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Abstract. Aesthetic evaluation of computer generated patterns is a
growing filed with several challenges. This paper focuses on the quanti-
tative evaluation of order and complexity in multi-state two-dimensional
(2D) cellular automata (CA). CA are known for their ability to gener-
ate highly complex patterns through simple and well defined local in-
teraction of rules. It is suggested that the order and complexity of 2D
patterns can be quantified by using mean information gain. This mea-
sure, also known as conditional entropy, takes into account conditional
and joint probabilities of the elements of a configuration in a 2D plane.
A series of experiments is designed to demonstrate the effectiveness of
the mean information gain in quantifying the structural order and com-
plexity, including the orientation of symmetries of multi-state 2D CA
configurations.

1 Introduction

The quantitative evaluation of order and complexity of patterns in two dimen-
sional (2D) plane which conforms with human intuitive perception of visual
structures is of a great importance in computational aesthetics. Various models
have been suggested based on Shannon’s information theory to address this prob-
lem, however, it is shown that entropic measures fails to discriminate accurately
structurally different patterns in 2D plane [12, 10, 9].

In this paper, following our previous studies [12, 10, 9], we examine informa-
tion gain model, in detecting symmetries, as a measure of order, and randomness
of 2D patterns. We use a multi-state 2D cellular automaton as our test-bed since
they are capable of generating a diverse number of structurally and perceptu-
ally distinct 2D patterns from the iteration of simple rules. Although classical



one-dimensional cellular automata (CA) with binary states can exhibit complex
behaviours, experiments with multi-state 2D CA reveal a very rich spectrum
of symmetric and asymmetric patterns [11, 13]. The main aim of this paper is
to demonstrate the effectiveness of information gain as a measure of order and
complexity in a 2D plane.

This paper is organised as follows. Section 2 provides formal definition of
CA. Section 3 demonstrates that Shannon entropy is not an adequate measure
for evaluating order and complexity in a 2D plane. Considering human intuitive
perception of visual structures, a spatial complexity spectrum is formulated and
the potential of information gain as a structural complexity measure is discussed.
Section 4 gives details of experiments that examine the effectiveness of informa-
tion gain. The paper closes with a discussion and results.

2 Cellular Automata

CA are one of the early bio-inspired systems invented by von Neumann and
Ulam in the late 1940s to study the logic of self-reproduction in a material-
independent framework. CA are known to exhibit complex behaviour from the
iterative application of simple rules. The popularity of Conway’s Game of Life [8]
drew the attention of a wider community of researchers and digital artists to
the unexplored potential of CA applications and especially in their capacity to
generate complex behaviour [5], often with aesthetic qualities [20].

Definition 1. A cellular automaton is a regular tiling of a lattice with uniform
deterministic finite state automata.

A cellular automaton A is specified by a quadruple 〈L, S,N, f〉 where:

1. L is a finite square lattice of cells (i, j).
2. S = {1, 2, . . . , k} is set of states. Each cell (i, j) in L has a state s ∈ S.
3. N is neighbourhood, as specified by a set of lattice vectors {ea}, a =

1, 2, . . . , N . The neighbourhood of cell r = (i, j) is {r+e1, r+e2, . . . , r+eN}.
A a cell is considered to be in its own neighbourhood so that one of {ea} is
the zero vector (0, 0). With an economy of notation, the cells in the neigh-
bourhood of (i, j) can be numbered from 1 to N ; the neighbourhood states of
(i, j) can therefore be denoted (s1, s2, . . . , sN ). Periodic boundary conditions
are applied at the edges of the lattice so that complete neighbourhoods exist
for every cell in L.

4. f is the update rule. f computes the state s1(t + 1) of a given cell from the
states (s1, s2, . . . , sN ) of cells in its neighbourhood:s1(t+1) = f(s1, s2, . . . , sN ).
A quiescent state sq satisfies f(sq, sq, . . . , sq) = sq.

There are two common neighbourhoods; (1) a five-cell von Neumann neighbour-
hood {(0, 0), (±1, 0), (0,±1)} and (2) a nine-cell Moore neighbourhood
{(0, 0), (±1, 0), (0,±1), (±1,±1)}. The collection of states for all cells in L is
known as a configuration (C). The global rule F maps the whole automaton

2



forward in time; it is the synchronous application of f to each cell. The be-
haviour of a particular A is the sequence c0, c1, c2, . . . , cT−1, where c0 is the
initial configuration (IC) at t = 0.

CA behaviour are sensitive to the IC and to L, S,N and f . The behaviour is
generally nonlinear and sometimes very complex; no single mathematical analysis
can describe, or even estimate, the behaviour of an arbitrary cellular automaton.
The vast size of the rule space, and the fact that this rule space is unstructured,
mean that knowledge of the behaviour a particular cellular automaton, or even
of a set of CA, gives no insight into the behaviour of any other CA. In the lack
of any practical model to predict the behaviour of a cellular automaton, the only
feasible method is to run simulations.

3 Measuring Order and Complexity in 2D

The introduction of information theory provided a quantitative model to mea-
sure the order and complexity of systems. Shannon’s information theory was
an attempt to address reliable communication over an unreliable channel [17].
Entropy is the core of this theory [6]. Let X be discrete alphabet, X a discrete
random variable, x ∈ X a particular value of X and P (x) the probability of x.
Then the entropy, H(X), is:

H(X) = −
∑
x∈X

P (x) log2 P (x). (1)

The quantity H is the average uncertainty in bits, log2( 1
p ) associated with X.

Entropy can also be interpreted as the average amount of information needed to
describe X. The value of entropy is always non-negative and reaches its maxi-
mum for the uniform distribution, log2(|X |):

0 6 H 6 log2(|X |). (2)

The lower bound of relation (2) corresponds to a deterministic variable (no uncer-
tainty) and the upper bound corresponds to a maximum uncertainty associated
with a random variable. Another interpretation of entropy is as a measure of
order and complexity. A low entropy implies low uncertainty so the message is
highly predictable, ordered and less complex. And high entropy implies a high
uncertainty, less predictability, highly disordered and complex.

Moles [15], Bense [4] and Arnheim [2] were pioneers of the application of
entropy to quantify order and complexity by adapting statistical measure of
information in aesthetic objects. Since then entropy is commonly used to measure
order and complexity in most of aesthetic evaluation functions [7, 14, 18, 16],
however entropy fails to discriminate accurately structurally different patterns
in two-dimensions. The main reason for this drawback is that it only reflects on
the distribution of the symbols, and not on their ordering [12, 10, 9].

This fact is illustrated in Fig. 1 where the entropy of 2D patterns with dif-
ferent structural characteristics is evaluated. Both of the patterns have a lattice
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size of 18× 18 consisting of three elements (white, blue and orange). The distri-
bution of elements are equally probable ( 1

108 ). Fig. 1a is a pattern with ordered
structure, a complete symmetry and Fig. 1b is a fairly structureless (random)
pattern.

(a) (b)
H = 1.58496 H = 1.58496

Fig. 1. Measurements of H for ordered and random 2D patterns with equally probable
distribution of elements.

As it is clear from the comparison of the above patterns with their corre-
sponding entropy value, despite their structural differences, both of the patterns
have the same entropy value. This is in contrast to our intuitive perception of
the order and complexity of patterns in 2D plane.

If the human perception of visual structures are taken into account in per-
ceiving order and complexity in a 2D plane, any potential measure of order and
complexity must be bounded by two extreme points of complete order and dis-
order. It is reasonable to assume that regular structures, irregular structures and
structureless patterns lie along between these extremes, as illustrated in Fig. 2.

order
regular structure | irregular structure | structureless

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ disorder

Fig. 2. The spectrum of spatial complexity.

A complete regular structure is a pattern of full symmetry, an irregular struc-
ture is a pattern with some local structural orders but not as regular as a fully
symmetrical pattern and finally a structureless pattern is a random arrangement
of elements.

A measure introduced in [3, 19, 1] and known as information gain, has been
suggested as a means of characterising the complexity of dynamical systems and
of patterns in 2D plane. It measures the amount of information gained in bits
when specifying the value, x, of a random variable X given knowledge of the
value, y, of another random variable Y ,

Gx,y = − log2 P (x|y). (3)
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P (x|y) is the conditional probability of a state x conditioned on the state y.
Then the mean information gain, GX,Y , is the average amount of information
gain from the description of the all possible states of Y :

GX,Y =
∑
x,y

P (x, y)Gx,y = −
∑
x,y

P (x, y) log2 P (x|y) (4)

where P (x, y) is the joint probability, prob(X = x, Y = y). G is also known
as the conditional entropy, H(X|Y ) [6]. Conditional entropy is the reduction in
uncertainty of the joint distribution of X and Y given knowledge of Y , H(X|Y ) =
H(X,Y )−H(Y ). The lower and upper bounds of GX,Y are

0 6 GX,Y 6 log2|X |. (5)

Definition 2. A structural complexity measure G, of a cellular automaton con-
figuration is the sum of the mean information gains of cells having homoge-
neous/heterogeneous neighbouring cells over 2D lattice.

For a cellular automaton configuration, G can be calculated by considering the
distribution of cell states over pairs of cells r, s,

Gr,s = −
∑
sr,ss

P (sr, ss) log2 P (sr, ss) (6)

where sr, ss are the states at r and s. Since |S|= N , Gr,s is a value in [0, N ].
The vertical, horizontal, primary diagonal (�) and secondary diagonal (�)

neighbouring pairs provide eight Gs; G(i,j),(i−1,j+1), G(i,j),(i,j+1), G(i,j),(i+1,j+1),

G(i,j),(i−1,j), G(i,j),(i+1,j), G(i,j),(i−1,j−1), G(i,j),(i,j−1) and G(i,j),(i+1,j−1).
The relative positions for non-edge cells are given by matrix M :

M =

 (i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j) (i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)

 . (7)

Correlations between cells on opposing lattice edges are not considered. The
result of this edge condition is that Gi+1,j is not necessarily equal to Gi−1,j . In
addition the differences between the horizontal (vertical) and two diagonal mean
information rates reveal left/right (up/down), primary and secondary diagonals
of 2D patterns. So the sequence of generated configurations by a multi-state
2D cellular automaton can be analysed by the differences between the vertical
(i, j ± 1), horizontal (i ± 1, j), primary diagonal (Pd) and secondary diagonal
(Sd) mean information gains by

∆Gi,j±1 = |Gi,j+1 −Gi,j−1|, (8a)

∆Gi±1,j = |Gi−1,j −Gi+1,j |, (8b)

∆GPd
= |Gi−1,j+1 −Gi+1,j−1|, (8c)
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∆GSd
= |Gi+1,j+1 −Gi−1,j−1|. (8d)

The mean information gains of the sample patterns in Fig. 1 are presented in
Fig. 3. The merits of ∆Gs in discriminating structurally different patterns, the
full symmetrical (Fig. 3a), the structureless and random (Fig. 3b), are clearly
evident.

(a) (b)
H = 1.58496 H = 1.58496

∆Gi,j±1 = 0 ∆Gi,j±1 = 0.00078

∆Gi±1,j = 0 ∆Gi±1,j = 0.00009

∆GPd = 0 ∆GPd = 0.00052

∆GSd = 0 ∆GSd = 0.00109

Fig. 3. The comparison of H with ∆Gs for ordered and random 2D patterns with
equally probable distribution of elements.

4 Experiments and Results

A series of experiments was designed to investigate the effectiveness of ∆Gs
in quantifying order (i.e. symmetry) and complexity of patterns generated by
a multi-state 2D cellular automaton. A cellular automaton considered for the
purpose of experimentations is specified in Table 1. The update rule maps four
states, represented by red, blue, orange and white; the quiescent state is white.

The experiments are conducted with three different ICs: (1) all white cells
except for a single blue cell at the centre of 65× 65 lattice (Fig. 4a), (2) a 6 cell
configuration (Fig. 4b) and (3) a random configuration with 2957 white quiescent
states, 417 orange, 403 blue and 448 red cells (Fig. 4c). The update rule has been
iterated synchronously for 100 successive time steps. The sequence of generated

(a) (b) (c)

Fig. 4. The three different ICs.
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Table 1. The update rule of experimental cellular automaton.

L = 65× 65 (4225 cells).
S = {0, 1, 2, 3} ≡ {�,�,�,�}
N : Moore neighbourhood
f : S9 7→ S

f(si,j)(t) = si,j(t+ 1) =


1 if s(i,j)(t) = 0 and σ = 1, 3
2 if s(i,j)(t) = 1 and σ = 1− 8
3 if s(i,j)(t) = 2 and σ = 0− 8
0 otherwise


where σ is the sum total of the neighbourhood states.

configurations are analysed by Eqs. 8a, 8b, 8d and 8c. Figs. 5,7,9 illustrate the
space-time diagrams for a sample of time steps starting from the three ICs.

The behaviour of cellular automaton starting from the single cell IC is a
sequence of symmetrical patterns (Fig. 5). The measurements of ∆Gs are con-
stant for the 100 time steps (∆Gi,j±1 = ∆Gi,j±1 = ∆GPd

= ∆GSd
= 0)(Fig. 6).

This indicates the development of full symmetrical patterns along the up/down,
left/right, primary diagonal and secondary diagonal directions.

t = 0 t = 20 t = 40

t = 60 t = 80 t = 100

Fig. 5. Space-time diagram of the experimental cellular automaton for sample time
steps starting from the single cell IC.
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Fig. 6. Measurements of ∆Gs for 100 time steps starting from the single IC.

The behaviour of cellular automaton from the 6 cell IC is a sequence of
symmetrical patterns with primary diagonal orientations (Fig. 7). The measure-
ments of ∆Gs, and especially ∆GPd

are reflecting the orientation of symmetries
(Fig. 8) where ∆GPd

= 0 for 100 time steps.

t = 0 t = 20 t = 40

t = 60 t = 80 t = 100

Fig. 7. Space-time diagram of the experimental cellular automaton for sample time
steps starting from the 6 cell IC.

The behaviour of cellular automaton starting from the random IC is a se-
quence of irregular structures with local structures (Fig. 9). ∆Gs rates for ran-
dom IC are plotted in Fig. 10. The measurements of ∆Gs are different for all
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Fig. 8. Measurements of ∆Gs for 100 time steps starting from the 6 cell IC.

the directional measurements (∆Gi,j±1 6= ∆Gi,j±1 6= ∆GPd
6= ∆GSd

). This is
an indicator of the development of irregular structures.

t = 0 t = 20 t = 40

t = 60 t = 80 t = 100

Fig. 9. Space-time diagram of the experimental cellular automaton for sample time
steps starting from the random IC (Fig. 4c).

The measurements of H rates for three ICs are plotted in Fig. 11. It is
clear that entropy fails to discriminate structural variations in the three set of
patterns generated by experimental cellular automaton rule. These experiments
demonstrate that a cellular automaton rule seeded with different ICs leads to the
formation of patterns with structurally different characteristics. The gradient of
the ∆Gs rate along lattice axes is able to detect the symmetrical patterns, in-
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Fig. 10. Measurements of ∆Gs for 100 time steps starting from the random IC.
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Fig. 11. Measurements of H for 100 time steps starting from the three ICs.

cluding their orientation from the unstructured random configuration generated
by this particular multi-state 2D cellular automaton.

5 Conclusion

One of the earliest and most well-known bio-inspired models of self-replicating
systems is cellular automata (CA). Multi-state two dimensional (2D) CA are
capable of generating complex and often aesthetically pleasing configurations.
The focus of this work, is an information-theoretic classification of order and
complexity in these patterns.

Among the most used statistical measures in the field is entropy which fails
to provide a comprehensive picture on the structure of a given input pattern.
Mean information gain, on the other hand, is based on correlations between ho-
mogeneity and heterogeneity of elements which takes into account conditional
and joint probabilities between pairs of elements in 2D plane. Using different
initial conditions of a multi-state 2D cellular automaton, this paper presents
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a set experiments to investigate the behaviour of mean information gain and
demonstrate its efficiency in distinguishing structurally different configurations.
As shown in the paper, mean information gain presents a particularly competi-
tive behaviour in distinguishing symmetries and their orientation.

Acknowledging that CA are one of the generative tools used in computer art,
exploring techniques to evaluate the aesthetic qualities of CA generated patterns
plays a significant role in enriching the automation of CA art. Furthermore,
since information gain measure is based on correlations between homogeneity
and heterogeneity of elements, it exhibits a promising application for pattern
classification.
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