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Abstract. Cellular automata (CA) are known for their capacity to gen-
erate complex patterns through the local interaction of rules. Often the
generated patterns, especially with multi-state two-dimensional CA, can
exhibit interesting emergent behaviour. This paper addresses quanti-
tative evaluation of spatial characteristics of CA generated patterns.
It is suggested that the structural characteristics of two-dimensional
(2D) CA patterns can be measured using mean information gain. This
information-theoretic quantity, also known as conditional entropy, takes
into account conditional and joint probabilities of cell states in a 2D
plane. The effectiveness of the measure is shown in a series of experiments
for multi-state 2D patterns generated by CA. The results of the experi-
ments show that the measure is capable of distinguishing the structural
characteristics including symmetry and randomness of 2D CA patterns.

1 Introduction

Cellular automata (CA) are one of the early bio-inspired systems invented by von
Neumann and Ulam in the late 1940s to study the logic of self-reproduction in
a material-independent framework. CA are known to exhibit complex behaviour
from the iterative application of simple rules. The popularity of the Game of
Life drew the attention of a wider community of researchers to the unexplored
potential of CA applications and especially in their capacity to generate complex
behaviour. The formation of complex patterns from simple rules sometimes with
high aesthetic qualities has been contributed to the creation of many digital
art works since the 1960s. The most notable works are “Pixillation”, one of the
early computer generated animations [11], the digital art works of Struycken [10],
Brown [3] and evolutionary architecture of Frazer [5]. Furthermore, CA have been
used for music composition, for example, Xenakis [17] and Miranda [9].

Although classical one-dimensional CA with binary states can exhibit com-
plex behaviours, experiments with multi-state two-dimensional (2D) CA reveal
a very rich spectrum of symmetric and asymmetric patterns [6, 7].



There are numerous studies on the quantitative [8] and qualitative be-
haviour [14–16] of CA but they are mostly concerned with categorising the rule
space and the computational properties of CA. In this paper, we investigate in-
formation gain as a spatial complexity measure of multi-state 2D CA patterns.
Although the Shannon entropy is commonly used to measure complexity, it fails
to discriminate accurately structurally different patterns in two-dimensions. The
main aim of this paper is to demonstrate the effectiveness of information gain
as a measure of 2D structural complexity.

This paper is organised as follows. Section 2 provides formal definitions and
establishes notation. Section 3 demonstrates that Shannon entropy is an inade-
quate measure of 2D cellular patterns. In the framework of the objectives of this
study a spatial complexity spectrum is formulated and the potential of informa-
tion gain as a structural complexity measure is discussed. Section 4 gives details
of experiments that test the effectiveness of information gain. The paper closes
with a discussion and summary of findings.

2 Cellular Automata

This section serves to specify the cellular automata considered in this paper, and
to define notation.

A cellular automaton A is specified by a quadruple 〈L, S,N, f〉 where:

– L is a finite square lattice of cells (i, j).
– S = {1, 2, . . . , k} is set of states. Each cell (i, j) in L has a state s ∈ S.
– N is neighbourhood, as specified by a set of lattice vectors {ea}, a =

1, 2, . . . , N . The neighbourhood of cell r = (i, j) is {r+e1, r+e2, . . . , r+eN}.
A cell is considered to be in its own neighbourhood so that one of {ea} is the
zero vector (0, 0). With an economy of notation, the cells in the neighbour-
hood of (i, j) can be numbered from 1 to N ; the neighbourhood states of (i, j)
can therefore be denoted (s1, s2, . . . , sN ). Two common neighbourhoods are
the five-cell von Neumann neighbourhood {(0, 0), (±1, 0), (0,±1)} and the
nine-cell Moore neighbourhood {(0, 0), (±1, 0), (0,±1), (±1,±1)}. Periodic
boundary conditions are applied at the edges of the lattice so that complete
neighbourhoods exist for every cell in L.

– f is the update rule. f computes the state s1(t + 1) of a given cell from the
states (s1, s2, . . . , sN ) of cells in its neighbourhood:s1(t+1) = f(s1, s2, . . . , sN ).
A quiescent state sq satisfies f(sq, sq, . . . , sq) = sq.

The collection of states for all cells in L is known as a configuration c. The
global rule F maps the whole automaton forward in time; it is the synchronous
application of f to each cell. The behaviour of a particular A is the sequence
c0, c1, c2, . . . , cT−1, where c0 is the initial configuration (IC) at t = 0.

CA behaviour is sensitive to the IC and to L, S,N and f . The behaviour is
generally nonlinear and sometimes very complex; no single mathematical analysis
can describe, or even estimate, the behaviour of an arbitrary automaton. The
vast size of the rule space, and the fact that this rule space is unstructured,
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mean that knowledge of the behaviour a particular cellular automaton, or even
of a set of automata, gives no insight into the behaviour of any other CA. In the
lack of any practical model to predict the behaviour of a CA, the only feasible
method is to run simulations. Fig. 1 illustrates some experimental configurations
generated by the authors to demonstrate the capabilities of CA in exhibiting
complex behaviour with visually pleasing qualities.

Fig. 1. Samples of multi-state 2D CA patterns

3 Spatial Complexity Measure of 2D Patterns

The introduction of information theory by Shannon provided a mathematical
model to measure the order and complexity of systems. Shannon’s information
theory was an attempt to address communication over an unreliable channel [12].
Entropy is the core of this theory [4]. Let X be discrete alphabet, X a discrete
random variable, x ∈ X a particular value of X and P (x) the probability of x.
Then the entropy, H(X), is:

H(X) = −
∑
x∈X

P (x) log2 P (x) (1)

The quantity H is the average uncertainty in bits, log2( 1
p ) associated with

X. Entropy can also be interpreted as the average amount of information needed
to describe X. The value of entropy is always non-negative and reaches its max-
imum for the uniform distribution, log2(|X |):

0 6 H 6 log2(|X |) (2)

The lower bound of relation (2) corresponds to a deterministic variable (no un-
certainty) and the upper bound corresponds to a maximum uncertainty associ-
ated with a random variable. Another interpretation of entropy is as a measure
of order and complexity. A low entropy implies low uncertainty so the mes-
sage is highly predictable, ordered and less complex. And high entropy implies a
high uncertainty, less predictability, highly disordered and complex. Despite the
dominance of Shannon entropy as a measure of complexity, it fails to reflect on
structural characteristics of 2D patterns. The main reason for this drawback is
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that it only reflects on the distribution of the symbols, and not on their order-
ing. This is illustrated in Fig. 2 where, following [1], the entropy of 2D patterns
with various structural characteristics is evaluated. Fig. 2a-b are patterns with
ordered structures and Fig. 2c is a pattern with repeated three element structure
over the plane. Fig. 2d is a fairly structureless pattern.

(a) (b) (c) (d)
H = 1.5850 H = 1.5850 H = 1.5850 H = 1.5850

Fig. 2. Measure of H for structurally different patterns with uniform distribution of
elements

Fig. 2 clearly demonstrates the failure of entropy to discriminate structurally
different 2D patterns. In other words, entropy is invariant to spatial rearrange-
ment of composing elements. This is in contrast to our intuitive perception of
the complexity of patterns and is problematic for the purpose of measuring the
complexity of multi-state 2D CA behaviour.

Taking into account our intuitive perception of complexity and structural
characteristics of 2D patterns, a complexity measure must be bounded by two
extreme points of complete order and disorder. It is reasonable to assume that
regular structures, irregular structures and structureless patterns lie along be-
tween these extremes, as illustrated in Fig. 3.

order
regular structure | irregular structure | structureless

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 3. The spectrum of spatial complexity.

A complete regular structure is a pattern of high symmetry, an irregular
structure is a pattern with some sort of structure but not as regular as a fully
symmetrical pattern and finally a structureless pattern is a random arrangement
of elements.

A measure introduced in [2, 13, 1] and known as information gain, has been
suggested as a means of characterising the complexity of dynamical systems and
of images. It measures the amount of information gained in bits when specifying
the value, x, of a random variable X given knowledge of the value, y, of another
random variable Y ,

Gx,y = − log2 P (x|y). (3)
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P (x|y) is the conditional probability of a state x conditioned on the state y.
Then the mean information gain, GX,Y , is the average amount of information
gain from the description of the all possible states of Y :

GX,Y =
∑
x,y

P (x, y)Gx,y = −
∑
x,x

P (x, y) log2 P (x|y) (4)

where P (x, y) is the joint probability, prob(X = x, Y = y). G is also known
as the conditional entropy, H(X|Y )[4]. Conditional entropy is the reduction in
uncertainty of the joint distribution of X and Y given knowledge of Y , H(X|Y ) =
H(X,Y )−H(Y ). The lower and upper bounds of GX,Y are

0 6 GX,Y 6 log2|X |. (5)

where y ∈ Y.

In principle, G can be calculated for a 2D pattern by considering the distri-
bution of cell states over pairs of cells r, s,

Gr,s = −
∑
sr,ss

P (sr, ss) log2 P (sr, ss) (6)

where sr, ss are the states at r and s. Since |S|= N , Gr,s is a value in [0, N ].

In particular, horizontal and vertical near neighbour pairs provide four MIGs,
G(i,j),(i+1,j), G(i,j),(i−1,j), G(i,j),(i,j+1) and G(i,j),(i,j−1). In the interests of no-

tational economy, we write Gs in place of Gr,s, and omit parentheses, so that,
for example, Gi+1,j ≡ G(i,j),(i+1,j). The relative positions for non-edge cells are
given by matrix M :

M =

 (i,j+1)

(i−1,j) (i,j) (i+1,j)

(i,j−1)

 . (7)

Correlations between cells on opposing lattice edges are not considered. Fig. 4
provides an example. The depicted pattern is composed of four different symbols
S = {light-grey,grey,white,black}. The light-grey cell correlates with two neigh-
bouring white cells (i + 1, j) and (i, j − 1). On the other hand, The grey cell
has four neighbouring cells of which three are white and one is black. The result
of this edge condition is that Gi+1,j is not necessarily equal to Gi−1,j . Differ-
ences between the horizontal (vertical) mean information rates reveal left/right
(up/down) orientation.

Fig. 4. A sample 2D pattern
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The mean information gains of the sample patterns in Fig. 2 are presented
in Fig. 5. The merits of G in discriminating structurally different patterns rang-
ing from the structured and symmetrical (Fig. 5a-b), to the partially structured
(Fig. 5c) and the structureless and random (Fig. 5d), are clearly evident. The
cells in the columns of pattern (a) are completely correlated. However knowledge
of cell state does not provide complete predictability in the horizontal direction
and, as a consequence, the horizontal G is finite. Pattern (b) has non-zero, and
identical G’s indicating a symmetry between horizontal and vertical directions,
and a lack of complete predictability. Analysis of pattern (c) is similar to (a)
except the roles of horizontal and vertical directions are interchanged. The four
Gs in the final pattern are all different, indicating a lack of vertical and hori-
zontal symmetry; the higher values show the increased randomness. Details of
calculations for a sample pattern are provided in the appendix.

(a) (b) (c) (d)
H = 1.5850 H = 1.5850 H = 1.5850 H = 1.5850

Gi,j+1 = 0 Gi,j+1 = 0.7564 Gi,j+1 = 0.9710 Gi,j+1 = 1.5188

Gi,j−1 = 0 Gi,j−1 = 0.7564 Gi,j−1 = 0.9710 Gi,j−1 = 1.5140

Gi−1,j = 0.8000 Gi−1,j = 0.7564 Gi−1,j = 0 Gi−1,j = 1.3565

Gi+1,j = 0.8000 Gi+1,j = 0.7564 Gi+1,j = 0 Gi+1,j = 1.3473

Fig. 5. The comparison of H with measures of Gi,j for structurally different patterns.

4 Experiments and Results

A set of experiments was designed to examine the effectiveness of G in discrim-
inating the particular patterns that are generated by a multi-state 2D cellular
automaton. The (outer-totalistic) CA is specified in Table 1. The chosen experi-
mental rule maps three states, represented by green, red and white; the quiescent
state is white.

The experiments are conducted with two different ICs: (1) all white cells
except for a single red cell and (2) a random configuration with 50% white
quiescent states (8320 cells), 25% red and 25% green. The experimental rule
has been iterated synchronously for 150 successive time steps. Fig. 6 and Fig. 7
illustrate the space-time diagrams for a sample of time steps starting from single
and random ICs.

The behaviour of cellular automaton from the single cell IC is a sequence
of symmetrical patterns (Fig. 6). The directional measurements of Gi,j for the
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Table 1. Specifications of experimental cellular automaton

L = 129× 129 (16641 cells).
S = {0, 1, 2} ≡ {white, red, green}
N : von Neumann neighbourhood
f : S9 7→ S

f(si,j)(t) = si,j(t+ 1) =


1 if s(i,j)(t) = 1, 2 and σ = 0− 2
2 if s(i,j)(t) = 2, 3 and σ = 1
2 if s(i,j)(t) = 2 and σ = 2
0 otherwise


where σ is the sum total of the neighbourhood states.

Fig. 6. Space-time diagram of the experimental cellular automaton for sample time
steps starting from the single cell IC.
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Fig. 7. Space-time diagram of the experimental cellular automaton for sample time
steps starting from the random IC.

single cell IC start with Gi,j+1 = Gi,j−1 = Gi−1,j = Gi+1,j = 0.00094 and
H = 0.00093, and they attain Gi,j+1 = Gi,j−1 = Gi−1,j = Gi+1,j = 1.13110 and
H = 1.13714 (and Figs 8, 11) at the end of the runs.

The sequence of states can be analysed by considering the differences between
the up/down and left/right mean information gains, as defined by

∆Gi,j±1 = |Gi,j+1 −Gi,j−1| (8)

∆Gi±1,j = |Gi+1,j −Gi−1,j |. (9)

For the single cell IC, ∆Gi,j±1 and ∆Gi±1,j are constant for the 150 time
steps (∆Gi,j±1 = ∆Gi,j±1 = 0). This indicates the development of the symmet-
rical patterns along the up/down and left/right directions.

The behaviour of cellular automaton from the random IC is a sequence of
irregular structures (Fig. 7). The formation of patterns with local structures has
reduced the values of Gi,j until a stable oscillating pattern is attained (Figs 7,
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9). This is an indicator of the development of irregular structures. However the
patterns are not random patterns since Gi,j ≈ 1.1 is less than the maximum
three-state value log2(3) = 1.5850 (see Eq. 5). Mean information rate differences
∆Gi,j±1 and ∆Gi±1,j for both ICs are plotted in Fig. 10. The structured but
asymmetrical patterns emerging from the random start are clearly distinguished
from the symmetrical patterns of the single cell IC.
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Fig. 8. Measurements of H, Gi,j+1, Gi,j−1, Gi+1,j ,Gi−1,j for 150 time steps starting
from the single cell IC.
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Fig. 9. Measurements of H, Gi,j+1, Gi,j−1, Gi+1,j ,Gi−1,j for 150 time steps starting
from the random IC.

These experiments demonstrate that a cellular automaton rule seeded with
different ICs leads to the formation of patterns with structurally different char-
acteristics. The gradient of the mean information rate along lattice axes is able
to detect the structural characteristics of patterns generated by this particular
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Fig. 10. Plots of ∆Gi,j±1 and ∆Gi±1,j for two different ICs

multi-state 2D CA. From the comparison of H with ∆Gi,j±1 and ∆Gi±1,j in
the set of experiments, it is clear that entropy fails to discriminate between the
diversity of patterns that can be generated by various CA.

(a) (b) (c) (d)
t = 0 t = 150 t = 0 t = 150

H = 0.00093 H = 1.13714 H = 1.50002 H = 1.09465

Gi,j+1 = 0.00094 Gi,j+1 = 1.13110 Gi,j+1 = 1.49924 Gi,j+1 = 1.08655

Gi,j−1 = 0.00094 Gi,j−1 = 1.13110 Gi,j−1 = 1.49972 Gi,j−1 = 1.08613

∆Gi,j±1 = 0 ∆Gi,j±1 = 0 ∆Gi,j±1 = 0.00048 ∆Gi,j±1 = 0.00042

Gi−1,j = 0.00094 Gi−1,j = 1.13110 Gi−1,j = 1.50023 Gi−1,j = 1.08318

Gi+1,j = 0.00094 Gi+1,j = 1.13110 Gi+1,j = 1.49974 Gi+1,j = 1.08308

∆Gi±1,j = 0 ∆Gi±1,j = 0 ∆Gi±1,j = 0.00049 ∆Gi±1,j = 0.00010

Fig. 11. Comparison of the cellular automaton’s H with four directional measure of
Gi,j ∆Gi,j±1 and ∆Gi±1,j starting from single (a, b) and random ICs (c, d).

5 Conclusion

Cellular automata (CA) are one of the early bio-inspired models of self-replicating
systems and, in 2D, are powerful tools for the pattern generation. Indeed, multi-
state 2D CA can generate many interesting and complex patterns with various
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structural characteristics. This paper considers an information-theoretic classi-
fication of these patterns.

Entropy, which is a statistical measure of the distribution of cell states, is not
in general able to distinguish these patterns. However mean information gain,
as proposed in [2, 13, 1], takes into account conditional and joint probabilities
between pairs of cells and, since it is based on correlations between cells, holds
promise for pattern classification.

This paper reports on a pair of experiments for two different initial con-
ditions of an outer-totalistic CA. The potential of mean information gain for
distinguishing multi-state 2D CA patterns is demonstrated. Indeed, the mea-
sure appears to be particular good at distinguishing symmetry from non-random
non-asymmetric patterns.

Since CA are one of the generative tools in computer art, means of evaluating
the aesthetic qualities of CA generated patterns could have a substantial con-
tribution towards further automation of CA art. This is the subject of on-going
research.

Appendix

In this example the pattern is composed of two different cells S = {white, black}
where the set of permutations with repetition is {ww,wb, bb, bw}. Considering
the mean information gain (Eq. 4) and given the positional matrix M (Eq. 7),
the calculations can be performed as follows:

white− white
P (w, s(i,j+1)) = 5

6

P (w|w(i,j+1)) = 4
5

P (w,w(i,j+1)) = 5
6
× 4

5
= 2

3

G(w,w(i,j+1)) = 2
3

log2 P ( 4
5
)

G(w,w(i,j+1)) = 0.2146 bits
white− black
P (w, s(i,j+1)) = 5

6

P (w|b(j+1)) = 1
5

P (w, b(i,j+1)) = 5
6
× 1

5
= 1

6

G(w, b(i,j+1)) = 1
6

log2 P
1
5

G(w, b(i,j+1)) = 0.3869 bits

black − black
P (b, s(i,j+1)) = 1

6

P (b|b(i,j+1)) = 1
1

P (b, b(i,j+1)) = 1
6
× 1

1
= 1

6

G(b, b(i,j+1)) = 1
6

log2 P (1)
G(b, b(i,j+1)) = 0 bits
black − white
P (b, s(i,j+1)) = 1

6

P (b|w(i,j+1)) = 0
1

P (b, w(i,j+1)) = 1
6
× 0

G(b, w(i,j+1)) = 0 bits

G = G(w,w(i,j+1)) +G(w, b(i,j+1)) +G(b, b(i,j+1)) +G(b, w(i,j+1))

G = 0.6016 bits

In white − white case G measures the uniformity and spatial property where
P (w, s(i,j+1)) is the joint probability that a cell is white and it has a neighbouring
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cell at its (i, j + 1) position, P (w|w(i,j+1)) is the conditional probability of a
cell is white given that it has white neighbouring cell at its (i, j + 1) position,
P (w,w(i,j+1)) is the joint probability that a cell is white and it has neighbouring
cell at its (i, j + 1) position, G(w,w(i,j+1)) is information gain in bits from
specifying a white cell where it has a white neighbouring cell at its (i, j + 1)
position. The same calculations are performed for the rest of cases; black-black,
white-black and black-white.

References

1. Andrienko, Yu. A., Brilliantov, N. V., Kurths, J.: Complexity of two-dimensional
patterns. Eur. Phys. J. B 15(3), 539–546 (2000)

2. Bates, J.E., Shepard, H.K.: Measuring complexity using information fluctuation.
Physics Letters A 172(6), 416–425 (1993)

3. Brown, P.: Stepping stones in the mist. In: Creative evolutionary systems. pp.
387–407. Morgan Kaufmann Publishers Inc. (2001)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience (2006)

5. Frazer, J.: An evolutionary architecture. Architectural Association Publications,
Themes VII (1995)

6. Javaheri Javid, M.A., al Rifaie, M.M., Zimmer, R.: Detecting Symmetry in Cellular
Automata Generated Patterns Using Swarm Intelligence. In: Dediu, A.H., Lozano,
M., Mart́ın-Vide, C. (eds.) Theory and Practice of Natural Computing. Lecture
Notes in Computer Science, vol. 8890, pp. 83–94. Springer International Publishing
(2014)

7. Javaheri Javid, M.A., te Boekhorst, R.: Cell Dormancy in Cellular Automata. In:
Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) Inter-
national Conference on Computational Science (3). Lecture Notes in Computer
Science, vol. 3993, pp. 367–374. Springer (2006)

8. Langton, C.G.: Studying artificial life with cellular automata. Physica D: Nonlinear
Phenomena 22(1), 120–149 (1986)

9. Miranda, E.: Composing Music with Computers. No. v. 1 in Composing Music
with Computers, Focal Press (2001)

10. Scha, I.R.: Kunstmatige Kunst. De Commectie 2(1), 4–7 (2006)
11. Schwartz, L., Schwartz, L.: The Computer Artist’s Handbook: Concepts, Tech-

niques, and Applications. W W Norton & Company Incorporated (1992)
12. Shannon, C.: A mathematical theory of communication. The Bell System Technical

Journal 27, 379–423 & 623–656 (Oct 1948)
13. Wackerbauer, R., Witt, A., Atmanspacher, H., Kurths, J., Scheingraber, H.: A

comparative classification of complexity measures. Chaos, Solitons & Fractals 4(1),
133–173 (1994)

14. Wolfram, S.: Statistical mechanics of cellular automata. Reviews of modern physics
55(3), 601–644 (1983)

15. Wolfram, S.: Universality and complexity in cellular automata. Physica D: Non-
linear Phenomena 10(1), 1–35 (1984)

16. Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)
17. Xenakis, I.: Formalized music: thought and mathematics in composition. Pen-

dragon Press (1992)

12


