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Abstract. This paper introduces an approach for using a swarm intel-
ligence algorithm, Stochastic Diffusion Search (SDS) – inspired by one
species of ants, Leptothorax acervorum – in order to generate music from
plain text. In this approach , SDS is adapted in such a way to vocalise
the agents, to hear their “chit-chat” . While the generated music depends
on the input text, the algorithm’s search capability in locating the words
in the input text is reflected in the duration and dynamic of the result-
ing musical notes. In other words, the generated music depends on the
behaviour of the algorithm and the communication between its agents.
This novel approach, while staying loyal to the original input text, when
run each time, ‘vocalises’ the input text in varying ‘flavours’.
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1 Introduction

Nature inspired algorithms have been the source of many inspirations in arts
and sciences. Swarm intelligence algorithms as one category of nature-inspired
algorithms have been used increasingly to solve various optimisation problems.
The behaviour exhibited by swarm intelligence techniques are inspired by the
interaction of social animals and insects in nature: fish schooling, bugs swarming,
birds flocking, ant colonies foraging, bacterial growth, animal herding, brood
sorting by ants, etc. Examples of swarm intelligence algorithms are Particle
Swarm Optimisation [1], Genetic Algorithm [2] and Ant Colony Optimistion [3].

Many techniques derived from swarm intelligence algorithms have been used
to produce generative music. In the last several years, the development of compo-
sitional computer programs have been attracting several artists, musicians and
researchers. While these approaches are mostly driven forward primarily from



academic theory without the involvements of many composers, generative music
has been a thriving field of research [4].

This work presents a novel approach utilising a swarm intelligence algorithm’s
optimisation capabilities in order to introduce a method for generating music.

In this paper, a swarm intelligence algorithm, Stochastic Diffusion Search, is
explained, followed by details on how this algorithm is used to generate music
based on an input text. Then a few examples of the generated music are presented
and discussed. Conclusion and possible future research are included at the end
of the paper.

2 Stochastic Diffusion Search

Stochastic Diffusion Search (SDS) [5, 6], first introduced in 1989, belongs to
the extended family of Swarm Intelligence algorithms to solve best-fit pattern
recognition and matching problems. SDS has a strong mathematical framework,
which describes the behaviour of the algorithm by investigating its resource
allocation, convergence to global optimum, robustness and minimal convergence
criteria and linear time complexity.

In order to introduce SDS, the Mining Game metaphor is presented (for more
details please see [5]):

• At the start of the mining process each miner is randomly allocated a hill (his
hill hypothesis, h).

• Then each miner selects a random region on his hill to mine.
• Whether the miner is happy or not depends on whether he finds gold.
• At the end of the day the miners congregate and over the evening each miner

who is unhappy selects another miner at random to talk to. If the chosen
miner is happy, he happily shares with his colleague the location of his hill
(that is, he communicates his hill hypothesis, h, which thus both share and
each picks a random region within the shared hill). Conversely, if the chosen
miner is unhappy he says nothing and the selecting miner is once more
reduced to selecting a new hill (or hypothesis) – identifying the hill he is to
mine the next day – at random.

In any SDS search, each agent maintains a hypothesis, h, defining a possible
problem solution. SDS has two phases:

- Test Phase (testing gold availability)
- Diffusion Phase (congregation and exchanging of information)

It is shown that using this algorithm, after few days, the miners will be able to
find the hill where there is the maximum amount of gold available.

2.1 Method of Communication

Communication is important in all swarm intelligence algorithms, including SDS.
In one species of ant, Leptothorax acervorum, a tandem calling mechanism (one-
to-one) is used for communication. In this method, the ant that finds the resource



location, recruits a single ant on its return to the nest, therefore the location of
the resource is physically publicised [7]. In SDS, direct one-to-one communication
(which is similar to tandem calling recruitment) is used. However the behaviour
of the agents in SDS is simpler than the recruitment behavior of real ants.

2.2 SDS Search Example

In order to show how SDS works one search example will be discussed. The
search example here shows how to find a set of letters within a larger string
of letters. The goal is to find a 3-letter model (Table 1) in a 13-letter search
space (Table 2). For simplicity purposes only three agents are assumed for this
example.

Table 1. Model

Index 0 1 2

Model N O T

Table 2. Search Space

Index 0 1 2 3 4 5 6 7 8 9 10 11 12

Search Space T O B E O R N O T T O B E

In this example, a hypothesis, which is a potential problem solution, identifies
three adjacent letters in the search space (e.g. hypothesis ‘2’ refers to B-E-O,
hypothesis ‘10’ refers to O-B-E). At first each agent initially randomly picks a
hypothesis from the search space (Table 3)

• The first agent points to the 5th entry of the search space; in order to partially
evaluate this entry, it randomly picks one of the letters (e.g. the first one,
R) R N O

• The second agent points to the 9th entry and randomly picks the third letter
(B): T O B

• The third agent refers to the 1st entry in the search space and randomly picks
the third letter (E): O B E

Table 3. Iteration 1

Agent Num: 1 2 3

Hypothesis: 5
R−N−O

9
T−O−B

1
O−B−E

Letter picked: 1st 3rd 3rd

Status: X X X

The letters picked are compared to the corresponding letters in the model,
which is N-O-T.

• First letter from the first agent (R) is compared with the first letter from the
model (N), because they are not the same, the agent is set inactive.

• For the second and third agents, letters ‘B’ and ‘E’ are compared against ‘T’
from the model. Since none of the letters correspond to the letter in the
model, the status of the agents are set inactive



In the next step (diffusion phase), each inactive agent randomly selects another
agent. If the selected agent is active, the inactive agent adopts the hypothesis of
the active agent. If the selected agent is inactive, the selecting agent generates
a random hypothesis. As hinted earlier, communications between agents occur
during the diffusion phase. Assume that the first agent chooses the second one;
since the second agent is inactive, the first agent must choose a new random
hypothesis from the search space. Figure 1 shows the communications between
agents. The process is repeated for the other two agents. As the agents are

Fig. 1. Agents Communication

inactive, they all choose new random hypotheses (see Table 4)
Table 4. Iteration 2

Agent Num: 1 2 3

Hypothesis: 6
N−O−T

10
O−B−E

0
T−O−B

Letter picked: 2nd 3rd 1st

Statuse:
√

X X

In Table 4, the second and third agents do not refer to their corresponding
letter in the model, so they become inactive. The first agent, with hypothesis ‘6’,
chooses the 2nd letter (O) and compares it with the 2nd letter of the model (O).
Since the letters are the same, the agent becomes active. The same process is
repeated for the other two agents, and since the letters do not match the letters
in the model, they are set inactive. This process is repeated until all agents
are active. It is important to note that the number of agents is irrelevant to
the number of letters in the model (e.g. it is possible to have 5 agents and a
two-letter model).

3 Generative Music

In generative music, various computational techniques are used; some are closely
related to swarm intelligence and some have been generated using other tech-
niques. Generative music based on swarm intelligence uses the dynamic proper-
ties of the swarms; these properties are tightly linked to the communication and
therefore movement of the swarms throughout the possible search space.

Using these properties, scientists and artists develop creative music. In one
such paper, “Music Composition with Interactive Evolutionary Computation”
[9] the authors describe a new approach to the music composition by means
of interactive evolutionary computation (IEC) which discusses the interactive
musical composition system. It is claimed that system can generate musical
phrases by combining genetic algorithms and genetic programming.

Another attempt and more recently, “Experiments with Particle Swarm Op-
timization” [10] uses Particle Swarm Optimisation (PSO) [1] which is a swarm
intelligence and evolutionary computation technique, developed in 1995, and is
inspired by the social behaviour of bird flocking, to generate music. In parti-
cle swarms, members of the swarm neither have knowledge about the global



behaviour of the swarm nor global information about the environment, the lo-
cal interactions of the swarms result in a complex collective behaviour, such as
flocking, herding, schooling, exploration and foraging. In this work, particles are
made to follow a hypothetical point (focal point, fp); each agent selects a random
point between A and B (fp) and moves to it until they reach the target. This
example uses PSO to develop continuous music so swarms have to continue their
movement; at the time that any agent’s fitness is below a predefined threshold,
focal point randomly moves to a new position in a search space and the particles
search begins.

For a more detailed account of other related works in generative music us-
ing various computational techniques the readers are referred to “Evolutionary
computer music” [4].

There are other works related to sonification of text. In one such work [11]
a platform is proposed that allows the creation of user-generated mapping for
the sonification of text messages and arbitrary clients to sonify text messages
using a web-based API. While there are other works generating melodies from
text input, SDS generated music is unique in its ability to generate non-identical
musics from one input text.

4 Generating Music with SDS

A sentence is formed of few words and each word is comprised of letters. Each
letter has its own tone and every word has its individual concept and meaning.
With these concepts, humans aim to communicate with each other just like the
agents in SDS algorithm. Humans, among other ways, communicate through
text and the agents of SDS (as shown in the section 2.2) communicate with each
other through the words and letters.

The aim of this paper is to represent an input text as the sound they create;
the output sound is based on letters, words and ultimately a longer string of
characters. In other words, SDS is adapted in such a way to vocalise the agents,
to hear their ”chit-chat!” while communicating with each other throughout the
search space.

The task of generating music is guided by taking the three below-mentioned
parameters into account:

1. Pitch

2. Note Duration

3. Dynamic (or volume)

These values are determined by the input text as well as the behaviour of
the algorithm while processing the input through its test and diffusion phases.

The next part explains the link between the above-mentioned parameters,
the input text and SDS. Afterwards the process through which SDS is tasked to
generate the music is explained.



Table 5. Letters Frequency

Letter Frequency ETAON, RISHD, LFCMU, GYPWB, VKJXQ, Z
Pairs of Letters TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI HI AS TO
Doubled Letters LL EE SS OO TT FF RR NN PP CC

The relation between pitches and letters Each letter (or pair of letters)
is mapped onto a musical note (an individual pitch which has its own MIDI
number). In order to assign a MIDI number to a character or pair of characters,
letter frequency will be used. Herbert S. Zim [12], in his classic introductory
cryptography text “Codes and Secret Writing”, gives the English letter frequency
sequence as well as the most common pair of letters and the most common
doubled letters (see Table 5).

Music is made of a set of 12 notes and each one of these notes has its individual
MIDI numbers. The set of letters in table 5 are divided into 12 separated sets
where each will be associated with one of the 12 notes (see Table 6). One of the
topics for future research is to conduct an investigation to find a better way in
which letters are assigned to their possibly corresponding musical notes.

Using Table 6, an example is given on how to map a simple text (e.g. ‘Hello
World’) into the corresponding MIDI numbers (see Table 7).

Note Duration and Dynamic Duration refers to a certain amount of time or
a particular time interval which may be described as short/long or with varying
duration of time. This property plays a crucial role in forming one of the bases
of rhythm within music. In music, dynamic refers to the volume of a sound or a
note. Both of these parameters (i.e. duration and dynamic) will be defined using
SDS parameters individually; more details are provided below in section 4.2.

4.1 The parameters of SDS

Each agent in SDS has a status which is a boolean value; this entails that an
agent can be either active/inactive, true/false, or happy/unhappy. For SDS to
generate music, three parameters are used. These parameters are based on the
global number of agents (in all iterations) in each of the following categories:

1. Number of Lucky agents (lg)
2. Number of Happy agents or (hg)
3. Number of Unhappy agents or (ug)

Table 6. Frequencies and Notes

Notes Num Notes Sets Freq MIDI Num
1 C ETAON 72
2 C# RISHD 73
3 D LFCMU 74
4 D# GYPWB 75
5 E VKJXQ 76
6 F Z 77
7 F# TH TE TI TO RE 78
8 G AN AT AS HE HI 79
9 G# ON OF OR ND ST 80
10 A ER ES EN ED IN 81
11 A# LL EE SS OO TT 82
12 B FF RR NN PP CC 83



Table 7. Example: Converting each letter or pair of letters to the corresponding musical
note and MIDI number

hello world
Characters Notes MIDI

he G 79
ll A# 82
o C 72

F space = 77
w D# 75
or G# 80
l D 74
d C# 73

F space = 77

A lucky Agent is an unhappy agent randomly picking an agent whose status is
true (i.e. happy). Deciding which agent is lucky happens during the Diffusion
phase, whereas determining whether an agent is happy or unhappy occurs during
the Test phase.

The following should hold regarding the above-mentioned parameters:

NP = hg + ug (1)

lg ≤ ug (2)

where NP is the population size.
In this paper, the population size is set to 20. Given that SDS iterates 10

times, the maximum number of unhappy agents in each iteration is 20; therefore
the maximum number of unhappy agents over the whole iterations is 200.

4.2 The relation between SDS and music

In SDS, a model (or goal) is needed which can be one word. Initially the first
word is set as a model, which is searched in the search space using SDS and the
above mentioned three values are calculated and used subsequently to generate
the duration and dynamic values.

Given that each character or pair of characters are to be converted into a
musical note, each word is assigned as a model n times (where n is the length of
the model according to table 6; therefore a pair of letters will be considered as
one). This process is repeated until reaching the end of the search space.

Searching for each model in the search space results in different values of
SDS parameters. The number of lucky agents and unhappy agents will change
from word to word. Additionally, even if each word is searched twice, due of
the nature of the swarm intelligence algorithm, there is no guarantee that these
figures stay the same in each run. In order to generate a musical note for each
character in the search space, the mining process has to run as many times as
the number of the corresponding musical notes (see Table 7 for an example).

Consider the model to be ‘music’. The number of corresponding musical notes
in this word is 5. Therefore, the mining process (i.e. test and diffusion phases)
has to run five times, each time generating the necessary information (duration
and dynamic) for that particular musical note (e.g. the first run will result in
generating relevant values for the duration and dynamic of the musical note ‘m’;



Fig. 2. SDS parameters for ‘music’

the second run, for the musical note ‘u’ and so forth). This way, each character
(or pair of characters) has separately generated values for the number of local
unhappy agents (ul) and the number of local lucky agents (ll) which will be used
to calculate the duration and dynamic at a later stage.

See Figure 2 which shows that ul, ll values need to be generated for each
character (or pair of characters) within the model. As shown in Figure 2, each
character of the word ‘music’ is separated, this is because this word does not
contain any of the pairs of letters shown in Table 6. However, when the word
‘food ’ becomes the model of the algorithm (see Figure 3), the mining process
has to run only three times. This is due to the presence of the pair ‘oo’ which
forms one musical note (see Table 6).

Fig. 3. SDS parameters for ‘food ’

4.3 How SDS generates music

Algorithm 1 explains the process through which SDS processes the input text
which will then get converted into music.

Algorithm 1 Generating music with SDS

FOR I = 1 TO N
Choosing I’th word as model

FOR J = 1 TO M
Run SDS for T iterations
Store the numbers of local unhappy and lucky agents

END J

Store the numbers of global unhappy and lucky agents

END I

- N is the number of words in the search space.
- M is the number of musical notes in the current model.
- T (the total number of iterations) is set to 10.
- SDS population size is set to 20 (NP = 20).



As mentioned earlier, the number of lucky agents impacts the duration of
the corresponding note. In other words, a character (or pair of characters) with
more lucky agents is “luckier” and and plays for longer. The following formulas
are used to calculate the duration and dynamic of each note:

ln =
lg × Sr

n
(3)

ln is the normalised lucky agents; lg is the number of global lucky agents in all
iterations; Sr indicates that agents are averaged over 5 (i.e. Sr = 5); and n is
the total number of notes in the input text.

After normalising the lucky agents, the following is used to determine the
duration:

du =
α× ll
ln

(4)

where du is the duration; ll is the number of lucky agents for each note; and α
is a constant value that adjusts the duration of the note and is set to 2.

On the other hand, the number of unhappy agents has effect on the volume
of the note, which is calculated using the formulas below:

un =
ug × Sr

n
(5)

dy =
β × ul
un

(6)

where dy is the dynamic; un is the normalised unhappy agents; ug is the total
number of unhappy agents for all the notes; ul is the number of unhappy agents
for each note; and β is a constant value which adjusts the volume of the machine’s
speaker and is set to 10000.

4.4 Music Sheet

For each generated music in this paper a music sheet or score is presented.
Therefore, the musical notes are placed on the staff according to Table 6. See
Figure 4 which illustrates where each note should be positioned on the staff.

Fig. 4. Staff-and-clef

Given each note has its corresponding duration (see section 4.2), this needs
to be reflected in the generated music as well as the score. Having used the time
signature of 4:4 here, whenever the duration of a particular note towards the
end of a bar exceeds this figure, a silent note is placed and the note is moved
after the bar. The link between the notes and their corresponding time duration
is shown in Figure 5.



Fig. 5. Note Duration

4.5 Sample Set of Generated Music

The scores in Figure 6 illustrate two system runs, using a sample input text:
“hello music sds welcome to the reality”. The details of musical notes, the cor-
responding dynamics and durations and the algorithm’s generated values are
presented in Table 8. The recorded musics3, correspond to the music sheets and
the values in the table. The music library imported to generate the output is
Sound Cipher [13], where piano and guitar effects are also added to the music.

The generated musics shown here have a noticeable similarity4 both while
listening to the music or by looking at the music sheets. This is due to using
the same seed (input text) for all three runs. These musics, while exhibiting
loyalty towards the input text, have their own unique ‘swarmic flavours’ which
distinguish them from one another; this is because each time SDS algorithm is
run to process the input text, it returns varying dynamics and durations. This
difference in dynamics and duration in each run is the reflection of the searching
behaviour of the swarms.

In other words, the generated musics from different inputs have their own
musical features; equally, those musics generated from the same seed, demon-
strate ‘loyalty’ to the input text while at the same time exhibit their unique
‘swarmic flavours’. Figure 7 shows three runs off the same text.

5 Conclusion

This paper introduced a music generating algorithm based on Stochastic Diffu-
sion Search (SDS) which is a swarm intelligence algorithm mimicking the be-
haviour of one species of ants, Leptothorax acervorum. The input to the system
is a plain text which also forms the search space for the swarm intelligence algo-
rithm. Each letter or pair of letters are allocated a musical note; this process is
based on the English letter frequency sequence as detailed by Herbert S. Zim [12],

3
Follow this link to listen to three runs of the music generated by the algorithm based on the input
text ‘hello music sds welcome to the reality’:
https://www.dropbox.com/s/bh4icqsdlpz04re/SDSMusic.zip?dl=0

4
While different, the similarities between all three music sheets are evident. In every run, the
differences in note values and rest values are noticeable (i.e. by comparing all the first bars of all
the three runs with each other, you can see how the note values are different and also there is
one rest value in the third run)



Fig. 6. Music sheets showing two runs

in his classic introductory cryptography text “Codes and Secret Writing” where
each letter as well as the most common pair of letters and the most common
doubled letters are highlighted. The swarm intelligence algorithm then generates
the dynamic and duration of each note. This process leads to generating a music
each time the system is run.

While the final generated musics from the same input have resemblance with
each other (representing the original input text and the corresponding musical
notes which are determined by the English letter frequency sequence), due to
varying dynamic and duration, which are dependant on the searching behaviour
of the swarm intelligence algorithm in each run, the output musics have a unique
‘swarmic flavour’. In other words, while the musics generated from one input text
are ‘loyal’ to their input, the behaviour of the swarms induces enough ‘freedom’
to ensure originality in the each resulting music.

Among the topics for future research is to investigate and find a better ap-
proach in which letters are assigned to their corresponding musical notes. Addi-
tionally rhythm is yet to be fully implemented in the system.
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