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Abstract This work details the research aimed at applying the powerful
resource allocation mechanism deployed in Stochastic Diffusion Search to the
Differential Evolution, effectively merging a nature inspired swarm intelligence
algorithm with a biologically inspired evolutionary algorithm. The results
reported herein suggest that the hybrid algorithm, exploiting information
sharing between the population elements, has the potential to improve the op-
timisation capability of classical Differential Evolution algorithms. This claim
is verified by running several experiments using state-of-the-art benchmarks.
Additionally, the significance of the frequency within which Stochastic Diffu-
sion Search introduces communication and information exchange is also inves-
tigated.

Keywords Stochastic Diffusion Search · Differential Evolution · Metaheuris-
tic · Global Optimisation · Information Sharing

1 Introduction

In the literature, nature inspired swarm intelligence algorithms and biolog-
ically inspired evolutionary algorithms are typically evaluated using bench-
marks that are often small in terms of their objective function computational
costs [14,41]; this is often not the case in real-world applications. This paper
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is an attempt to pave the way for more effectively optimising computationally
expensive objective functions, by deploying the Stochastic Diffusion Search
(SDS) diffusion mechanism to more efficiently allocate Differential Evolution
(DE) resources via information-sharing between the members of the popula-
tion.

The use of SDS as an efficient resource allocation algorithm was first ex-
plored in [31,22,28] and these results provided motivation to investigate the
application of the information diffusion mechanism originally deployed in SDS1

with DE.
Communication – social interaction or information exchange – observed

in social insects is important in all swarm intelligence and evolutionary algo-
rithms, including SDS and DE algorithms.

This work investigates the communication between the members of the
population as the mean to maintain population diversity, which is facilitated
by using the resource allocation and resource dispensation of SDS algorithm.

In a former work [6], SDS is merged with Particle Swarm Optimisation
(PSO) algorithm and the promising results of this hybridisation alongside
some statistical analysis of its performance are reported.

Although in real social interactions, not just the syntactical information is
exchanged between the individuals but also semantic rules and beliefs about
how to process this information [19], in typical swarm intelligence algorithms,
only the syntactical exchange of information is considered.

In the study of the interaction of social insects, two important elements
are the individuals and the environment, which will result in two integration
schemes: the first one is the way in which individuals self-interact and the
second one is the interaction of the individuals with the environment [11]. Self-
interaction between individuals is carried out through recruitment strategies
and it has been demonstrated that, typically, differing recruitment strategies
are used by ants [16] and honey bees. These recruitment strategies are used
to attract other members of the society to gather around one or more desired
areas, either for foraging purposes or for moving to a new nest site.

In general, there are many different forms of recruitment strategies used
by social insects; these may take the form of local or global strategies; one-
to-one or one-to-many communication; and deploy stochastic or deterministic
mechanisms. The nature of information exchange also varies in different envi-
ronments and with different types of social insects. Sometimes the information
exchange is quite complex where, for example it might carry data about the
direction, suitability of the target and the distance; or sometimes the informa-
tion sharing is simply a stimulation forcing a certain triggered action. What
all these recruitment and information exchange strategies have in common is
distributing useful information throughout their community [24].

In this paper, the swarm intelligence algorithm and the evolutionary algo-
rithm are first introduced, followed by the hybridisation strategy. Afterwards,

1 The ‘information diffusion’ and ‘randomised partial objective function evaluation’ processes
enable SDS to more efficiently optimise problems with costly [discrete] objective functions; see
Stochastic Diffusion Search Section for an introduction to the SDS metaheuristic.
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the results are reported and the performance of the hybrid algorithm is dis-
cussed.

This work is an extension of ideas first presented at the Nature Inspired
Cooperative Strategies for Optimization Conference (NICSO 2011) [7]. In the
work discussed herein, after detailing the results of several experiments using
CEC’05 benchmarks, the impact of SDS-led commununication and information
exchange among the agents is discussed in greater depth (e.g. running a control
algorithm to measure the effect of hybridisation, demonstrating the quality
of the active and inactive populations, etc.) and future research topics are
presented afterwards.

2 Stochastic Diffusion Search

This section introduces SDS [10], a multi-agent global search and optimisa-
tion algorithm, which is based on simple interaction of agents (inspired by one
species of ants, Leptothorax acervorum, where a ’tandem calling’ mechanism
(one-to-one communication) is used, where the forager ant which finds the
food location, recruits a single ant upon its return to the nest, and therefore
the location of the food is physically publicised [26]). A high-level descrip-
tion of SDS is presented in the form of a social metaphor demonstrating the
procedures through which SDS allocates resources.

SDS introduced a new probabilistic approach for solving best-fit pattern
recognition and matching problems. SDS, as a multi-agent population-based
global search and optimisation algorithm, is a distributed mode of computation
utilising interaction between simple agents [23].

Unlike many nature inspired search algorithms, SDS has a strong math-
ematical framework, which describes the behaviour of the algorithm by in-
vestigating its resource allocation [28], convergence to global optimum [29],
robustness and minimal convergence criteria [27] and linear time complexity
[30]. In order to introduce SDS, a social metaphor the Mining Game [3] is
used.

2.1 The Mining Game

This metaphor provides a simple high-level description of the behaviour of
agents in SDS, where mountain range is divided into hills and each hill is
divided into regions:

A group of miners learn that there is gold to be found on the hills of
a mountain range but have no information regarding its distribution.
To maximize their collective wealth, the maximum number of miners
should dig at the hill which has the richest seams of gold (this informa-
tion is not available a-priori). In order to solve this problem, the miners
decide to employ a simple Stochastic Diffusion Search.
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– At the start of the mining process each miner is randomly allocated
a hill to mine (his hill hypothesis, h).

– Every day each miner is allocated a randomly selected region, on
the hill to mine.

At the end of each day, the probability that a miner is happy is propor-
tional to the amount of gold he has found. Every evening, the miners
congregate and each miner who is not happy selects another miner at
random for communication. If the chosen miner is happy, he shares the
location of his hill and thus both now maintain it as their hypothesis,
h; if not, the unhappy miner selects a new hill hypothesis to mine at
random.

As this process is isomorphic to SDS, miners will naturally self-organise to
congregate over hill(s) of the mountain with high concentration of gold.

In the context of SDS, agents take the role of miners; active agents be-
ing ’happy miners’, inactive agents being ’unhappy miners and the agent’s
hypothesis being the miner’s ’hill-hypothesis’.

Algorithm 1 The Mining Game

01: Initialisation phase

02: Allocate each miner (agent) to a random

03: hill (hypothesis) to pick a region randomly

04:

05: Until (all miners congregate over the highest

06: concentration of gold)

07:

08: Test phase

09: Each miner evaluates the amount of gold

10: they have mined (hypotheses evaluation)

11: Miners are classified into happy (active)

12: and unhappy (inactive) groups

13:

14: Diffusion phase

15: Unhappy miners consider a new hill by

16: either communicating with another miner

17: or,if the selected miner is also

18: unhappy , there will be no information

19: flow between the miners; instead the

20: selecting miner must consider another

21: hill (new hypothesis) at random

22: End

2.2 SDS Architecture

The SDS algorithm commences a search or optimisation by initialising its
population (e.g. miners, in the mining game metaphor). In any SDS search,
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each agent maintains a hypothesis, h, defining a possible problem solution. In
the mining game analogy, agent hypothesis identifies a hill. After initialisation
two phases are followed (see Algorithm 1 for these phases in the mining game;
for high-level SDS description see Algorithm 2):

– Test Phase (e.g. testing gold availability)
– Diffusion Phase (e.g. congregation and exchanging of information)

Algorithm 2 SDS Algorithm

01: Initialising agents ()

02: While (stopping condition is not met)

03: Testing hypotheses ()

04: Diffusion hypotheses ()

05: End While

In the test phase, SDS checks whether the agent hypothesis is successful
or not by performing a partial hypothesis evaluation which returns a boolean
value. Later in the iteration, contingent on the precise recruitment strategy
employed, successful hypotheses diffuse across the population and in this way
information on potentially good solutions spreads throughout the entire pop-
ulation of agents.

In the Test phase, each agent performs partial function evaluation, pFE,
which is some function of the agent’s hypothesis; pFE = f(h). In the mining
game the partial function evaluation entails mining a random selected region
on the hill, which is defined by the agent’s hypothesis (instead of mining all
regions on that hill).

In the Diffusion phase, each agent recruits another agent for interaction
and potential communication of hypothesis. In the mining game metaphor,
diffusion is performed by communicating a hill hypothesis.

2.3 Standard SDS and Passive Recruitment

In standard SDS (which is used in this paper), passive recruitment mode is
employed. In this mode, if the agent is inactive, a second agent is randomly
selected for diffusion; if the second agent is active, its hypothesis is communi-
cated (diffused) to the inactive one. Otherwise there is no flow of information
between agents; instead a completely new hypothesis is generated for the first
inactive agent at random (see Algorithm 3).

2.4 Partial Function Evaluation

One of the concerns associated with many optimisation algorithms (e.g. Ge-
netic Algorithm [15], Particle Swarm Optimisation [18] and etc.) is the repeti-
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Algorithm 3 Passive Recruitment Mode

01: For ag = 1 to No_of_agents

02: If ( !ag.activity () )

03: r_ag = pick a random agent()

04: If ( r_ag.activity () )

05: ag.setHypothesis( r_ag.getHypothesis () )

06: Else

07: ag.setHypothesis( randomHypothesis () )

08: End If/Else

09: End If

10: End For

tive evaluation of a computationally expensive fitness functions. In some appli-
cations, such as tracking a rapidly moving object, the repetitive function eval-
uation significantly increases the computational cost of the algorithm. There-
fore, in addition to reducing the number of function evaluations, other mea-
sures can be used in an attempt to reduce the computations carried out during
the evaluation of each possible solution, as part of the overall optimisation (or
search) processes.

The commonly used benchmarks for evaluating the performance of swarm
intelligence algorithms are typically small in terms of their objective functions
computational costs [14,41], which is often not the case in real-world applica-
tions. Examples of costly evaluation functions are seismic data interpretation
[41], selection of sites for the transmission infrastructure of wireless communi-
cation networks and radio wave propagation calculations of one site [40] etc.

Costly objective function evaluations have been investigated under different
conditions [17] and the following two broad approaches have been proposed to
reduce the cost of function evaluations:

– The first is to estimate the fitness by taking into account the fitness of the
neighbouring elements, the former generations or the fitness of the same
element through statistical techniques introduced in [12,9].

– In the second approach, the costly fitness function is substituted with a
cheaper, approximate fitness function.

When agents are about to converge, the original fitness function can be used
for evaluation to check the validity of the convergence [17].

Many fitness functions are decomposable to components that can be eval-
uated separately. In partial evaluation of the fitness function in SDS, the eval-
uation of one or more of the components may provide partial information to
guide the subsequent optimisation process.

3 Differential Evolution

DE, one of the most successful Evolutionary Algorithms (EAs), is a simple
global numerical optimiser over continuous search spaces which was first in-
troduced by Storn and Price [34,35].
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DE is a population based stochastic algorithm, proposed to search for an
optimum value in the feasible solution space. The parameter vectors of the
population are defined as follows:

xg
i =

[
xg
i,1, x

g
i,2, ..., x

g
i,D

]
, i = 1, 2, ..., NP (1)

where g is the current generation, D is the dimension of the problem space
and NP is the population size. In the first generation, (when g = 0), the ith

vector’s jth component could be initialised as:

x0
i,j = xmin,j + r (xmax,j − xmin,j) (2)

where r is a random number drawn from a uniform distribution on the
unit interval U (0, 1), and xmin, xmax are the lower and upper bounds of the
jth dimension, respectively. The evolutionary process (mutation, crossover and
selection) starts after the initialisation of the population.

3.1 Mutation

At each generation g, the mutation operation is applied to each member of
the population xg

i (target vector) resulting in the corresponding vector vgi
(mutant vector). Among the most frequently used mutation approaches are
the following:

– DE/rand/1

vgi = xg
r1 + F

(
xg
r2 − xg

r3

)
(3)

– DE/target-to-best/1

vgi = xg
i + F (xg

best − xg
i ) + F

(
xg
r1 − xg

r2

)
(4)

– DE/best/1

vgi = xg
best + F

(
xg
r1 − xg

r2

)
(5)

– DE/best/2

vgi = xg
best + F

(
xg
r1 − xg

r2

)
+ F

(
xg
r2 − xg

r3

)
(6)

– DE/rand/2

vgi = xg
r1 + F

(
xg
r2 − xg

r3

)
+ F

(
xg
r4 − xg

r5

)
(7)

where r1, r2, r3, r4 are different from i and are distinct random integers
drawn from the range [1, NP ]; In generation g, the vector with the best fitness
value is xg

best and F (which is set to 0.5) is a positive control parameter for
constricting the difference vectors.
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3.2 Crossover

Crossover operation, improves population diversity through exchanging some
components of vgi (mutant vector) with xg

i (target vector) to generate ug
i (trial

vector). This process is led as follows:

ug
i,j =


vgi,j , if r ≤ CR or j = rd

xg
i,j , otherwise

(8)

where r is a uniformly distributed random number drawn from the unit
interval U (0, 1), rd is randomly generated integer from the range [1, D]; this
value guarantees that at least one component of the trial vector is different
from the target vector. The value of CR (set to 0.5), which is another control
parameter, specifies the level of inheritance from vgi (mutant vector).

3.3 Selection

The selection operation decides whether xg
i (target vector) or ug

i (trial vector)
would be able to pass to the next generation (g + 1). In case of a minimisa-
tion problem, the vector with a smaller fitness value is admitted to the next
generation:

xg+1
i =

ug
i , if f (ug

i ) ≤ f (xg
i )

xg
i , otherwise

(9)

where f (x) is the fitness function.

DE, like other evolutionary algorithms, suffers from premature convergence
where the population lose their diversity too early and get trapped in local
optima, therefore performing poorly on problems with high dimension and
many local optima.

DE is known to be relatively good in comparison with other EAs and
PSOs at avoiding premature convergence. However, in order to reduce the risk
of premature convergence in DE and to preserve population diversity, several
methods have been proposed, among which are: multi-population approaches
[20,37,21,13]; providing extra knowledge about the problem space [32,39];
information storage about previously explored areas [43]; utilising adapting
and control parameters to ensure population diversity [42]; using CrowdingDE
for tracking and maintaining multiple optima [38,33].

This paper proposes information exchange and agent dispensation (SDS-
led random restart) as methods to avoid premature convergence and preserve
population diversity.
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4 Merging SDS and DE Algorithms

The initial motivating thesis justifying the hybridisation of SDS and DE is the
partial function evaluation deployed in SDS, which may mitigate the high com-
putational overheads entailed when deploying a DE algorithm onto a problem
with a costly fitness function. However, before commenting on and exploring
this area – which remains an ongoing research – an initial set of experiments
aimed to investigate if the information diffusion mechanism deployed in SDS
may on its own improve DE behaviour. These are the results that are primarily
reported in this paper.

In this new architecture, a standard set of benchmarks are used to evaluate
the performance of the hybrid algorithm. The resource allocation (or recruit-
ment) and partial function evaluation sides of SDS (see Section 2.4) are used to
assist allocating and dispensing resources (e.g. members of the DE population)
after partially evaluating the search space.

Each DE agent has three vectors (target, mutant and trial vectors); and
each SDS agent has one hypothesis and one status. In the experiment reported
here (hybrid algorithm), every member of DE population is an SDS agent too
– together termed SDEAgents. In SDEAgents, SDS hypotheses are defined by
the DE target vector, and an additional boolean variable (status) determining
whether the SDEAgent is active or inactive (see Figure 1). The behaviour of
the hybrid algorithm in its simplest form is presented in Algorithm 4.

Fig. 1 Encapsulating SDS agent and DE agent as SDE-Agent

4.1 Test and Diffusion Phases in the Hybrid Algorithms

In the test-phase of a stochastic diffusion search, each agent has to partially
evaluate its hypothesis. The guiding heuristic is that hypotheses that are
promising are maintained and those that appear unpromising are discarded.
In the context of the hybrid DE-SDS algorithm, it is clear that there are many
different tests that could be performed in order to determine the activity of
each SDEAgent. A very simple test is illustrated in Algorithm 4. Here, the
test-phase is simply conducted by comparing the fitness of each SDEAgent’s
target vector against that of a random SDEAgent; if the selecting SDEAgent
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Algorithm 4 Hybrid Algorithm

01: Initialise SDEAgents

02:

03: For ( FE_Counter = 1 to FE_Allowed )

04:

05: For ( SDEAgent = 1 to NP )

06: Mutation : generate mutant vector

07: Crossover: generate trial vector

08: Selection: generate target vector for next generation

09: End For

10:

11: If ( generation counter % n == 0 )

12: // START SDS

13: // TEST PHASE

14: For ag = 1 to NP

15: r_ag = pick -random -SDEAgent ()

16: If (ag.targetVecFitness () < r_ag.targetVecFitness ())

17: ag.setActivity (true)

18: Else

19: ag.setActivity (false)

20: End If

21: End For

22:

23: // DIFFUSION PHASE

24: For ag = 1 to No_of_SDEAgents

25: If ( best ag ) continue

26: Else If ( !ag.activity () )

27: r_ag = pick -random -SDEAgent ()

28: If ( r_ag.activity () )

29: ag.setHypo( r_ag.getHypo () )*

30: Else

31: ag.setHypo( randomHypo () ) **

32: End If

33: End If

34: End For

35: End If

36: // END SDS

37:

38: Find SDEAgent with best fitness value

39:

40: End For

* In setHypo () and getHypo(), ‘Hypo ’ refers to

the SDEAgent ’s hypothesis (see Fig. 1). This

indicates that a clone of r_ag is generated.

** ‘randomHypo ()’ uses the entire search space

to reinitialise the agent.

has a better fitness value, it will become active, otherwise it will be flagged
inactive. On average, this mechanism will ensure 50% of SDEAgents remain
active from one iteration to another.

In the Diffusion Phase, each inactive SDEAgent picks another SDEAgent
randomly, if the selected SDEAgent is active, the selected SDEAgent com-
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municates its hypothesis to the inactive one; if the selected SDEAgent is also
inactive, the selecting SDEAgent generates a new hypothesis at random from
the search space.

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 4),
after each n generations, one full SDS cycle2 is executed. The hybrid algorithm
is called SDSnDE, where n refers to the number of generations before an SDS
cycle should run.

In the next section, the experiment setup is reported and the results will
follow.

5 Results

In this section, a number of experiments are carried out and the performance
of one variation of DE algorithm (DE/best/1) is contrasted against the hybrid
algorithm, SDSnDE.

5.1 Experiment Setup

The algorithms are tested over a number of benchmarking functions designed
for the Special Session on Real Parameter Optimization organised in the 2005
IEEE Congress on Evolutionary Computation (CEC 2005), reported in [36],
where a complete description of these benchmarks are provided:

– Unimodal Functions (5):

– F1: Shifted Sphere Function
– F2: Shifted Schwefel’s Problem 1.2
– F3: Shifted Rotated High Conditioned Elliptic Function
– F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness
– F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds

– Multimodal Functions3 (9):

– Basic Functions (7):

• F6: Shifted Rosenbrock’s Function
• F7: Shifted Rotated Griewank’s Function without Bounds
• F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds
• F9: Shifted Rastrigin’s Function
• F10: Shifted Rotated Rastrigin’s Function
• F11: Shifted Rotated Weierstrass Function
• F12: Schwefel’s Problem 2.13

– Expanded Functions (2):

• F13: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2)
• F14: Shifted Rotated Expanded Scaffer’s F6

All benchmarks have been shifted in order to ensure there are no optima
in the centre of the search space.

2 Test Phase: decides about the status of each SDEAgent, one after another; Diffusion Phase:
shares information according to the algorithm presented

3 Hybrid Composition Functions are not used in this work.
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The experiments are conducted with the population of 100 agents; the
halting criterion for this experiment is exceeding 300, 000 function evaluations
(FEs). There are 30 independent runs for each benchmark function and the
results are averaged over these independent trials.

Accuracy, which is used as performance measure, is defined by the quality
of the best agent in terms of its closeness to the optimum position. If knowledge
about the optimum position is known a priori (which is the case here), the
following would define accuracy:

Accuracy (S, t) = |f (xg
best)− f (xopt)| (10)

where xg
best is the best agent at generation g and xopt is the position of the

known optimum solution.
In this paper, SDSnDE, is presented with few variations of parameter, n

(the number of generations before an SDS cycle is performed): n = 5, 50, and
200. These values were selected merely to provide a brief initial exploration
of the behaviour of the new hybrid algorithm over three relatively widely
separated parameter values; no claim is made for their optimality.

5.2 Results

Table 1 shows the performance of the various hybrid algorithms alongside DE
algorithm. For each benchmark and algorithm, the table shows the accuracy
measure.

Table 2 shows if there is any significant difference between any pair of
algorithms. The results reported next are based on the data presented in this
table. In order to highlight the presense of any significant difference between
the algorithms, TukeyHSD Test [25] with 95% family-wise confidence level is
utilised.

It is shown that out of 24 cases where there exist a significant difference
between DE and the hybrid algorithms, the hybrid algorithms outperform
DE significantly in 21 cases (%88 significant outperformance). Although H5
outperforms DE in the majority of cases, DE shows outperformance in three
cases. However in terms of the other hybrid algorithms (H50 and H200), DE
is outperformed significantly in all cases.

The focus of this paper is not finding the best n for SDSnDE (for this
set of benchmarks), but rather investigate the effect of SDS algorithm on the
performance of DE algorithm. However, among the hybrid algorithms, H50
outperforms H5 and H200 in all cases.

As demonstrated in Table 2, in f2, f3−4, the performance of H5, which has
the highest rate of information exchange, is weaker than the other hybrid al-
gorithms with lower information sharing. This implies that the performance of
some problems might be negatively affected by excessive information exchange
(e.g. in f5, FH5 > FH50 > FH200, where F is the fitness value).

Additionally, excessive reduction in information exchange reduces the pos-
itive effect that SDS has on the overal behaviour of the agents in DE. For
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instance, in f9,12,13, the more the information exchange the better the perfor-
mance (FH5 < FH50 < FH200).

These results confirms the importance of SDS-led information sharing be-
tween DE agents. Using this hybridisation technique, the only problem depen-
dent parameter to tune is the frequency at which SDS cycle is run (e.g. In this
set of experiments, the hybrid algorithm with the middle ground frequency,
H50, shows more promising results than frequencies 5 and 200, used in H5 and
H200 respectively).

This demonstrates the importance of deploying the right frequency of com-
munication to maximise the positive effect of the hybridisation.

6 Discussion

The resource allocation process underlying SDS offers three closely coupled
mechanisms to the algorithm’s search component to speed its convergence
to global optima. The first component is ‘efficient, non-greedy information
sharing’ instantiated via positive feedback of potentially good hypotheses be-
tween agents; the second component is the dispensation mechanism – SDS-led
random-restarts – deployed as part of the diffusion phase; the third component
is random ‘partial hypothesis evaluation’, whereby a complex, computation-
ally expensive objective function is broken down into ‘k independent partial-
functions’, each one of which, when evaluated, offers partial information on the
absolute quality of current algorithm search parameters. It is this mechanism
of iterated selection of a random partial function that ensures SDS does not
prematurely converge on local minimum.

The resource allocation and dispensation components of SDS in the hybrid
algorithm are executed in the ‘Diffusion Phase’, where information is shared
(diffused) among SDEAgents (see Algorithm 3). Analysis of the performance
of the hybrid algorithm (see results above) demonstrates that adding the SDS
resource allocation and dispensation mechanisms to the classical DE archi-
tecture improves the overall performance of the algorithm (i.e. it enhances
algorithm accuracy, as defined herein).

The graphs in Fig. 3 illustrate the difference between the accuracy of active
and inactive populations of three different benchmarks (f1: unimodal, f9: basic
multimodal, and f13: expanded multimodal) in H50 before and after the diffu-
sion phase. Since the active populations are not affected during the diffusion
phase, they are represented by one line on each graph.

As shown in the graphs, compared to the difference between the active and
inactive populations prior to the diffusion phase, the accuracy of the inactive
populations after the diffusion phase is much worse than the active popula-
tions. In f1 and f9, there are occasions when all members of the population
coverge to one solution (optimum so far); when this occurs, based on line 16 of
Algorithm 4 (where having equal fitness results in the selecting agent becom-
ing inactive), there would be no active agents in that cycle; this explains the
absence of the active line in the graphs. Theoretical analysis is undergoing to
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Fig. 2 Accuracy of DE vs H50 and H50 vs H50D
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understand the core interaction of active populations with the inactive ones
in this context.

To further analyse the role of SDS in the hybrid algorithms, the Diffusion
Phase of SDS algorithm is modified (see Algorithm 5) to investigate the dis-
pensation effect caused by randomising a selection of agent hypotheses after a
number of DE function evaluations (effectively instantiating a DE with SDS-
led random-restarts). In other words, after the SDS test-phase, the hypothesis
of each inactive SDEAgent is randomised.

As detailed in Table 1, although, information sharing plays an important
role in the performance of hybrid DE algorithm, the significance of dispensa-
tion mechanism (in randomly restarting some of the agents) in improving the
performance of DE algorithm cannot be discarded.

Whenever there is a significant difference between the performance of the
hybrid algorithm and its corresponding algorithm with SDS-led restart-only
mechanism, which is facilitated by the test phase of the SDS algorithm, H50
exhibits significant outperformance over H50D (see Table 2).

As demonstrated, the lack of information exchange mechanism in the hy-
brid algorithm resulted in worse performance. This shows the important im-
pact of the information sharing strategy on the overall performance of the
hybrid algorithm. The outperformance of H50 over DE and H50D is demon-
strated in Fig. 2.

The third SDS component feature, which is currently only implicitly ex-
ploited by the hybrid algorithm, is ‘randomised partial hypothesis evaluation’.
In the Mining Game (see Section 2.1), “At the start of the mining process
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Algorithm 5 SDS-led Restart-only Hybrid Algorithm

01: // DIFFUSION PHASE

02: For ag = 1 to No_of_agents

03: If ( !ag.activity () )

04: ag.setHypo( randomHypo () )

05: End If

06: End For

each miner maintains a [randomly allocated] hypothesis - their current belief
of ’best hill’ to mine”; and each miner mines one small randomly selected area
of this hill rather than the entirety of it (i.e. revealing a partial estimate of the
the gold content of the entire hill); following this approach, each miner forms
a partial view of the gold content of their hill hypothesis (which is merely part
of the overall mountain range: the entire search space).

In typical optimisation algorithms, the search process iterates the evalu-
ation of one point in the n-dimensional search space (iterating an objective
function evaluation). In DE population, in addition to this information, each
agent has implicit partial knowledge from other agents (derived from the mu-
tation, crossover and selection mechanisms) comprising the historical evidence
implicit in the prior [m] objective-function evaluations the population has per-
formed. Thus, since each agent finds its current position by using this implicit
knowledge, it has partial knowledge of the full search space.

In the hybrid algorithm each SDEAgent maintains a fitness value which is
the best objective function value it has currently found, based on its explo-
ration of the search space so far. Thus constituted, each SDEAgent’s target
vector defines a ‘partial view’ of the entire search space (via the partial inter-
action it has with the rest of the population through mutation, crossover and
selection). Hence, when the fitness values of two SDEAgents’ target vector are
compared in the test-phase of the hybrid algorithm, two partial views of the
entire search space are contrasted. This is analogous to the ‘test’ process of
the Mining Game as in both processes, agents become active or inactive con-
tingent upon the agent’s evaluation of a randomised partial view of the entire
search space.

In both the Mining Game and the new hybrid SDSnDE algorithm, the
notion of partial-function evaluation differs importantly from that tradition-
ally deployed in a simple discrete partial function SDS, where, for a given
set of parameter values (the agent hypothesis) a complex objective function
is broken into m components, only one randomly selected of which will be
evaluated and the subsequent agent-activity is based on this. Clearly, as this
process merely evaluates 1/m of the total number of computations required for
the full hypothesis evaluation, it concomitantly offers a potentially significant
performance increase. Whereas in the new hybrid SDSnDE algorithm, the ob-
jective function is evaluated in-toto, using a given set of parameter values (the
agent’s hypothesis) and the subsequent agent-activity is based on this. In the
former case, the agent exploits knowledge of the partial objective function and
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in the process gains a potential partial-function performance dividend; in the
latter the agent merely exploits partial knowledge of the search space without
the concomitant explicit partial-function performance increase. Ongoing work,
on computationally more complex benchmark problems, seeks to exploit this
‘partial-function dividend’ with the hybrid SDSnDE algorithm; if successful,
this offers further, potentially significant, performance improvements for the
new hybrid algorithm.

7 Conclusion

This paper presents an overview of the integration of DE with SDS. Here, SDS
is primarily used as an efficient resource allocation and dispensation mecha-
nism responsible for facilitating communication between DE agents. Addition-
ally, an initial discussion of the similarity between the hypothesis test employed
in the hybrid algorithm and the test-phase in SDS algorithm is presented. The
performance of the hybrid algorithm is also tested against a control algorithm,
demonstrating the importance of information sharing in the SDS algorithm.
Additionally, the behaviour of the active and inactive populations is illus-
trated, showing the accuracy of each population before and after the SDS
algorithm. Results reported in this paper have demonstrated that the hybrid
SDSnDE algorithm outperforms the performance of (one variation of) classical
DE architecture, even when applied to problems with low-cost fitness function
evaluations (the benchmarks presented).

In ongoing research, in addition to investigating the performance of the
hybrid algorithm in other sets of problems (including real-world problems),
further theoretical work seeks to develop the core ideas presented in this pa-
per on problems with significantly more computationally expensive objective
functions, where the performance improvement (relative to classical DE) is an-
ticipated to be much greater. Additionally, since this research establishes that
the performance of the hybrid algorithms is influenced by value of n (in SD-
SnDE), the possibility of activating SDS based on how DE population evolves,
remains an ongoing research topic.
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Fig. 3 Accuracy of the active and inactive populations before and after diffusion in H50.
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Table 1 Accuracy Details

Accuracy (±standard error) is shown with two decimal places after 30 trials of 300, 000 function evaluations (FEs). For each benchmark, algorithms
which are significantly better (see Table 2) than the others are highlighted. Note that the highlighted algorithms do not significantly outperform
each another.

H5: SDSnDE H50: SDSnDE H200: SDSnDE H50D: Dispenser

DE n = 5 n = 50 n = 200 n = 50

f1 1.57E-13±2.09E-14 1.91E-13±1.76E-14 5.68E-14±0.00E+00 6.06E-14±2.63E-15 9.50E+03±5.36E+03

f2 1.39E-01±4.12E-02 5.41E-01±1.08E-01 4.55E-03±1.04E-03 2.76E-02±4.17E-03 8.09E-02±2.13E-02

f3 1.58E+07±1.78E+06 3.23E+06±2.97E+05 2.59E+06±2.06E+05 6.16E+06±6.30E+05 2.15E+06±2.08E+05

f4 7.78E-01±1.33E-01 2.57E+01±3.93E+00 3.04E-01±5.30E-02 7.91E-01±1.69E-01 2.48E+00±4.04E-01

f5 1.94E+03±1.62E+02 3.90E+03±2.22E+02 2.15E+03±1.37E+02 2.13E+03±1.72E+02 2.48E+03±1.40E+02

f6 4.96E+01±2.01E+01 3.36E+01±7.21E+00 1.30E+01±3.72E+00 1.92E+01±4.36E+00 1.21E+01±3.00E+00

f7 5.40E-01±8.11E-02 2.14E-02±3.36E-03 1.54E-01±3.49E-02 4.30E-01±6.77E-02 1.67E-02±2.79E-03

f8 2.10E+01±9.01E-03 2.10E+01±1.28E-02 2.10E+01±6.45E-03 2.10E+01±9.41E-03 2.10E+01±9.36E-03

f9 2.84E+01±1.34E+00 1.61E-01±7.78E-02 4.88E+00±4.68E-01 2.23E+01±1.43E+00 4.61E+01±9.35E+00

f10 1.88E+02±3.79E+00 7.76E+01±4.40E+00 6.25E+01±3.59E+00 5.49E+01±2.97E+00 1.05E+02±1.23E+01

f11 3.85E+01±1.16E+00 2.95E+01±8.35E-01 2.62E+01±1.28E+00 3.34E+01±1.30E+00 3.85E+01±1.04E+00

f12 6.74E+05±1.30E+04 4.06E+04±3.06E+03 5.25E+04±4.20E+03 1.06E+05±9.19E+03 7.46E+05±9.66E+03

f13 8.52E+00±5.33E-01 1.46E+00±4.78E-02 1.98E+00±8.00E-02 2.64E+00±1.02E-01 2.06E+00±7.09E-02

f14 1.35E+01±3.45E-02 1.32E+01±5.33E-02 1.28E+01±7.22E-02 1.34E+01±5.41E-02 1.34E+01±4.78E-02
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Table 2 TukeyHSD Test Results for Accuracy

Based on TukeyHSD Test, if the difference between each pair of algorithms is significant, the pairs are marked. X–o shows that the left algorithm is
significantly better than the right one; and o–X shows that the right algorithm is significantly better than the one, on the left.

DE-H5 DE-H50 DE-H200 DE-H50D H5-H50 H5-H200 H5-H50D H50-H200 H50-H50D H200-H50D

f1 – – – X – o – – X – o – X – o X – o

f2 X – o – – – o – X o – X o – X – – –

f3 o – X o – X o – X o – X – – – X – o – o – X

f4 X – o – – – o – X o – X o – X – – –

f5 X – o – – – o – X o – X o – X – – –

f6 – – – – – – – – – –

f7 o – X o – X – o – X – X – o – X – o – o – X

f8 – – – – – – – – – –

f9 o – X o – X – X – o – X – o X – o X – o X – o X – o

f10 o – X o – X o – X o – X – – X – o – X – o X – o

f11 o – X o – X o – X – – – X – o X – o X – o X – o

f12 o – X o – X o – X X – o – X – o X – o X – o X – o X – o

f13 o – X o – X o – X o – X – X – o – – – –

f14 o – X o – X – – o – X – X – o X – o X – o –
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