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Abstract This paper investigates incorporating chain of command in swarm

intelligence of honey bees to create groups of ranked co-operative autonomous

agents for an RTS game in to create and re-enact battle simulations. The behaviour

of the agents are based on the foraging and defensive behaviours of honey bees,

adapted to a human environment. The chain of command is implemented using a

hierarchical decision model. The groups consist of multiple model-based reflex

agents, with individual blackboards for working memory, with a colony level

blackboard to mimic the foraging patterns and include commands received from

ranking agents. An agent architecture and environment are proposed that allows for

creation of autonomous cooperative agents. The behaviour of agents is then eval-

uated both mathematically and empirically using an adaptation of anytime universal

intelligence test and agent believability metric.
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Introduction

Most genres of video games require a degree of artificial intelligence (AI) either as

support with progress or as opponents. These could be central intelligences,

individual agents or groups of agents. Specific genres of games require large

numbers of individual AI units to work together for or against the player, such as in

real-time strategy (RTS) or Tower Defence games. Taking advantage of the ever

increasing computer processing power, it is possible to use more complex

algorithms and techniques to create more realistic and challenging AI with less

computational expense. Multi-agent approaches and swarm intelligence are inspired

on the ability of social animals and crowds to work together as a group without the

need for a leader to delegate tasks. Individuals in a swarm are unable to find a

solution to a colony’s problems alone; however, by interacting with each other and

making decisions based on local information, they can find a solution at the colony

level (Garnier et al. 2007).

In AI, swarm intelligence aims at creating a decentralised group of autonomous,

self-organised individuals that respond to local stimuli. When these individuals are

viewed at the swarm level, individual decisions should be contributing to the

appearance of a group decision. Several algorithms are inspired by biological

swarms; e.g. particle swarm optimisation is based on birds flocking (Kennedy and

Eberhart 1995) and ant colony optimisation is based on ant foraging methods

(Dorigo and Blum 2005). Swarm intelligence does not tend to have leadership or

chain of commands in their implementations, yet battle management is an essential

part of an RTS which is not fully implemented in swarms. The concepts of rank and

chain of command are integral to realistic implementations as they would allow for

the planning, coordination, and monitoring of units through leaders (Løvlid et al.

2017).

The aim of this research is to implement chain of command into an adaptation of

the real-life swarm intelligence of honey bees, creating a group of co-ordinated AI

agents for an RTS game setup. The goal is to recreate autonomous AI that can be

used to re-enact battles in a simulation format, which could also be used in history

or military training. This work builds on previous implementation of Cooperative

agents (Daylamani-Zad et al. 2017) and addresses the challenge of command

structure, allowing for new outcomes such as retreating and surrender.

This paper uses elements of pre-existing algorithms, with the aim of

implementing chain of command in a multi-agent system based on behaviour of

honey bees. The independent behaviour of agents aims to simulate an over-arching

strategy under a hierarchical decision making-approach. ‘‘Approaches in games’’

presents instances of swarm intelligence and chain of command used in games;

then, in the following section, the complexity of the problem and the research

overview are presented. The behaviour and roles of honey bees are presented in

‘‘Bee colonies as a basis for unit development’’ and existing approaches in multi-

agent systems are presented in ‘‘Multi-Agent systems’’. ‘‘Mapping the bee

behaviour’’ presents the proposed mapping of bees to soldiers, setting the ground

for presenting the agent architecture and the proposed environment. The evaluation
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section shows the results of experiments and present an evaluation method based on

anytime universal intelligence test. Finally, the paper concludes in ‘‘Conclusion’’.

Approaches in games

Multi-agent approaches including swarm intelligence have been used in games in

recent years. These approaches have been used in both serious games used for

military training, problem solving in battlefields, as well as used in traditional video

games for entertainment.

Reynolds (1987) proposed an approach in simulating the flocking behaviour of

birds, creating a distributed behavioural model much like that at work in a natural

flock as an alternative to scripting the path of each bird individually for animation.

Li and Hu (2009) present a soccer simulation implemented using a multi-agent

approach that implements a blackboard model to tackle the communication between

the agents. Other researchers (Orkin 2011; Orkin and Roy 2009) have used multi-

agent blackboard approach to creat autonomous NPCs (Non-Playable Characters)

that behave similar to humans to improve NPC behaviour and increase game

engagement. Particle Swarm Optimisation has been used in a tower defence game to

optimise cannon locations to cause enemies the most damage (Huo et al. 2009). The

scenario contained two teams of players, attack and defence. The attack team

needed to navigate along a single path that ensured minimum casualties. The

defence team was given seven cannons to place on the map, with the aim of causing

the maximum amount of damage to the enemy regardless of the path they took.

An adapted version of ant colony optimisation (ACO) was used to simulate

resource gathering in a real-time strategy game environment that was believable to

players. A memetic ant colony system was created, using ACO to explore the

environment and communicate information about resources. This solution was

chosen as it is less computational intensive than using explicit planning and

searching. Experiments using this system with different levels of difficulty found

that agents in this system were successful even when there were many obstacles and

few resources available (Chen et al. 2013).

Stanescu et al. (2014) present a multi-level abstraction framework for RTS multi-

agent systems using hierarchical adversarial search framework to more closely

model the human way of thinking similar to the chain of command employed by the

military. At each level they implement a different abstraction level of decisions

which starts from how to win at the top level to individual unit orders. They apply

their framework to a StartCraft combat simulator and evaluate it against existing

approaches with promising results.

Complexity of agents in RTS games

RTS games comprise of a variety of units and roles, traditionally militaristic,

controlled by players to achieve the final goal of the game. This goal tends to be

waging war, and winning the war against the opponent(s) (Robertson and Watson
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2014; Tavares et al. 2017; Yannakakis and Togelius 2015). The complexity of RTS

games is enhanced by the fact that player not only has to control the militaristic

units but also needs to gather resources to upgrade and develop its military power.

These two aspects work in collaboration; the gathering and economical aspect

allows for the development of the military aspect, whilst the military aspect defends

and protects the gathering aspect against hostilities and enemies. Considering these

two aspects, it is possible to conclude that the main aim of the game is actually

survival and growth.

Players need to make three levels of decisions on the units; Strategic decision-

making, Tactical decision-making and Micromanagement. Strategic decisions are

high-level, long-term planning and decisions which involve the high-level goal of

growth and survival. Tactical decisions are medium-term plans and are aligned with

the strategic decisions but are more detailed, and, for example, can deal with

collective actions of a group of units. Finally, Micromanagement decisions are short

term and relate to controlling individual units (Buro and Churchill 2012; Robertson

and Watson 2014).

It is clear that RTS games require multiple levels of abstraction and reasoning

within a vast space of actions and states. Humans have a much higher ability to

abstract, reason, learn and plan compared to AI (Buro and Churchill 2012;

Robertson and Watson 2014). Most well implemented agents are outmatched by

experienced human players (Synnaeve and Bessière 2011; Weber et al. 2010).

This paper suggests that using the crowd approach in implementing the AI would

potentially bring the intelligence of the AI closer to that of an experienced human

player. The approach is inspired by the existing structures within military with chain

of command where the level of abstraction in decision-making increases as the rank

goes higher. The units make short-term micro-decisions within the parameters of the

commands they have received whilst the high-ranking officers would make the

strategic decisions. This approach aims for believable AI and believable agents

(Yannakakis and Togelius 2015), aiming to create agents that exhibit believable

human-like characteristics. Various swarms such as bees, ants, birds and wolves

present a potential opportunity to create simple unit agents which make decisions

and perform tasks individually within an over-arching strategy that as a whole

exhibits an intelligent overall design.

The nature of RTS games as presented requires AI agents which exhibit

believable characteristics but it also requires coordination and collaboration. The

complex nature of RTS games is one of the greatest challenges in multi-agent

systems. Gathering and using resources, waging war and defending friendly units to

achieve an over-arching goal are the basis of decision-making, task allocation and

action selection in RTS games (Tavares et al. 2014, 2017).

Considering these arguments, it is possible to identify the challenges of

implementing believable agents for an RTS game as a combination of choosing a

suitable swarm approach which would then need to be mapped to a multi-agent

system architecture. Finally, the parameters of an RTS game would need to be

mapped to the characteristics of a swarm for implementation. Figure 1 illustrates the

workflow of the research as is presented in this paper. The discussions start with

establishing the honey bee swarms as the basis for the design of units and their
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behaviour and roles within a colony. The following section will look at the

implementation of a multi-agent system that can incorporate the required elements

of an RTS game where units are based on bees. Following that, an implementation is

provided where the behaviour of bees is mapped to units and the agent architecture

for such system is presented.

The discussions presented identify three aspects in which the research is focused

on addressing. These are unit intelligence, command intelligence and agent

believability. The unit intelligence is concerned with how intelligently would the

units work at a micromanagement decision level. The command intelligence is

concerned with the implementation of a chain of command and how well the units

follow tactical and strategic decisions in their task selection. Agent believability is

focused on the whole system and how the system is perceived by humans.

Bee colonies as a basis for unit development

The behaviour and roles within bee hives have been used as the basis of the agent

behaviours and will be mapped to unit behaviour in an RTS in ‘‘Mapping the bee

behaviour’’. Group decisions in honey bee colonies are formed by many individual

bees’ decisions. According to Detrain and Deneubourg (2008), an individual’s

decision can influence the decision of others, causing the appearance of a group

decision. Each bee would make decisions based on its interactions with the

environment and other nest mates. The roles and behaviour within a colony can be

closely mapped to units within a strategy battle game.
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Fig. 1 Research workflow for believable AI agents in an RTS game using swarm intelligence approach
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Behaviour of honey bees

Bees exhibit two main behaviours that are useful in a strategy battle games. These

are Foraging and Defensive behaviour.

Foraging

When foraging, honey bees actively recruit others to food sources, providing

information about the source through a waggle dance. Waggle dances consist of a

series of waggle runs followed by a semi-circular turn, communicating the distance,

the angular location based on the sun’s azimuth and the odour of food. These dances

provide bees with positive feedback that influences others to go to certain locations.

The waggle dance is also used by bees to tell nest mates about suitable nest

locations when a swarm is looking for a new home (Menzel 1990; Seeley et al.

2006).

While searching for the flowers, bees will take an irregular path and possibly fly

hundreds of meters from their hive; however, when they fly back to their nest after

locating a food source, they take the path with the shortest distance (von Frisch

1965). Experiments have shown that bees can learn and make decisions based on

visual stimuli using their own working memory (Zhang et al. 2005). This working

memory is what allows bees to navigate their environment and call on experience to

make decisions about the profitability of food.

The foraging behaviour forms the basis for resource gathering and exploration

behaviour in a strategy game. The units would need to gather resources and also

explore the map to identify new resources or enemy units. The waggle dance is a

good map to the reporting behaviour that units would exhibit in RTS games.

Defensive behaviour

The defensive behaviour of the colony is also viewed as a collection of individual

responses to stimuli from the environment, such as recruitment pheromones from

colony members. Defensive responses of a bee can be broken down into four

sequential phases: alerting, activating, attracting and culminating illustrated in

Fig. 2 Repeated disturbances of the colony can invoke a fifth phase called

absconding, whereby the queen and adult bees leave the nest (Collins et al. 1980).

In each of these phases, there are number of actions a bee can take; however, they

can only perform one action at a time and each action requires a certain amount of

complex available energy (CAE). By reacting to a stimulus, a bee can step through

each of these phases and take an action. There are multiple forms of stimuli that can

invoke defensive behaviour, including moving visual stimuli, vibrations of the nest

and the alarm pheromones of nest mates (Hunt 2007).

(a) Alerting

In the alerting phase, bees have the options of alert, recruit or flee.
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• Alert bees take a defensive stance with their wings extended, mouth open and

antennae waving. This response is not based on the direction of the stimulus, as

it has been found that alert bees that are grouped together face in different

directions.

• A recruiting bee will open their sting chamber and run into the hive, releasing

alarm pheromone to stimulate nest mates into defensive behaviour. A recruiting

bee can be recruited into further defensive action by their own pheromone.

• If the stimulus provides directional information, some bees will choose to

retreat from the area of disturbance.

(b) Activating

With more stimulation, bees reach the activating stage. Here, bees will look for the

source of the disturbance. Depending on if the hive is opened or unopened, the

search will start close to the bee or the hive entrance. If there is no further

stimulation after a period, the activated bee may begin searching meters from the

hive.

(c) Attracting

If an appropriate stimulus is found by an active bee, they will orient towards it. The

same disturbance often simultaneously activates and attracts bees. This change in

phase is more obvious when a stimulus is presented and then removed to a remote

location.

Fig. 2 Model of honey bee defensive behaviour (Collins et al. 1980)
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(d) Culminating

In this phase, several responses are possible. Bees may sequentially display two or

more of the following responses: threaten, run, sting, bite, pull hair or burrow into

clothes. If the integrity of the nest has been disrupted, the bee may choose to run.

Roles within a bee colony

During a worker’s lifetime, they will undertake different roles as they develop and

age, also known as age-related polytheism (Hunt 2007). The main roles they take

are: Middle-Aged Bees, and Foragers.

Middle-Aged Bees (MABs) develop around the age of 12–21 days and remain in

at this stage of development for a little over a week. MABs can take on numerous

roles within the nest. Younger MABs tend to take on tasks such as comb building

and colony maintenance, while older MABs take on tasks closer to the hive entrance

such as nectar receiving/processing and guarding (Johnson 2010). Around 10–15%

of MAB workers will take part in guarding (Hunt 2007). The rest of the MABs tasks

are closely related to foragers. Bees can choose which task to do based on feedback

from the local environment, e.g. foragers performing the tremble dance can recruit

MABs to act as receivers (Detrain and Deneubourg 2008).

Foragers Once a bee has developed into this role, they no longer take part in

hive-related tasks that MABs handle. Instead, foragers focus on collecting all

resources (Johnson 2010).

There are two more roles which have not been used in this work. The Cell
Cleaner role refers to newly emerged bees that have not been involved in the nest

duties yet. The Nurse role is responsible for feeding the young and caring for the

Queen. Instead, there are two leadership roles that will be introduced in

Sect. 5.26.3).

Multi-Agent systems

Swarm Intelligence can be implemented as a multi-agent system. A multi-agent

system consists of an environment which multiple AI agents communicate and act

within. An AI agent is described as something that can perceive its environment

through sensors and make decisions/act based on information found in that

environment (Russell and Norvig 2009). An agent is expected to be able to:

• Operate autonomously

• Perceive their environment

• Persist over a prolonged period

• Adapt to change

• Create and pursue goals
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Rationally, agents should aim to select an action that is expected to maximise its

performance measure, based on evidence provided by the percept sequence and

whatever built-in knowledge the agent has (Russell and Norvig 2009).

Model-based agents

There are different agent types that can be created to replicate the behaviour of the

honey bees. The type of agents depends on the environment it interacts with, the

tasks it needs to achieve and the process in which it would need to reason. The

environment in which the units are interacting with in a battle scenario is partially

observable, sequential and dynamic. The agents would need to make a decision

regardless of the amount of information they have; therefore, even if there is

uncertainty, they would need to make a decision regardless.

Model-based reflex agents are considered the best fit for implementing the agents

used within such environment (Lieck and Toussaint 2016). These types of agents

keep track of part of the world they cannot see anymore, using information

perceived historically. The state of the world the agent is tracking can be updated

using information about how the world evolves independently of the agent, and how

the agent’s actions affect the world (Miller et al. 2016; Scheidt and Pekala 2007).

This type of agent can maintain an internal state of the world that is dependent on

the percept history. To be able to update this internal state, the agent needs to know

how the world works, known as the model of the world.

The model that agents use needs two types of information:

• How the world evolves independent of the agent

• How the agent’s own actions affect the world

Using this state and the current percept, the agent can make decisions as to what

to do. As the environment is partially observable, the state maintained by the agent

is better thought of as a best guess. This means there is likely to be uncertainty in the

state; however, decisions still need to be made (Miller et al. 2016; Russell and

Norvig 2009).

Blackboard architecture

A blackboard is a global structure that is available to all agents in a system to share

information and collaborate to solve a problem. Traditional blackboard systems are

made of three components: the blackboard, several knowledge sources (KSs) and a

controller component. The blackboard acts as the shared memory for the KSs to

read and write from. A KS is a system that can read information from the

blackboard, process anything relevant to it, and contribute information towards

solutions. KSs are independent of each other, and each can be a different type of

system, allowing different approaches to problem solving; however, only one KS

can write to the blackboard at a time. The controller component is responsible for

choosing which KS can write to the blackboard next. Decisions are made based on
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what the KS will contribute and the resources required to create this contribution

(Corkill 1991).

More recently, a different approach (Corkill 2003) was suggested for blackboards

in a multi-agent system. Corkill proposed a system whereby each agent has their

own blackboard and all KSs used in the system, allowing them to focus on nearby

data and share with other agents they meet. This approach would create a flexible

distributed system, similar to how honey bees use local information and their own

experience to make decisions and share information. This has been taken on by

other researchers and expanded to using a private and a shared blackboard, where

part of the world is shared amongst the agents and other information are kept private

to each individual agent (Orkin and Roy 2007). The use of private and public

blackboards enables the communication between agents to be precise so that public

information is available to all agents through call outs and the nest. The private

blackboard would be able to hold information specific to the units which could

include their current view of the environment that has not been shared with the nest

or commands from ranking units.

Markov decision process for decision-making

AI agents will need to be able to make decisions about the tasks they are

performing, the information they share with others, enacting orders, the actions they

will take during defensive behaviour and the nodes they will travel to, during

resource gathering. Various methods can be used to enable agents to make these

decisions. Due to the probabilistic nature of bees’ foraging patterns and the model of

defensive behaviour, the Markov Decision Process (MDP) is rendered to be the

most suitable.

MDP is a process where all possible states are known, each state having related

action and reward values, and a probability of transitioning from one state to another

(Mausam and Kolobov 2012). MDPs are most suitable to scenarios whereby the

agent moves through several known sequential states, where transitions between

states happen via a decided action. These points, where decisions are made, are

known as decision epochs. Taking an action results in a reward value, which can be

positive and negative, with negative values being a cost, rather than a reward.

Agents know the rewards for actions before they are taken.

To handle a partially observable environment, Partially Observable MDPs

(POMDPs) can be implemented. POMDPs have a similar structure to MDPs;

however, they require a sensor model to be able to create a belief state; a group of

actual states the agent might currently be in (Russell and Norvig 2009).

Chain of command

In a realistic battle scenario, there is a need for battle management which would

require analysis of the state of battle, disposition of units, the health and state of

various units, enemy units’ state and disposition and the overall tactical planning of

the battle. In human terms, this is achieved through the implementation of chain of

command (Churchill and Buro 2012; Robertson and Watson 2014).
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There have been multiple approaches to implement a command structure.

Majority of approaches (Løvlid et al. 2017; Stanescu et al. 2014) implement a

hierarchical structure in which agents are ranked and, therefore, could have

subordinates that follow their command, whilst, in turn, they would themselves be

subordinated to higher-ranked agents which they receive commands from. Such

approaches dispense the planning and tactical thinking into multiple levels at unit

level where various units would make tactical decisions at different abstraction

levels based on their rank within the hierarchy. Notably, Mock (2002) and Rogers

and Skabar (2014) have proposed approaches which creates multiple abstraction

levels where the high level strategic planning is propagated to units.

Yet, these approaches do not usually include the high-level commanding agents

as units in the field. The proposed approach in this paper aims for a platform that

enables battle re-enactments and simulations mainly for research and educational

purposes and, therefore, needs all the commanding units to also be included in the

field of battle.

Mapping the bee behaviour

The prior sections investigated the behaviour of honey bees that will be adapted for

use in an RTS AI agent. This section discusses the findings and the proposed

approach to implement a hierarchical multi-agent framework within the game to

simulate battle scenarios.

As previously mentioned, a bee, during its lifetime, will undertake several

different roles. In the game environment, there will be several different roles that AI

can undertake and switch between depending on the needs of the group, e.g.

Harvesters, Foragers, and Soldiers. These roles are then mapped and simulated into

agents as well as leadership roles which will be introduced further on.

To replicate the bees working memory, each agent in the system will have their

own private blackboard to store locally perceived information to be used to make

individual decisions. To best use this working memory, model-based reflex agents

will be implemented to keep track of the environment based on the models of honey

bee behaviour discussed earlier. Based on the abstraction level of the agents, the

information stored in the memory would be different. The leader units would have a

higher abstraction of information with a wider view of the environment which will

be populated by the reports from subordinates. The bottom-level units would have a

highly granulated view of the environment but in a limited range depending on the

information received from ranking units or the nest.

The foraging behaviour is implemented into the game environment, using a

shortest path calculation based on Dijkstra’s algorithm to wander in the map and

locate resources and enemy targets. Once resources are found, the units would move

directly towards the base to deposit their load and will continue collecting using this

new direct route. On returning to base, they will be able to access a global

blackboard to which all agents can read and write. A successful forager can then add

the location of the resource found to the blackboard, describing how to get to a

resource in a similar way to the honey bee’s waggle dance. The units will use this
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point as a target direction for gathering resources. Negative feedback will occur

when resources are depleted; the path is removed from the blackboard and other

resources will need to be found. If foragers encounter enemy targets such as enemy

units or the enemy base, they would report this to the closes ranking officer,

normally their direct captain. The captains would then decide to engage in battle,

report to their leader, general, or ignore the target for the time being but keep track

of their movements.

If the nest is disturbed, units undertake defensive actions which are presented as

the model for an individual bee. Bees step through the same phases of behaviour,

however, can take different actions in each phase dependant on how they perceive

the disturbance. To handle the probabilities involved in choosing actions in

defensive behaviour, a Markov decision process has been implemented. The process

allows agents to select different actions to move from phase to phase, depending on

the agent’s remaining stamina. MDP could also be adapted to handle the decisions

of which node to move to during foraging, dependant on the paths that have recently

been travelled along.

Environment and setting

The simulation scenario involves a randomly generated environment that holds two

bases (nests). This map hosts two separate colonies known as the Defenders and the

Aggressors. There are resources scattered around the environment which the

Defenders aim to collect as their base would produce a new agent after each q
amount of resources collected. Aggressors would be scouring the environment,

hunting Defender agents and searching for the Defender’s base. This environment is

created inspired by K environment (Chmait et al. 2016; Insa-Cabrera et al. 2012)

which is one of the environment classes that implements the theory behind the

Anytime Universal Intelligence Test (Hernández-Orallo and Dowe 2010).

Once the aggressors have spotted the defenders’, base, they will stop foraging

and gather to attack. At the same time, as the aggressors have also been spotted, the

defenders would issue a ‘‘Call to Arms’’ (alert-[ recruiting) which would result in

recruiting the defenders into a defensive position ready for the imminent attack from

the aggressors. The simulation will arrive at its conclusion when both sides line up

and charge each other resulting in battle. Once a side is completely wiped out, the

simulation ends.

The resources within the map are used for replenishing the health and the energy

of defenders. The collected resources will also allow the defender’s castle to build

new defender units. The aggressor’s start the game with existing resources

presumed to have been gained from previous raids.

Roles

The roles within the simulation are divided into three categories; the roles specific to

defenders, roles specific to aggressors and leadership roles shared by both groups.
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(1) Defender roles

• Harvesters (Foragers): collect resources only, cannot attack but can alert

the castle about attackers. The have Low CAE.

• Militia (MAB): collects resources, but can switch to defensive mode to

protect castle when called.

(2) Aggressor roles

• Scouts (MAB): do not collect resources, only look for defenders or the

castle, can attack when called to arms, can travel further than Attackers

and can detect enemies/castle in a wider range.

• Attackers (MAB): do not collect resources, can look for defenders/castle,

can attack but cannot travel as far as Scouts unless attacking a castle.

(3) Leadership roles

• General: is the first agent for each team that’s deployed when the

simulation is starting

• Captain: created for every five agents deployed for the team, e.g. 5th,

10th, 15th.

The General and Captain roles have all the functionalities of the harvesters/

militia/attackers. In addition, they have additional functionality; they are able to call

for their whole team to retreat or surrender. These two roles would take the

characteristics of normal roles within the team but they are also officers and,

therefore, would be able to exhibit actions and make decisions that other units

cannot.

Agent architecture

The proposed architecture for the agents in presented in Fig. 3. The agent consists of

blackboard and processing components. Information is received by the sensor form

the environment, this information is then stored in the blackboard. The Action

Selector unit would than select a suitable action based on the information on the

blackboard. This final decision is then passed on to the actuator which would apply

this to the environment, hence, exhibiting a behaviour.

The blackboard is divided into two sections; a private blackboard and a shared

blackboard. The private blackboard is private and independent for each agent. The

information on the private blackboard are only accessible to an instance of the agent

and relate to this agent. The private blackboard would include information such as

the rank of a unit, the status of troops (its subordinate agents, in case the unit is a

captain or a general) and the direct commands it receives. The shared blackboard is

information that is public amongst all agents. This simulates the knowledge held at
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the nest that is publicly known to all agents. The commands from General which

applies to all units are available in the shared blackboard.

The action consists of a director module that reads the current state of the agents,

and then based on the current state of the world and the current command issues to

the unit, decides which of the underlying experts are needed to make the next

decision. At any given situation, the agent might need to take multiple decision

through multiple experts. The agent might need to move and flock at the same time

as flocking action would involve moving and, therefore, pathfinding. The three

expert units; pathfinder, attacker and flocker will use the information from the agent

state and the world state and make their own relative decisions. Finally, the

decisions made by the three experts are passed to the unifier module which would
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Fig. 3 Agent architecture
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consider the current command issues to the agent as well as the status of its

subordinates (if any) and then unify these into a decisions which would formed into

actionable directives that are passed to the actuator.

The director and the three expert modules base their decision-making on a

hierarchical state machine of the agents that represents the states which the agents

would go through based on the information received from the game, commands

issues to the agent and the decisions that the agents have taken. Figure 4 represents

the high-level agent state machine. Each agent after it is created would go through a

setting up state where its role and initial action are decided. Once the agent is ready,

it will go to the foraging state where as the aggressor or defender, it will start to look

for defenders or resources, respectively. From foraging, if they meet enemies, they

will go to attacking or defending states and finally when an agent’s health reaches

zero, it will die. During foraging or conflict states, if the agent is a leader, i.e. a

General or a Captain, then the agent will continuously go into assessing state which

would assess the battle and decide on retreating or continuing the previous state for

its subordinates (Troops). Once Retreating call has been issued, all troops/units

involved in conflict would return to their respective bases and not return. If the

highest-ranking leader has reached the base and is still in retreat, then a Surrender

call is issued. Surrender stops the agents of the team from acting any further and

changes their colour to white; hence, the simulation ends at that point.

The foraging state, illustrated in Fig. 5a, encompasses the state machine for

movements and path finding. This state machine would allow foraging unless an

enemy or resource has been spotted in which case the agent would move to the

conflict state or focus of collecting resources. As presented in Fig. 5b, conflict state

Se�ng Up

Ready

Foraging Conflict
Cannot 
A�ack

Dead

Health = 0

Meet 
Enemy

Assessing

Retrea�ng

Surrendering

Leader at Base

Call Retreat

Is Leader
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Fig. 4 High-level agent state machine
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controls the decision for the various agent roles during the disturbances. The

aggressor agents will call to arms all their fellow attackers and scouts, flock to

position and charge the defenders. The defenders on the other side will get into

formation, and charge the aggressors to defend their castle. There is a chance that

the harvesters might flee to base instead of joining the defence. The aggressors have

a special state, Hunt, as they would hunt for enemies if they are not attacking the

castle. The flock to position state deals with the flocking behaviour of the agents.

The state machine, presented in Fig. 5c, allows the agents to make decision on their

positioning, when responding to call to arms, or when readying to get in line for

charge. The flocking behaviour is at the core of crowd and swarm intelligence. The

flocking patterns are a great demonstration of independent agents behaving

separately and yet creating a crowd pattern. The assessing state, Fig. 5d, illustrates

the process in which the retreating or continuing decision is made. The Decide

(a) (b)

(c) (d)

Foraging

Picking 
Direc�on

Checking 
Direc�on

Moving 

Des�na�on 
Reached

Resource 
Found

Calculate 
Route Home

Returning to 
Home Path

At Base

Restar�ng 
with 

Resource Loc

Moving To 
Target

Stuck

Checking For 
Enemies

Direc�on Chosen

If no resource
detected

If detected
resource

Touched
resource

In same pos 
for x frames

At 
resource

In same pos 
for x frames

No Resource 
Found

Redirected

Resource
Collected

If has resource

Route
Calculated

Recalculated
Route

Touched
Base

Resource
Loca�ons Stored

No Resource
Loca�ons Stored

End of Path
Reached

Enemy Found

Max Path 
Taken

No Enemy Found

Conflict

Flee To Base

Alert Base

Call to Arms Flock To 
Posi�on

Surround 
Castle

Adjust 
Posi�on

Harvester 

Mili�a

Aggressor
Can 

A�ack/Defend

Aggressors

In
Posi�on

ChargeFacing 
Defenders

Facing 
Aggressors A�acking

A�ack Finished

At Base Meet
Enemy

If No Health

If low health/energy

Refilled health/energy

Return to Foraging

Hunt

No Enemy

Meet Enemy

Issue Mustering 
Command

If Rank>1

Flock To Posi�on

Ge�ng 
Des�na�on

Going to 
Des�na�on

Checking 
Des�na�on

Go To 
Posi�on

Find Flock 
Posi�on

Checking 
For Nearby 

Agents

At Posi�on

Des�na�on
found

Des�na�on
posi�on empty

x units
away from 
des�na�on

Des�na�on 
posi�on filled

X units away
from posi�on

No nearby agents

Posi�on found

Another Agent
Too close

Assessing

Assessing 
Troops

Gathered Informa�on

Assessing 
Enemies

In Danger Safe to 
Con�nue

Decide Ac�on

Gathered Informa�on

Con�nueRetreat
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Action state works differently based on the leader unit that is making the decision.

Captains would call retreat if one the following conditions are met;

C1. If number of living troops is less than 45% of living enemy troops involved in

conflict.

C2. If number of injured troops is less than 50% of injured enemy troops involved

in conflict.

C3. If the General is dead.

The troops are the units subordinated to the captain at the time of assessment who

are able to attack/defend; therefore, harvesters do not count as troops even though

they might be subordinated to a captain. Each unit will be under the command of its

closest captain. If during foraging, a unit meets a captain that is closer to it than its

current captain (based on the location it has stored), then the unit will switch

captains. Also, a unit is considered injured if its health is below 45% of its total

health. These units are in danger of dying and therefore if more than half the troops

of a captain in conflict are injured, then it is worth retreating and regaining health at

the base.

The General would call retreat if one of the conditions of the captains is met or if

one of the following conditions is met;

C4. If all the captains are dead.

C5. If all the harvesters are dead.

Table 1 illustrates how the bee behaviour model presented earlier has been

mapped to human behaviour during disturbances to the nest. The table shows how

recruiting, searching, alerting, attract and culminating will be mapped to simulated

human behaviour in the AI units within the game as well presenting the mapping of

attack patterns and their weight in the units for the MDP to decide on actions.

If the nest is disturbed, units undertake defensive actions which are presented as

the model for an individual bee. Bees step through the same phases of behaviour,

however, can take different actions depending on the CAE levels and their role. The

agents would use the table above to decide also on the rewards of the actions they

take compared to the cost.

Evaluation

This section presents the evaluation of the proposed architecture. The evaluation

follows the three aspects identified in ‘‘Complexity of agents in RTS games’’

section; unit intelligence, command intelligence and agent believability. This

section presents the methods and the results of the evaluation of each aspect of the

proposed architecture.
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Unit intelligence

The evaluation method used for Unit Intelligence is an expansion of the previous

evaluation used by Daylamani-Zad et al. (2017) which was inspired by Chmait et al.

(2016b) and their approach to anytime universal intelligence test (Hernández-Orallo

and Dowe 2010). For this purpose, the environment is created based on a K
environment (Chmait et al. 2016a; Insa-Cabrera et al. 2012). The idea is to evaluate

an agent that can perform a set of finite tasks based on the environment it is placed

in. The intelligence of the system is assessed as a function of successful transition

between states and the success of achieving the objective of each state.

Method summary

This section provides a brief description of the evaluation method as presented by

Daylamani-Zad et al. (2017). In this approach for evaluating the intelligence of a

multi-agent system, each agent has its own specific role and each role would have its

own specific set of tasks and states that it is supposed to achieve. Each agent pi
which is a member of P = {p1, p2… pn} has a role xj from X = {x1, x2… xm}.

Each role would have a set of states available to them which is defined as Sj = {s:

s [ States ^ xj can be in s}, where States is the set including all the states available.

An available state sk would have a good outcome � k and a bad outcome � k. The

good outcome is achieving its objective whilst the worst outcome is the complete

opposite. This is a theoretical definition that has been put into practice based on the

tasks at hand.

A reward function has been defined for the agents which would represent how an

agent is performing in a state based on the best and worst outcomes of that state. The

reward of agent pi in state sk is represented by ci, k where - 1.0 B c B ? 1.0. The

value of ci, k is calculated using Eq (1) as a function of the outcome of the state

Table 1 Mapping bee defensive behaviour to unit behaviour (Daylamani-Zad et al. 2017)

Behaviour Cost (CAE) Damage

Bee Human

Aggressor Defender

Recruit Initiate call to arms Flee – –

Call to arms at base Call to arms at base – –

Searching Get in formation Get into defensive position – –

Attract Get in line for charge Get in line for charge – –

Culminating Battle cry Taunt 1 ?1 to the next attack

Sword attack Sword attack 1 1

Block with shield Block with shield 2 No damage

Shield bash Shield bash 5 2

String sword attack String sword attack 8 4

Dodge Dodge 3 No damage
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objective, where f(a, b) denotes the success of a achieving b. this can take many

forms.

ci; k ¼ 1=f ðpi;�kÞ � 1=f ðpi;�kÞ ð1Þ

The intelligence of an agent pi would be defined as the amalgamation of its

rewards in all its states during an iteration of the simulation, denoted as Ii presented

in Eq. (2). Hence, the intelligence of the agents in a role, xjI, can then be calculated

using Eq. (3) as the amalgamation of all the agents that are acting in the role xj.

Ii ¼
X

k¼1...p

ci;k
� �

= p ð2Þ

xjI ¼
X

i¼1...q

Ii= q ð3Þ

The number p in Eq. (2) is the number of states available for agent pi and it is

important to note that if an agent arrives at, p would not necessarily equal to |Sj|. It

would depend on the states that the agent has arrived at during a simulation which

means some states might be skipped whilst others might have been repeated many

times. The number q represents the number of pi agents that are acting in role xj.

Finally, the collective intelligence of a set of agents, P, is defined as w(P) and

calculated using Eq. (4) as the amalgamation of the intelligence of all the roles. As

X is the set of all the roles and each agent within P is mapped to a role, by

association, amalgamating the intelligence of each role, would allow for an

amalgamation of the intelligence of all agents.

w Pð Þ ¼
X

j¼1...m

xjI= m;m ¼ Xj j ð4Þ

Results

For the purpose of this research, the architecture was implemented using C# and

Unity and the simulation was executed for 200 iterations. Each iteration concluded

with one side, either aggressors or defenders, defeated and wiped out. The iterations

took between 6 and 11 minutes and both sides had an equal number of agents

spawned at the start. Figure 6 illustrates the agents in three different states. Table 2

presents the amalgamated rewards for each state for the first ten test iterations, and

Table 3 presents the mean rewards and their median and standard deviation for all

200 iterations. There were many instances of the outcome 1 which means that the

state has always reached its best outcome and, therefore, illustrates a high

intelligence. There are also instances of very low intelligence such as in Surrender

where the value has been 0. This can be explained with the fact that a number of

iterations did not reach a surrender state or has an unsuccessful surrendering when

the simulation ended before a successful surrender. The attack state is also

notable for a low score which can be explained due to the nature of attacking

J. Comput. Educ.

123



Fig. 6 Simulation of the game. a Guide figure, b charging the defenders’ base, c flock to position at
base. d charge. e Surrender
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behaviour in battle which involves misses, deflections and dodges by opponents as

well as unsuccessful starts that might have been stopped due to receiving damage

mid-action. Whilst alerting captain seems the most successful state in all

simulations, surrendering and fleeing to base have been generally not as rewarded

as other states. As mentioned, these can be explained by the fact that these are

retreating scenarios when the opponent aims to wipe out to win, which can lead to

incomplete execution of these states.

Table 3 Mean, median and standard deviation reward for each state in 200 simulation iterations

State Mean Median Standard deviation

Adjust position 0.905 0.9 0.065

Alert captain 1 1 0

At home 0.994 1 0.006

At position 0.937 0.92 0.053

Attack 0.597 0.57 0.232

Attack finished 0.866 0.88 0.072

Call to arms 0.968 1 0.042

Charge 0.949 0.98 0.079

Checking destination position 0.978 1 0.031

Checking direction 0.970 0.99 0.036

Checking for enemies 0.909 0.91 0.086

Find flock position 0.949 0.98 0.058

Flee to base 0.429 0.20 0.413

Found resource 0.979 1 0.041

Getting destination 0.947 0.97 0.078

Get to position 0.954 1 0.060

Going home 0.957 1 0.065

Going to destination position 0.820 0.95 0.279

Going to flock position 0.794 0.98 0.355

Hunt 0.863 0.87 0.083

Moving 0.941 0.99 0.115

Moving to target 0.980 1 0.046

Pick direction with target 0.990 1 0.021

Picking direction 0.957 0.99 0.050

Restarting with resource loc. 0.994 1 0.014

Retreating 0.859 0.86 0.065

Returning to path home 0.959 0.98 0.057

Starting 0.883 0.87 0.066

Stuck 0.985 1 0.025

Surround castle 0.969 1 0.053

Surrendering 0.380 0 0.440
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Tables 4 and 5, respectively, represent the intelligence calculated for each role

and then the collective intelligence of each team. The intelligence values averaged

above 0.78 with maximum deviation of 0.1, the observed intelligence values were

generally above 0.7, and this is considered a very high score as the range of possible

intelligence would have been between - 1 and ? 1. The intelligence scores are

close to the top end meaning that the majority of times the agents have been

consistently pursuing the good outcome for each state. Whilst, on average, it seems

to be the aggressors are performing slightly better that the defenders, it is worth

noting that there were many iterations where defenders have performed better than

the aggressors. It is also noteworthy that the defenders had a lower deviation and

their performance had less fluctuations. This could be explained by the difference in

the strategic goal of the defenders which is more focused compared to the

aggressors.

Command intelligence

The evaluation of command intelligence aims to evaluate the implementation of the

chain of command in the architecture. This evaluation is focused on tactical and

strategic decisions made by the commanders and how well these have been followed

by the subordinates. This evaluation has two sides; leaders making their respective

decisions and units following commands in their actions.

Method summary

To evaluate the command intelligence of the architecture at the leader, the

evaluation looks at assessing the following conditions;

• Has the leader made the correct decision based on the situation?

Table 4 Intelligence for each

role; mean, median and standard

deviation

Role Mean Median Standard deviation

General 0.852 0.855 0.112

Captain 0.826 0.820 0.072

Attacker 0.885 0.870 0.087

Scout 0.894 0.905 0.082

Militia 0.786 0.785 0.083

Harvester 0.918 0.920 0.060

Table 5 Collective intelligence for each team; mean, median and standard deviation

Team Mean Median Standard deviation

Aggressors 0.866 0.870 0.066

Defenders 0.845 0.845 0.026
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• How long did it take the leader to issue a command since the occurrence of a

command triggering event?

A separate code, named assessment unit (AU), was attached to the simulations

which had an encompassing view of all the agents and the environment. The AU

would have access to all agents and, therefore, was able to calculate the decisions

the leaders should be making, following the exact logic as leaders would. As soon as

there was an event that would require a command to be triggered, the AU would

start a timer that would stop at the moment the leader issues a command or would

stop after 10 s, deciding the leader has failed to issue any commands for the event.

The AU has full view as opposed to the partial view of the leaders which also relies

on communication between units and, therefore, can make perfect decisions.

To evaluate how units have followed a command (command conformance), the

unit decisions are compared with the current command at the time. If the initiated

state was in line with the command issued, then it is considered a success;

otherwise, it is considered a failure in the command intelligence. There are,

however, two levels of commands within the simulations, commands issued by

Generals or Captains. The two commands are assessed separately. For example, if a

unit’s state is in accordance with one but contradictory to the other, then it would be

considered positive for one and negative for the other.

Results

The simulations in ‘‘Command intelligence’’ were also analysed in regards to

command intelligence. The results of the leader command intelligence are

summarised in Table 6. The results show that the delay between the events and

commands have been acceptable as they average under 40 ms. It is important to

note that the no-command scenarios, where no command was issued after 10 s, are

not considered in these averages as they are considered instances of no decision. In

regards to the command accuracy, there were no incorrect commands issued. The

reason for not reaching 100% accuracy was actually the presence of no-command

scenarios where a command was necessary but due to lack of observation or failure

in communication, no command was issued. An example scenario was when a unit

encountered a group of enemy units but died before an assessment could be made by

the leader. The aggressors seem to have slightly quicker and more accurate general

Table 6 Command intelligence for leaders in each team: mean decision accuracy and average decision

time

Team Leader Command accuracy (%) Command time delay (milliseconds)

Aggressors General 89.37 33.52

Captain 85.76 38.25

Defenders General 87.33 34.26

Captain 85.66 36.66
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in comparison to defenders but the difference is small and negligible. There are

many instances where in an individual simulation the defender general outper-

formed the aggressor counterpart.

The command conformance data are summarised in Table 7. The mean

conformance to commands is above 72% which indicates that nearly three quarters

of all commands are fully followed by subordinates. However, this also shows that

there is a one in four chance of a command not being implemented by the troops.

This is partly due to various circumstances that units might be experiencing. There

is the obvious scenario where there are two contradicting commands on the

blackboard at the same time. In such a scenario, the agent would have not

conformed to one of the two. There are other scenarios where an agent might have

started a process that stops them from conforming to a command as the state

machine and actuator are unable to find a connecting state that would allow the

agent to follow the command received. For example, an agent which is Flocking to

Position, must finish positioning and then charge before being able to reassess its

situation and follow a retreat command.

The table above also demonstrates that the commands issued by generals have a

much higher conformance rate than the commands from captains. This observation

is in accordance with the design of the architecture. The architecture has tried to

enforce that the general’s commands should outrank a captains and, therefore,

captain’s commands should be in accordance with the general’s. The higher

conformance mean and median indicate that this has successfully been implemented

in the architecture.

Agent believability

This section focuses on the believability of the agents and how well would then be

accepted by humans. Whilst the research aims to create a platform for simulation,

the acceptance of the simulation by human users would be a key aspect of

evaluating the proposed architecture.

Method summary

To evaluate the believability of the agents, an empirical evaluation of the

architecture has been implemented based around the believability metrics defined by

Gomes et al. (2013). The believability metrics defines eight dimensions to the

believability of an agent-based system which an audience can identify. These

Table 7 Command conformance for leaders in each team: mean, median and standard deviation

Team Leader Mean (%) Median (%) Standard deviation

Aggressors General 79.73 80 12.85

Captain 73.50 70 13.07

Defenders General 80.06 80 13.82

Captain 72.56 70 17.23
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dimensions are; awareness, behaviour understandability, personality, visual impact,

predictability, behaviour coherence, change with experience, and social. A

questionnaire was created based on the believability metric proposed by Gomes

et al. (2013) which would ask participants to answer each question on a Likert scale

of five (from 1 = strongly disagree to 5 = strongly agree).

A group of 30 participants (18 male - 12 female) were recruited from

undergraduate students of the department of information systems and computing.

The participants were aged 18–28 and they all considered themselves gamers and

had experience of playing RTS games. Each participant was presented with ten

simulation recordings. The recordings were sped up to play six times faster and

lasted between 30 s and 2 min and 38 s. Simulations included an equal five wins for

both defenders and aggressors. A simulation was included for both sides where one

team would surrender. The simulations were not played in the same order for all

participants. The participants were not told if the simulation was being played by

human players or AI and were free to make their own assumptions. Each participant

would watch each simulation recording and at the end would fill in the believability

metric questionnaire for both aggressors and defenders. The participants were

encouraged to discuss their responses as they fill the questionnaire and these were

noted by the researchers for quantitative analysis.

Results

The results of the questionnaire are summarised in Table 8. The participants found

the two sides very aware of with a high majority strongly agreeing that the two sides

perceived the world around them well. They also agreed that the behaviour of the

two sides is understandable under the RTS setting and that both sides behaved

cohesively. More cohesion was perceived to be exhibited on the defenders side than

aggressor but with a small margin. These results were also supported by the

participant comments. Most mentioned that they found the awareness and the

response rate very interesting. Five participants mentioned they were very

Table 8 Believability metric questionnaire results

Question Aggressor Defender

Mean Median Standard

deviation

Mean Median Standard

deviation

Awareness 4.43 5 0.935 4.26 4.5 1.048

Behaviour

understandability

4.40 4.5 0.813 4.33 4.5 0.884

Personality 4.23 4 0.568 4.40 4 0.563

Visual impact 3.00 3 1.051 3.10 3 1.155

Predictability 4.10 4 0.922 4.73 5 0.784

Behaviour coherence 4.40 4 0.563 4.46 4.5 0.571

Change with experience 3.96 4 1.159 4.03 4 0.808

Social 4.16 4 0.874 3.96 4 0.999
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impressed with the retreats as they believed that was the right decision at that time

of the game.

The visual impact received mixed reactions. Whilst some participants were

very impressed with the agent behaviour and agreed that it draw their attention,

others did not like the simple visual design of the simulations and mentioned that

the visuals were not up to the standard they were expecting. Yet, other

participants which understood the purpose of the question better mentioned

examples from the flocking for defence and the charge behaviour as visually

impactful for them.

Change with experience included some interesting observations. A majority of

participants believed that they are watching a sequence of game-plays and,

therefore, assumed that the players were learning from previous game-plays and

changing tactics. Another cluster of participants believed that the behaviour of the

players did not change even though they were gaining more experience. Both

clusters assumed that the players are learning and experiencing multiple game

sessions and only disagreed on if there was any improvement/change as a result.

Considering the overall results of the believability metric, the participants

received the architecture well and connected with the simulations. The understand-

ing and awareness were specially highlighted by the participants. Considering the

decentralised and swarm approach of the architecture, it is possible to conclude that

the proposed architecture has achieved believability. Whilst there are areas such as

social and visual impact that could be improved, overall, the evaluation against the

believability metric has been promising.

Conclusion

This research investigated the idea of incorporating chain of command with swarm

intelligence of honey bees when foraging and defending their nests to create a group

of co-operative agents with leadership and tactical decision-making. The idea was to

create a decentralised group of autonomous agents that could work together to

achieve goals that would be found within an RTS game. The goal was to simulate

battle behaviour without a central control yet include a hierarchical leadership that

would make strategic decision while actually acting as agents within the battle field

(Karpov et al. 2012, 2015). Multiple simulations were run and using the recorded

data, patterns of behaviour were identified and analysed to check whether the

performed behaviour was expected for that role and main state. The analysed data

were then used to calculate the intelligence score of each individual agent using an

approach based on the K environment and the Anytime Universal Intelligence Test.

The agents scored consistently above 0.7 in a scale between - 1 and ? 1,

demonstrating a high level of collective intelligence. The believability of the agents

was evaluated through the agent believability metric. The chain of command

implemented has produced better results than the previous leaderless implemen-

tations and resulted in a more coherent battle scenarios where retreat and surrender

were also viable option. This is important in re-enactments and simulations as most
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existing computer–based approaches are focused on winning whilst a suitable retreat

or a timely surrender are viable decisions in a real-world battle scenario.

A limitation of this research is that so far the system has not been tested against

human players or existing RTS AI, as literature suggests this is an interesting

challenge within the domain. The aim of the research is not necessarily creating AI

that can compete with humans but rather one that can simulate a scenario to a

believable level given the parameters. Still, it is an avenue that the researchers plan

to pursue in the future. Other future work for this project revolves around scaling up

the simulation in terms of environment, roles available in the teams and the action

taken during battles. To introduce new behaviours successfully, the environment

will need to be larger to handle more agents and more detail. This would allow the

system to be expanded and applied to other game genres such as shooter games,

racing games and especially serious games and simulations such as rehabilitation

games and narrative based trainings. Also, introducing a new role in the defender

team called the Scavenger which would act in a similar way to harvesters, yet would

take part in battles. They would be able to collect resources from the remainder of

dead agents, providing another resource for creating defender agents. Currently,

agents can fight on a 1-vs-1 basis, when an enemy is nearby or in a larger battle after

spotting the defender base. In a larger environment, it would be possible to call

groups of nearby agents together for group battles to occur. If deciding to call other

agents for a group battle, agents under the same captain and within a certain radius

would create formations and attack each other, hence brining the simulation much

closer to true strategic behaviour and battle simulations. The inclusion of nurse roles

would also create a more realistic solution which can incorporate the injured units in

a more realistic manner.
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