
Resource Allocation and Dispensation Impact of
Stochastic Diffusion Search on Differential
Evolution Algorithm

Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

Abstract This work details early research aimed at applying the powerful resource
allocation mechanism deployed in Stochastic Diffusion Search (SDS) to the Dif-
ferential Evolution (DE), effectively merging a nature inspired swarm intelligence
algorithm with a biologically inspired evolutionary algorithm. The results reported
herein suggest that the hybrid algorithm, exploiting information sharing between the
population, has the potential to improve the optimisation capability of classical DE.

1 Introduction

In the literature, nature inspired swarm intelligence algorithms and biologically in-
spired evolutionary algorithms are typically evaluated using benchmarks that are
often small in terms of their objective function computational costs [9, 39]; this is
often not the case in real-world applications. This paper isan attempt to pave the way
for more effectively optimising computationally expensive objective functions, by
deploying the SDS diffusion mechanism to more efficiently allocate DE resources
via information-sharing between the members of the population.

Mohammad Majid al-Rifaie
Goldsmiths, University of London, New Cross, London SE14 6NW, United Kingdom; e-mail:
m.majid@gold.ac.uk

John Mark Bishop
Goldsmiths, University of London, New Cross, London SE14 6NW, United Kingdom; e-mail:
m.majid@gold.ac.uk

Tim Blackwell
Goldsmiths, University of London, New Cross, London SE14 6NW, United Kingdom; e-mail:
m.majid@gold.ac.uk

1

2 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

The use of SDS as an efficient resource allocation algorithm was first explored in
[21, 26, 28] and these results provided motivation to investigate the application of
the information diffusion mechanism originally deployed in SDS1 with DE.

Communication – social interaction or information exchange – observed in social
insects is important in all swarm intelligence and evolutionary algorithms, including
SDS and DE algorithms.

This work investigates the communication between the members of the popula-
tion as the mean to maintain population diversity, which is faciliated by using the
resource allocation and resource dispensation of SDS algorithm.

In a former work [3], SDS is merged with Particle Swarm Optimisation (PSO)
algorithm and the promising results of this hybridisation alongside some statistical
analysis of its performance are reported.

Although in real social interactions, not just the syntactical information is ex-
changed between the individuals but also semantic rules andbeliefs about how to
process this information [18], in typical swarm intelligence algorithms, only the
syntactical exchange of information is considered.

In the study of the interaction of social insects, two important elements are the in-
dividuals and the environment, which will result in two integration schemes: the first
one is the way in which individuals self-interact and the second one is the interaction
of the individuals with the environment [6]. Self-interaction between individuals is
carried out through recruitment strategies and it has been demonstrated that, typi-
cally, differing recruitment strategies are used by ants [12] and honey bees. These
recruitment strategies are used to attract other members ofthe society to gather
around one or more desired areas, either for foraging purposes or for moving to a
new nest site.

In general, there are many different forms of recruitment strategies used by so-
cial insects; these may take the form of local or global strategies; one-to-one or
one-to-many communication; and deploy stochastic or deterministic mechanisms.
The nature of information exchange also varies in differentenvironments and with
different types of social insects. Sometimes the information exchange is quite com-
plex where, for example it might carry data about the direction, suitability of the
target and the distance; or sometimes the information sharing is simply a stimula-
tion forcing a certain triggered action. What all these recruitment and information
exchange strategies have in common is distributing useful information throughout
their community [23].

In this paper, the swarm intelligence algorithm and the evolutionary algorithm
are first introduced, followed by the hybridisation strategy. Afterwards, the results
are reported and the performance of the hybrid algorithm is discussed.

1 The ‘information diffusion’ and ‘randomised partial objective function evaluation’ processes enable SDS to more
efficiently optimise problems with costly [discrete] objective functions; see Stochastic Diffusion Search Section for an
introduction to the SDS metaheuristic.

Resource Allocation and Dispensation Impact of SDS on DE algorithm 3

2 Stochastic Diffusion Search

This section introduces SDS [5], a multi-agent global search and optimisation al-
gorithm, which is based on simple interaction of agents (inspired by one species
of ants,Leptothorax acervorum, where a ’tandem calling’ mechanism (one-to-one
communication) is used, where the forager ant which finds thefood location, re-
cruits a single ant upon its return to the nest, and thereforethe location of the food
is physically publicised [24]). A high-level description of SDS is presented in the
form of a social metaphor demonstrating the procedures through which SDS allo-
cates resources.

SDS introduced a new probabilistic approach for solving best-fit pattern recogni-
tion and matching problems. SDS, as a multi-agent population-based global search
and optimisation algorithm, is a distributed mode of computation utilising interac-
tion between simple agents [22].

Unlike many nature inspired search algorithms, SDS has a strong mathemati-
cal framework, which describes the behaviour of the algorithm by investigating its
resource allocation [26], convergence to global optimum [27], robustness and mini-
mal convergence criteria [25] and linear time complexity [29]. In order to introduce
SDS, a social metaphorthe Mining Game [1] is used.

2.1 The Mining Game

This metaphor provides a simple high-level description of the behaviour of agents
in SDS, where mountain range is divided into hills and each hill is divided into
regions:

A group of miners learn that there is gold to be found on the hills of a mountain range
but have no information regarding its distribution. To maximize their collective wealth, the
maximum number of miners should dig at the hill which has the richest seams of gold (this
information is not available a-priori). In order to solve this problem, the miners decide to
employ a simple Stochastic Diffusion Search.

• At the start of the mining process each miner is randomly allocated a hill to mine (his
hill hypothesis,h).

• Every day each miner is allocated a randomly selected region, on the hill to mine.

At the end of each day, the probability that a miner is happy isproportional to the amount
of gold he has found. Every evening, the miners congregate and each miner who is not
happy selects another miner at random for communication. Ifthe chosen miner is happy, he
shares the location of his hill and thus both now maintain it as their hypothesis,h; if not, the
unhappy miner selects a new hill hypothesis to mine at random.

As this process is isomorphic to SDS, miners will naturally self-organise to congre-
gate over hill(s) of the mountain with high concentration ofgold.

4 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

In the context of SDS, agents take the role of miners; active agents being ’happy
miners’, inactive agents being ’unhappy miners and the agent’s hypothesis being the
miner’s ’hill-hypothesis’.

Algorithm 1 The Mining Game

Initialisation phase
Allocate each miner (agent) to a random

hill (hypothesis) to pick a region randomly

Until (all miners congregate over the highest
concentration of gold)

Test phase
Each miner evaluates the amount of gold

they have mined (hypotheses evaluation)
Miners are classified into happy (active)

and unhappy (inactive) groups

Diffusion phase
Unhappy miners consider a new hill by

either communicating with another miner
or,if the selected miner is also
unhappy, there will be no information
flow between the miners; instead the
selecting miner must consider another
hill (new hypothesis) at random

End

2.2 SDS Architecture

The SDS algorithm commences a search or optimisation by initialising its popu-
lation (e.g. miners, in the mining game metaphor). In any SDSsearch, each agent
maintains a hypothesis,h, defining a possible problem solution. In the mining game
analogy, agent hypothesis identifies a hill. After initialisation two phases are fol-
lowed (see Algorithm 1 for these phases in the mining game; for high-level SDS
description see Algorithm 2):

• Test Phase (e.g. testing gold availability)
• Diffusion Phase (e.g. congregation and exchanging of information)

Algorithm 2 SDS Algorithm

Initialising agents()
While (stopping condition is not met)

Testing hypotheses()
Diffusion hypotheses()

End

Resource Allocation and Dispensation Impact of SDS on DE algorithm 5

In the test phase, SDS checks whether the agent hypothesis issuccessful or not
by performing a partial hypothesis evaluation which returns a boolean value. Later
in the iteration, contingent on the precise recruitment strategy employed, successful
hypotheses diffuse across the population and in this way information on potentially
good solutions spreads throughout the entire population ofagents.

In the Test phase, each agent performspartial function evaluation, pFE, which is
some function of the agent’s hypothesis;pFE = f (h). In the mining game the partial
function evaluation entails mining a random selected region on the hill, which is
defined by the agent’s hypothesis (instead of mining all regions on that hill).

In the Diffusion phase, each agent recruits another agent for interaction and po-
tential communication of hypothesis. In the mining game metaphor, diffusion is
performed by communicating a hill hypothesis.

2.3 Standard SDS and Passive Recruitment

In standard SDS (which is used in this paper),passive recruitment mode is em-
ployed. In this mode, if the agent is inactive, a second agentis randomly selected
for diffusion; if the second agent is active, its hypothesisis communicated (diffused)
to the inactive one. Otherwise there is no flow of informationbetween agents; in-
stead a completely new hypothesis is generated for the first inactive agent at random
(see Algorithm 3).

Algorithm 3 Passive Recruitment Mode

For ag = 1 to No_of_agents
If (ag is not active)

r_ag = pick a random agent()
If (r_ag is active)

ag.setHypothesis(r_ag.getHypothesis())
Else

ag.setHypothesis(randomHypothsis())
End

2.4 Partial Function Evaluation

One of the concerns associated with many optimisation algorithms (e.g. Genetic
Algorithm [11], Particle Swarm Optimisation [17] and etc.)is the repetitive evalu-
ation of a computationally expensive fitness functions. In some applications, such
as tracking a rapidly moving object, the repetitive function evaluation significantly
increases the computational cost of the algorithm. Therefore, in addition to reduc-
ing the number of function evaluations, other measures can be used in an attempt to

6 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

reduce the computations carried out during the evaluation of each possible solution,
as part of the overall optimisation (or search) processes.

The commonly used benchmarks for evaluating the performance of swarm intel-
ligence algorithms are typically small in terms of their objective functions computa-
tional costs [9, 39], which is often not the case in real-world applications. Examples
of costly evaluation functions are seismic data interpretation [39], selection of sites
for the transmission infrastructure of wireless communication networks and radio
wave propagation calculations of one site [38] etc.

Costly objective function evaluations have been investigated under different con-
ditions [14] and the following two broad approaches have been proposed to reduce
the cost of function evaluations:

• The first is to estimate the fitness by taking into account the fitness of the neigh-
bouring elements, the former generations or the fitness of the same element
through statistical techniques introduced in [4, 7].

• In the second approach, the costly fitness function is substituted with a cheaper,
approximate fitness function.

When agents are about to converge, the original fitness function can be used for
evaluation to check the validity of the convergence [14].

Many fitness functions are decomposable to components that can be evaluated
separately. In partial evaluation of the fitness function inSDS, the evaluation of one
or more of the components may provide partial information toguide the subsequent
optimisation process.

3 Differential Evolution

DE, one of the most successful Evolutionary Algorithms (EAs), is a simple global
numberical optimiser over continuous search spaces which was first introduced by
Storn and Price [32, 33].

DE is a population based stochastic algorithm, proposed to search for an optimum
value in the feasible solution space. The parameter vectorsof the population are
defined as follows:

xg
i =

[

xg
i,1,x

g
i,2, ...,x

g
i,D

]

, i = 1,2, ...,NP (1)

whereg is the current generation,D is the dimension of the problem space and
NP is the population size. In the first generation, (wheng = 0), theith vector’s jth

component could be initialised as:

x0
i, j = xmin, j + r (xmax, j − xmin, j) (2)

wherer is a random number drawn from a uniform distribution on the unit in-
tervalU (0,1), andxmin, xmax are the lower and upper bounds of thejth dimension,

Resource Allocation and Dispensation Impact of SDS on DE algorithm 7

respectively. The evolutionary process (mutation, corssover and selection) starts af-
ter the initialisation of the population.

3.1 Mutation

At each generationg, the mutation operation is applied to each member of the pop-
ulation xg

i (target vector) resulting in the corresponding vectorvg
i (mutant vector).

Among the most frequently used mutation approaches are the following:

• DE/rand/1
vg

i = xg
r1
+F

(

xg
r2
− xg

r3

)

(3)

• DE/target-to-best/1

vg
i = xg

i +F
(

xg
best − xg

i

)

+F
(

xg
r1
− xg

r2

)

(4)

• DE/best/1
vg

i = xg
best +F

(

xg
r1
− xg

r2

)

(5)

• DE/best/2
vg

i = xg
best +F

(

xg
r1
− xg

r2

)

+F
(

xg
r2
− xg

r3

)

(6)

• DE/rand/2
vg

i = xg
r1
+F

(

xg
r2
− xg

r3

)

+F
(

xg
r4
− xg

r5

)

(7)

wherer1, r2, r3, r4 are different fromi and are distinct random integers drawn
from the range[1,NP]; In generationg, the vector with the best fitness value isxg

best
andF is a positive control parameter for constricting the difference vectors.

3.2 Crossover

Crossover operation, improves population diversity through exchanging some com-
ponents ofvg

i (mutant vector) withxg
i (target vector) to generateug

i (trial vector).
This process is led as follows:

ug
i, j =

vg
i, j, if r ≤CR or j = rd

xg
i, j, otherwise

(8)

wherer is a uniformly distributed random number drawn from the unitinterval
U (0,1), rd is randomly generated integer from the range[1,D]; this value guarantees
that at least one component of the trial vector is different from the target vector. The
value ofCR, which is another control parameter, specifes the level of inheritance
from vg

i (mutant vector).

8 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

3.3 Selection

The selection operation decides whetherxg
i (target vector) orug

i (trial vector) would
be able to pass to the next generation (g+1). In case of a minimisation problem, the
vector with a smaller fitness value is admitted to the next generation:

xg+1
i =

ug
i , if f

(

ug
i

)

≤ f
(

xg
i

)

xg
i , otherwise

(9)

where f (x) is the fitness function.
Algorithm 4 summarises the behaviour of DE algorithm

Algorithm 4 DE Pseudo Code

Initialise population

For (generation = 1 to n)
For (agent = 1 to NP)

Mutation : generate mutant vector
Crossover: generate trial vector
Selection: generate target vector for next generation

End

Find agent with best fitness value
End

DE, like other evolutionary algorithms, suffers from premature convergance
where the population lose their diversity too early and get trapped in local optima,
therefore performing poorly on problems with high dimension and many local op-
tima.

DE is known to be relatively good in comparison with other EAsand PSOs at
avoiding premature convergence. However, in order to reduce the risk of prema-
ture convergence in DE and to preserve population diversity, several methods have
been proposed, among which are: multi-population approaches [8, 19, 20, 34, 35];
providing extra knowledge about the problem space [30, 37];information storage
about previously explored areas [13, 41]; utilising adapting and control parameters
to ensure population diversity [40]; using CrowdingDE for tracking and maintaining
multiple optima [31, 36].

This paper proposes information exchange and agent dispensation (SDS-led ran-
dom restart) as methods to avoid premature convergence and preserve population
diversity.

Resource Allocation and Dispensation Impact of SDS on DE algorithm 9

4 Merging SDS and DE Algorithms

The initial motivating thesis justifying the hybridisation of SDS and DE is the partial
function evaluation deployed in SDS, which may mitigate thehigh computational
overheads entailed when deploying a DE algorithm onto a problem with a costly
fitness function. However, before commenting on and exploring this area – which
remains an ongoing research – an initial set of experiments aimed to investigate if
the information diffusion mechanism deployed in SDS may on its own improve DE
behaviour. These are the results that are primarily reported in this paper.

In this new architecture, a standard set of benchmarks are used to evaluate the
performance of the hybrid algorithm. The resource allocation (or recruitment) and
partial function evaluation sides of SDS (see Section 2.4) are used to assist allo-
cating and dispensing resources (e.g. members of the DE population) after partially
evaluating the search space.

Each DE agent has three vectors (target, mutant and trial vectors); and each SDS
agent has one hypothesis and one status. In the experiment reported here (hybrid
algorithm), every member of DE population is an SDS agent too– together termed
SDEAgents. In SDEAgents, SDS hypotheses are defined by the DE target vector, and
an additional boolean variable (status) determining whether the SDEAgent is active
or inactive (see Figure 1). The behaviour of the hybrid algorithm in its simplest form
is presented in Algorithm 5.

Fig. 1 Encapsulating SDS agent and DE agent as SDE-Agent

Status

Active / Inactive

SDS Agent

SDEAgent

DE agent

Hypothesis

4.1 Test and Diffusion Phases in the Hybrid Algorithms

In the test-phase of a stochastic diffusion search, each agent has to partially eval-
uate its hypothesis. The guiding heuristic is that hypotheses that are promising are
maintained and those that appear unpromising are discarded. In the context of the

10 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

Algorithm 5 Hybrid Algorithm

Initialise SDEAgents

For (generation = 1 to generationsAllowed)

For (SDEAgent = 1 to NP)
Mutation : generate mutant vector
Crossover: generate trial vector
Selection: generate target vector for next generation

End For

If (generation counter MOD n == 0)
// START SDS
// TEST PHASE

For ag = 1 to NP
r_ag = pick-random-SDEAgent()
If (ag.targetVecFitness() < r_ag.targetVecFitness())

ag.setActivity (true)
Else

ag.setActivity (false)
End If

End For

// DIFFUSION PHASE
For ag = 1 to No_of_SDEAgents

If (ag is not active)
r_ag = pick-random-SDEAgent()
If (r_ag is active)

ag.setHypo(r_ag.getHypo())*
Else

ag.setHypo(randomHypo())
End If

End If

End for
End If
// END SDS

Find SDEAgent with best fitness value

End For

* In setHypo() and getHypo(), Hypo refers to
the SDEAgent’s hypothesis (target vector).

hybrid DE-SDS algorithm, it is clear that there are many different tests that could be
performed in order to determine the activity of each SDEAgent. A very simple test
is illustrated in Algorithm 5. Here, the test-phase is simply conducted by comparing
the fitness of each SDEAgent’s target vector against that of arandom SDEAgent; if
the selecting SDEAgent has a better fitness value, it will become active, otherwise it
will be flagged inactive. On average, this mechanism will ensure 50% of SDEAgents
remain active from one iteration to another.

In the Diffusion Phase, each inactive SDEAgent picks another SDEAgent ran-
domly, if the selected SDEAgent is active, the selected SDEAgent communicates
its hypothesis to the inactive one; if the selected SDEAgentis also inactive, the
selecting SDEAgent generates a new hypothesis at random from the search space.

Resource Allocation and Dispensation Impact of SDS on DE algorithm 11

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 5), after
eachn generations, one full SDS cycle2 is executed. The hybrid algorithm is called
SDSnDE, wheren refers to the number of generations before an SDS cycle should
run.

In the next section, the experiment setup is reported and theresults will follow.

5 Results

In this section, a number of experiments are carried out and the performance of one
variation of DE algorithm (DE/best/1) is contrasted against the hybrid algorithm,
SDSnDE.

5.1 Experiment Setup

The algorithms are tested over a number of benchmarking functions from Jones et
al [15] and De Jong [16] test suite, preserving different dimensionality and modal-
ity (see Tables 1 and 2, where benchmark function equations,feasible bounds, the
number of dimensions in which the benchmarks are used in the experiments, the
optimum of each function which is knowna priori and also the boundaries where
particles are first initialised are presented).

The first two functions (Sphere/Parabola and Schwefel 1.2) have a single mini-
mum and are unimodal functions; Generalised Rosenbrock fordimensionD, where
D > 3, is multimodal; Generalised Schwefel 2.6, Generalized Rastrigin, Ackley,
Generalized Griewank, Penalised Function P8 and PenalisedFunction P16 are com-
plex high-dimensional multi-modal problems with many local minima and a sin-
gle global optimum; Six-hump Camel-back, Goldstein-Price, Shekel 5, 7 and 10
are lower-dimensional multi-modal problems with fewer local minima. Goldstein-
Price, Shekel 5, 7 and 10 have one global optimum and Six-humpCamel-back has
two global optima symmetric about the origin.

In order not to initialise the DE agents on or near a region in the search space
known to have the global optimum,region scaling technique is used [10], which
makes sure DE agents are initialised at a corner of the searchspace where there are
no optimal solution.

The experiments are conducted with the population of 100 agents. The halting
criterion for this experiment is when the number of generations reaches 2,000.

There are 30 independent runs for each benchmark function and the results are
averaged over these independent trials.

Accuracy, which is used as performance measure, is defined by the quality of the
best agent in terms of its closeness to the optimum position.If knowledge about the

2 Test Phase: decides about the status of each SDEAgent, one after another; Diffusion Phase: shares information ac-
cording to the algorithm presented

12 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

Table 1 Benchmark Functions Equations

Function Equation

Sphere/Parabola f1 =
D
∑

i=1
x2

i

Schwefel 1.2 f2 =
D
∑

i=1
(

i
∑
j=1

x j)
2

Generalised Rosenbrockf3 =
D−1
∑

i=1

{

100
(

xi+1− x2
i

)2
+(xi −1)2

}

Generalised Schwefel 2.6f4 =−
D
∑

i=1
xi sin

(√
xi
)

Generalised Rastrigin f5 =
D
∑

i=1

{

x2
i −10cos(2πxi)+10

}

Ackley f6 =−20exp

{

−0.2

√

1
D

D
∑

i=1
x2

i

}

−

exp

{

1
D

D
∑

i=1
cos(2πxi)

}

+20+ e

Generalised Griewank f7 =
1

4000

D
∑

i=1
x2

i −
D
∏
i=1

cos
(

xi√
i

)

+1

Penalized Function P8 f8 =
π
D

{

10sin2 (πy1)+∑D−1
i=1 (yi −1)2{1+10sin2 (πyi+1)

}

+(yD −1)2
}

+∑D
i=1 µ (xi,10,100,4)

yi = 1+ 1
4 (xi +1)

µ (xi,a,k,m) =

k (xi −a)m xi > a
0 −a ≤ xi ≤ a
k (−xi −a)m xi <−a

Penalized Function P16 f9 = 0.1
{

sin2 (3πx1)+∑D−1
i=1 (xi −1)2{1+sin2 (3πxi+1)

}

+(xD −1)2×
{

1+sin2 (2πxD)
}}

+∑D
i=1 µ (xi,5,100,4)

Six-hump Camel-back f10 = 4x2
1−2.1x4

1+
1
3x6

1+ x1x2−4x2
2+4x4

2

Goldstein-Price f11 =
{

1+(x1+ x2+1)2(19−14x1+3x2
1−14x2+6x1x2+3x2

2

)

}

×
{

30+(2x1−3x2)
2(18−32x1+12x2

1+48x2−36x1x2+27x2
2

)

}

Shekel 5 f12 =−∑5
i=1

{

∑4
j=1(x j −ai j)

2+ ci

}−1

Shekel 7 f13 =−∑7
i=1

{

∑4
j=1(x j −ai j)

2+ ci

}−1

Shekel 10 f14 =−∑10
i=1

{

∑4
j=1(x j −ai j)

2+ ci

}−1

optimum position is knowna priori (which is the case here), the following would
define accuracy:

Accuracy(S, t) =
∣

∣ f
(

xg
best

)

− f (xopt)
∣

∣ (10)

wherexg
best is the best agent at generationg andxopt is the position of the known

optimum solution.
Another measure used, isreliability, which is the percentage of trials where

swarms converge with a specified accuracy and it is defined by:

Resource Allocation and Dispensation Impact of SDS on DE algorithm 13

Table 2 Benchmark Functions Details

Function D Feasible Bounds Optimum Initialisation

f1 Sphere/Parabola 30 (−100,100)D 0.0D (50,100)D

f2 Schwefel 1.2 30 (−100,100)D 0.0D (50,100)D

f3 Generalized Rosenbrock30 (−30,30)D 1.0D (15,30)D

f4 Generalized Schwefel 2.630 (−500,500)D 420.9687D (250,500)D

f5 Generalized Rastrigin 30 (−5.12,5.12)D 0.0D (2.56,5.12)D

f6 Ackley 30 (−32,32)D 0.0D (16,32)D

f7 Generalized Griewank 30 (−600,600)D 0.0D (300,600)D

f8 Penalized Function P8 30 (−50,50)D −1.0D (25,50)D

f9 Penalized Function P16 30 (−50,50)D 1.0D (25,50)D

f10 Six-hump Camel-back 2 (−5,5)D (−0.0898,0.7126) , (2.5,5)D

(0.0898,−0.7126)

f11 Goldstein-Price 2 (−2,2)D (0,−1) (1,2)D

f12 Shekel 5 4 (0,10)D 4.0D (7.5,10)D

f13 Shekel 7 4 (0,10)D 4.0D (7.5,10)D

f14 Shekel 10 4 (0,10)D 4.0D (7.5,10)D

Reliability=
n
′

n
×100 (11)

wheren is the number of trials in the experiment andn
′
is the number of successful

trials.
In this paper,SDSnDE, is presented with few variations of parameter, n (the

number of generations before an SDS cycle is performed):n= 5, 50, and 200. These
values were selected merely to provide a brief initial exploration of the behaviour of
the new hybrid algorithm over three relatively widely separated parameter values;
no claim is made for their optimality.

5.2 Results

Table 3 shows the performance of the various hybrid algorithms alongside DE al-
gorithm. For each benchmark and algorithm, the table shows the accuracy measure.
The overal reliability of each algorithm is also reported.

The focus of this paper is not finding the bestn for SDSnDE (for this set of
benchmarks), but rather investigate the effect of SDS algorithm on the performance
of DE algorithm.

14 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

Table 3 Accuracy and Reliability Details

Accuracy (±standard error) is shown with two decimal places after 30 trials of 2,000 generations;
and the reliability of each algorithm over all the benchmarks is given in the last row of the table.
For each benchmark, algorithms which aresignificantly better (see Table 4) than the others are
highlighted. Note that the highlighted algorithms do not significantly outperform each another.

H5: SDSnDE H50: SDSnDE H200: SDSnDE H50D: Dispenser

DE n = 5 n = 50 n = 200 n = 50

generate Hypothesis generate Hypothesis generate Hypothesis SDS Test + Dispense

f1 1.06E-107±7.92E-108(30) 5.29E-10±4.72E-10(28) 5.52E-92±4.03E-92(30) 4.70E-104±3.11E-104(30) 2.03E-85±1.61E-85(30)

f2 1.20E-03±2.60E-04(0) 1.21E+01±1.88E+00(0) 2.55E-05±7.27E-06(0) 1.48E-04±3.86E-05(0) 8.58E-04±2.42E-04(0)

f3 3.66E+01±8.23E+00(0) 4.40E+01±6.46E+00(0) 1.71E+00±5.36E-01(0) 3.87E+00±2.29E+00(0) 1.26E+00±3.22E-01(0)

f4 5.00E+02±1.23E+02(0) 3.02E-02±8.28E-03(0) 4.83E-01±4.37E-01(0) 6.23E-01±2.39E-01(0) 2.59E-02±9.26E-03(0)

f5 1.61E+02±8.49E+00(0) 2.67E-01±8.15E-02(2) 1.34E+01±7.49E+00(0) 2.79E+01±1.74E+00(0) 2.41E+01±1.00E+01(9)

f6 1.45E+01±1.34E+00(0) 2.36E-06±1.10E-06(0) 1.02E-01±7.00E-02(17) 3.23E-01±1.11E-01(19) 1.45E-01±1.34E-01(21)

f7 5.26E-02±1.05E-02(1) 3.85E-02±1.43E-02(6) 1.99E-02±4.40E-03(5) 2.82E-02±6.76E-03(4) 7.42E-02±5.50E-02(2)

f8 1.31E+01±3.07E+00(3) 5.66E-12±3.11E-12(30) 1.96E-02±1.28E-02(24) 1.05E-02±5.77E-03(25) 7.00E-03±4.86E-03(28)

f9 3.24E+00±2.41E+00(8) 1.51E-10±9.08E-11(29) 5.27E-01±3.68E-01(19) 1.03E-02±5.72E-03(26) 3.50E+01±1.73E+01(23)

f10 1.90E-01±6.41E-02(23) 2.48E-04±2.34E-04(28) 4.44E-17±1.65E-17(30) 5.92E-17±1.82E-17(30) 4.44E-17±1.65E-17(30)

f11 2.55E+02±5.97E+01(1) 1.13E-08±1.13E-08(29) 0.00E+00±0.00E+00(30) 2.96E-17±2.96E-17(30) 0.00E+00±0.00E+00(30)

f12 5.05E+00±6.73E-17(0) 1.25E+00±4.77E-01(24) 3.02E+00±5.43E-01(14) 3.37E+00±5.31E-01(7) 4.80E+00±2.52E-01(2)

f13 5.27E+00±0.00E+00(0) 7.03E-01±3.33E-01(23) 1.28E+00±4.33E-01(11) 3.78E+00±5.56E-01(0) 4.83E+00±3.09E-01(1)

f14 5.36E+00±6.02E-17(0) 3.57E-01±2.48E-01(27) 5.81E-01±3.26E-01(13) 4.19E+00±4.86E-01(0) 4.82E+00±2.99E-01(0)

∑ 66 226 193 171 176

15.71% 53.81% 45.95% 40.71% 41.90%

As Table 4 shows, over all benchmarks, other thanf2 in (DE −H5), DE al-
gorithm does not significantly outperform any of the hybrid algorithms SDSnDE
(n = 5, 50, 200). On the other hand, in most cases (e.g.f3−6, f8 and f10−14), the
hybrid algorithms outperform the classical DE algorithm significantly.

As detailed in Table 3, inf1−3, f11, the performace of H5, which has the highest
rate of information exchange, is weaker than the other hybrid algorithms with lower
information sharing. This implies that the performance of some problems might be
negatively affected by excessive information exchange (e.g. in f1, FH5 > FH50 >
FH200, whereF is the fitness value).

However in another set of problems, higher rate of information exchange (more
communication between the agents) results in better outcome (e.g. f4−6, f8−9,
f12−14). More specifically, inf4−6 and f12−14 fewer communication between the
agents, corresponds to worse performance of the hybrid algorithms (FH5 < FH50 <
FH200).

Resource Allocation and Dispensation Impact of SDS on DE algorithm 15

This demonstrates the importance of deploying the right frequency of communi-
cation and information exchange.

6 Discussion

The resource allocation process underlying SDS offers three closely coupled mech-
anisms to the algorithm’s search component to speed its convergence to global op-
tima. The first component is ‘efficient, non-greedy information sharing’ instantiated
via positive feedback of potentially good hypotheses between agents; the second
component is the dispensation mechanism – SDS-led random-restarts – deployed
as part of the diffusion phase; the thrid component is random‘partial hypothesis
evaluation’, whereby a complex, computationally expensive objective function is
broken down into ‘k independent partial-functions’, each one of which, when eval-
uated, offers partial information on the absolute quality of current algorithm search
parameters. It is this mechanism of iterated selection of arandom partial function
that ensures SDS does not prematurely converge on local minimum.

The resource allocation and dispensation components of SDSin the hybrid algo-
rithm are executed in the ‘Diffusion Phase’, where information is shared (diffused)
among SDEAgents (see Algorithm 3). Analysis of the performance of the hybrid
algorithm (see results above) demonstrates that adding theSDS resource allocation
and dispensation mechanisms to the classical DE architecture improves the overall
performance of the algorithm (i.e. it enhances algorithm accuracy and reliability, as
defined herein).

To further analyse the role of SDS in the hybrid algorithms, the Diffusion Phase
of SDS algorithm is modified (see Algorithm 6) to investigatethe dispensation ef-
fect caused by randomising a selection of agent hypotheses after a number of DE
function evaluations (effectively instantiating a DE withSDS-led random-restarts).
In other words, after the SDS test-phase, the hypothesis of each inactive SDEAgent
is randomised.

As detailed in Table 3, although, information sharing playsan important role in
the performance of hybrid DE algorithm, the significance of dispensation mecha-
nism (in randomly restarting some of the agents) in improving the performance of
DE algorithm cannot be discarded.

In few cases (f3,4,8), solely the dispensation mechanism (H50D), which is fa-
cilitated by the test-phase of the SDS algorithm, demonstrates a slightly better
performance compared to the hybrid algorithm (see Table 3).However, in the
majority of the cases, the hybird algorithms outperform themodified algorithm:
f1,2, f5−7, f9, f12−14, out of which f9 and f12−14 are performing significantly better
(see Table 4). Also it is shown that the algorithm with modified diffusion phase is
less reliable than its corresponding hybrid algorithm.

The results show the importance of coupling the SDS-led restart mechanism (dis-
pensation mechanism) and the communication of agents whichare both deployed
in SDS algorithm.

16 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

Table 4 TukeyHSD Test Results for Accuracy

Based on TukeyHSD Test, if the difference between each pair of algorithms is significant, the pairs
are marked. X–o shows that the left algorithm is significantly better than the right one; and o–X
shows that the right algorithm is significantly better than the one, on the left.

DE-H5 DE-H50 DE-H200 DE-H50D H5-H50 H5-H200 H5-H50D H50-H200 H50-H50D H200-H50D

f1 – – – – – – – – – –

f2 X–o – – – o–X o–X o–X – – –

f3 – o–X o–X o–X o–X o–X o–X – – –

f4 o–X o–X o–X o–X – – – – – –

f5 o–X o–X o–X o–X – – – – – –

f6 o–X o–X o–X o–X – – – – – –

f7 – – – – – – – – – –

f8 o–X o–X o–X o–X – – – – – –

f9 – – – X–o – – X–o – X–o X–o

f10 o–X o–X o–X o–X – – – – – –

f11 o–X o–X o–X o–X – – – – – –

f12 o–X o–X o–X – X–o X–o X–o – X–o –

f13 o–X o–X o–X – – X–o X–o X–o X–o –

f14 o–X o–X – – – X–o X–o X–o X–o –

Algorithm 6 Hybrid Algorithm Control

// DIFFUSION PHASE
For ag = 1 to No_of_agents

If (ag is not active)
ag.setHypo(randomHypo())

End If
End For

The third SDS component feature, which is currently only implicitly exploited by
the hybrid algorithm, is ‘randomised partial hypothesis evaluation’. In the Mining
Game (see Section 2.1), “At the start of the mining process each miner maintains
a [randomly allocated] hypothesis - their current belief of’best hill’ to mine”; and
each miner mines one small randomly selected area of this hill rather than the en-
tirety of it (i.e. revealing a partial estimate of the the gold content of the entire hill);
following this approach, each miner forms a partial view of the gold content of their
hill hypothesis (which is merely part of the overall mountain range: the entire search
space).

In typical optimisation algorithms, the search process iterates the evaluation of
one point in the n-dimensional search space (iterating an objective function eval-
uation). In DE population, in addition to this information,each agent has implicit

Resource Allocation and Dispensation Impact of SDS on DE algorithm 17

partial knowledge from other agents (derived from the mutation, crossover and se-
lection mechanisms) comprising the historical evidence implicit in the prior [m]
objective-function evaluations the population has performed. Thus, since each agent
finds its current position by using this implicit knowledge,it has partial knowledge
of the full search space.

In the hybrid algorithm each SDEAgent maintains a fitness value which is the
best objective function value it has currently found, basedon its exploration of the
search space so far. Thus constituted, each SDEAgent’s target vector defines a ‘par-
tial view’ of the entire search space (via the partial interaction it has with the rest
of the population through mutation, crossover and selection). Hence, when the fit-
ness values of two SDEAgents’ target vector are compared in the test-phase of the
hybrid algorithm, two partial views of the entire search space are contrasted. This
is analogous to the ‘test’ process of the Mining Game as in both processes, agents
become active or inactive contingent upon the agent’s evaluation of a randomised
partial view of the entire search space.

In both the Mining Game and the new hybrid SDSnDE algorithm, the notion of
partial-function evaluation differs importantly from that traditionally deployed in a
simple discrete partial function SDS, where, for a given setof parameter values (the
agent hypothesis) a complex objective function is broken into m components, only
one randomly selected of which will be evaluated and the subsequent agent-activity
is based on this. Clearly, as this process merely evaluates 1/m of the total number
of computations required for the full hypothesis evaluation, it concomitantly offers
a potentially significant performance increase. Whereas inthe new hybrid SDSnDE
algorithm, the objective function is evaluated in-toto, using a given set of parameter
values (the agent’s hypothesis) and the subsequent agent-activity is based on this. In
the former case, the agent exploits knowledge of the partialobjective function and in
the process gains a potential partial-function performance dividend; in the latter the
agent merely exploits partial knowledge of the search spacewithout the concomitant
explicit partial-function performance increase. Ongoingwork, on computationally
more complex benchmark problems, seeks to exploit this ‘partial-function dividend’
with the hybrid SDSnDE algorithm; if successful, this offers further, potentially
significant, performance improvements for the new hybrid algorithm.

6.1 Conclusion

This paper presents a brief overview about the potential of integration of DE with
SDS. Here, SDS is primarily used as an efficient resource allocation and dispen-
sation mechanism responsible for facilitating communication between DE agents.
Additionally, an initial discussion of the similarity between the hypothesis test em-
ployed in the hybrid algorithm and the test-phase in SDS algorithm is presented.

Results reported in this paper have demonstrated that initial explorations with the
hybrid SDSnDE algorithm outperform the performance of (onevariation of) classi-

18 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

cal DE architecture, even when applied to problems with low-cost fitness function
evaluations (the benchmarks presented).

This work, further investigated an earlier work [3] attempting to integrate PSO
with SDS3. In ongoing research, in addition to investigating the performance of the
hybrid algorithm in other sets of problems (e.g. CEC2005 or some real-world prob-
lems), further theoretical work seeks to develop the core ideas presented in this paper
on problems with significantly more computationally expensive objective functions,
where the performance improvement (relative to classical DE) is anticipated to be
much greater.

References

[1] al-Rifaie MM, Bishop M (2010) The mining game: a brief introduction to the
stochastic diffusion search metaheuristic. AISB Quarterly

[2] al-Rifaie MM, Bishop M, Aber A (2011) Creative or not? birds and ants draw
with muscles. In: AISB 2011: Computing and Philosophy, University of York,
York, U.K., pp 23–30, iSBN: 978-1-908187-03-1

[3] al-Rifaie MM, Bishop M, Blackwell T (2011) An investigation into the merger
of stochastic diffusion search and particle swarm optimisation. In: GECCO
’11: Proceedings of the 2011 GECCO conference companion on Genetic and
evolutionary computation, ACM, New York, NY, USA

[4] el Beltagy MA, Keane AJ (2001) Evolutionary optimization for computation-
ally expensive problems using gaussian processes. In: Proc. Int. Conf. on Ar-
tificial Intelligence’01, CSREA Press, pp 708–714

[5] Bishop J (1989) Stochastic searching networks. Proc. 1st IEE Conf. on Artifi-
cial Neural Networks, London, UK, pp 329–331

[6] Bonabeau E, Dorigo M, Theraulaz G (2000) Inspiration foroptimization from
social insect behaviour. Nature 406:3942

[7] Branke J, Schmidt C, Schmeck H (2001) Efficient fitness estimation in noisy
environments. In Spector, L, ed: Genetic and Evolutionary Computation Con-
ference, Morgan Kaufmann

[8] Brest J, Zamuda A, Boskovic B, Maucec M, Zumer V (2009) Dynamic opti-
mization using self-adaptive differential evolution. In:IEEE Congress on Evo-
lutionary Computation, 2009. CEC’09., IEEE, pp 415–422

[9] Digalakis J, Margaritis K (2002) An experimental study of benchmarking
functions for evolutionary algorithms. International Journal 79:403–416

[10] Gehlhaar D, Fogel D (1996) Tuning evolutionary programming for conforma-
tionally flexible molecular docking. In: Evolutionary Programming V: Proc. of
the Fifth Annual Conference on Evolutionary Programming, pp 419–429

[11] Goldberg DE (1989) Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA

3 The artistic applications of merging SDS with PSO (falling into the category of generative art)
are under further investigation and the early results are reported in [2].

Resource Allocation and Dispensation Impact of SDS on DE algorithm 19

[12] Holldobler B, Wilson EO (1990) The Ants. Springer-Verlag
[13] Huang V, Suganthan P, Qin A, Baskar S (2005) Multiobjective differential

evolution with external archive and harmonic distance-based diversity mea-
sure. School of Electrical and Electronic Engineering Nanyang, Technological
University Technical Report

[14] Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary
computation. In: Soft Computing 9:3–12

[15] Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization with-
out the lipschitz constant. J Optim Theory Appl 79(1):157–181

[16] Jong KAD (1975) An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor, MI,USA

[17] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings
of the IEEE International Conference on Neural Networks, IEEE Service Cen-
ter, Piscataway, NJ, vol IV, pp 1942–1948

[18] Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kauf-
mann Publishers, San Francisco ; London

[19] Kozlov K, Samsonov A (2006) New migration scheme for parallel differential
evolution. In: Proceedings of the international conference on bioinformatics of
genome regulation and structure, pp 141–144

[20] Mendes R, Mohais A (2005) DynDE: a differential evolution for dynamic op-
timization problems. In: The 2005 IEEE Congress on Evolutionary Computa-
tion CEC2005., IEEE, vol 3, pp 2808–2815

[21] de Meyer K (2000) Explorations in stochastic diffusionsearch: Soft- and hard-
ware implementations of biologically inspired spiking neuron stochastic diffu-
sion networks. Tech. Rep. KDM/JMB/2000/1, University of Reading

[22] de Meyer K, Bishop JM, Nasuto SJ (2003) Stochastic diffusion: Using recruit-
ment for search. Evolvability and interaction: evolutionary substrates of com-
munication, signalling, and perception in the dynamics of social complexity
(ed P McOwan, K Dautenhahn & CL Nehaniv) Technical Report 393:60–65

[23] de Meyer K, Nasuto S, Bishop J (2006) Stochastic diffusion optimisation: the
application of partial function evaluation and stochasticrecruitment in swarm
intelligence optimisation. Springer Verlag 2, Chapter 12 in Abraham, A. and
Grosam, C. and Ramos, V. (eds), ”Swarm intelligence and datamining”

[24] Moglich M, Maschwitz U, Holldobler B (1974) Tandem calling: A new kind
of signal in ant communication. Science 186(4168):1046–1047

[25] Myatt DR, Bishop JM, Nasuto SJ (2004) Minimum stable convergence criteria
for stochastic diffusion search. Electronics Letters 40(2):112–113

[26] Nasuto SJ (1999) Resource allocation analysis of the stochastic diffusion
search. PhD thesis, University of Reading, Reading, UK

[27] Nasuto SJ, Bishop JM (1999) Convergence analysis of stochastic diffusion
search. Parallel Algorithms and Applications 14(2)

[28] Nasuto SJ, Bishop MJ (2002) Steady state resource allocation analysis of the
stochastic diffusion search. csAI/0202007

[29] Nasuto SJ, Bishop JM, Lauria S (1998) Time complexity ofstochastic diffu-
sion search. Neural Computation NC98

20 Mohammad Majid al-Rifaie and John Mark Bishop and Tim Blackwell

[30] Smuc T (2002) Improving convergence properties of the differential evolution
algorithm. In: Proceedings of the MENDEL 2002 - 8th International Confer-
ence on Soft Computing, pp 80–86

[31] Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimiza-
tion by means of a topological species conservation algorithm. Transactions
on Evolutionary Computation, IEEE 14(6):842–864

[32] Storn R, Price K (1995) Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces TR-95-012, [online].
Available: http://www.icsi.berkeley.edu/ storn/litera.html

[33] Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. J Global Optim 11:341–359

[34] Tasgetiren M, Suganthan P (2006) A multi-populated differential evolution
algorithm for solving constrained optimization problem. In: IEEE Congress
on Evolutionary Computation CEC2006., IEEE, pp 33–40

[35] Tasoulis D, Pavlidis N, Plagianakos V, Vrahatis M (2004) Parallel differential
evolution. In: Congress on Evolutionary Computation CEC2004., IEEE, vol 2,
pp 2023–2029

[36] Thomsen R (2004) Multimodal optimization using crowding-based differential
evolution. In: Congress on Evolutionary Computation, 2004. CEC2004., IEEE,
vol 2, pp 1382–1389

[37] Weber M, Neri F, Tirronen V (2010) Parallel Random Injection Differential
Evolution. Applications of Evolutionary Computation pp 471–480

[38] Whitaker R, Hurley S (2002) An agent based approach to site selection for
wireless networks. In: 1st IEE Conf. on Artificial Neural Networks, ACM
Press Proc ACM Symposium on Applied Computing, Madrid Spain

[39] Whitley D, Rana S, Dzubera J, Mathias KE (1996) Evaluating evolutionary
algorithms. Artificial Intelligence 85(1-2):245–276

[40] Zaharie D (2003) Control of population diversity and adaptation in differential
evolution algorithms. In: Proc. of 9th International Conference on Soft Com-
puting, MENDEL, pp 41–46

[41] Zhang J, Sanderson A (2009) JADE: adaptive differential evolution with
optional external archive. Evolutionary Computation, IEEE Transactions on
13(5):945–958

