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Abstract The impact of air pollution on people’s health and daily activities in China
has recently aroused much attention. By using stochastic differential equations, vari-
ation in a six year long time series of air quality index (AQI) data, gathered from air
quality monitoring sites in Xi’an from 15 November 2010 to 14 November 2016 was
studied. Every year the extent of air pollution shifts from being serious to not so se-
rious due to alterations in heat production systems. The distribution of such changes
can be predicted by a Bayesian approach and the Gibbs sampler algorithm. The inter-
vals between changes in a sequence indicate when the air pollution becomes increas-
ingly serious. Also, the inflow rate of pollutants during the main pollution periods
each year has an increasing trend. This study used a stochastic SEIS model associ-
ated with the AQI to explore the impact of air pollution on respiratory infections.
Good fits to both the AQI data and the numbers of influenza-like illness (ILI) cases
were obtained by stochastic numerical simulation of the model. Based on the model’s
dynamics, the AQI time series and the daily number of respiratory infection cases un-
der various government intervention measures and human protection strategies were
forecasted. The AQI data in the last 15 months verified that government interventions
on vehicles is effective in controlling air pollution, thus providing numerical support
for policy formulation to address the haze crisis.
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1 Introduction

As China’s economy has developed there has been increasing demand for, and ex-
ploitation of, its resources [16,28,33]. Consequently, an intractable problem has arisen
as more and more industrial fumes are released into the air, seriously damaging the
aerial environment. The problem is especially severe in winter, when fossil fuels are
harnessed at higher rates than in other seasons to maintain warm indoor temperatures
in northern China [5,47,48]. For instance, approximately 168 million tonnes of coal
were used in 2010 for central heating in China. Taking Beijing as an example, the
mass per cubic metre of air of particles with a size (diameter) generally less than
2.5 micrometres (m), known as the PM2.5 air quality index, reached 22.7g/m3 as a
consequence of burning too much coal in January 2010. In contrast, the index was
only 0.7g/m3 in July in 2000 [44]. The influence of air pollution is profound not
only as it disrupts people’s daily lives but also because it causes physical problems
[9,26]. Shrouded in haze, people will discontinue vigorous outdoor activities since
exercising in environments with high levels of air pollution can increase the risk of
health problems. When cities suffer extremely severe haze, primary schools have to
be suspended to protect students health [10,36].

There is no doubt that air pollution has hindered the improvement of people’s liv-
ing standards, caused a lot of inconvenience and, worst of all, is severely hazardous
to people’s health [12,14]. Studies have shown the impact of high concentrations of
ambient particles and gaseous pollutants on health and that different kinds of pollu-
tants have different adverse health effects [4,7,17,25]. Both short-term and long-term
exposures to pollutants will reduce respiratory functions, leading to increases in hos-
pital respiratory admissions, in medication use by asthmatic subjects, and in deaths,
particularly for sensitive groups such as children, the elderly or those with chronic
respiratory illnesses [15,18,29].

Much research has been conducted to better understand seasonal variations in air
pollution and to investigate its effects on human health [3,6,13,34,40]. By using data
from a roadside air quality monitoring station during the 1999-2003 period, Wang et
al. [41] analysed the varying trends of the Hong Kong API(the air pollution index in
Hong Kong) and the levels of related air pollutants. They demonstrated by statisti-
cal analysis that the daily mean API in a seasonal period is a stationary time series,
and that the API time series could be predicted in different seasonal specifications
by the autoregressive moving average (ARMA) method. Samoli et al. [31] present-
ed a more rigorous and sophisticated model, a Poisson regression in a generalized
additive model (GAM), to analyse an epidemiological time series associated with
meteorological variables. Yu et al. [46] applied chaos theory to analysed two chaot-
ic indicators, the correlation dimension and the Lyapunov exponent, of the API time
series during the past 10 years in Lanzhou. The above studies focused mainly on envi-
ronmental pollution trends, but some other studies have investigated the relationship
between human health and air pollution [1,11,22,45]. To estimate the time-varying
effects of pollution on mortality a multi-site time series, Peng et al. [27] develope-
d Bayesian semiparametric hierarchical models and found that different geographic
regions present different seasonal characteristics. Chauhan et al. [8] revealed that air
pollution and infections act synergistically and both of them could cause respirato-



ry illnesses, especially by exacerbating symptoms in individuals with pre-existing
respiratory conditions such as asthma and chronic obstructive pulmonary disease. A
generalized additive mixed model with an autoregressive component was used to as-
sess the association of air pollution with the preceding week’s pollutant levels and
severity of respiratory symptoms and infections measured weekly in healthy infants
[35]. Based on a Bayesian approach to meta-analysis, Mehta et al. [24] provided a
summary estimates that the risk of acute lower respiratory infections occurrence in-
creased 1.12 (1.03, 1.30) times with an annual average PM2.5 concentration increase
per 10 g/m3 by studies of longer-term (subchronic and chronic) effects.

The main winter period when heating is needed in Xi’an, the capital city of
Shaanxi Province in China, is from 15 November to 15 March of the subsequent
year. For the convenience of research, the year here is defined as 15 November to
14 November of the subsequent year instead of using a calendar year. The data on
influenza-like illness (ILI) cases and the air quality index (AQI) in Fig. 1 (A) and
(B) are divided into two parts with the heating period shown in magenta and the
non-heating period shown in blue. Both the number of ILI cases and the value of the
AQI are generally higher in heating periods than that in non-heating periods, as heat-
ing leads to increased emissions of pollutants. Not only that, the ILI cases and AQI
data have increasing trends from year to year. There are six levels of air pollution,
excellent, good, lightly polluted, moderately polluted, heavily polluted and severe-
ly polluted. The corresponding value intervals of the AQI for each level are (0, 50),
(51, 100), (101, 150), (151, 200), (201,300) and more than 300. The histogram in
Fig. 1 (C) also illustrates how the air pollution becomes even more serious with time.
To analyse the AQI dynamics, the rate of inflow of pollutants was modelled with a
piecewise function that takes different values during heating periods and non-heating
periods by Tang et al. [37]. In this way the severity of air pollution in a year was
divided into two levels of serious and not serious, according to the heating or non-
heating periods. As can be seen from Fig. 1 (A) and (B), the length of the intervals
between serious and not serious air pollution levels are different every year and in
general there is an overall increasing trend year on year. Thus, the rate of inflow of
pollutants should be expressed in a more general piecewise function.

In order to quantify the dynamics of air pollution and its impact on the risk of
respiratory infection, Tang et al. [37] carried out an integrated data analysis to reveal
an association between the AQI, meteorological variables and respiratory infection
risk in Xi’an city in for the period of 15 November 2010 to 14 November 2016. An
ordinary differential equation model with AQI-dependent incidence and AQI-based
behaviour change interventions was developed to depict the AQI trend and respiratory
infection dynamics. The main results showed that in terms of respiratory infection
risk reduction, the persistent control of emissions in the China’s blue-sky programme
is much more effective than substantial social-economic interventions implemented
only during the smoggy days [37].

Based on the data shown in Fig.1, we can see that the annual haze season does
not strictly depend on the heating period, and it can be significantly affected by the
randomness of environmental and meteorological factors, which brings challenges
on how to determine the timings of switches (i.e. change points) between the not
serious to the serious air pollution states based on the AQI data. However, the change



points play a key role in how to describe the AQI dynamics (i.e. the rate of inflow of
pollutants) using a piecewise function [37]. Moreover, the number of ILI cases will
also be random because of the randomness of demographic statistics.

Therefore, in order to quantify the effects of these random factors on AQI and ILI
cases, we have developed stochastic differential models for AQI evolution and respi-
ratory infection dynamics. Based on the characteristics of the AQI data, we estimated
the series of change points in the AQI data between 2010 and 2016 and determined
the parameters in each interval using a Bayesian method described by Tang et al. [38].
Further, by employing the methods developed by Allen et al. [2] we have proposed
a stochastic differential equation model (i.e. stochastic SEIR model) for describing
the respiratory infection dynamics, and MCMC method was used to identify the un-
known parameters. Based on all estimated parameter values, the final purpose is to
quantify the predictability of government polices and people’s own initiatives, such
as different traffic restriction measures and the intensity of self-protection actions
[21]. We provide predictions of the air pollution condition and numbers of respira-
tory infections in 2017 and 2018 under various measures by stochastic simulations.
The effectiveness of government intervention is verified by comparing the results of
the actual AQI data and our predictions for the AQI data of 2017.

2 The AQI model

2.1 Stochastic differential equation of AQI

Human activities are the main sources of air pollution and lead to atmospheric con-
tamination with a wide variety of pollutants such as carbon monoxide (CO), nitrogen
oxide (NOx), hydrocarbons, sulfur oxide and particulate matter (PM) [30]. However,
some pollutants may be cleared by vegetation or dispersed by wind. The aggregative
index AQI is used to describe the degree of air pollution in China. In order to describe
the dynamics of the AQI, we establish the following simple ordinary differential e-
quation (ODE):

dF(t)
dt

= c
′ −µ

′
F(t), (2.1)

where F represents the AQI, which is an inflow-clearance process, and c
′

denotes
the rate of inflow of pollutants into the air and µ ′

gives the rate of clearance of pol-
lutants. It is apparent that meteorological and environmental conditions are affected
by noise, so we introduce a stochastic differential equation (SDE) to better describe
the variation in the AQI. An intuitive way to derive continuous diffusion models for
model (2.1) is to consider the limit of the discrete model. If we regard the dF(t) as
a random variable, the model (2.1) becomes a simple birth and death process with
linear transition rates in the general sense. The transition probabilities of this process
define the probability of an inflow or a clearance in a short time dt. We note that in the
discrete model the jump size of the linear process is △h and the discrete distribution



of it satisfies

dF(t) =

△h with probability c
′
dt +o(dt),

−△h with probability µ ′
F(t)dt +o(dt),

0 otherwise,

which indicates that the expectation of dF(t) is [c
′ − µ ′

F(t)]△hdt + o(dt) and the
variance of dF(t) is [c

′
+µ ′

F(t)]△h2dt +o(dt).
Letting △h → 0, one has [20]

−µ
′△h →−µ̄σ 2 < 0,c

′△h → c̄σ2 > 0, µ
′△h2 → σ2,c

′△h2 → 0.

where µ̄ and c̄ are two positive constants, and the derivations of the above for-
mula were given in literature [20]. The drift function and the volatility of this
birth and death progress are defined as m(F) and σ2(F). Thus, the expressions of
expectation and variance can be written as follows:

E(dF(t)) = m(F) = [c̄σ2 − µ̄σ 2F(t)]dt +o(dt),
Var(dF(t)) = σ2(F) = σ2F(t)dt +o(dt).

Therefore, the approximation of the SDE yields:

dF(t) = [c̄σ2 − µ̄σ 2F(t)]dt +σ
√

F(t)dW (t).

Further, denoting c = c̄σ2, µ = µ̄σ2, then the SDE model for AQI becomes as
follows:

dF(t) = [c−µF(t)]dt +σ
√

F(t)dW (t), (2.2)

where W is the Wiener process.

2.2 Change points for AQI

In model (2.2), it is assumed that the rates of both inflow and clearance of pollutants
are assumed to be constant. However, in reality, AQI has distinct seasonal variations
with lowest values in summer and higher values in other seasons, especially during
winter. This phenomenon is mainly affected by seasonal variations in climate and
vegetation, such as different rainfall patterns in the four seasons leading to variation
in the pollutant clearance rate. However, the AQI data shown in Fig. 1 illustrate that in
winter the air pollution is getting worse year by year, with associated decreases in the
rate of clearance. Based on the above and without loss of generality, we assume that
the clearance rate of pollutants µ(t) is a time-dependent and non-periodic function
which can be given as follows [37]:

µ(t) = µ0 +(µ1 +µ2t)sin(ωt +ϕ0), (2.3)

where sin is the sin function, and ω = 2π/365 is a periodic parameter assuming that
there are 365 days in a year. ϕ and µ0 are the phase parameter and offset parameter,
respectively. The amplitude is controlled by µ1 and a small amplitude increasing rate
µ2.



For the rate of inflow of pollutants, we know that pollutants are not permanent
and that their concentrations change with seasonal factors. Burning fuels for heating
systems leads to higher influxes of pollutants than usual. Tn,1 and Tn,2 are two change
points in a year, as defined in the Introduction. In this paper, Xi’an is taken as an
example, where the heating systems are operational from 15 November to 15 March.
Mathematically, the two times Tn,1 and Tn,2 represent the end day in spring and
next start day of heating in winter, that is to say, the time interval [Tn,1,Tn,2] is
ordinary days with a lower pollutant inflow rate and the corresponding interval
[n−1,Tn,1)∪(Tn,2,n] is the heating period with a higher inflow rate, and n denotes
the nth year. Tn,1 and Tn,2 are the change points, such that the parameter c(t) jumps
from one value to another. Here the heating periods in each year provide good prior
information when identifying the change points. Therefore, the inflow rate c(t) could
be defined by a piecewise function with an annual periodic function as follows:

c(t) =
{

c01, t ∈ [Tn,1,Tn,2],
c02, t ∈ [n−1,Tn,1)∪ (Tn,2,n]

(2.4)

for all n = 1,2, · · ·.
In addition to pollution from heating systems, there are other potentially time-

varying factors, such as the increase in the number of cars, which contribute to the
worsening climate and which, together with government control measures, can in-
troduce randomness into the timings of serious air pollution occurrences. Thus, the
change points in the AQI time series are not constants but random variables, which
need to be estimated using statistical methods. In addition, the period of high inflow
rates can vary. Therefore, the function c(t) can be re-written as follows:

c(t) =



c1, t ∈ [T0,T1),
c2, t ∈ [T1,T2),
...

...
cS, t ∈ [TS−1,TS),
cS+1 t ∈ [TS,TS+1]

(2.5)

with T0 = 0,TS+1 = T , ci,(i = 1, . . . ,S + 1) defined as constants. Tj( j = 1, . . . ,S)
denote the j-th change point, and S represents the number of change points during the
interval [0,T ].

The dynamics of the AQI can now be depicted by the following SDE equation:

dF(t) = [c(t)−µ(t)F(t)]dt +σ
√

F(t)dw(t), (2.6)

where c(t) and µ(t) are defined by equations (2.3), (2.4) and (2.5).

2.3 Identification of change points and parameter determination

With the exception of ω all of the parameters in model (2.6) are unknown and can
be denoted as Θ = (c1, · · · ,cS+1,µ0,µ1,µ2,ϕ0,σ)′, which is the vector of unknown
parameters. Since an analytical solution of this SDE equation is hard to obtain, the



Euler- Maruyama algorithm could be used to discretize the SDE equation. The ap-
proximate solution satisfies the following discrete equation:

Fk+1 = Fk +α(Fk,Θ)△t + σ̂(Fk,Θ)εk, k = 1, · · · ,N′, (2.7)

where N′ denotes the length of the data and α = [c(t)− µ(t)F(t)], σ̂ = σ
√

F(t),
εk ∼ N(0,△t). εk represents the increment of the Wiener process and obeys the nor-
mal distribution with mean zero and variance △t. The time step △t depends on the
interval between data observations. Here AQI data were collected every day and so
the time step △t = 1 is small enough to guarantee that the approximation of the SDE
equation is good. The estimation of the unknown parameter vector is based on the
time series of the observed AQI data, which are represented by F = (F1,F2, · · · ,FN)

′.

2.3.1 Posterior distribution of parameter vector Θ

According to the discrete equation (2.7), Fk+1 can be treated as a random variable
obeying the normal distribution:

Fk+1 −Fk ∼ N(α(Fk,Θ)△t, σ̂2(Fk,Θ)△t).

Therefore, the likelihood function of F is:

p(F |Θ) =
N−1

∏
k=1

1
(2πσ 2Fkh)1/2 exp

(
− 1

2σ2
(Fk+1 −Fk − (c(t)−µ(t)Fk)h)2

Fkh

)
, (2.8)

where △t = h. For convenience, the piecewise function c(t) can be represented by an
indicator function. After expanding µ(t) and further manipulations we have

(Fk+1 −Fk − (c(t)−µ(t)Fk)h)2

Fkh

=

[
(Fk+1 −Fk −

(S+1
∑
j=1

c jIa(Tj−1 ≤ t < Tj)− (µ0 +(µ1 +µ2t)sin(ωt +ϕ0))Fkh
)]2

Fkh

=
[Fk+1 −Fk

(Fkh)1/2 −
(S+1

∑
j=1

c jIa(Tj−1 ≤ t < Tj)
)

F−1/2
k

√
h+(µ0 +(µ1 +µ2t)sin(ωt +ϕ0))F

1/2
k

√
h
]2

=
[Fk+1 −Fk

(Fkh)1/2 −
(S+1

∑
j=1

c jIa(Tj−1 ≤ t < Tj)
)

F−1/2
k

√
h+(µ0 +µ1(sin(ωt)cosϕ0 + sinϕ0 cos(ωt))

+µ2t(sin(ωt)cosϕ0 + sinϕ0 cos(ωt))F1/2
k

√
h
]2
,

where the indicator function Ia(·) is a function defined on a set, having the value one
for all elements in the set and the value zero for all elements not in the set.

Denoting Y as the vector obtained by the elements (Fk+1 −Fk)/(Fkh)1/2 for all k,
and B as the matrix obtained by stacking[

Ia(T0 ≤ t < T1)F
−1/2
k

√
h, · · · , Ia(TS ≤ t < TS+1)F

−1/2
k

√
h,−F1/2

√
h,−sin(ωt)F1/2

√
h,

−cos(ωt)F1/2
√

h,−t sin(ωt)F1/2
√

h,−t cos(ωt)F1/2
√

h,
]
,



for all k, and µ1 cosϕ0, µ1 sinϕ0, µ2 cosϕ0, µ2 sinϕ0 as µ ′
1, µ ′′

1 , µ ′
2, µ ′′

2 , respectively.
This function has the following simple form:(Fk+1 −Fk

(Fkh)1/2 −c(t)F−1/2
k

√
h+µ(t)F1/2

k

√
h
)2

= (Yk −Bkβ )2 = (Yk −Bkβ )′(Yk −Bkβ )

and
n

∑
k=1

(Yk −Bkβ )2 = (Y −Bβ )′(Y −Bβ ),

and hence the likelihood function can be rewritten as:

p(F |Θ) ∝ (σ2)−n/2 exp
(
− 1

2σ2 (Y −Bβ )′(Y −Bβ )
)
, (2.9)

with β = (c1, . . . ,cS+1,µ0,µ
′
1,µ

′′
1 ,µ

′
2,µ

′′
2 )

′. We have simplified the complex likeli-
hood function into the same form as the Bayes’ linear regression model of Y on B,
so the estimation of parameter vector (β ,σ) can be easily solved by using the Bayes’
linear regression model:

Y = Bβ + ε, εk ∼ N(0,σ2). (2.10)

The next task is to calculate the posterior distribution of β and σ2. For model
(2.10), the conjugate (joint) prior for β and σ2 is the normal inverse-gamma distri-
bution (NIG), which allows σ ∼ IG(n0,s0) and β |σ ∼ N(m,V ), where n0 and s0 are
the prior parameters of the gamma distribution for 1/σ2, and m and V are the prior
mean vector and prior covariance matrix of β , respectively. The posterior distribu-
tion can then be derived from the likelihood function and the prior distribution. The
expression for the latter and details of its derivation are given in Appendix A.

2.3.2 Detection of change-points

The identification of change points is important for delimiting the serious or not seri-
ous air pollution segments, and the parameter vector (β ,σ) corresponding to the seg-
ments can be estimated when the change points are detected. The change point tim-
ings can be determined by a Bayesian approach and the change points T1,T2, . . . ,TS
are considered as additional parameters. Combining the actual background data with
a preliminary analysis of the AQI data, the heating systems are clearly the main cause
of sudden changes in air pollution levels. The timing of such changes is different ev-
ery year because of climate change and random factors, but the change points are
nevertheless always near the start and end of the period when the winter heating sys-
tems are active. Based on this prior information on change points, if we denote the
time series of the beginning and end of winter heating days as Tin = (T01 . . . ,T0S),
each change point Ti is assumed to be in the interval [T0i −M,T0i +M], where M is
a constant in the model and the value of M is given when the change points are esti-
mated. Thus, an obvious choice for the prior distribution of each change point is an
uniform distribution with the time interval 2M, i.e.,

p(Ti)∼ U(T0i −M,T0i +M).



Futhermore, the estimation of each change point Ti is based on the AQI data in
the discrete points of this interval (T0i −M, . . . ,T0i +M), which can be denoted as
F[T0i−M,T0i+M]. And the likelihood of each change point Ti is given by

Li(Ti|F[T0i−M,T0i+M]) =
T0i+M

∏
k=T0i−M

1
(2πσ2Fkh)1/2 exp

(
− 1

2σ2
(Fk+1−Fk−Fk(ck−µ(t)Fk)h)2

Fkh

)
,

(2.11)
for i = 1, . . . ,S. The parameter ck in this function switch from ci to ci+1 at change
points Ti, which can be expressed as:

ck =

{
ci, k ∈ [T0i −M,Ti),
ci+1, k ∈ [Ti,T0i +M].

(2.12)

Finally, the posterior distribution of Ti|F[T0i−M,T0i+M] becomes

p(Ti|F[T0i−M,T0i+M]) =
Li(Ti|F[T0i−M,T0i+M])

T0i+M
∑

i=T0i−M
Li(Ti|F[T0i−M,T0i+M])

. (2.13)

Sampling from the posterior distribution (2.13) is based on the premise that the pa-
rameter vector (β ,σ) is known. When the change points T1,T2, . . . ,TS and parameter
vector (β ,σ) are unknown, Chin Choy and Broemeling (1980) have shown a pos-
terior distribution expression of a single change point for a general switching linear
model. For a discrete time series of data F̂ , the length of F̂ is N, so the possible value
of a single change point in this series is the corresponding time for each data point,
which we denote as τ1,τ2, . . . ,τN−1. The posterior distribution of a change point is as
follows [23]:

p(T̂ |F̂)

{
∝ D(T̂ )−n1 |M1|−1/2 , T̂ = τ1,τ2, . . . ,τN−1,
= 0, T̂ = TN ,

(2.14)

where

n1 = n0 +
N
2
,

D(T̂ ) = s0 +
[(Y −Bβ1)

′Y +(M−β1)
′Q0M]

2
,

β1 = Q−1
1 [Q0M+B′Y ], Q1 = B′B+Q0, Q0 =V−1 s0

n0
,

and all the symbols including Y,B,n0,s0,m,V correspond to the previous ones in
subsection 2.3.1.

2.3.3 Algorithm and results

The Gibbs-sampling algorithm can be applied for generating the parameters sampled
from the posterior distribution. Specifically, each change point is generated from the
posterior distribution (2.14) based on the data F[T0i−M,T0i+M]. After the change point



has been detected, the parameter vector β can be sampled from the multivariate nor-
mal distribution N(m∗,σ2V ∗) where m∗ is a (S+6) dimensional vector and V ∗ is an
(S+ 6)× (S+ 6) matrix, and σ2 can be drawn from the inverse gamma distribution
IG(n∗,s∗). For details of the expression about m∗,V ∗,n∗,s∗ refer to Appendix A. In
this paper, the hyperparameters n0, s0 are chosen to be n0 = 300 and s0 = 0.2. A
non-informative prior for the parameter vector is a (S+ 6) dimensional zero vector
for β and a diagonal matrix with elements 106 for V. The algorithm implementation
process can be summarized as follows:

Step 1: Generate the sample of first change point T1 on the space [T01 −M,T01 +
M] from the posterior (2.14), the one that maximizes the distribution values is the first
optimum change point. Successively, get other change points in the same way.

Step 2: Give rational initial iteration values for parameter
β 0 = (c0

1, · · · ,c0
s+1,µ

0
0 ,µ

′0
1 ,µ ′′0

1 ,µ ′0
2 ,µ ′′0

2 ) and σ0, and set the iteration number i = 1.

Step 3: Generate a draw of β i = (ci
1, · · · ,ci

s+1,µ
i
0,µ

′i
1 ,µ

′′i
1 ,µ ′i

2 ,µ
′′i
2 ) from the con-

ditional posterior N(m∗
i ,(σ i−1)2V ∗

i ) given in (5.5).
Step 4: Generate a draw of (σ i)2 from the conditional posterior IG(n∗,s∗i ) given

in (5.5).
Step 5: Increase i to i+ 1 and return to Step 2, until we have obtained a large

enough sample for each parameter vector Θ0, where Θ = (β ,σ).
For the AQI data, the length of the time series is 2192 days from 15 November

2010 to 14 November 2016, and the number of change points, i.e. the value of S was
determined to be 11. To estimate the change points, we choose the value of M as 35.
The theoretical basis for this proposal is that the period of serious air pollution during
the heating times generally increases with increasing of the years, such that the begin-
ning of the period may be ahead of the start of heating and the end of the period may
be after the heating end time. For the convenience of estimation, it can be reasonably
assumed that the period extends across both starts and ends of the heating time for
five weeks, i.e. 35 days. The first step of the algorithm provided estimations of the
change points to be (107,375,462,766,855,1063,1252,1469,1619,1862,1984), as
listed in Table 1. This illustrates that a period of serious air pollution in those years
could be marked by the series of change points. In addition, we have calculated the
period of serious air pollution in each year in Table 1, denoted as m. The larger the
value of m, the longer the period of serious air pollution. The results showed that the
most serious air pollution period during the span of the existing data was from the
beginning of heating in 2013 to its ending in 2014, and the value of m was 189. The
period with the least air pollution was from the beginning of heating in 2013 to its
ending in 2014, for which the value of m is 87. It follows from the Fig. 2 that the
values of m is larger in the three most recent years than it was before, which indicates
that the severity of air pollution is increasing.

Once the change points have been detected, we can then estimate the parameter
vector Θ by using the Gibbs sampling algorithm outlined in this section to generate a
sample draw from the joint posterior, with 30000 iterations used to obtain estimates
after a burn-in period of 10000 iterations. If we assume that the rate of inflow of
pollutants into the air is a periodic change, i.e. c(t) satisfies function (2.4), the rate
takes a value of c01 in seriously polluted times and c02 at other times. Tn,1 and Tn,2



are not the start and end days of heating but are determined by the estimated change
points. Then the parameter vector is Θ1 = (c01,c02,µ0,µ1,µ2,ϕ ,δ ). The estimation
of the posterior mean and standard deviation of parameter vector Θ1 is shown in
Table 2. Meanwhile, the Monte Carlo standard errors (MCSE) of the estimates are
quite small, meaning that the autocorrelations within the chains are weak.

With the baseline estimation, we are able to incorporate the air pollution trend.
Fitting model (2.6) with (2.4) to the AQI data, we obtain the best fit estimation, shown
in Fig. 2. The green points are results from a single fitting, and the red points are the
mean values of 500 fitting iterations. From Fig. 2, it can be seen that the single fitting
stochastic path shows the trend of increasing AQI year by year. In addition, the range
of the oscillations is consistent with the actual AQI data. The goodness of fit results
reveal that the stochastic model depicts the dynamics of the AQI well.

Further, if we assume that the rate of inflow of pollutants into the air is different in
each interval between every two change points, i.e. c(t) satisfies function (2.5), then
the parameter vector is Θ2 = (c1, . . . ,cS+1,µ0,µ1,µ2,ϕ ,δ ). The estimation results
of Θ2 are shown in Table 3. The most seriously air polluted period in winter has the
largest inflow rate with a value of 37.0314, and the least air polluted winter period has
a lower inflow rate with a value of 26.5031. Under this assumption, we calculate the
mean inflow rate in seriously and not seriously polluted period, respectively. These
are denoted as ¯c01 and ¯c02, and their values are also listed in Table 3. Based on the
parameter vector Θ2, the corresponding fitting results were obtained, which are shown
in Fig. 3. One of the stochastic paths represented by the green points in Fig. 3 fit better
than the path in Fig. 2.

Since the assumption of the inflow rate varying in each period is reasonable, the
clearance rate c(t) should choose the function (2.5) when fitting the AQI data, which
can provide a better fit to the data and determine the parameters including the rates
of inflow and clearance of pollutants for each year but cannot be used for prediction.
However, the function (2.4) for c(t) can effectively predict future changes in air pol-
lution. This method can help us to analyze the effectiveness of control measures on
air pollution, the details of which will be discussed later.

3 SEIS stochastic model

3.1 ODE model of respiratory infection dynamics

Air pollution can lead to adverse respiratory effects. This has been shown not only
by associated data provided for epidemiological studies of the effects of air pollution
on human health, but also by data which now clearly delineate the role of pollutant-
mediated adverse interactions in allergic disease of human air-ways. To address this,
we would like to propose a stochastic SEIS model to depict the respiratory infection
development process, which is shown in Fig. 4. First we briefly introduce the ODE



model [37]: 

dS
dt

=−λ (t)+ γsIs + γaIa,

dE
dt

= λ (t)−σE,
dIs

dt
= δσE − γsIs,

dIa

dt
= (1−δ )σE − γaIa,

(3.1)

where λ (t) = β (F(t))(1− g(F(t)))S
Is +θ Ia

N
is the AQI-dependent incidence rate,

which assumes that the transmission probabilities are related to the AQI and to human
behavioral changes. The total population is N = S+R+ Is + Ia, and the incidence
function is β (F(t)) = β1F(t). The maximum protection rate on account of behavioral
changes has the form g(F(t)) = bF/(k2+F). The meanings of the state variables and
the parameters are given in Table 4 or [37] for more details of the above model.

3.2 SDE model

The stochastic SEIS model corresponding to (3.1) is a system of Itô stochastic differ-
ential equations. Let S, E, Is, Ia denote continuous random variables for densities of
susceptible, exposed, infectious with symptoms and infectious without symptoms. In
addition, the infinitesimal increment in a short time △t is denoted as △X =△X(t) =
X(t +△t)−X(t), where △X is the random vector (△S,△E,△Is,△Ia). Then

△X(t) = E(△X(t))+
√

C△t, (3.2)

here, the E(△X(t)) is the expectation and has the same form as the right-hand side
of model (3.1). C is the covariance matrix of △X(t), which has the following form:

C =


λ (t)+ γsIs + γaIa −λ (t) −γsIs −γaIa

−λ (t) λ (t)+σE −δσE −(1−δ )σE
−γsIs −δσE δσE + γsIs 0
−γaIa −(1−δ )σE 0 (1−δ )σE + γaIa


which is a symmetric matrix, and the square root of C is a unique positive definite
matrix. We denote

√
C as a 4× 4 matrix A = (ai j). Taking the limitation of (3.2) as

△t −→ 0, the following stochastic SEIS model is obtained[2]:
dS = [−λ (t)+ γsIs + γaIa]dt +∑4

j=1 a1 jdW j,

dE = [λ (t)−σE]dt +∑4
j=1 a2 jdWj,

dIs = [δσE − γsIs]dt +∑4
j=1 a3 jdWj,

dIa = [(1−δ )σE − γaIa]dt +∑4
j=1 a4 jdW j,

(3.3)

where Wj, j = 1,2,3,4 are four independent Wiener processes. In this model, the
inflow rate for the dynamics of F is assumed to satisfy the function (2.5). The values
of the parameters in model (3.3) were estimated by the MCMC method, except θ
and σ which are from [37]. Parameter estimation for this stochastic SEIS model is
described in the next subsection.



3.3 Results of parameter estimation and model fitting

In order to run the model, we acquired the ILI case data from the Shaanxi Center
for Disease control and Prevention for the same period as the AQI data, i.e. from
15 November 2010 to 14 November 2016. For the SEIS stochastic differential equa-
tions (3.3), an adaptive Metropolis-Hastings (M-H) algorithm was used to estimate
parameters in the model by carrying out the Markov Chain Monte Carlo (MCMC)
procedure. Based on the AQI data and the ILI case numbers for the above period,
we estimated the parameters, from the mean values of 10000 samples after a burn-in
period of 5000 iterations. The meanings and estimated values of all of parameters
relevant to the epidemiology of the respiratory infections are shown in Table 4.

With the baseline estimation, the numerical sample path of the SEIS stochastic
equations can be obtained. Fig. 6 shows the best fit to the ILI cases data, in which the
magenta points represent the ILI cases and the blue points show a simulation result
with the estimated parameters. From Fig. 6, we can see that the correspondence be-
tween the simulation and the data is good. The characteristics of the ILI data includ-
ing seasonal changes, progressive increase, and peaks have been reproduced by the
simulations results, indicating that stochastic model (3.3) can describe the dynamics
of respiratory infection well.

4 The effect of intervention measures

Investigating the short-term effects of intervention measures on the degree of air pol-
lution is challenging since factoring in the uncertainty associated with changes in the
climate and environmental change conditions is difficult. We now focus predictions
of the AQI time series and the daily number of respiratory infection cases for two
years from the stochastic model with the estimated parameters. Forecasts of the AQI
could act as warning signals to the public before episodes of serious air pollution
and help government departments make decisions about taking precautionary actions
such as issuing orders restricting the number of vehicle trips. Thus, we considered
six traffic restriction measures in Xi’an listed in Table 5. The type I is when the air is
moderately or more seriously polluted (AQI > 150) and 20% of cars are banned from
travelling for a week according to the last two digits of their licence plate numbers
and type II is for the same pollution levels but when 50% of cars are banned from
travelling for a week according to whether their licence plate numbers are odd or
even. The type III and type IV measures are invoked when the air is lightly or more
seriously polluted (AQI > 100) and 20% and 50% of cars, respectively, are banned
from travelling for a week according to the same licence plate criteria as for types I
and II above. The type V and type VI measures involve 20% and 50%, respective-
ly, of cars being banned from travelling all of the time, irrespective of the pollution
level, according to the above licence plate number criteria. To predict the respiratory
infection cases under different levels of restrictions, the period between two change
points in 2017 and 2018 is selected as the mean value for such a period m, which is
122. In addition, the parameters for the clearance rates are selected as the estimated
results in Table 3, the inflow rates during seriously and not seriously polluted periods,



respectively, are selected as the values of ¯c01 and ¯c02. While the inflow rate decrease
to 90% and 80% of its initial value with the last two digits of the license plate rule
and odd-and-even license plate rule, respectively.

AQI forecast reports could help the public, especially susceptible groups such as
infants and old people, who could take measures to protect themselves by measures
such as wearing masks and minimizing outdoor activities to reduce the risk of respi-
ratory infections. Here we assumed that the rate of protection could increase to 1.1b
and 1.2b because of human behavioural changes, which are regarded as another two
intervening measures denoted by the type VII and type VIII. The efficacy of air pol-
lution control policies from 15 November 2016 to 15 November 2018 in Xi’an are
predicted in a random environment, using the mean simulated stochastic path of the
model.

Simulated implementations of the government’s restrictive measures, the mean
of 500 stochastic path simulations and one good stochastic path of respiratory infec-
tion dynamics under six different traffic restriction measure types, represented by six
different colors (red, yellow, lilac, bottle green, light green, cyan successively) are
shown in Fig. 5 and Fig. 6. Based on the mean values of 500 simulations, the pre-
dicted numbers of polluted days (AQI > 100) and the total number of ILI cases are
shown in Table 6. The blue line in Fig. 5 is a plot of the model predictions of the
number of ILI cases in Xi’an from 15 November 2010 to 15 November 2016 and the
prediction of the number of ILI cases in the next two years without any action, which
can serve as a reference. The restricted strength increase in turn from traffic restric-
tion measure type I to type VI, and the predicted results indicate the peak reduction
of corresponding ILI cases. The results in Table 6 also illustrate that the stricter the
control measures, the fewer the cumulative number of cases. It is worth noting that
the cumulative number of ILI cases with VI is much lower than for the other cases
and the number of polluted days is less than for the others, which demonstrates that
regular and high strength traffic restriction measures are relatively efficient.

The validity and accuracy of our model are tested by comparing the predicted
AQI data with the observed data from 15 November 2016 to 31 January 2018. The
actual data for this period are represented by a steel gray color in Fig. 8 and the
mean stochastic paths of AQI shown in Fig. 8 are represented by the six colors in
accordance with Fig. 5. The polluted days for observed data and prediction during this
period are counted and listed in Table 7, where the predicted results are the mean of
500 simulations under six of the government’s restriction measures. By contrast, the
actual data are closest to the simulation result of traffic restriction measure type IV,
that is 50% of cars banned from travelling for one week based on whether their license
plate numbers are odd or even when the air is lightly or more seriously polluted
(AQI > 100). In fact, the government took actions on vehicle control in the winters of
the 2016 and 2017 by invoking the type III measure or type IV measures in the winter
of 2016, and the type V measure in the winter of 2017. Furthermore, the actual data
in Fig. 8 illustrate that the most restrictive regular measures, type V and type VI, are
more effective than only taking measures in seriously polluted periods.

Similarly, the efficacy of people’s self-protection strategies can also be verified
by the simulated data shown in Fig. 7 and Table 6. Through a horizontal comparison
between type VII and type VIII, the greater the self-protection measures, the less



people suffer from respiratory diseases. However, the longitudinal comparison shows
that the simulated cumulative numbers of ILI cases with a self-protection strategy
is less than the case with traffic restriction measures. This indicates that people’s
self protection is more effective in reducing the incidence of respiratory diseases,
probably because it can directly reduce the impact of pollutants on the respiratory
system.

5 Discussion

This study is a prospective analysis of AQI data in relation to respiratory infections in
Xi’an during 2010 to 2016. Firstly, we analysed how the AQI changes in one year and
the features of its variations from one year to another and how they can be modeled
with a stochastic model with change points. Secondly, considering the effects of air
pollution on people’s health, a stochastic SEIS model was established to describe the
dynamics of respiratory disease transmission. Based on the collected data, the models
were parameterised and their goodness of fit demonstrated. Finally, we forecasted the
effects of several government intervention measures on the air pollution condition
and the number of respiratory cases two years ahead.

The inflow-clearance process of air pollution was modeled by an SDE equation
(2.6), which was derived from an ODE equation (2.1). Actual environmental changes,
human activities, the inflow rate and the clearance rate were described by a piecewise
function and a non-periodic time dependent function. The change points when the
inflow rate switches between a serious and a not so serious pollution condition were
estimated by using a Bayesian framework. The estimated results of change points
shown in Table 1 indicate that air pollution has a worsening trend because the period
between switches is increasing. This period m , which is the numbers of serious pol-
lution days, can serve as an important indicator. In the years 2010, 2011 and 2012,
there were relatively light air pollution conditions in winter, which was shown by
the values of m being shorter than during the period when there was active heating.
However, in the years 2013, 2014 and 2015, the situations were more serious than in
the previous three years, since m was longer than the heating period. The data char-
acteristics from the analysis of the change points for the AQI data suggest that the air
pollution regime has a buffer time when the winter heating began several years ago,
but that it became worse before a large influx of air pollutants resulting from winter
heating in the three most recent years. Thus, not only the state of the air but also
the self-regulation of the environment are getting worse and worse. In addition to the
index m, we estimated the inflow rate at each period under two assumptions, and the
results are shown in Table 3, which also indicates a growing trend for the inflow rate.
For the dynamics of the AQI, the estimation of the values of the parameters in model
(2.6) and the fitting of data shown in Fig. 3 are good interpretations.

Stochastic differential epidemic models were formulated for the dynamic of res-
piratory infections, assuming a constant population size. A function that reflects the
impact of both the AQI and human behavior on the disease incidence rate was includ-
ed. Most of the parameters in the stochastic SEIS model were estimated by MCMC
methods and the results including mean values and standard deviations of parameters



are shown in Table 4. The solution of the stochastic epidemic model was numeri-
cally approximated by the Euler method, since analytical solutions of complicated
stochastic differential equation are difficult to obtain. By using numerical simulation,
the stochastic path fit to the true ILI cases data was good, which is shown by the blue
line in Fig. 5.

To verify the effectiveness of government interventions, we first summarised six
different restrictions on highway vehicles and two strengths of people’s self protective
measures. We then simulated the impact of these interventions by changing the values
of parameters in the model as well as adding judgment and control statements to the
numerical simulation program. Consequently, each intervention has a set of corre-
sponding prediction results. The predicted numbers of polluted day (AQI > 100) and
the total numbers of ILI cases with eight intervening measure types were obtained
and are given in Fig. 5 and Fig. 7. Predictions, based on the mean values of 500 sim-
ulations shown in Table 6, revealed that air pollution can be effectively controlled
by normalizing the restriction on traffic. In addition, we found suggestive evidence
that minimizing exposure to outdoor air pollution can reduce the risk of developing
respiratory diseases. Secondly, the actual data and predicted simulation results for the
period from 15 November 2016 to 31 January 2018 were compared. The numerical
simulation results showed that the government control measures are beneficial for
improving air quality. The AQI data of nearly 15 months showed that government in-
terventions have worked well, and that the more vehicles that are restricted, the better
the air quality. Thus, we should choose ”green” travel in our lives, by opting to take
buses, or riding bicycles or suchlike rather than using motor vehicles.

A previous study established a deterministic model to describe the dynamics of
air pollutants and respiratory infection [37], and this paper builds on that work with
an analogous stochastic model, which is more accurate for describing the relation-
s between air pollutants and respiratory infections. Note that comparing with the
main results shown in literature [37], one of interesting results in the present
paper is that the change points have been estimated by real data rather than
fixed them, which can more accurately evaluate and predict the situations of air
pollution and the difference in air pollution per year, besides, the time interval
of change point sequence can depict the tendency of air pollution to become se-
rious. Moreover, the stochastic models can fit the AQI and ILI cases well, which
could more actually depict the effects of randomness of environmental and me-
teorological factors. In terms of related parameters of the clearance rate such as
µ0, µ1 and µ2, the differences of their estimated values in deterministic model
and stochastic model are obvious. This is embodied in that the clearance rate
is large than that in deterministic model, in addition to the estimated values of
inflow rate c(t), the annual average estimated value in the stochastic model is
significantly higher than that in the deterministic model, which reveals that the
AQI could be underestimated in deterministic model. Further work is still need-
ed on the factors affecting air quality, on air pollution control strategies and related
topics. In general, confirming the beneficial effects of current air pollution control in
China is a challenge for environmental scientists, mathematicians, epidemiologists
and clinical scientists, and more effort is needed to formulate public policies as well
as reconciling different environmental objectives.



Appendix A: The prior distribution of β and σ2 in Bayes’ linear model
The probability density function of the prior distribution of β and σ2 is given by

p(β ,σ2) = p(β |σ2)p(σ2) = N(m,σ2V )IG(n0,s0)

=
sn0

0

(2π)|V |1/2Γ (n0)
(σ2)−(n0+2) exp

[
−
(
(β −m)′V−1(β −m)+2s0

)
/(2σ2)

]
,

(5.4)
where Γ (·) represents the standard gamma function and IG is the inverse-gamma
distribution. With m as the prior mean of the coefficient vector β , its prior variance is
given by σ2V .

Using the Bayes rule we can then form the posterior distribution of the parame-
ters, the posterior is determined by multiplying together the expressions in (2.9) and
(5.4), the constant term p(Y ) is a regularization factor that does not depend on either
β or σ2. The posterior distribution of β and σ2 is

p(β ,σ2|Y ) ∝ (σ2)−(n∗+2) exp
[
− (β−m∗)′(V ∗)−1(β−m∗)+2s∗

2σ2

]
= (σ2)−1 exp

[
− (β−m∗)′(V ∗)−1(β−m∗)

2σ2

]
× (σ2)−(n∗+1) exp(− s∗

σ2 )

∝ N(m∗,σ2V ∗)IG(n∗,s∗),

(5.5)

where
m∗ = (V−1 +B′B)−1(V−1m+B′Y ),
V ∗ = (V−1 +B′B)−1,
n∗ = n0 +(N1 −1)/2,
s∗ = s0 +[m′V−1m+Y ′Y − (m∗)′(V ∗)−1m∗]/2.
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Table 1 The change point values and the periods between each two change points.

Change points T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Values 0 107 375 462 766 855 1063 1252 1469 1619 1862 1984
Period m 107 87 89 189 150 122

Table 2 The estimated results for parameters in (2.4).

c01 c02 µ0 µ1 µ2 ϕ δ
Mean 29.9888 27.3045 0.3047 0.0641 1.5021∗10−5 3.4439 2.3522
St.dev 1.7451 1.4855 0.0159 0.0188 1.6369∗10−5 0.2474 0.0315
MCSE 0.0119 0.0101 0.0001 0.0001 0.0000 0.0020 0.0003

Table 3 The estimated results for parameters in (2.5) and the mean inflow rates.

c1 c3 c5 c7 c9 c11 ¯c01
Mean 29.1718 26.5031 35.0392 37.0314 28.3588 32.8716 31.4960
St.dev 3.0980 1.8897 3.2804 2.4893 1.7393 3.0036
MCSE 0.0220 0.0146 0.0234 0.0178 0.0133 0.0226

c2 c4 c6 c8 c10 c12 ¯c02
Mean 24.0904 24.8243 26.7563 29.7524 27.1135 29.4371 26.9957
St.dev 1.7244 1.5923 2.0197 1.9954 1.6615 2.0563
MCSE 0.0123 0.0097 0.0149 0.0150 0.0121 0.0155

µ0 µ1 µ2 ϕ δ
Mean 0.3076 0.0620 1.9100∗10−5 3.2968 2.3434
St.dev 0.0156 0.0206 0.0003 0.3246 0.0315
MCSE 0.0001 0.0002 0.0000 0.0026 0.0002

Table 4 The estimated values for the parameters and initial values of the SEIS model

Parameters Definition Mean value (estimated)std Source
β1 baseline transmission coefficient 0.0035 7.8987∗10−5 MCMC
b maximum protection rate due to interventions 0.666 0.0151 MCMC
σ rate of progression to infection 1/3 − [39]
γs recovery rate for infectives with symptoms 0.1364 0.0005 MCMC
γa recovery rate for infectives without symptoms 0.0214 0.0002 MCMC
δ proportion of infected individuals 0.528 0.0028 MCMC

who have developed flu symptoms MCMC
θ modification factor in transmission coefficient 0.4 − [37]

of the asymptotic infectious individuals
k2 the AQI at which the maximum protection rate 2.673 0.0536 MCMC

is of its half
S(0) initial number of susceptibles 732.2 7.1205 MCMC
E(0) initial number of exposed individuals 112.3 1.1684 MCMC
Is(0) initial number of infectives with symptom 68 − [37]
Ia(0) initial number of infectives without symptom 448.1 1.4209 MCMC



Table 5 The six traffic restriction measures considered.

Type I AQI > 150 & 20% of cars banned from travelling for one week
based on the last two digits of their license plate numbers

Type II AQI > 150 & 50% of cars banned from travelling for one week
based on whether their license plate numbers are odd or even

Type III AQI > 100 & 20% of cars banned from travelling for one week
based on the last two digits of their license plate numbers

Type IV AQI > 100 & 50% of cars banned from travelling for one week
based on whether their license plate numbers are odd or even

Type V 20% of cars banned from travelling at any time
based on the last two digits of their license plate numbers

Type VI 50% of cars banned from travelling at any time
based on whether their license plate numbers are odd or even

Table 6 The prediction results of polluted days and total ILI cases in 2017 and 2018.

predicted polluted predicted ILI predicted polluted predicted ILI
days in 2017 cases in 2017 days in 2018 cases in 2018

no measures c(t) 153 155 25056 25509
Type I 0.9c(t) 150 151 24544 24279
Type II 0.8c(t) 148 149 23707 23600
Type III 0.9c(t) 137 138 23261 23347
Type IV 0.8c(t) 121 122 21965 21987
Type V 0.9c(t) 124 125 21887 21467
Type VI 0.8c(t) 94 96 18097 16420
Type VII 1.1b 148 157 15463 17383
Type VIII 1.2b 164 178 5207 6979

Table 7 The actual and predicted numbers of polluted days from 15 Nov 2016 to 31 Jan 2018

Actual No Type Type Type Type Type Type
data measures I II III IV V VI

Actual polluted days
/Predicted polluted days 176 232 230 226 208 184 192 147
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Fig. 1 Time series of the numbers of reported influenza-like illness (ILI) cases and the AQI from 15 Nov.
2010 to 14 Nov. 2016. (A): The numbers of new ILI cases reported during sentinel surveillance at seven
hospitals; (B): The AQI for Xi’an, Shaanxi province; (C): The numbers of days at each air pollution level
during 2010-2016. The pink curves in (A) and (B) correspond to winter periods from 15 Nov. to 15 Mar.
of the following year.
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Fig. 2 Goodness fit of the AQI data at Xi’an based on model (2.2) with (2.3). Blue circles represent
the AQI data during 15 November 2010 to 14 November 2016; the green line shows results of a single
simulation with the estimated parameters and the red line shows the mean result from 500 simulations.
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Fig. 3 Goodness fit of the AQI data at Xi’an based on model (2.2) with (2.4). Blue circle represent the AQI
data during 15 November 2010 to 14 November 2016; the green line shows results of a single simulation
with the estimated parameters and the red line shows the mean result from 500 simulations.

Fig. 4 Flow diagram representing respiratory infection disease development routes.
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Fig. 5 The time series of respiratory infection from 15 November 2010 to 15 November 2016 and the
predicted results under six different traffic restriction measures from 15 November 2016 to 15 November
2018, which are the means of 500 stochastic simulations. (A): The ILI cases data are shown by the magenta
curve and the fitted data are represented by the blue curve. The red, yellow, lilac, bottle green, light green
and cyan curves represent the predicted respiratory infection cases of Type I to VI; (B): The magnified
version of seven predicted curves in Fig. 5(A).
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Fig. 6 One stochastic simulation from those illustrated in Fig. 5.
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Fig. 7 Predicted results of respiratory infection cases under two kinds of self-protection measures from
15 November 2016 to 15 November 2018. The red curve and yellow curve are with protection measures
of 1.1b and 1.2b, respectively. (A): They are means of 500 stochastic simulations. (B): The result of one
stochastic simulation for good fitting.
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Fig. 8 Good fits for the time series of AQI from 15 November 2010 to 15 November 2016 and prediction
results under six different traffic restriction measures from November 15th 2016 to November 15th 2018.
The magenta curve represents the actual data that were used for parameter estimation and fitting data and
the steel gray curve represents the actual data that were used for verify the validity and accuracy of model
(2.6). The other six colors correspond to the six control measures as in with Fig. 5.




