
PALADYN Journal of Behavioral Robotics

Review Article · DOI: 10.2478/pjbr-2013-0021 JBR · 4(3) · 2013 · 155-173

Stochastic Diffusion Search Review

Mohammad Majid al-Rifaie∗,
John Mark Bishop†

Goldsmiths College, University of London
New Cross Gate, London SE14 6NW, United

Kingdom

Received 24-05-2013

Accepted 24-12-2013

Abstract

Stochastic Diffusion Search, first incepted in 1989, belongs to the extended family of swarm intelligence algorithms.
In contrast to many nature-inspired algorithms, stochastic diffusion search has a strong mathematical framework
describing its behaviour and convergence. In addition to concisely exploring the algorithm in the context of natural
swarm intelligence systems, this paper reviews various developments of the algorithm, which have been shown to
perform well in a variety of application domains including continuous optimisation, implementation on hardware and
medical imaging. This algorithm has also being utilised to argue the potential computational creativity of swarm
intelligence systems through the two phases of exploration and exploitation.

Keywords

swarm intelligence · resource allocation · optimisation · search · information exchange
© 2013 Mohammad Majid al-Rifaie et al., licensee Versita Sp. z o. o.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used
for non-commercial purposes, provided credit is given to the author.

1. Introduction

Noisy environments and/or incomplete data are often at the heart of
hard real-world search and optimisation-related problems, generating
input that established search heuristics (e.g. tabu search [45], sim-
ulated annealing [60], etc.) sometimes have difficulty dealing with
[55]. Conversely, ever since their inception researchers have been
attracted to the complex emergent behaviour, robustness and easy-
to-understand architecture of nature-inspired swarm intelligence algo-
rithms; and, particularly in challenging search environments, these al-
gorithms have often proved more useful than conventional approaches
[59].

This review paper surveys Stochastic Diffusion Search (SDS), a multi-
agent global search and optimisation swarm intelligence algorithm
based upon simple iterated interactions between agents. After con-
sidering SDS in the broader context of natural swarms, a high-level de-
scription of the algorithm is presented in the form of a search metaphor
driven by social interactions. This is followed by an example of a trivial
‘string search’ application to illustrate the core algorithmic processes
by which SDS operates, after which the development and detailed ar-
chitecture of SDS are discussed in more detail. Then, in addition to
analysing the behaviour of SDS and the possibility of embedding dif-
ferent agent-interaction strategies, the novel way in which SDS deals
with computationally costly objective functions is investigated. Finally,
various hybrid SDS algorithms are reviewed and issues related to vari-
ous fielded applications of SDS presented. We conclude the review by
highlighting key extant questions and current avenues of research.

∗E-mail: m.majid@gold.ac.uk
† E-mail: m.bishop@gold.ac.uk

2. Swarm Intelligence

The story of the blind men and the elephant provides a simple illus-
tration of how social interaction can lead to more intelligent behaviour.
This famous tale, first set in verse by John Godfrey Saxe in the 19th
century [91], characterises six blind men approaching an elephant. As
their initial individual encounters with the elephant merely result in each
experiencing only one aspect of the elephant’s taxonomy, each person
is led to entertain different ideas about the beast. E.g. One person
met with the elephant’s side and thought he had encountered a wall;
another met with the elephant’s tusk which he thought to be spear; a
third found the trunk which he took to be a snake; the next met with
the elephant’s leg which he thought to be a tree; another found an ear
which appeared to be a fan and the last tugged on the tail which he
thought to be a rope. The moral of the story is to demonstrate how
people build their belief framework based on partial evidence derived
from incomplete knowledge about the world [59]. Conversely, if the
blind men in the story had interacted with one another and communi-
cated what they had individually perceived - wall, spear, snake, tree etc.
- then each would rapidly have garnered enough evidence to conclude
that they had actually encountered an elephant. Swarm intelligence
formally demonstrates this move of realigning intelligence away from
the individual towards the collective; its aim is to illustrate intelligent be-
haviour by considering individuals in a social context and monitoring
their interaction with one another as well as their interaction with the
environment [27]. Although some writers (e.g. [17, 44]) blur the differ-
ence between adaptation and intelligence by claiming that intelligence
is actually the ability to adapt, writers in the field of swarm intelligence
more characteristically emphasise that an individual is not merely an
isolated information processing entity (e.g. [59]).
Natural examples of swarm intelligence systems that exhibit such forms
of collective interactions are: fish schooling, bird flocking, bacterial
growth, animal herding, nesting and foraging in the social insects etc.
and in recent years, abstractions of such natural behaviour have sug-
gested several new meta-heuristics for use in modelling collective in-

155

http://creativecommons.org/licenses/by-nc-nd/3.0/

PALADYN Journal of Behavioral Robotics

telligence. The simple and often successful deployment of these new
meta-heuristics on traditionally difficult optimisation problems has in
turn generated increasing interest in the nascent field of swarm intel-
ligence algorithms: nature-inspired algorithms instantiating distributed
computation via the interaction of simple agents and their environment
(e.g. ant algorithms [38, 39] and particle swarm optimisation [57] etc.1).

In this paper we will illustrate Stochastic Diffusion Search - in which
interactions between agents cause a population of agents to evolve
towards potential solution states - and show that it shares many of
the characteristics and behaviours of classical swarm intelligence algo-
rithms; furthermore, the core stochastic diffusion process are illustrated
in the behaviours of some social insects such as ants and bees (e.g. in
locating food sources and nest site location). In the next two parts of
the paper (Sections 2.1 and 2.2), we will explore SDS in this context.

2.1. Communication in Social Insects

Communication – social interaction or information exchange – as ob-
served in social insects is important in all swarm intelligence algorithms,
including SDS. Although as stated in [59], in real social interactions, not
just the syntactical information is exchanged between the individuals
but also semantic rules and beliefs about how to process this infor-
mation; in typical swarm intelligence algorithms, only the syntactical
exchange of information is considered.

In the study of interaction in social insects, two key elements are the
individuals and the environment, which results in two modes of inter-
action: the first defines the way in which individuals interact with each
other and the second defines the interaction of individuals with the en-
vironment [28]. Interaction between individual agents is typically car-
ried out via agent recruitment processes and it has been demonstrated
that various recruitment strategies are deployed by ants [52] and honey
bees [47, 92]. These recruitment strategies may be used, for example,
to attract other members of the population to gather around one or
more desired areas in the search space, either for foraging purposes
or in order to facilitate a colony relocation to a better nest site.

It has been observed that recruitment strategies in social insects may
take the form of: localised or global recruitment; one-to-one or one-
to-many recruitment; and may operate stochastically or deterministi-
cally. The nature of information exchange also varies in different en-
vironments and with different types of social insects. Sometimes the
information exchange is quite complex and, for example, might com-
municate data about the direction, distance and suitability of the target;
or sometimes the information sharing is relatively simple, for example,
a stimulation forcing a particular triggered action. Nonehtless, what all
recruitment and information exchange strategies have in common is an
ability to distribute useful information across their community [72].

In the next section some different forms of information exchange are
discussed in more detail and their relation to SDS recruitment strategies
presented.

1 N.B. As they are also ‘nature inspired algorithms’ described in terms
of ‘iterated populations of simple agents interacting with each other and
their environment’ the authors also partition evolutionary algorithms
[18], genetic algorithms [46, 51], differential evolution [93] etc. as swarm
intelligence algorithms, however this taxonomy is not currently reflected
in the general swarm intelligence literature.

2.2. Methods of Communication

Chemical communication through pheromones forms the primary
method of recruitment in many species of ants, however in one species,
Leptothorax acervorum, a ‘tandem calling’ mechanism (one-to-one
communication) is used. In this process the forager ant that finds the
resource location, physically recruits a single ant upon its return to the
nest, and by this action the location of the resource is physically publi-
cised [75] to the population.
Conversely in group recruitment, one ant summons a group of ants,
leading them to the resource location. Group recruitment may entail
laying a pheromone trial from the resource to the nest; a more complex
process in which the recruiting ant is no longer necessarily in physical
contact with the recruited ants.
The most advanced ant recruitment mechanism is called ‘mass recruit-
ment’ [32]; in this, worker ants both follow the pheromone trail and
incrementally add an amount of pheromone on their journey towards
the resource location. In such ‘mass recruitment’ the concentration of
pheromone plays an important role in attracting other ants to the re-
source trail.
Different recruitment and communication algorithms thus induce differ-
ent search performances. Ants communicating through group recruit-
ment are faster than tandem calling ants, and similarly, ants utilising
mass recruitment are more efficient in their performances than the for-
mer recruitment strategies [32]. Ant algorithms have been successfully
applied to hard optimisation and search problems such as traveling
salesman problem and the quadratic assignment problem [40].
However, as mentioned in [36], the success of the ants in reaching the
food they have been recruited to obtain, varies from one species to
another. In another form of communication, indirect or stigmergetic
communication, the exchange of information is based on modifying
the physical properties of the environment and its success lies in spa-
tial and temporal attributes of mass recruitment and the positive feed-
back mechanism it employs. In this mode, which is based on using
pheromone, short routes are loaded with more pheromone (because
of the shorter time it takes the ants to travel back and forth between
the source and target [42]).
An ant-like task allocation has been investigated in [62] where robots
were used to simulate different non-communication and communica-
tion strategies, concluding that ant-inspired techniques of decentralised
control, namely tandem-calling recruitment mechanism [75] shows bet-
ter results than single robots doing the same task. This technique of
information exchange is an instance of a broader type of recruitment
strategy utilised in stochastic diffusion search [26], which will be dis-
cussed in more detail, later in this paper.
In honey bees the group recruitment is performed by means of waggle
dances, in which the direction of the dance shows the location of the
food source and the speed of the dance represents the distance to the
target area. Each bee chooses one of the dancing bees as a guide to
the food source.
In SDS, direct one-to-one communication (which is similar to tandem
calling recruitment) is utilised. Although the recruitment behaviour
of real ants is more complex than the behaviour in SDS, both are
population-based and find their optima via agents communicating with
each other. The effect of different recruitment strategies will be dis-
cussed later (see Section 5).

2.3. Search and Optimisation

In the swarm intelligence literature, search and optimisation are often
used interchangeably. Nevertheless, search has been categorised into
three broad types [74]:

156

PALADYN Journal of Behavioral Robotics

· In the first definition, search refers to finding a (target) model
in a search space, and the goal of the algorithm is to find a
match, or the closest match to the target in the search space.
This is defined as data search and is considered as a classical
meaning of search in computer science [61].

· In the second type, the goal is finding a path (path search)
and the list of the steps leading to a certain solution is what the
search algorithm tries to achieve. In this type of search, paths
do not exist explicitly but are rather created during the course
of the search.

· In the third definition, solution search, the goal is to find a
solution among a large problem space of candidate solutions.
Similar to the path search where paths do not exist explicitly,
the search space consists of candidate solutions which are not
stored explicitly but rather created and evaluated during the
search process. However, on the contrary to the path search,
the steps taken to find the solution are not the goal of the algo-
rithm.

In optimisation, which is similar to the first search definition, the model
is replaced with an objective/fitness function which is used to evaluate
possible solutions. In both search and optimisation, the positions of the
optima are not known in advance (even though the optima itself might
be known a-priori). The task of the fitness function is to measure the
proximity of the candidate solutions to the optima based on the criteria
provided by each optimisation problem. The algorithm compares the
output of the function with the output of the previously located candi-
date solutions and, for instance, in case of a minimisation problem, the
smaller the output the better the solution. Data search can be seen as
a caste of optimisation if the objective function tests the equality of the
candidate solution with the model.

3. Stochastic Diffusion Search

Stochastic Diffusion Search (SDS) [23] introduced a new probabilistic
approach for solving best-fit pattern recognition and matching prob-
lems. SDS, as a multi-agent population-based global search and op-
timisation algorithm, is a distributed mode of computation utilising in-
teraction between simple agents [71]. Its computational roots stem
from Geoff Hinton’s interest 3D object classification and mapping. See
[50, 66] for Hinton’s work and [23, 25] for the connection between Hin-
ton mapping and SDS.
Unlike many natured inspired search algorithms, SDS has a strong
mathematical framework, which describes the behaviour of the algo-
rithm by investigating its resource allocation [81], convergence to global
optimum [82], robustness and minimal convergence criteria [79] and
linear time complexity [84].
In order to introduce SDS, a social metaphor, the Mining Game, is
introduced.

3.1. The Mining Game

The mining game provides a simple metaphor outlining the high-level
behaviour of agents in SDS:

A group of friends (miners) learn that there is gold to be
found on the hills of a mountain range but have no in-
formation regarding its distribution. On their maps the
mountain range is divided into a set of discrete hills and
each hill contains a discrete set of seams to mine. Over

time, on any day the probability of finding gold at a seam
is proportional to its net wealth.

To maximise their collective wealth, the miners need to
identify the hill with the richest seams of gold so that the
maximum number of miners can dig there (this informa-
tion is not available a-priori). In order to solve this prob-
lem, the miners decide to employ a simple Stochastic
Diffusion Search.

· At the start of the mining process each miner is randomly
allocated a hill to mine (his hill hypothesis, h).

· Every day each miner is allocated a randomly selected
seam on his hill to mine.

· At the end of each day, the probability that a miner is
happy is proportional to the amount of gold he has found.

· At the end of the day the miners congregate and over
the evening each miner who is unhappy selects another
miner at random to talk to. If the chosen miner is happy,
he happily tells his colleague the identity of the hill he is
mining (that is, he communicates his hill hypothesis, h,
which thus both now maintain). Conversely, if the chosen
miner is unhappy he says nothing and the original miner
is once more reduced to selecting a new hypothesis -
identifying the hill he is to mine the next day - at random.

In the context of SDS, agents take the role of miners; active agents
being ‘happy miners’, inactive agents being ‘unhappy miners and the
agent’s hypothesis being the miner’s ‘hill-hypothesis’. It can be shown
that this process is isomorphic to SDS, and thus that the miners will nat-
urally self-organise and rapidly congregate over hill(s) on the mountain
range with a high concentration of gold.

Algorithm 1 The Mining Game

Initialisation phase
Allocate each miner (agent) to a random

hill (hypothesis) to pick a region randomly

Until (all miners congregate over the highest
concentration of gold)

Test phase
- Each miner evaluates the amount of gold

they have mined (hypotheses evaluation)
- Miners are classified into happy (active)

and unhappy (inactive) groups

Diffusion phase
- Unhappy miners consider a new hill by

either communicating with another miner;
or,if the selected miner is also
unhappy , there will be no information
flow between the miners; instead the
selecting miner must consider another
hill (new hypothesis) at random

End

3.2. Refinements in the Metaphor

There are some refinements in the miners analogy, which will elaborate
more the correlation between the metaphor and different implementa-
tions of the algorithm.
Whether an agent is active or not can be measured probabilistically or
gold may be considered as resource of discrete units. In both cases all

157

PALADYN Journal of Behavioral Robotics

the agents are either active or inactive at the end of each iteration2; this
is isomorphic to standard SDS. TheMining Game can be further refined
through either of the following two assumptions at each location:

1. Finite resources: the amount of gold is reduced each time a
miner mines the area

2. Infinite resources: a conceptual situation with potentially infinite
amount of gold

In the case of having finite resources, the analogy can be related to a
real world experiment of robots looking for food to return to a notional
nest site [62]. Hence the amount of food (or gold, in the mining anal-
ogy) is reduced after each discovery. In that experiement, an ant-like
algorithm is used to avoid robots interfering with one another; consider-
ing individual variation in performing the task; and also recruiting other
robots when identifying a rich area is investigated. In this case, the
goal is identifying the location of the resources throughout the search
space. This type of search is similar to conducting a search in a dy-
namically, agent-initiated changing environment where agents change
their congregation from one area to another.
The second assumption has similarities with discrete function optimi-
sation where values at certain points are evaluated. However further
re-evaluation of the same points does not change their values and they
remain constant.

3.3. Mathematical Framework

Stochastic diffusion search, unlike many other swarm and evolution-
ary techniques, has a strong mathematical framework analysing its be-
haviour in linear time complexity, convergence to global optimum and
robustness and minimal convergence criteria.
It has been shown in [84] that SDS can be modelled as an ergodic, fi-
nite state Markov Chain under some non-restrictive assumptions. Sub-
linear time complexity for some settings of parameters has been for-
mulated and proved; the work shows that in the presence of the data
model in a noiseless search space, the SDS algorithm is time sub-linear
with the search space size for spaces greater than a supercritical space
size and roughly time constant for spaces smaller than supercritical.
The convergence of SDS is proven mathematically in [82], where SDS
converges to a statistical equilibrium when it locates the best instan-
tiation of the object in the search space. In other words, it is shown
that if the target exists in the search space, all agents will eventually
converge to its position. Additionally the notion of convergence is ex-
tended in the case when there is no ideal instantiation of the target in
the search space and it is proven that convergence also occurs in this
case (see Appendix A for more details).
The minimum convergence criteria of SDS is discussed in [79] where
an analysis of SDS is presented, leading to a derivation of the mini-
mum acceptable match resulting in a stable convergence within a noisy

2 Whether an agent is active or not is defined using the following two
methods:

· probabilistically:
a function f takes a probability p as input and returns either
true or false, f (p) =⇒ Active|Inactive

· discretely:
if there is gold, the agent will be active, otherwise it will be
inactive.

search space. Therefore, a novel formulation for the SDS algorithm is
presented that allows the calculation of the minimum match in a given
search space that will guarantee stable convergence of SDS.

4. SDS Architecture

The SDS algorithm commences a search or optimisation by initialising
its population (e.g. miners, in the mining game metaphor). In any SDS
search, each agent maintains a hypothesis, h, defining a possible prob-
lem solution. In the mining game analogy, agent hypothesis identifies
a hill. After initialisation two phases are followed (see Algorithm 1 for
these phases in the mining game; for high-level SDS description see
Algorithm 2):

· Test Phase (e.g. testing gold availability)

· Diffusion Phase (e.g. congregation and exchanging of informa-
tion)

In the test phase, SDS checks whether the agent hypothesis is suc-
cessful or not by performing a partial hypothesis evaluation and return-
ing a domain independent boolean value. Later in the iteration, contin-
gent on the strategy employed, successful hypotheses diffuse across
the population and in this way information on potentially good solutions
spreads throughout the entire population of agents.
In the Test phase, each agent performs partial function evaluation,
pFE , which is some function of the agent’s hypothesis; pFE = f (h).
In the mining game the partial function evaluation entails mining a ran-
dom selected region on the hill, which is defined by the agent’s hypoth-
esis (instead of mining all regions on that hill).
In the Diffusion phase, each agent recruits another agent for interac-
tion and potential communication of hypothesis. In the mining game
metaphor, diffusion is performed by communicating a hill hypothesis.

Algorithm 2 SDS Algorithm

01: Initialising agents ()
02: While (stopping condition is not met)
03: Testing hypotheses ()
04: Determining agents ' activities (active/inactive)
05: Diffusing hypotheses ()
06: Exchanging of information
07: End While

Although the original SDS model requires full inter-agent connectivity,
Section 5.3 describes a lattice implementation, which, while qualita-
tively retaining the properties of the original algorithm, restricts connec-
tivity, enabling simpler implementation on parallel hardware. Further-
more, details are provided on the diffusion times for different network
topologies, ranging from ordered lattices, over small-world networks to
random graphs.

4.1. A Search Example

In order to demonstrate the process through which SDS functions, an
example is presented which shows how to find a set of letters within a
larger string of letters. The goal is to find a 3-letter model (Table 1) in a
16-letter search space (Table 2). In this example, there are four agents.
For simplicity of exposition, a perfect match of the model exists in the
Search Space (SS).

158

PALADYN Journal of Behavioral Robotics

Table 1. Model

Index: 0 1 2
Model: S I B

Table 2. Search Space

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Search Space X Z A V M Z S I B V G O L B E H

In this example, a hypothesis, which is a potential problem solution,
identifies three adjacent letters in the search space (e.g. hypothesis ‘1’
refers to Z-A-V, hypothesis ‘10’ refers to G-O-L).
In the first step, each agent initially randomly picks a hypothesis from
the search space (see Table 3). Assume that:

· the first agent points to the 12th entry of the search space and
in order to partially evaluate this entry, it randomly picks one of
the letters (e.g. the first one, L): L B E

· the second agent points to the 9th entry and randomly picks the
second letter (G): V G O

· the third agent refers to the 2nd entry in the search space and
randomly picks the first letter (A): A V M

· the fourth agent goes the 3rd entry and randomly picks the third
letter (Z): V M Z

Table 3. Initialisation and Iteration 1

Agent No: 1 2 3 4
Hypothesis position: 12 9 2 3

L-B-E V-G-O A-V-M V-M-Z
Letter picked: 1st 2nd 1st 3rd

Status: × × × ×

The letters picked are compared to the corresponding letters in the
model, which is S-I-B (see Table 1).
In this case:

· The 1st letter from the first agent (L) is compared against the 1st

letter from the model (S) and because they are not the same,
the agent is set inactive.

· For the 2nd agent, the second letter (G) is compared with the
second letter from the model (I) and again because they are not
the same, the agent is set inactive.

· For the third and fourth agents, letters ‘A’ and ‘Z’ are compared
against ‘S’ and ‘B’ from the model. Since none of the letters
correspond to the letters in the model, the status of the agents
are set inactive.

In the next step, as in the mining game, each inactive agent chooses
another agent and adopts the same hypothesis if the selected agent is
active. If the selected agent is inactive, the selecting agent generates
a random hypothesis.
Assume that the first agent chooses the second one; since the second
agent is inactive, the first agent must choose a new random hypothesis
from the search space (e.g. 6). See Figure 1 for the communication
between agents.

Figure 1. Agents Communication 1

The process is repeated for the other three agents. As the agents are
inactive, they all choose new random hypotheses (see Table 4).

Table 4. Iteration 2

Agent No: 1 2 3 4
Hypothesis position: 6 10 0 5

S-I-B G-O-L X-Z-A Z-S-I
Letter picked: 2nd 3rd 1st 1st

Status:
√

× × ×

In Table 4, the second, third and fourth agents do not refer to their
corresponding letter in the model, therefore they become inactive. The
first agent, with hypothesis ‘6’, chooses the 2nd letter (I) and compares
it with the 2nd letter of the model (I). Since the letters are the same, the
agent becomes active.
At this stage, consider the following communication between the
agents: (see Figure 2)

· the fourth agent chooses the second one

· the third agent chooses the second one

· the second agent chooses the first one

Figure 2. Agents Communication 2

In this case, the third and fourth agents, which chose an inactive agent
(the second agent), have to choose other random hypotheses each
from the search space (e.g. agent three chooses hypothesis ‘1’ which
points to Z-A-V and agent four chooses hypothesis 4 which points to
M-Z-S), but the second agent adopts the hypothesis of the first agent,
which is active. As shown in Table 5:

· The first agent, with hypothesis ‘6’, chooses the 3rd letter (B)
and compares it with the 3rd letter of the model (B). Since the
letters are the same, the agent remains active.

· The second agent, with hypothesis ‘6’, chooses the 1st letter
(S) and compares it with the 1st letter of the model (S). Since
the letters are the same, the agent stays active.

159

PALADYN Journal of Behavioral Robotics

· the third and fourth agents do not refer to their corresponding
letter in the model, therefore they are set inactive.

Table 5. Iteration 3

Agent No: 1 2 3 4
Hypothesis position: 6 6 1 4

S-I-B S-I-B Z-A-V M-Z-S
Letter picked: 3rd 1st 2nd 3rd

Status:
√ √

× ×

Because the third and fourth agents are inactive, they try to contact
other agents randomly. For instance (see Figure 3):

· agent three chooses agent two

· agent four chooses agent one

Figure 3. Agents Communication 3

Since agent three chose an active agent, it adopts its hypothesis (6).
As for agent four, because it chose agent one, which is active too, it
adopts its hypothesis (6). Table 6 shows:

· The first agent, with hypothesis ‘6’, chooses the 1st letter (S)
and compares it with the 1st letter of the model (S). Since the
letters are the same, the agent remains active.

· The second agent, with hypothesis ‘6’, chooses the 2nd letter
(I) and compares it with the 2nd letter of the model (I). Since the
letters are the same, the agent stays active.

· The third agent, with hypothesis ‘6’, chooses the 3rd letter (B)
and compares it with the 3rd letter of the model (B). Since the
letters are the same, the agent becomes active.

· The fourth agent, with hypothesis ‘6’, chooses the 1st letter (S)
and compares it with the 1st letter of the model (S). Since the
letters are the same, the agent is set active.

Table 6. Iteration 4

Agent No: 1 2 3 4
Hypothesis position: 6 6 6 6

S-I-B S-I-B S-I-B S-I-B
Letter picked: 1st 2nd 3rd 1st

Status:
√ √ √ √

At this stage, the entire agent populations are active pointing to the
location of the model inside the search space.

4.2. Initialisation and Termination

Although normally agents are uniformly distributed throughout the
search space, if the search space is of a specific type, or knowledge
exists about it a priori, it is possible to use a more intelligent (than
uniform random distribution) startup by biasing the initialisation of the
agents.
If there is a pre-defined pattern to find in the search space, the goal will
be locating the best match or, if it does not exist, its best instantiation
in the search space [82]. Similarly, in a situation which lacks a pre-
defined pattern, the goal will be finding the best pattern in accord with
the objective function.
In both cases, it is necessary to have a termination strategy. In one
method3, SDS terminates the process when a statistical equilibrium
state is reached, whichmeans that the threshold of the number of active
agents is exceeded and the population maintained the same state for
a specified number of iterations. In [69], four broad types of halting
criteria are introduced:

1. No stopping criterion, where the user interrupts the course of ac-
tion of the search or optimisation and is usually preferred when
dealing with dynamically changing problem spaces or when
there is no predefined pattern to look for

2. Time-based criterion, in which passing a pre-set duration of time
is the termination point of the algorithm

3. Activity-based criterion, which is a problem-dependent halting
criterion, and it is the most prevalent form in the SDS algorithm.
The termination of the process is decided upon through moni-
toring the overall activity of the agents (e.g. reaching a certain
user defined activity level, reaching a stable population state af-
ter a sudden increase in their activities)

4. Cluster-based criterion that keeps tracks of the formation of sta-
ble clusters.

Determining the termination criteria without having a fixed a priori
threshold as a prerequisite is a possible approach (e.g. Quorum sens-
ing, which is a system of stimulus and response correlated to popu-
lation density, is used in some social insects in search for nest sites
or many species of bacteria to coordinate gene expression based on
the density of their local population [73]). By the same analogy and
as stated in [69], it is possible to implement the termination criterion
as a random sampling process: for example, a cluster-based termina-
tion procedure may consider monitoring the hypotheses of a subset
of the population until the same hypothesis is encountered more than
once. This provides partial evidence of the formation of a cluster. The
size of the sample taken from the population can be the increased.
Such a random sampling procedure could eventually be translated into
an SDS algorithm itself: a small number of stopping agents compares
the hypotheses of pairs of the original searching agents; the activity
state of these stopping agents should be based on the similarity of the
two hypotheses. A cluster-based criterion for a rather large popula-
tion can then be translated into an activity-based criterion for a much
smaller population. In some situations, these two populations can even
be merged (e.g. active context-sensitive agents already compare hy-
potheses). A small number of agents can thus simply be designated as
‘stopping agents’, and be given an extra activity state. In order to avoid

3 Ibid

160

PALADYN Journal of Behavioral Robotics

adding extra computational cost, the termination procedure does not
need to operate in the same time frame as the SDS agents (e.g. it is
possible to execute the termination procedure only every n iterations,
or every s seconds of computational time).
The two most common termination strategies in SDS (introduced in
[82]) are the following:

· Weak halting criterion is the ratio of the active agents to the total
number of agents. In this criterion, cluster sizes are not the main
concern.

· Strong halting criterion investigates the number of active agents
that forms the largest cluster of agents all adopting the same
hypothesis.

Therefore, the choice of the halting mechanism is based on whether to
favour the active agents in the whole of the agent populations (weak
halting mechanism), which is similar to the activity-based criterion, or
to consider the largest cluster of active agents (strong halting mecha-
nism), which is similar to the cluster-based criterion.

4.3. Partial Function Evaluation

One of the concerns associated withmany optimisation algorithms (e.g.
Genetic Algorithm [46], Particle Swarm Optimisation [57] and etc.) is
the repetitive evaluation of a computationally expensive fitness func-
tions. In some applications, such as tracking a rapidly moving object,
the repetitive function evaluation significantly increases the computa-
tional cost of the algorithm. Therefore, in addition to reducing the num-
ber of function evaluations, other measures should be taken in order
to reduce the computations carried out during the evaluation of each
possible solution as part of the optimisation or search processes.
The commonly used benchmarks for evaluating the performance of
swarm intelligence algorithms are typically small in terms of their ob-
jective functions computational costs [37, 98], which is often not the
case in real-world applications. Examples of costly evaluation functions
are seismic data interpretation [98], selection of sites for the transmis-
sion infrastructure of wireless communication networks and radio wave
propagation calculations of one site [97] and etc.
Costly functions have been investigated under different conditions [54]
and the following two broad approaches have been proposed to reduce
the cost of function evaluations:

· The first is to estimate the fitness by taking into account the
fitness of the neighbouring elements, the former generations or
the fitness of the same element through statistical techniques
introduced in [20, 29].

· In the second approach, the costly fitness function is substituted
with a cheaper, approximate fitness function.

When agents are about to converge, the original fitness function can
be used for evaluation to check the validity of the convergence [54].
Many fitness functions are decomposable to components that can be
evaluated separately. In partial evaluation of the fitness function in SDS,
the evaluation of one or more of the components may provide partial
information and means for guiding the optimisation.
The partial function evaluation of SDS allows the algorithm to absorb
certain types of noise in the objective function without affecting the con-
vergence time or the size and stability of the clusters.
Additionally, noise, which does not alter the averaged probabilities of
the test score (probability of producing active agents during the test
phase, averaged over all component functions) but increases the vari-
ance in the evaluation of component functions, has no effect on the

resource allocation process of SDS [72]. However, if the value of test
score changes as a result of noise presence, the resource allocation
process may be influenced either:

· positively if the value of the test score increases

· or negatively if the value of the test score decreases

4.3.1. Dynamic Environments
The application of partial function evaluation is of more significance
when the problem space is dynamically changing and the evaluation
process is of more repetitive nature. Repeated (re)evaluations of fit-
ness functions in many swarm intelligence algorithms necessitate hav-
ing less costly fitness functions.
Diffusion or the selectionmechanism tends to reduce the diversity in the
population or the population homogeneity [72], which in turn leads to
an inadequate subsequent reactions in a dynamically changing fitness
function.
SDS aims at proposing a new solution (see Section 4.5.1) to the prob-
lem of population homogeneity by utilising an alternative method to bal-
ance the trade off between wide exploration of all possible solution
in the problem space and the detailed exploitation of any possible
smaller region which might be a candidate for holding the sought ob-
ject.

4.4. Convergence

Convergence time is defined as the number of iterations needed before
a stable population of active agents is formed.
The SDS algorithm allocates its resources by defining convergence as
locating the best match in the search space.
An important factor in convergence is the ratio of the number of agents
to the size of the solution space. In [25], it is proved that in a noiseless
environment convergence always happens.
Additionally, in [82] it is proved that all agents become active when
searching for a solution in a noiseless environment where a perfect
match exists.
As mentioned before, the probability of an agent being active averaged
over all component functions is the test score, which in turn determines
the behaviour of SDS, and it is proved that the population size and the
test score determine the average cluster size as well as convergence
times.
The approximately linear time complexity of SDS is analysed in [82] and
two extereme cases in the convergence time have been considered
there:

· First, when, in the initial stages, some of the agents point to the
correct position in the search space, which results in a shorter
convergence time

· In the second case, there is no agent pointing to the correct
position for some time after the initialisation, which may lead
to a longer process before the first agent locates a potentially
correct location.

It has also been shown that the accuracy and convergence time in SDS
is proportionately robust to the amount of noise in the search space.
Convergence to a global optimal solution in SDS is discussed in [84].

4.5. Resource Allocation and Stability

In addition to convergence time, steady-state resource allocation is one
of the important factors in the performance criteria of SDS [70]. In order

161

PALADYN Journal of Behavioral Robotics

to measure the robustness of the algorithm, in case of the presence of
noise and imperfect matches, resource allocation is taken into account,
which is determined as the average number of active states when the
search shows steady-state behaviour. Although, resource allocation
in standard SDS is dynamic and self-regulatory, there are certain
issues to be investigated.

4.5.1. Local Exploitation and Global Exploration
In standard SDS, there is no explicit mechanism to shift the balance
from local exploitation (detailed exploitation) to global exploration
(wide exploration) of candidate solutions.
As observed in [33], a metaheuristic tries to exploit self-similarity and
regularities of the fitness function, which indicates that neighbouring so-
lutions in the problem space have alike properties. Adding this mecha-
nism to SDS may be helpful; one way of embedding this into the algo-
rithm is to add a small random offset to the hypotheses before copying
them to other agents during the diffusion phase, which is similar to
mutation in evolutionary algorithms [69, 72]. The effect of this minor
change in the hypotheses is to investigate the nearby solutions, which
generally serves as a hill-climbing mechanism improving the overall per-
formance of the SDS and results in improved convergence time in so-
lution spaces with self-similarity. Nevertheless, it also accelerates the
finding of more optimal solutions in the vicinity of already found ones.
In dynamically changing environments, it is important to explore the
solution space even after finding a suitable candidate solution, as once
a good solution is detected, a large propertion of agents are attracted to
it, thus limiting further exploration of the solution space. Therefore, the
Context Sensitive and Context Free mechanisms (described in Section
5.1) are proposed to shift the balance of the search back to exploration.
A full account of Markov chain based analysis of the stochastic nature
of standard SDS for resource allocation and the steady state probability
distribution of the whole swarm is extensively discussed in [81]. More
information about search behaviour and resource allocation can also
be found in [67, 83].
In heuristic multi-agent systems, the possibility of agents losing the best
solution results in destabilising or even non-convergence of the algo-
rithm. Conversely, it is shown that the solution found by SDS are ex-
ceptionally stable [80].

5. Variations in SDS

In SDS, similar to other optimisation algorithms, the goal is finding the
best solution based on the criteria specified in the objective function.
The collection of all candidate solutions (hypotheses) forms the search
space and each point in the search space is represented by an ob-
jective value, from which the objective function is formed [72]. In the
minimisation mode, for example, the lower the objective value is the
better the result is.
Although there might not be a direct way of finding the best objective
function for a problem, many optimisation problems can be transformed
into the minimisation form [69].
One of the issues related to SDS is the mechanism behind allocating
resources to ensure that while potential areas of the problem space are
exploited, exploration is not ignored. For this purpose, different recruit-
ments methods, where one agent recruits another one, are investaged:

5.1. Recruitment Strategies

Three recruitment strategies are proposed in [78]: active, passive and
dual. These strategies are used in the Diffusion Phase of SDS. Each
agent can be in either one of the following states: It is active if the

agent is successful in the Test Phase; an agent is inactive if it is not
successful; and it is engaged if it is involved in a communication with
another agent.
The standard SDS algorithm [23] uses the passive recruitment mode,
which will be described next followed by other recruitment modes.

5.1.1. Passive Recruitment Mode
In the passive recruitment mode, if the agent is not active, another
agent is randomly selected and if the randomly selected agent is active,
the hypothesis of the active agent is communicated (or diffused) to the
inactive one. Otherwise a new random hypothesis is generated for the
inactive agent and there will be no flow of information (see Algorithm
3).

Algorithm 3 Passive Recruitment Mode

01: For ag = 1 to No_of_agents
02: If (!ag.activity ())
03: r_ag = pick a random agent()
04: If (r_ag.activity ())
05: ag.setHypothesis(r_ag.getHypothesis ())
06: Else
07: ag.setHypothesis(randomHypothesis ())
08: End If/Else
09: End If
10: End For

5.1.2. Active Recruitment Mode
In the active recruitment mode, active agents are in charge of com-
munication with other agents. An active agent randomly selects an-
other agent. If the randomly selected agent is neither active nor en-
gaged in communication with another active agent, then the hypothesis
of the active agent is communicated to the inactive one and the agent
is flagged as engaged. The same process is repeated for the rest of
the active agents. However if an agent is neither active nor engaged,
a new random hypothesis is generated for it (see Algorithm 4).

Algorithm 4 Active Recruitment Mode

01: For ag = 1 to No_of_agents
02: If (ag.activity ())
03: r_ag = pick a random agent()
04: If (!r_ag.activity () AND !r_ag.getEngaged ())
05: r_ag.setHypothesis(ag.getHypothesis ())
06 r_ag.setEngaged(true)
07: End If
08: End If
09: End For
10:
11: For ag = 1 to No_of_agents
12: If (!ag.activity () AND !ag.getEngaged ())
13: ag.setHypothesis(randomHypothesis ())
14: End If
15: End For

5.1.3. Dual Recruitment Mode
In dual recruitment mode, both active and inactive agents randomly
select other agents. When an agent is active, another agent is ran-
domly selected. If the randomly selected agent is neither active nor
engaged, then the hypothesis of the active agent is shared with the in-
active one and the inactive agent is flagged as engaged. Also, if there
is an agent which is neither active nor engaged, it selects another agent
randomly. If the newly selected agent is active, there will be a flow of
information from the active agent to the inactive one and the inactive

162

PALADYN Journal of Behavioral Robotics

agent is flagged as engaged. Nevertheless, if there remains an agent
that is neither active nor engaged, a new random hypothesis is chosen
for it.

Algorithm 5 Dual Recruitment Mode

01: For ag = 1 to No_of_agents
02: If (ag.activity ())
03: r_ag = pick a random agent()
04: If (!r_ag.activity () AND !r_ag.getEngaged ())
05: r_ag.setHypothesis(ag.getHypothesis ())
06 r_ag.setEngaged(true)
07: End If
08: Else
09: r_ag = pick a random agent ()
10: If (r_ag . activity () AND ! ag . getEngaged ())
11: ag . setHypothesis (r_ag . getHypothesis ())
12: ag . setEngaged (true)
13: End If
14: End If/Else
15: End For
16:
17: For ag = 1 to No_of_agents
18: If (!ag.activity () AND !ag.getEngaged ())
19: ag.setHypothesis(randomHypothesis ())
20: End If
21: End For

5.1.4. Context Sensitive Mechanism
Comparing the above-mentioned recruitment modes, it is theoretically
determined in [78] that robustness and greediness decrease in the ac-
tive recruitment mode. Conversely, these two properties are increased
in dual recruitment strategy. Although, the greediness of dual recruit-
ment mode results in decreasing the robustness of the algorithm, the
use of Context Sensitive Mechanism limits this decrease [78, 81]. In
other words, the use of context sensitive mechanism biases the search
towards global exploration. In the context sensitive mechanism if an
active agent randomly chooses another active agent that maintains
the same hypothesis, the selecting agent is set inactive and adopts
a random hypothesis. This mechanism frees up some of the resources
in order to have a wider exploration throughout the search space as
well preventing cluster size from overgrowing, while ensuring the for-
mation of large clusters in case there exists a perfect match or good
sub-optimal solutions (see Algorithm 6).

Algorithm 6 Context Sensitive Mechanism

01: If (ag.activity ())
02: r_ag = pick a random agent ()
03: If (r_ag.activity () AND
04: ag.getHypothsis () == r_ag.getHypothsis ())
05: ag.setActivity (false)
06: ag.setHypotheis (randomHypothsis ())
07: End If
08: End If

5.1.5. Context Free Mechanism
In Context Free Mechanism, which is another recruitment mecha-
nism, the performance is similar to context sensitive mechanism, where
each active agent randomly chooses another agent. However, if the
selected agent is active (irrespective of having the same hypothesis or
not), the selecting agent becomes inactive and picks a new random
hypothesis. By the same token, this mechanism ensures that even if
one or more good solutions exist, about half of the agents explore the
problem space and investigate other possible solutions (see Algorithm
7).

Algorithm 7 Context Free Mechanism

01: If (ag.activity ())
02: r_ag = pick a random agent ()
03: If (r_ag.activity ())
04: ag.setActivity (false)
05: ag.setHypotheis (randomHypothsis ())
06: End If
07: End If

5.2. Synchronous and Asynchronous Update

Although, in the original SDS [23], synchronous mode is used, the dif-
fusion of successful hypotheses can be accomplished synchronously
or asynchronously.
In synchronous diffusion mode, the updates of all hypotheses occur
simultaneously (all agents progress through the cycle of test-diffusion
at the same time).
There are two methods for asynchronous mode; in the first method,
the hypothesis of each agent is updated individually (agents, in turn,
go through a test-diffusion cycle). In the second method, there is no
explicit synchronisation between agents, which is the case in a true
parallel implementation.
As mentioned in [69], in many variants, the behaviour of a asyn-
chronous process is approximately the same as the synchronous one.

5.3. Implementation on Hardware

SDS is inherently parallel in nature and the hardware implementation
of the algorithm is feasible. Still, the fact that the original SDS model
requires full inter-agent connectivity, where each agent is able to com-
municate directly with all others in the population, casues fundamental
difficulty in the efficient implementation of the algorithm on parallel com-
puter or dedicated hardware.
One of the solutions proposed in [70] was to limit the communication
between the agents. Agents are considered spatially located in a lattice
(Lattice SDS or LSDS) where each agent is only connected to the k-
nearest neighbours.
As a second solution, the agent swarm can be divided into several sub-
swarms. In this mode, each sub-swarm runs on a separate processor
and they are fully connected while allowing just a low frequency of com-
munication between swarms. This process is applied to the diffusion
phase, during which agents communicate with each another.
Therefore, considering this form of SDS, agents just communicate with
the ones they are connected to. It was shown that a network with ran-
domly connected agents (random graph), with small number of long-
range connections, performs similar to standard SDS or ordered lattice
with roughly the same number of connections4. The following conclu-
sion has been drawn that restricting the number of interconnectivity in
random or small-world networks – which is a lattice with a few additional
number of long-range connections – does not have huge effect on the
performance of SDS algorithm. Also, the rate of information spread is
higher in random graphs and small-world networks than ordered lat-
tices.
Analysing the number of connections and the connection topology
leads to the following conclusion: it has been argued that when a high-
dimensional problem is considered, the time at which one of the agents
becomes active (time to hit [22]), Th, is bigger than the time required for

4 Ibid

163

PALADYN Journal of Behavioral Robotics

the active agent to spread its successful hypothesis Td [70]. Although
random graphs have shorter Td than regular lattices, they are harder to
implement on parallel hardware, because the connection are not nec-
essarily local or short. In small-world lattice SDS topology, which shows
the performance of a fully interconnected standard SDS, adding ran-
dom links decrease Td exponentially.
Therefore Td is considered to be an important factor, which not only af-
fect the convergence time, but is also seen as a parameter for resource
allocation stability [68] as well as an indirect measure for robustness
[70].

5.4. Composite Hypotheses

In standard SDS all hypotheses are homogeneous and thus have the
same type. In this section, new variants of SDS are introduced where
there are two different types of hypotheses working together. These
SDS types are applied to solve parameter estimation problems, which
is a more complicated search problem compared to pattern matching.
In parameter estimation, outlier data (or random noise) is embeded in
the data (or inlier data); and the goal is to find parameter values that
best describe the inlier data [24]. Data Driven SDS [77] and coupled
SDS [24], which have composite hypotheses, are both used to solve
parameter estimation problems. An example of parameter estimation
problem is locating a spoken word in an audio file which has some
noise. In estimation problem, similar to other search problems, a cost
function or objective funciton is required to measure how close the al-
gorithm is to the inlier data or the model in the search space.
In parameter estimation, the objective function is optimised with respect
to the estimated model parameters; that is why it is considered an op-
timisation problem [77].

5.4.1. Data Driven SDS
Data Driven SDS (DDSDS) is shown to outperform [77] Maximum Like-
lihood Estimator Sample Concensus (MLSESAC) which is a variant of
RANdom SAmple Consensus (RANSAC), one of the most popular and
robust estimators based on stochastic principles [43].
DDSDS contains a composite hypothesis: a manifold hypothesis,
which maintains the minimum necessary dataset for describing a hy-
pothesis; and a datum hypothesis, which represent the smallest build-
ing block of the hypothesis. If estimating a line is the problem, then the
manifold hypothesis would consists of two points, which are sufficient
to represent a line, and the datum hypothesis would be a single point
that is randomly selected from the manifold hypothesis rather than the
whole of the search space.
In the test phase, random datums are selected just from datum hy-
potheses that are associated with the agents. The probability of se-
lecting a datum, which has no link with any agents is zero. This will
dynamically constrain the selection to data generated by the inlier dis-
tribution [77]. Next, the distance of the agent’s manifold hypothesis
from the randomly selected datum is evaluated to see if the distance
stays within the pre-set inlier threshold value. If this is the case, the
agent’s state becomes active.
In the diffusion phase, active agents diffuses its manifold and datum
hypotheses to the inactive agent. When an inactive agent is not in-
volved in any information exchange, similar to the initialisation phase, it
chooses two random data from the entire search space for the mani-
fold hypothesis and the datum hypothesis is selected from one of the
two elements of the manifold hypothesis.

5.4.2. Coupled SDS
In Coupled SDS (CSDS) two independent populations of agents are
formed each maintaining different type of hypothesis, namely the man-

ifold hypotheses and datum hypotheses. On the contrary to DDSDS,
datum hypotheses are selected randomly from the entire search space.
The size of these two populations are not necessarily the same. They
are randomly and independently initiated with data from the entire
search space. In the test phase, themanifold hypothesis of one agent is
compared with the datum hypothesis of another one. Based on the dis-
tance threshold, if the datum matches the manifold, both of the agents
become active. This evaluation is called composite hypothesis evalu-
ation, which is more complicated than the synchronous evaluation in
standard SDS, where there is just one population of agents. There-
fore, in addition to asynchronous test, two other synchronisation modes
were proposed:

· Master/Slave Synchronisation, where one of the populations is
master and the other is slave. The master hypothesis randomly
select a hypothesis from the slave population for the test. In this
mode, there will be m composite evaluation, where m is the size
of the master population.

· Sequential Master Synchronisation is a variant of master/slave
mode, where populations take turn to be master. Each iteration
has n composite evaluations, which is the sum of all agents in
both manifold and datum populations.

The diffusion phase in CSDS is similar to the standard SDS for each
population independently, where the information flow is allowed within
each population of agents and thus there is no information exchange
between the manifold and datum population of agents [24].

It is empirically shown that DDSDS converges evenwhen there are 50%
more outliers and it also outperforms standard SDS in convergence
time [77]. Both of these SDS variants have been proposed to improve
the performance of the original SDS towards stable convergence in
high noise estimation tasks.

Further applications of SDS falling within the categories of continuous
optimisation, implementation on hardware, arts and philosophy, and
medical applications are presented next.

5.5. Continuous Optimisation

In recent years, SDS algorithm has been deployed for continuous op-
timisation in several independent research. In 2011 [11], an integra-
tion strategy of SDS with Particle Swarm Optimisation (PSO) is pro-
posed, offering a statistically significant outperformance compared to
PSO alone. The SDS integration framework was then extended to Dif-
ferential Evolution (DE) and Genetic Algorithms (GA) [2, 13] demon-
strating promising results. SDS integration Framework (SDS-Frame)
encapsulates the ‘guest’ evolutionary algorithms (e.g. PSO, DE, GA,
etc.) and facilitates the information exchange between the members of
the population (see Fig. 4). The test and diffusion phases are triggered
after every n of function evaluations, thus utilising SDS primarily as an
efficient resource allocation and dispensation mechanism responsible
for facilitating communication between agents.

164

PALADYN Journal of Behavioral Robotics

Figure 4. Hybrid Agent Structure

In other experiments, SDS is adopted for continuous global optimisa-
tion, with other evolutionary algorithms utilised providing local search on
convergence. In one such instance [10], the optimisation process is ini-
tialised by n number of function evaluations (FEs) performed within the
SDS test-diffusion cycle in order to allocate the resources (agents) to
the promising areas of the search space; and subsequently pass on the
agents’ positions to a Differential Evolution (DE) algorithm to resume the
optimisation process. Hence SDS is utilised as a global optimiser, with
DE providing local search on convergence. In another experiment [87],
SDS is adopted for continuous global optimisation, using four bench-
marks (each with different required accuracies and different maximum
number of FEs allowed). In that experiment, SPSO [34] is utilised pro-
viding local search on convergence. Following on the previous experi-
ment, in [88], SDS is utilised in the context of unconstrained continuous
optimization; the proposed approach uses concepts from probabilistic
algorithms to enhance the performance of SDS (Probabilistic SDS or
PSDS). PSDS is tested on 16 benchmark functions (10 dimensional
problems with varying termination strategy on each group of bench-
marks) and is compared with two methods (Cross-Entropy [89] which
is a probabilistic algorithm and a variant of Particle Swarm Optimisation
which is a swarm intelligence algorithm) showing promising results.
In important work from 2011, SDS was demonstrated to solve the
quadratic knapsack problem [65]. The candidate solutions are esti-
mated by the partial function evaluation and the individuals are pro-
duced by quantum computation. In this work it was shown that the
SDS method was more effective than particle swarm optimisation and
ant colony optimisation algorithms.

5.6. NESTER: a connectionist implementation of SDS

NESTOR – the NEural STochastic diffusion search netwORk – consists
of an artificial retina, a layer of fully connected matching neurons and
retinotopically organised memory neurons. Matching neurons are fully
connected to both retina and memory neurons. The information pro-
cessed by neurons is time-encoded by a spike train consisting of two
qualitatively different parts – a tag determined by the relative position
of the receptor on the artificial retina and a feature signalled by that
receptor. The neurons operate by introducing time delays and acting
as spatiotemporal coincidence detectors. NESTOR utilises a temporal
coding scheme and a dynamic assembly encoding of the target. Find-
ing the target in the search space results in the onset of time locked
activity of the assembly of NESTOR neurons. Different features of the
same object are bound by their relevant position in the search space
and synchronisation of activity within the assembly follows as a result of
this binding. In [85] it was shown that NESTOR implements Stochastic
Diffusion Search (SDS).

5.7. Stochastic Diffusion Search applied to Trees
(SDST): planning and game playing

In a research conducted in 2013 [95], it has been shown that the
SDS Swarm Intelligence paradigm can be successfully deployed to
solve problems that are usually addressed via the classical algorith-
mic approach. In this work – Stochastic Diffusion Search applied to
Trees (SDST) – communicating populations of SDS agents have been
demonstrated to have the capability to address the problem of forward
planning. This has been demonstrated via application to the complex,
two-person, zero-sum, finite, deterministic strategy game HEX [30].
In SDST, the use of multiple interacting populations of simple stochastic
agents can be compared to the dynamics of interacting populations of
social insects (e.g. ants) via the concept of ‘meta-population’ (a term
coined in 1969 by Levins [63]). SDST functions as a decentralised, self-
organising system as only local rules of interaction between agents are
defined and SDST performs forward-planning as it:

· With enough agents and time asymptotically converges to se-
lect the ‘best move’ in the minimax sense.

· Implements a form of Monte-Carlo Tree Search5.

In other words, it is demonstrated that SDST plays a strong game of
HEX [95], successfully avoiding classical tactical errors (forks etc), with
the strength of play being contingent on the number of agents and the
amount of time allowed to process each move. Further work develop-
ing SDST and characterising its behaviour is ongoing.

6. Applications

SDS was first introduced by a simple text searching algorithm in 1989
[22] demonstrating the use of partial function evaluation technique, by
partially evaluating the text to find the model or the best match. Since
then there have been many applications where SDS has been suc-
cessfully applied to various diverse problems. This section provides an
overview to these problems.

6.1. Art and philosophy

SDS algorithm has been deployed in several artistic applications and
in the context of computational creativity, autonomy and swarm intelli-
gence. In one such work [1, 14], the hybrid SDS-PSO algorithm is used
to sketch novel drawings of an input image, exploiting an artistic tension
between the local behaviour of the ‘birds flocking’ – as they seek to fol-
low the input sketch – and the global behaviour of the ‘ants foraging’ –
as they seek to encourage the flock to explore novel regions of the can-
vas. In [14], the paper concludes by exploring the putative ‘creativity’ of
this hybrid swarm system in the philosophical light of the ‘rhizome’ and
Deleuze’s well-known ‘Orchid and Wasp’ metaphor, offering a detailed

5 Monte-Carlo Tree Search (MCTS) is a recently proposed search
method that combines the precision of tree search with the generality of
random sampling. Since 2006, over 200 papers related to MCTS have
been published, with applications ranging from computer Go, to con-
straint satisfaction problems, through reinforcement learning and com-
binatorial optimisation. MCTS has already had a profound impact on
Artificial Intelligence approaches for domains that can be represented
as trees of sequential decisions, particularly games and planning prob-
lems.

165

PALADYN Journal of Behavioral Robotics

Figure 5. Swarmic Sketch

Inspired by Portrait de Diaghilev et Seligsberg by Picasso.

investigation of the ‘creativity’ of such systems. The relation between
the behaviour of the swarm intelligence techniques used and compu-
tation creativity is explored in some related publications [5]. In a similar
attempt [9], the novel behaviour of the hybrid algorithm assisted by a
mechanism inspired from the behaviour of skeletal muscles activated
by motor neurons is reflected through a cooperative attempt to make a
drawing.
Following the process of drawings facilitated by the behaviour of the
underlying swarms, the idea of ‘swarmic’ sketches and attention mech-
anism is proposed [3, 7] (see Fig. 5). In this work, the concept of atten-
tion is utilised by adapting SDS to selectively attend to detailed areas
of a digital canvas. Once the attention of the swarm is drawn to a cer-
tain line within the canvas, the capability of another swarm intelligence
algorithm – Particle Swarm Intelligence – is used to produce a ‘swarmic
sketch’ of the attended line. The swarms move throughout the digital
canvas in an attempt to satisfy their dynamic roles – attention to ar-
eas with more details – associated to them via their fitness function.
Having associated the rendering process with the concepts of SDS-
led attention, the performance of the participating swarms creates a
unique, non-identical sketch each time the ‘artist’ swarms embark on
interpreting the input line drawings. A brief account of the ‘computa-
tional creativity’ of the work is given through two prerequisites of creativ-

ity within the swarm intelligence’s two infamous phases of exploration
and exploitation; these phases are also described through the attention
and tracing mechanisms respectively. The concept of SDS-led atten-
tion is extendible to other measures such as colour which is explored
in another work introducing swarmic paintings [6], where SDS is used
for producing non-photorealistic images (see Fig. 6).

Figure 6. Swarmic Painting

Top: original photo; middle and bottom: snapshots of the images
produced.

166

PALADYN Journal of Behavioral Robotics

6.2. Medical applications

Swarm intelligence techniques have offered insightful assistance in
many real-world problems, including medical imaging. In the first work
of its kind where SDS is deployed to address problems in this field, the
goal was to visualise the swarms’ movements when presented with
a two dimensional canvas representing bone scans [8] (see Fig. 7).
This work was well received as a potential educational tool for doctors
in training and medical students. This led to the extension of the re-
search in [4] where the application of this swarm intelligence technique
on bone scan was introduced in further details in different venues for
researchers with medical and computer backgrounds.

Figure 7. Identification of metastasis in bone scan

Later in [12], the statistical and mathematical models were introduced
for bone scans, and the application of the technique was extended to
mammography. Ongoing work includes analysing CT scans for detect-
ing and highlighting any possible calcifications around the aorta with the
goal of assisting the radiologists to determine the extent of the calcifi-
cation, as well as the identification of the tip of the Nasogastric tube in
chest X-rays [15] (see Fig 8).

6.3. Other applications

Since its inception in 1989 [22] there have been many other notable
applications of SDS; these include:

· Eye tracking: in 1992, tracking eyes was investigated in [25].
In this project, a hybrid stochastic search network was used to
locate eye positions within grey scale images of human faces.
It was shown that the network can accurately locate the eye
features of all the subjects it has been trained with and it could
reach over sixty percent success in locating eye features on
subjects on which the system has not been explicitly trained
with.

· Lip tracking: in 1995 SDS was again deployed on another
visual search, object recognition task. Here Grech Cini [48] de-
ployed a hybrid system of n-tuple neurons [16] and SDS in real
time to locate and track of facial features (e.g. lips) in video.

Figure 8. Identification of calcifications around the aorta

The image on top is the original CT scan and the rest show the
process through which calcifications around aorta is identified.

· Localisation: in 1998 Beattie and Bishop [19] used a ‘Fo-
cused Stochastic Diffusion Network’ (FSDS) to self-localise au-
tonomous wheelchair robot in a complex busy environment. In
this work a high resolution map of the robot’s locale was used
and data from a 2D laser-scanner correlated with possible po-
sitions in the map. FSDS initially quantise the enormous search
space of possible robot positions (grid cells on the map) to a

167

PALADYN Journal of Behavioral Robotics

much smaller set of ‘course’, lower resolution, cells. SDS agents
initially operate at the course resolution; if an agent finds evi-
dence that the robot is located in a cell at the course resolu-
tion, the agent focusses into the cell at a higher resolution and
the process is iterated. FSDS terminates when a population of
agents stabilise and maintain the same hypothesis at a suitably
high resolution.

· Wireless networks: in 2002 SDS was also used in wireless
transformation networks, where the location of transmission in-
frastructure is particularly important in order to keep network
costs at a minimum whilst preserving adequate area coverage
[97]. In this application, given a set of candidate sites, SDS
was used to help design network structure so that at required
reception points on the network, the signal from at least one
transmitter can be received.

· Sequence detection: a version of SDS - constrained Stochas-
tic Diffusion Search (CSDS) [56] - was first used to detect par-
tial sequences of strings in 2002. Constrained SDS is an ex-
tension to best-fit string-matching SDS while allowing the iden-
tification of best-fit sequences (usually referred to as optimal
alignment[96]), where there might be gaps between contigu-
ous sub-strings of a model in the search space. CSDS has
application to the field of computational molecular biology (e.g.
identifying regions of DNA that would code for an amino-acid
sequence).

· Head tracking: in 2005, using Group Stochastic Search
(GSS) [41] was applied to a another visual tracking problem, this
application investigated the possibility of locating and tracking
objects (e.g. head) in cluttered environment. In this application,
each agent utilises SDS, an n-tuple weightless neural network
[76] and a histogram intersection technique to score its location
[21]. Since the application works when the speed is high, ex-
haustive and computationally expensive searches for the head
are not practical. GSS is an extension for video of Summers
work [94] which was introduced to located known patterns in
images but which was not designed to operate on the chang-
ing search space of real-time video.

· Voting systems: in 2006 [86], SDS was deployed in the
context of voting methods, where performance comparison to
match a correct ordering of a number of voting algorithms that
are derived from known social choice rules are made. In this
research a standard version of SDS algorithm was adapted for
this purpose.

· Feature tracking: in 2008 [49], SDS was used in feature
tracking in the context of the derivation of Atmospheric Motion
Vectors, as conventional template matching techniques, (such
as Euclidean distance or cross-correlation for tracking steps)
was too very expensive computationally.

· Room design: in 2009, among various heuristic methods,
SDS is used [31] within a general scheme for the automatic
creation of virtual rooms. Certain combinations of objects and
their likely location (e.g. books typically being found on a book-
shelf) allow very simple placement methods to be used, whilst
most general situations were addressed using Stochastic Diffu-
sion Search.

· Advertising: the concept of using SDS in social networks (in
conjunction with concepts from economics) was investigated

in 2010 [90]. The resulting algorithm was termed ‘Stochastic
Diffusion Market Search’ (SDMS). In SDMS a novel contextual
advertising method for mutual advertisement hosting amongst
participating entities (each owning a website) is proposed. In
the suggested method the advertising market and network that
formed in the system emerge from agent’s preferences and their
social behaviour in the network. It was shown that a SDMS
network potentially converges to a stable stage and at conver-
gence the distribution of market prices adheres to power-law
properties.

· Cellular automata: in 2011 research investigated the inter-
play of three nature inspired techniques: cellular automata (with
origins in crystalline lattice formation) were coupled with an artifi-
cial immune system (using the clonal selection principle) in order
to regulate the convergence of the stochastic diffusion search
algorithm [35]. The work primarily investigated the role of the
cellular automata (of differing complexity classes) in establishing
a balancing mechanism between exploitation and exploration in
the emergent behaviour of the system.

· Reinforcement learning: the use of stochastic diffusion
search with reinforcement learning was recently explored [53].
In this work, it was demonstrated that the application of SDS
was able to discover the majority of instances of strong correla-
tions between artificially generated time series at different time
indexes.

· NP-Hard problems: in 2012 SDS was applied to the recti-
linear Steiner minimum tree problem [64]; this problem requires
the derivation of the shortest tree connecting given points in the
plane using rectilinear distance; it has extensive applications in
many real world problems and is known to be NP-hard. A cel-
lular automata based stochastic diffusion search algorithm was
used to solve the rectilinear Steiner minimum tree problem, as it
exhibited low time complexity. Experimental evidence demon-
strated that the algorithm also works well in practice even for a
large scale rectilinear Steiner minimum tree.

7. Conclusions

This paper gives a brief account of the research carried out on stochas-
tic diffusion search, a population-based, nature-inspired probabilistic
approach, which solves best-match problems mainly by communica-
tion between agents. An important feature that makes SDS different
from many other optimisation techniques is the mathematical frame-
work that proves its convergence to optimal solution even in noisy
search spaces and the stability of the solutions it finds.
SDS gains computational traction via two mechanisms - its partial
function evaluation capability which leverages particular force when
the objective function is both computationally expensive and decom-
posable; and the rapid positive feedback of potentially good hypothe-
ses between agents.
SDS has been used in dynamically changing search and tracking en-
vironments and in contrast to many connectionist models (e.g. those
that find the solution by approaching a specific point in the weight space
which results in decreasing of their activity after convergence) SDS is
naturally able to continue the exploration over the search space further
even after locating the optimum.
Medical applications of SDS have also been explored in areas such
as detecting metastasis and calcifications in bone scans and mammo-

168

PALADYN Journal of Behavioral Robotics

graphs, as well as the deployment of SDS agents for the identifications
of possible calcifications around the aorta in CT scans.
Over the last decade SDS has extended away from its first roots in
discrete search and optimisation problems, to be applied in the domain
of continuous optimisation. Here it has also been merged with other
swarm intelligence optimisers. SDS has also demonstrated promise
in applications involving forward planning and it has been successfully
demonstrated on an NP-hard problem.
Stochastic diffusion search has also been deployed in several art and
philosophy research topics with special emphasis on computational
creativity, autonomy and attention.

References

[1] al-Rifaie MM (2011) D-Art 2011: When birds and ants set off
to draw. 15th International Conference Information Visualisa-
tion (iV2011, London) & 8th International Conference Computer
Graphics, Imaging and Visualization (cgiv2011, Singapore) - DIG-
ITAL ART GALLERY

[2] al-Rifaie MM (2012) Information sharing impact of stochastic dif-
fusion search on population-based algorithms. PhD thesis, Gold-
smiths, University of London

[3] al-Rifaie MM (2013) D-Art 2013: Swarmic sketches with swarmic
attention. 17th International Conference Information Visualisation
(iV2013, London, UK) & 10th International Conference Computer
Graphics, Imaging and Visualization (cgiv2013, Macau, China) -
DIGITAL ART GALLERY

[4] al-Rifaie MM, Aber A (2012) Identifying metastasis in bone scans
with stochastic diffusion search. In: Information Technology in
Medicine and Education (ITME), IEEE, , URL http://dx.doi.
org/10.1109/ITiME.2012.6291355

[5] al-Rifaie MM, Bishop M (2013) Swarm intelligence and weak artifi-
cial creativity. In: The Association for the Advancement of Artificial
Intelligence (AAAI) 2013: Spring Symposium, Stanford University,
Palo Alto, California, U.S.A., pp 14–19

[6] al-Rifaie MM, Bishop M (2013) Swarmic paintings and colour at-
tention. In: Machado P, McDermott J, Carballal A (eds) Evolution-
ary and Biologically Inspired Music, Sound, Art and Design, Lec-
ture Notes in Computer Science, vol 7834, Springer Berlin Hei-
delberg, pp 97–108, , URL http://dx.doi.org/10.1007/
978-3-642-36955-1_9

[7] al-Rifaie MM, Bishop M (2013) Swarmic sketches and attention
mechanism. In: Machado P, McDermott J, Carballal A (eds) Evo-
lutionary and Biologically Inspired Music, Sound, Art and Design,
Lecture Notes in Computer Science, vol 7834, Springer Berlin
Heidelberg, pp 85–96, , URL http://dx.doi.org/10.1007/
978-3-642-36955-1_8

[8] al-Rifaie MM, Aber A, Raisys R (2011) Swarming robots and pos-
sible medical applications. In: International Society for the Elec-
tronic Arts (ISEA 2011), Istanbul, Turkey

[9] al-Rifaie MM, Bishop M, Aber A (2011) Creative or not? birds
and ants draw with muscles. In: AISB 2011: Computing and Phi-
losophy, University of York, York, U.K., pp 23–30, iSBN: 978-1-
908187-03-1

[10] al-Rifaie MM, Bishop M, Blackwell T (2011) An investigation into
the use of swarm intelligence for an evolutionary algorithm optimi-
sation. In: International Conference on Evolutionary Computation
Theory and Application (ECTA 2011), IJCCI

[11] al-Rifaie MM, Bishop MJ, Blackwell T (2011) An investigation into
the merger of stochastic diffusion search and particle swarm op-
timisation. In: Proceedings of the 13th annual conference on Ge-

netic and evolutionary computation, ACM, New York, NY, USA,
GECCO ’11, pp 37–44, , URL http://doi.acm.org/10.
1145/2001576.2001583

[12] al-Rifaie MM, Aber A, Oudah AM (2012) Utilising stochas-
tic diffusion search to identify metastasis in bone scans and
microcalcifications on mammographs. In: Bioinformatics and
Biomedicine (BIBM 2012), Multiscale Biomedical Imaging Anal-
ysis (MBIA2012), IEEE, pp 280–287, URL http://dx.doi.
org/10.1109/BIBMW.2012.6470317

[13] al-Rifaie MM, Bishop M, Blackwell T (2012) Information shar-
ing impact of stochastic diffusion search on differential evo-
lution algorithm. In: J. Memetic Computing, vol 4, Springer-
Verlag, pp 327–338, , URL http://dx.doi.org/10.1007/
s12293-012-0094-y

[14] al-Rifaie MM, Bishop M, Caines S (2012) Creativity and autonomy
in swarm intelligence systems. In: J. Cognitive Computation, vol 4,
Springer-Verlag, pp 320–331, , URL http://dx.doi.org/10.
1007/s12559-012-9130-y

[15] al-Rifaie MM, Aber A, Oudah AM (2013) Ants intelligence frame-
work; identifying traces of cancer. In The House of Commons, UK
Parliment. SET for BRITAIN 2013. Poster exhibitions in Biological
and Biomedical Science

[16] Aleksander I, Stonham T (1979) Computers and digital techniques
2(1). Lect Notes Art Int 1562 pp 29–40

[17] Ashby W (1960) Design for a Brain. Chapman and Hall London
[18] Back T (1996) Evolutionary Algorithms in Theory and Practice.

New York: Oxford University Press
[19] Beattie P, Bishop J (1998) Self-localisation in the senario au-

tonomous wheelchair. Journal of Intellingent and Robotic Systems
22:255–267

[20] el Beltagy MA, Keane AJ (2001) Evolutionary optimization for
computationally expensive problems using gaussian processes.
In: Proc. Int. Conf. on Artificial Intelligence’01, CSREA Press, pp
708–714

[21] Birchfield S (1998) Elliptical head tracking using intensity gradients
and color histograms. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Citeseer, pp 232–237

[22] Bishop J (1989) Anarchic techniques for pattern classification.
PhD thesis, University of Reading, Reading, UK

[23] Bishop J (1989) Stochastic searching networks. Proc. 1st IEE
Conf. on Artificial Neural Networks, London, UK, pp 329–331

[24] Bishop J (2003) Coupled stochastic diffusion processes. In: Proc.
School Conference for Annual Research Projects (SCARP), Read-
ing, UK, pp 185–187

[25] Bishop J, Torr P (1992) The stochastic search network. In: Neural
Networks for Images, Speech and Natural Language, Chapman
& Hall, New York, pp 370–387

[26] Bishop M, de Meyer K, Nasuto S (2002) Recruiting robots per-
form stochastic diffusion search. School Conference for Annual
Research Projects (SCARP)

[27] Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:
from natural to artificial systems. Oxford University Press, USA

[28] Bonabeau E, Dorigo M, Theraulaz G (2000) Inspiration for opti-
mization from social insect behaviour. Nature 406:3942

[29] Branke J, Schmidt C, Schmeck H (2001) Efficient fitness estima-
tion in noisy environments. In Spector, L, ed: Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann

[30] Browne C (2000) Hex Strategy: Making the right connections. AK
Peters Wellesley

[31] Cant R, Langensiepen C (2009) Methods for Automated Object
Placement in Virtual Scenes. In: UKSim 2009: 11th International
Conference on Computer Modelling and Simulation, IEEE, pp
431–436

169

http://dx.doi.org/10.1109/ITiME.2012.6291355
http://dx.doi.org/10.1109/ITiME.2012.6291355
http://dx.doi.org/10.1007/978-3-642-36955-1_9
http://dx.doi.org/10.1007/978-3-642-36955-1_9
http://dx.doi.org/10.1007/978-3-642-36955-1_8
http://dx.doi.org/10.1007/978-3-642-36955-1_8
http://doi.acm.org/10.1145/2001576.2001583
http://doi.acm.org/10.1145/2001576.2001583
http://dx.doi.org/10.1109/BIBMW.2012.6470317
http://dx.doi.org/10.1109/BIBMW.2012.6470317
http://dx.doi.org/10.1007/s12293-012-0094-y
http://dx.doi.org/10.1007/s12293-012-0094-y
http://dx.doi.org/10.1007/s12559-012-9130-y
http://dx.doi.org/10.1007/s12559-012-9130-y

PALADYN Journal of Behavioral Robotics

[32] Chadab R, Rettenmeyer C (1975) Mass recruitment by army ants.
Science 188:1124–1125

[33] Christensen S, Oppacher F (2001)What can we learn from no free
lunch? a first attempt to characterize the concept of a searchable
function. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp 1219–1226

[34] Clerc M (2010) From theory to practice in particle swarm optimiza-
tion. Handbook of Swarm Intelligence pp 3–36

[35] Coulter D, Ehlers E (2011) Cellular automata and immunity am-
plified stochastic diffusion search. In: Advances in Practical Multi-
Agent Systems, Springer, pp 21–32

[36] Deneubourg J, Pasteels J, Verhaeghe J (1983) Probabilistic be-
haviour in ants: a strategy of errors? In: Journal of Theoretical
Biology, Elsevier, vol 105, pp 259–271

[37] Digalakis J, Margaritis K (2002) An experimental study of bench-
marking functions for evolutionary algorithms. International Jour-
nal 79:403–416

[38] Dorigo M (1992) Optimization, learning and natural algorithms.
PhD thesis, Milano: Politecnico di Italy

[39] Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a
search strategy. Dipartimento di Elettronica e Informatica, Politec-
nico di

[40] Dorigo M, Caro GD, Gambardella LM (1999) Ant algorithms for
discrete optimization. Artificial Life 5(2):137–172

[41] Evans M, Ferryman J (2005) Group stochastic search for object
detection and tracking. Advanced Video and Signal Based Surveil-
lance, 2005 AVSS 2005 IEEE Conference

[42] Fan H, Hua Z, Li J, Yuan D (2004) Solving a shortest path prob-
lem by ant algorithm. In: Machine Learning and Cybernetics,
2004. Proceedings of 2004 International Conference on, vol 5,
pp 3174–3177 vol.5,

[43] Fischler MA, Bolles RC (1981) Random sample consensus: a
paradigm for model fitting with applications to image analy-
sis and automated cartography. Communications of the ACM
24(6):381–395

[44] Fogel DB (1995) Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence. IEEE Press, Piscataway, NJ

[45] Glover F, et al (1989) Tabu search-part i. ORSA journal on Com-
puting 1(3):190–206

[46] Goldberg DE (1989) Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA

[47] Goodman LJ, Fisher RC (1991) The Behaviour and Physiology of
Bees. CAB International, Oxon, UK

[48] Grech-Cini E (1995) Locating facial features. PhD thesis, Univer-
sity of Reading, Reading, UK

[49] Hernandez-Carrascal A, Nasuto S (2008) A swarm intelligence
method for feature tracking in amv derivation. Ninth International
Wind Workshop

[50] Hinton GF (1981) A parallel computation that assigns canonical
object-based frames of reference. In: Proceedings of the 7th inter-
national joint conference on Artificial intelligence-Volume 2, Mor-
gan Kaufmann Publishers Inc., pp 683–685

[51] Holland JH (1975) Adaptation in natural and artificial systems. Ann
Arbor, MI, University of Michigan press

[52] Holldobler B, Wilson EO (1990) The Ants. Springer-Verlag
[53] Hughes R (2012) Stochastic diffusion search with reinforce-

ment learning. In: Proc. School Conference for Annual Research
Projects (SCARP), Reading, UK

[54] Jin Y (2005) A comprehensive survey of fitness approximation in
evolutionary computation. In: Soft Computing 9:3–12

[55] Jin Y, Branke J (2005) Evolutionary optimization in uncertain
environments-a survey. Evolutionary Computation, IEEE Transac-

tions on 9(3):303–317
[56] Jones D (2002) Constrained stochastic diffusion search. Proc

School Conference for Annual Research Projects (SCARP) 2002,
Reading, UK

[57] Kennedy J, Eberhart RC (1995) Particle swarm optimization.
In: Proceedings of the IEEE International Conference on Neu-
ral Networks, IEEE Service Center, Piscataway, NJ, vol IV, pp
1942–1948

[58] Kemeny, J.G. & Snell, J.L., (1976), Finite Markov Chains, New
York: Springer-Verlag.

[59] Kennedy JF, Eberhart RC, Shi Y (2001) Swarm intelligence. Mor-
gan Kaufmann Publishers, San Francisco ; London

[60] Kirkpatric S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220(4598):671–680

[61] Knuth DE (1973) The art of computer programming. Vol. 3, Sorting
and Searching. Addison-Wesley Reading, MA

[62] Krieger MJ, Billeter JB, Keller L (2000) Ant-like task allocation and
recruitment in cooperative robots. Nature 406(6799):992–5

[63] Levins R (1969) Some demographic and genetic consequences
of environmental heterogeneity for biological control. Bulletin of the
ESA 15(3):237–240

[64] Li SW, Zhang J (2012) Cellular sds algorithm for the rectilin-
ear steiner minimum tree. In: Digital Manufacturing and Automa-
tion (ICDMA), 2012 Third International Conference on, IEEE, pp
272–276

[65] Liu Y, Ma L (2011) Stochastic diffusion search algorithm for
quadratic knapsack problem. Control Theory & Applications
28(8):1140–1144

[66] McClelland JL, Rumelhart DE, Group PR, et al (1986) Parallel dis-
tributed processing. Explorations in themicrostructure of cognition
2

[67] de Meyer K (2000) Explorations in stochastic diffusion search:
Soft- and hardware implementations of biologically inspired
spiking neuron stochastic diffusion networks. Tech. Rep. KD-
M/JMB/2000/1, University of Reading

[68] de Meyer K (2000) Explorations in stochastic diffusion search:
Soft-and hardware implementations of biologically inspired spiking
neuron stochastic diffusion networks. Tech. rep., Technical Report
KDM/JMB/2000

[69] de Meyer K (2003) Foundations of stochastic diffusion search.
PhD thesis, PhD thesis, University of Reading, Reading, UK

[70] de Meyer K, Bishop M, Nasuto S (2002) Small world effects in
lattice stochastic diffusion search. In: Proc. ICANN 2002, Lecture
Notes in Computer Science, 2415, Madrid, Spain, pp 147–152

[71] de Meyer K, Bishop JM, Nasuto SJ (2003) Stochastic diffusion:
Using recruitment for search. Evolvability and interaction: evolu-
tionary substrates of communication, signalling, and perception in
the dynamics of social complexity (ed P McOwan, K Dautenhahn
& CL Nehaniv) Technical Report 393:60–65

[72] de Meyer K, Nasuto S, Bishop J (2006) Stochastic diffusion
optimisation: the application of partial function evaluation and
stochastic recruitment in swarm intelligence optimisation. Springer
Verlag 2, Chapter 12 in Abraham, A. and Grosam, C. and Ramos,
V. (eds), ”Swarm intelligence and data mining”

[73] Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annual
Reviews in Microbiology 55(1):165–199

[74] Mitchell M (1996) An introduction to genetic algorithms, 1996. MIT
press

[75] Moglich M, Maschwitz U, Holldobler B (1974) Tandem call-
ing: A new kind of signal in ant communication. Science
186(4168):1046–1047

[76] Morciniec M, Rohwer R (1995) The n-tuple classifier: Too good to
ignore. Tech. Rep. Technical Report NCRG/95/013

170

PALADYN Journal of Behavioral Robotics

[77] Myatt D, Bishop J (2003) Data driven stochastic diffusion net-
works for robust high-dimensionality manifold estimation - more
fun than you can shake a hyperplane at. In: Proc. School Confer-
ence for Annual Research Projects (SCARP), Reading, UK

[78] Myatt D, Nasuto S, Bishop J (2006) Alternative recruitment strate-
gies for stochastic diffusion search. Artificial Life X, Bloomington
USA

[79] Myatt DR, Bishop JM, Nasuto SJ (2004) Minimum stable conver-
gence criteria for stochastic diffusion search. Electronics Letters
40(2):112–113

[80] Nasuto S, Bishop M (2007) Stabilizing swarm intelligence search
via positive feedback resource allocation. In: Nature Inspired Co-
operative Strategies for Optimization (NICSO), Springer

[81] Nasuto SJ (1999) Resource allocation analysis of the stochastic
diffusion search. PhD thesis, University of Reading, Reading, UK

[82] Nasuto SJ, Bishop JM (1999) Convergence analysis of stochastic
diffusion search. Parallel Algorithms and Applications 14(2)

[83] Nasuto SJ, Bishop MJ (2002) Steady state resource alloca-
tion analysis of the stochastic diffusion search. Arxiv preprint
cs/0202007

[84] Nasuto SJ, Bishop JM, Lauria S (1998) Time complexity analysis
of stochastic diffusion search. Neural Computation NC98

[85] Nasuto SJ, Dautenhahn K, Bishop J (1999) Communication as
an emergent methaphor for neuronal operation. Lect Notes Art Int
1562 pp 365–380

[86] Nircan A (2006) Stochastic diffusion search and voting methods.
PhD thesis, Bogaziki University

[87] OmranM, Moukadem I, al-Sharhan S, Kinawi M (2011) Stochastic
diffusion search for continuous global optimization. International
Conference on Swarm Intelligence (ICSI 2011), Cergy, France

[88] Omran MG, Salman A (2012) Probabilistic stochastic diffusion
search. In: Swarm Intelligence, Springer, pp 300–307

[89] Rubinstein RY, Kroese DP (2004) The cross-entropy method: a
unified approach to combinatorial optimization, Monte-Carlo sim-
ulation and machine learning. Springer Verlag

[90] Salamanos N, Lopatatzidis S, Vazirgiannis M, Thomas A (2010)
Advertising network formation based on stochastic diffusion
search and market equilibria. In: Proceedings of the 28th ACM
International Conference on Design of Communication, ACM, pp
81–87

[91] Saxe JG, Lathen D, Chief B (1882) The Blind Man and the Ele-
phant. The Poems of John Godfrey Saxe

[92] Seeley TD (1995) The Wisdom of the Hive. Harvard University
Press

[93] Storn R, Price K (1997) Differential evolution - a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Global Optim 11:341–359

[94] Summers R (1998) Stochastic diffusion search: A basis for a
model of visual attention?

[95] Tanay T, Bishop J, Nasuto S, Roesch E, Spencer M (2013)
Stochastic diffusion search applied to trees: a swarm intelligence
heuristic performing monte-carlo tree search. In: Proc AISB 2013,
University of Exeter, UK

[96] Tompa M (2000) Lecture notes on biological sequence analysis.
Dept of Comp Sci and Eng, University of Washington, Seattle,
Technical report

[97] Whitaker R, Hurley S (2002) An agent based approach to site se-
lection for wireless networks. In: 1st IEE Conf. on Artificial Neural
Networks, ACM Press Proc ACM Symposium on Applied Com-
puting, Madrid Spain

[98] Whitley D, Rana S, Dzubera J, Mathias KE (1996) Evaluating evo-
lutionary algorithms. Artificial Intelligence 85(1-2):245–276

Appendix

A. Proof of SDS convergence to global op-
timum

The following proof is from Nasuto, S.J. & Bishop, J.M., (1999), Con-
vergence analysis of Stochastic Diffusion Search, Parallel Algo-
rithms 14(2), pp. 89-109. Gordon and Breach Publishers [82].

A.1. The model

In the most general case, stochastic diffusion search is supposed to
locate the target or if it does not exist in the search space its best in-
stantiation. Therefore from now on we will refer to the object sought by
SDS as the target.
Let the search space size be N (measured as a number of possible
locations of objects). Let the probability of locating the target in a uni-
formly random draw be pm and let the probability of locating the sub-
optimal object (one sharing to some extent common features with the
target) be pd. Let the probability of a false positive be p+ and the prob-
ability of false negative be p−. Assume that there are M agents. The
state of the search in the nth step is determined by the number of ac-
tive agents pointing towards the position of the target and active agents
pointing towards the false positives (the number of nonactive agents
will be equal to the difference between the total number of agents and
the two numbers). This is because, by assumption, only active agents
are considered as carrying potentially useful information and effectively
they influence the search directions of all other agents. Also the strong
halting criterion uses only information from active agents.
Thus in effect we have finite number of discrete states each charac-
terised by the pair of two natural numbers. Stochastic Diffusion Search
changes its state in a random manner and the possible future evolution
of the SDS can be influenced by the past only via the present state
(agents are memoryless and the information about the past evolution
of SDS is contained in its current configuration) thus effectively it can
be modelled by a Markov Chain.
In order to specify the Markov Chain model we will construct the tran-
sition matrix. Let the state of the search in the nth step, denoted Xn,
be specified by a pair of integers (v, b), where v denotes a number of
active agents pointing towards the target and b the number of active
agents pointing towards false positives. If in the nth step an agent is
active and points towards the target then it will become inactive with
probability p−, otherwise it will remain active. Similarly an active agent
pointing towards the false positive will remain active with probability p+,
otherwise it will become inactive.
The one step evolution of the nonactive agent is determined first by
the outcome of the diffusion phase and then by the testing phase. We
will describe here one of its possible evolutions. During the diffusion
phase a nonactive agent will choose an active agent pointing towards
the target with probability v/M and then will remain active with proba-
bility 1 − p−. The other possibilities follow in an analogous way.
It is apparent that transition from one state to another can take place in
many different ways depending on the performance of all agents (e.g.
number of nonactive agents can increase by one, because during one
iteration an active agent pointing towards a false negative failed the
test phase or two active agents pointing to the target became inac-
tive and one inactive agent became active and so on). The one step
probabilities of transition from one state to another result from sum-
ming probabilities of all possible ways that this particular transition can
be achieved. The exact formula is given below:

171

PALADYN Journal of Behavioral Robotics

P{Xn+1 = (r, a)|(Xn = (v, b)}

=
min(v,r)∑

k2

min(b,a)∑

k1

Bin(k2, p−)Bin(k1, p+)

Mult(k1, k2, r, a, v, b)

Bin(k2, p−) =
(

v
k2

)
(1 − p−)k2 (p−)v−k2

Bin(k1, p+) =
(

b
k1

)
(p+)k1 (1 − p+)b−k1

Mult(k1, k2, r, a, v, b) =
(

M − v − b
r − k2

)
pr−k2

ab

(
M − v − b − r + k2

a − k1

)

×pa−k1
af (1 − pab − paf)g

pab = v
M (1 − p−) + (1 − v

M − b
M)pm(1 − p−)

paf = b
M (p+) + (1 − v

M − b
M)pdp+

.. and the double summation in the above formula is over such k1, k2 ≥
0, that g ≥ 0.
The term Bin(k2, p−) denotes the probability that k2 out of v active
agents pointing towards the target will remain active after the test phase
and v −k2 agents will become inactive. Similarly, the term Bin(k1, p+)
denotes the probability, that k1 out of b active agents pointing towards
false positives will remain active after testing and b − k1 of them will
become nonactive. The term Mult(k1, k2, r, a, v, b) expresses the
probability of r − k2 out of M − v − b inactive agents starting to point
towards the target and passing the test phase, a − k1 out of M − v −
b− r +k2 agents starting to point towards false positives and become
active and remaining agents staying inactive.
Finally observe that the above formula can be extended for cases when
p−, p+ are equal to zero by calculating the limit of the transition prob-
ability with p−, p+ tending to zero respectively.
Let S denote a given search space. Let f s

n denote the number of active
agents pointing to the same position s in the search space S in the
nth iteration. It is easy to see that the following condition is fulfilled:∑

s∈S f s
n ≤ M , where M is the total number of agents.

Let zn denote the maximal number of active agents in the nth iteration
pointing to the same position, sz

n ∈ S in the search space, i.e.
zn = maxs∈S(f s

n). Then, from Bishop [23], the definition of conver-
gence of stochastic diffusion search has the following formulation:

Definition 1. Strong halting criterion. We say that stochastic dif-
fusion search has reached an equilibrium, if

∃
a,b>0

(2b < M ∧ b + a ≤ M ∧ a − b ≥ 0) (1)

∃
n0

∀
n>n0

(|zn − a|) < b) (2)

.. and the solution is the position pointed at by zn.

Thus stochastic diffusion will have reached an equilibrium if there exists
a time instant n0 and an interval (specified by a and b) such that after
n0 the maximal number of agents pointing to the same position will
enter and remain within the specified interval. Intuitively, the competitive
cooperation process will lead to the allocation of most agents to the
best fit position.
Note also, that the above definition does not require convergence of
the process to a fixed point. Indeed, the interval specified by a and b
defines a tolerance region. All fluctuations of the maximal number of
agents pointing to the same position in the search space are discarded
as not important, if they occur within this interval. The conditions for
a and b exclude the trivial case in which we would ask only, that 0 ≤
zn ≤ M .
It will be shown that in the case of ideal instantiation of the target in the
search space these two parameters do not play a critical role. In the
opposite case we are faced with the difficult problem. Namely a and
b are related to the ability of agents to point towards the best instanti-
ation of the target, (i.e. they are negatively correlated to the probability
of false negative) but this is not known in advance in the most gen-
eral case. The possible solution is for the user of the SDS to assume
the minimal acceptance level for the object to be recognised and to
estimate suitable values of a and b off-line from this acceptance level.

A.2. Convergence of Stochastic Diffusion Search

We will analyse the convergence of SDS in two separate cases. First
we will concentrate on the case when there exist the ideal instantiation
of the target in the search space. In the presence of the target in the
search space the testing phase for agents pointing to the target be-
comes deterministic (there is a perfect match, so no agent pointing to
this position can fail the test). In what follows we will use the notation
introduced in section A.1.
Let the position of the model in the search space be denoted as
sm. Recall that in our Markov chain model of stochastic diffusion the
presence of the object in the search space is equivalent to setting p−

to zero.

Proposition 1. If p− = 0, then

P{ lim
n→∞

Zn = M} = 1 (3)

Moreover, P{sz
n = sm} = 1, where zn = maxs∈S(f s

n).

Proof. From transition probability matrix and from p− = 0 it follows
that,

P{(M, 0)|(M, 0)} = (1 − pab − paf)M−M = 1 (4)

.. and (0 ≤ P{(v, b)|(v, b)} < 1).

I.e. the only diagonal element equal to unity is (M, 0). This means
that our model is an absorbing Markov chain and (M, 0) is the only
absorbing state. Stochastic search will therefore eventually reach the
state (M, 0) in finite time and then will stay in this state forever. All
other states are transient. The rate of convergence is geometric for
some constant c, (0 < c < 1).

172

PALADYN Journal of Behavioral Robotics

The above proposition proves the intuition that in the presence of the
target in the search space all agents will eventually converge on its
position. Thus we see that indeed in this case the parameters a and b
do not influence the convergence of SDS.
In the situation when the target is not present in the search space the
following result can be proven.

Proposition 2. Given p− ̸= 0 the strong convergence criterion
does not hold in the stochastic diffusion search.

Proof. We will prove the above assertion by showing that a less re-
strictive property, of which strong convergence criterion is a special
subclass, is not fulfilled either. We will show by contradiction, that

∃
a,b>0

(2b < M ∧ b + a ≤ M ∧ a − b ≥ 0) (5)

P{ lim
n→+∞

P{|zn − a| < b} = 1 (6)

.. is not true.

Suppose the above assertion holds. It is equivalent to:

∃
a,b>0

(2b < M ∧ b + a ≤ M ∧ a − b ≥ 0) (7)

P{ lim
n→+∞

P{|zn − a| ≥ b} = 0 (8)

Let p− ̸= 0. In the case of p+ = pd = 0 the ephemeral states with
a nonzero amount of noise are excluded from consideration. From the
probability transition matrix it follows that for any state (i, j) ∈ S,

P{Sn+1 = (i, j)|Sn = (0, 0)} > 0 (9)

and

P{Sn+1 = (0, 0)|Sn = (i, j)} > 0, (10)

i.e. the first row and first column of the transition probability
matrix P are strictly positive.

It follows that any entry of P2 is positive, hence P is primitive. From the
Perron-Frobenius theorem it follows, that there exists over states in S
a limit probability distribution p∞, such that p∞ > 0. This implies that
in a steady state all of the states occur with probability strictly greater
than one, i.e. infinitely often and zn = maxs∈S(f s

n) takes all possible
values from the set {0, ..M} with positive probability. This contradicts
our assumption.

From the above proof it follows, that in the case of p− ̸= 0 the
model of stochastic diffusion search is an ergodic Markov chain [58].
Therefore it is easy to see that stochastic diffusion fulfils another,
weaker convergence property stated in proposition 3.

Proposition 3. Given p− ̸= 0, stochastic diffusion search con-
verges in a weak sense, i.e.

(∃a > 0)({ lim
n→∞

EZn = a}). (11)

Proof. Follows immediately from the ergodicity property of stochas-
tic search and observation that zn is a random variable defined on the
probability space (S, σ (S), pn), where σ (S) is a σ -algebra of all sub-
sets of S.
The above characterisations show that in the most general case
Stochastic Diffusion convergence has to be understood as approach-
ing an equilibrium in a statistical sense. It means that even after reach-
ing a steady state all possible configurations of agents pointing to the
best instantiation of the target as well as to disturbances occur infinitely
often according to limiting probability distribution (however some of
them may occur very rarely). In practice with appropriate estimates for
halting parameters a and b the algorithm will stabilise for a long enough
period thus enabling termination.

Also the convergence in the weak sense is crucial for the adaptability of
SDS. Effectively SDS allocates a certain amount of computational re-
sources to the best solution found so far. Remaining resources explore
the search space attempting to discover other potential solutions. A
given optimal solution can become suboptimal in two ways - either its fit
to the target decreases because the similarity criteria change over time
or a new, better solution appears in the search space over the course
of time. In both cases SDS will be able to find a new optimal solution
(due to the agents exploring the search space) and once found, it will
rapidly reallocate most of resources towards the new optimal solution.

173

