finland 1987 1998 0.028 0.031 5.200 15 

Lichtenberg and Van Pottelsberghe (1998) Jnl Panel FE  Country 22 Mixed 1971 1990 0.077 0.082 9.556 10 

Lopez-Pueyo et al. (2008) Jnl Panel Cointegration/OLS Industry_Country 10 Mixed 1979 2000 0.335 0.158 10.489 12 

Lumenga-Neso et al. (2005) Jnl Panel OLS Country 22 Mixed 1971 1990 0.042 0.023 0.852 9 

Lychagin et al. (2016) Jnl Panel OLS/GMM Firm 1383 US 1970 2000 0.019 0.006 0.720 15 

Mcvicar (2002) Jnl Panel Non Linear LS Industry 7 UK 1973 1992 0.032 0.032 2.286 1 

Negassi (2009) Jnl Panel 3SLS Firm 2763 France 1990 1996 0.157 0.157 1.809 2 

Orlando (2004) Jnl Panel Diff/FE/OLS Firm 515 US 1972 1995 -0.005 0.039 3.194 6 

Ornaghi (2006) Jnl Panel GMM Firm 3151 Spain 1991 1999 0.093 0.098 4.261 9 

Parameswaran (2009) Jnl Panel Unspecified Firm 2100 India 1992 2001 0.001 0.002 2.000 3 

Park (1995) Jnl Panel RE/OLS/FE Country 10 Mixed 1970 1987 0.096 0.091 2.014 16 

Park (2004) Jnl Panel OLS Country 22 Mixed 1971 1990 0.049 0.057 5.750 8 

Raut (1995) Jnl Panel RE/FE/OLS/3SLS Firm 192 India 1975 1986 0.008 0.008 1.490 19 

Van Pottelsberghe and Lichtenberg (2001) Jnl Panel Diff/FE Country 13 Mixed 1971 1990 0.052 0.048 3.575 14 

Verspagen (1997) Jnl Panel FE/RE  Industry_Country 22 Mixed 1974 1992 0.076 0.076 3.665 24 

Wang and Chao (2008) Jnl Panel OLS Firm 72 Taiwan 1994 2000 0.118 0.118 5.345 2 

Xu and Wang (1999) Jnl Panel OLS Country 21 Mixed 1983 1990 0.051 0.029 1.493 20 

Zhu and Jeon (2007) Jnl Panel Cointegration/OLS Country 22 Mixed 1981 1998 0.060 0.061 7.720 12 

TOTAL         0.078 0.061 4.050 503 

Notes Jnl is Journal article, WP is working paper, CrS is Cross Section 
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Box 1: Hierarchical specifications for bivariate and multi-variate meta-regression models 

The underlying model for the average effect size is that of Egger et al. (1997): 

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 =  𝛽 + 𝛼𝑆𝐸𝑖 + 𝜉𝑖 

Using the inverse of the squared standard error as weights to address heteroskedasticity, the precision-

effect and funnel-asymmetry tests (PET/FAT) are based on: 

𝑡𝑖 = 𝛼 + 𝛽 (1
𝑆𝐸𝑖

⁄ ) + 𝜔𝑖   

Bivariate HMs for PET/FAT can be stated as follows:  

𝑡𝑖𝑗 =  α𝑅𝐼2 + β𝑅𝐼2 (1
𝑆𝐸𝑖𝑗

⁄ ) + ℎ0𝑗
𝑅𝐼2 + 𝑢𝑖𝑗

𝑅𝐼2                         (5a) 

𝑡𝑖𝑗 =  α𝑅𝐼𝑆2 + β𝑅𝐼𝑆2 (1
𝑆𝐸𝑖𝑗

⁄ ) + ℎ0𝑗
𝑅𝐼𝑆2 + ℎ1𝑗

𝑅𝐼𝑆2 (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑢𝑖𝑗
𝑅𝐼𝑆2     (5b) 

𝑡𝑖𝑗𝑘 =  α𝑅𝐼3 + β𝑅𝐼3 (1
𝑆𝐸𝑖𝑗𝑘

⁄ ) + ℎ0𝑗
𝑅𝐼3 + ℎ0𝑘

𝑅𝐼3 +  𝑢𝑖𝑗𝑘
𝑅𝐼3                    (5c) 

𝑡𝑖𝑗𝑘 =  α𝑅𝐼𝑆3 + β𝑅𝐼𝑆3 (1
𝑆𝐸𝑖𝑗𝑘

⁄ ) + ℎ0𝑗
𝑅𝐼𝑆3 + ℎ0𝑘

𝑅𝐼𝑆3 + ℎ1𝑗
𝑅𝐼𝑆3 (1

𝑆𝐸𝑖𝑗
⁄ ) +  𝑢𝑖𝑗𝑘

𝑅𝐼𝑆3                (5d) 

 

Here, subscript i denotes effect-size estimate, j denotes primary-study (level-2 cluster), and k denotes 

spillover type (level-3 cluster). The random-effect components (ℎ..
..) with subscript 0 denote study- or 

cluster-specific intercepts whereas those with subscript 1 denote study- or cluster-specific slopes. Finally, 

of the superscripts, RI2 indicates two-level HM with random intercepts only; RIS2 indicates two-level HM 

with random-intercepts and slopes; RI3 indicates three-level HM with random intercepts only; and RIS3 

indicates a three-level HM with random intercepts and slopes.   Hence, (5a) is a two-level HM with random 

intercepts; (5b) is a two-level HM with random intercepts and slopes; (5c) is three-level HM with random 

intercepts; and (5d) is a three-level HM with random intercepts at the study and cluster levels and random 

slopes at the study level. 

If any of the HMs in 5a-5b is preferred against a weighted least squares (WLS) specification and if the 

average effect-size estimate is statistically significant, the PEESE versions of the HM specifications can 

be stated as follows: 

𝑡𝑖𝑗 =  𝛾𝑅𝐼2 (1
𝑆𝐸𝑖

⁄ ) + 𝜑𝑅𝐼2𝑆𝐸𝑖 +  ℎ0𝑗
𝑅𝐼2 + 𝑢𝑖𝑗

𝑅𝐼2                  (6a) 

𝑡𝑖𝑗 =  𝛾𝑅𝐼𝑆2 (1
𝑆𝐸𝑖

⁄ ) + 𝜑𝑅𝐼𝑆2𝑆𝐸𝑖 + ℎ0𝑗
𝑅𝐼𝑆2 + ℎ1𝑗

𝑅𝐼𝑆2 (1
𝑆𝐸𝑖𝑗

⁄ ) +  𝑢𝑖𝑗
𝑅𝐼𝑆2            (6b) 

𝑡𝑖𝑗𝑘 =  𝛾𝑅𝐼3 (1
𝑆𝐸𝑖

⁄ ) + 𝜑𝑅𝐼3𝑆𝐸𝑖 +  ℎ0𝑗
𝑅𝐼3 +  ℎ0𝑘

𝑅𝐼3 +  𝑢𝑖𝑗𝑘
𝑅𝐼3                     (6c) 
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𝑡𝑖𝑗𝑘 =  𝛾𝑅𝐼𝑆3 (1
𝑆𝐸𝑖

⁄ ) + 𝜑𝑅𝐼𝑆3𝑆𝐸𝑖  +  ℎ0𝑗
𝑅𝐼𝑆3 + ℎ0𝑘

𝑅𝐼𝑆3 + ℎ1𝑗
𝑅𝐼𝑆3 (1

𝑆𝐸𝑖𝑗
⁄ ) +  𝑢𝑖𝑗𝑘

𝑅𝐼𝑆3           (6d) 

 

We rely on likelihood ratio (LR) tests to choose between HMs and WLS or between different HM 

specifications. The test compares different assumptions about the variance of the reported effect-size 

estimates, which is assumed to be distributed around the ‘true’ effect (𝛾) with a variance of 𝜃𝑖.  

𝑒𝑓𝑓𝑒𝑐𝑡_𝑠𝑖𝑧𝑒𝑖 ~ 𝑁(𝛾, 𝜃𝑖)                                                           (7) 

The WLS assume that individual variances are just a multiple of the idiosyncratic error variance (∅𝜎𝑖
2). In 

contrast, the hierarchical models assume an additive variance structure in which the random-effect 

variances (𝜏2) correspond to different assumptions about between-study heterogeneity. These assumptions 

can be stated as follows:  

   θ𝑖
𝑊𝐿𝑆 =  ∅𝜎𝑖

2             WLS  

   θ𝑖
𝑅𝐼2 =  𝜎𝑖

2 + 𝜏01
2              Two-level HM with random intercepts at the study level 

   θ𝑖
𝑅𝐼𝑆2 =  𝜎𝑖

2 + 𝜏01
2 + 𝜏11

2             Two-level HM with random intercepts and random slopes 

   θ𝑖
𝑅𝐼3 =  𝜎𝑖

2 + 𝜏01
2 + 𝜏02

2             Three-level HM with random intercepts at study and spillover 

cluster 

                                                        levels 

   θ𝑖
𝑅𝐼𝑆3 =  𝜎𝑖

2 + 𝜏01
2 + 𝜏02

2 + 𝜏11
2     Three-level HM with random intercepts and random slopes 

 

The null hypothesis in the LR tests is that the restricted model (the model with one or several random-

effect variances restricted to zero) is nested within the unrestricted model. A rejection of the null hypothesis 

indicates that the unrestricted model (the HM with more complex heterogeneity structure) fits the data 

better than the restricted model, which can be a WLS model with no additive term for heterogeneity or a 

HM with a relatively simpler heterogeneity structure.  

One drawback of the HMs is that they assume normality of the model residuals and this is more explicit 

compared to WLS. However, violation of the normality assumption affects the confidence intervals but 

not the coefficient estimates. Therefore, we are of the view that HMs are capable of addressing a wide 

range of estimation issues with little or no cost in terms of consistency (Demidenko, 2004; McCulloch et 

al., 2008; Snijder and Bosker, 2012).    

The HM framework for the bivariate meta-regression outlined above applies directly to a multivariate 

meta-regression context that allows for modelling the observed sources of heterogeneity. Augmented with 

covariates that capture observed sources of heterogeneity, the WLS and HM versions of the multivariate 

meta-regression can be stated as follows:  
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𝑡𝑖𝑗 =  𝛼𝑊𝐿𝑆 + 𝛽𝑊𝐿𝑆(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝛾𝑚
𝑊𝐿𝑆

𝑚 𝑍𝑚(1 𝑆𝐸𝑖𝑗)⁄ +  𝜀𝑖𝑗
𝑊𝐿𝑆                (8a) 

𝑡𝑖𝑗 = 𝛼𝐻𝑀 + 𝛽𝐻𝑀(1 𝑆𝐸𝑖𝑗)⁄ + ∑ 𝛾𝑚
𝐻𝑀

𝑚 𝑍𝑚(1 𝑆𝐸𝑖𝑗)⁄ +  ℎ0𝑗 + ℎ1𝑗(1 𝑆𝐸𝑖𝑗)⁄ +  𝜀𝑖𝑗
𝐻𝑀 (8b) 

Here Z is a vector of m binary variables that control for moderating factors as indicated above. All 

moderating variables are divided with the standard error of the primary-study estimates to capture their 

effects on the average effect (as opposed to their effects on the selection bias). Equation 7a is a WLS model 

and (7b) is a two-level HM with random intercepts and slopes at the study level. The choice between 

restricted and unrestricted models is based on LR tests indicated above. 
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Table A3. Summary Statistic for Moderating Variables 

 

Moderating variables Obs. Mean Std Dev Min Max 

      

Effect indicators      

Effect size 983 0.126 0.352 -3.014 4.060 

Standard error of effect size 983 0.055 0.144 0.001 2.276 

t-value 983 4.712 7.109 -64.857 65.8 

Precisions 983 86.169 146.319 0.439 999 

      

Publication characteristics      

Journal article 983 0.964 0.185 0 1 

Publication date after 2000 983 0.721 0.449 0 1 

Journal quality 983 0.227 0.419 0 1 

      

Model specification in primary study      

TFP - Dependent variable is total factor 

productivity 

983 0.586 0.493 0 1 

SPO coefficients in model <=2 983 0.687 0.464 0 1 

Firm, industry, country dummy in model 983 0.774 0.418 0 1 

Control for own R&D in model 983 0.846 0.361 0 1 

Time dummy in model 983 0.586 0.493 0 1 

      

Data and sample characteristics      

Data mid-point < 1991 983 0.783 0.412 0 1 

Unit of analysis: country 983 0.467 0.499 0 1 

Unit of analysis: industry 983 0.060 0.238 0 1 

High R&D-intensity firm, industry 

Versus low or mixed R&D intensity  

983 0.208 0.406 0 1 

North American (US and Canada) data 983 0.131 0.338 0 1 

OECD data 983 0.729 0.444 0 1 

      

Spillover characteristics      

Asymmetric – weights are scaled by 

openness  

983 0.195 0.397 0 1 

Unweighted – spillover pool is 

constructed without weights  

983 0.251 0.434 0 1 

R&D flows 983 0.109 0.313 0 1 

      

Estimation method      

Estimation is based on panel 

cointegration 

983 0.172 0.378 0 1 

IV – instrumental variable estimation 983 0.033 0.178 0 1 

Differenced – within estimation 983 0.044 0.205 0 1 
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Table A4 – Effects size estimates by spillover types (frequency-weighted) 

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 (A1) (A2) (A3) (A4) (A5)  (B1) (B4) 

Effect (β in PET/FAT, γ in PEESE) 0.064** 0.052 -0.097 0.058*** 0.043  0.097*** 0.073*** 

 (0.028) (0.037) (0.099) (0.012) (0.033)  (0.026) (0.011) 

Selection bias 1.900*** 1.259*** 2.932*** 1.231*** 2.285***    

 (0.473) (0.418) (0.765) (0.346) (0.339)    

Standard error       1.424 3.203** 

       (1.479) (1.587) 

         

Obs.  557 96 327 501 983  557 501 

Studies 46 6 30 26 60  46 26 

Log-likelihood (LL) -1760.941 -306.995 -932.755 -1472.789 -3064.777  -1766.875 -1474.265 

LL (comp. model) -1853.435 -323.953 -1051.853 -1685.547 -3321.677  -1933.186 -1714.120 

LR chi2 184.987 33.915 238.196 425.516 513.8  332.623 479.709 

P > LRc2 0 0 0 0 0  0 0 

Intra-class correlation 0.103 9.30e-18 0.252 1.51e-13 0.063  0.170 3.32e-14 
***, **, * indicates significance at 1%, 5% and 10%. LR chi2 is based on likelihood ratio test where the null hypothesis is that the linear model is nested within the multi-level model. (1) 

is knowledge spillovers; (2) is mixed spillovers; (3) is rent spillovers; (4) is own R&D; (5) is all spillovers types 
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Table A5 - Effects size estimates by unit of analysis (frequency-weighted) 

Dependent variable: t-value Panel A - PET/FAT  Panel B - PEESE 

 (A1) (A2) (A3) (A4) (A5) (A6)  (B1) (B2) (B3) (B4) (B6) 

Effect (β in PET/FAT, γ in PEESE) 0.102** -0.106* 0.030*** 0.049*** 0.048 0.059***  0.135*** -0.078 0.069*** 0.055*** 0.073*** 

 (0.050) (0.062) (0.010) (0.008) (0.041) (0.020)  (0.027) (0.060) (0.003) (0.006) (0.019) 

Selection bias 1.822** 2.513*** 2.501*** 0.898** 2.059** 1.263***       

 (0.825) (0.648) (0.480) (0.441) (1.011) (0.409)       

Standard error        -0.004 2.516*** -0.226 18.257** 0.655 

        (0.931) (0.619) (0.911) (7.584) (1.002) 

             

Obs.  459 223 299 283 89 126  459 223 299 283 126 

Studies 26 12 22 25 9 19  26 17 22 25 19 

Log-likelihood (LL) -1408.742 -678.214 -955.515 -705.504 -313.91 -265.875  -1408.742 -678.214 -955.515 -705.504 -265.875 

LL (comp. model) -1541.737 -756.472 -1008.283 -817.222 -333.312 -342.706  -1541.737 -756.472 -1008.283 -817.222 -342.706 

LR chi2 265.989 156.515 105.535 223.437 38.805 153.662  265.989 156.515 105.535 223.437 153.662 

P > LRc2 0 0 0 0 0 0  0 0 0 0 0 

Intra-class correlation 0.037 0.242 0.019 2.55e-16 5.00e-16 0.396  0.100 0.403 0.248 1.13e-15 0.617 

***, **, * indicates significance at 1%, 5% and 10%. LR chi2 is based on likelihood ratio test where the null hypothesis is that the linear model is nested within the multi-level model. (1) is spillovers - 

country; (2) is spillovers - industry; (3) is spillovers - firm; (4) is own R&D - country; (5) is own R&D – industry; and (6) is own R&D – firm.  (1) to (3) is inter-unit only while (4) to (6) is intra-unit 

only.  

 


