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Abstract—One of the main sources of inspiration for techniques
applicable to complex search space and optimisation problems is
nature. This paper introduces a new metaheuristic – Dispersive
Flies Optimisation (DFO) – whose inspiration is beckoned from
the swarming behaviour of flies over food sources in nature.
The simplicity of the algorithm facilitates the analysis of its
behaviour. A series of experimental trials confirms the promis-
ing performance of the optimiser over a set of benchmarks,
as well as its competitiveness when compared against three
other well-known population based algorithms. The convergence-
independent diversity of DFO algorithm makes it a potentially
suitable candidate for dynamically changing environment. In
addition to diversity, the performance of the newly introduced
algorithm is investigated using the three performance measures
of accuracy, efficiency and reliability and its outperformance is
demonstrated in the paper.

Then the proposed swarm intelligence algorithm is used as
a tool to identify microcalcifications on the mammographs.
This algorithm is adapted for this particular purpose and
its performance is investigated by running the agents of the
swarm intelligence algorithm on sample mammographs whose
status have been determined by the experts. Two modes of
the algorithms are introduced in the paper, each providing the
clinicians with a different set of outputs, highlighting the areas of
interest where more attention should be given by those in charge
of the care of the patients.

I. INTRODUCTION

Throughout the history nature has been an inexplicable
source of inspiration for scientists and researchers. Obser-
vations, many of which made unintentionally, have been
triggering the inquisitive minds for hundreds of years. The
task of resolving problems and its often present nature in the
minds of scientists boosts the impact of these observations,
which in cases led to discoveries. Among others, researchers
in mathematics, physics and natural sciences have had their
fair share of ‘observations-leading-to-discoveries’.

Observing the magnificently choreographed movements of
birds, behaviour of ants foraging, convergence of honey bees in
search for food source and so forth has led several researchers

to propose (inspired vs. identical) models used to solve various
optimisation problems. Genetic Algorithm [1], Particle Swarm
Optimisation [2] and Ant Colony Optimisation [3] are only few
such techniques belonging to the broader category of swarm
intelligence; it investigates collective intelligence and aims at
modelling intelligence by looking at individuals in a social
context and monitoring their interactions with one another as
well as their interactions with the environment.

The work presented here aims at proposing a novel nature-
inspired algorithm based on the behaviours of flies hovering
over food sources. This model – Dispersive Flies Optimisation
or DFO – is first formulated mathematically and then a set of
experiments is conducted to examine its performance when
presented with various problems.

Afterwards an introduction to metastatic disease is given
along with a brief explanation on how to detect metastasis.
The swarm intelligence algorithm is adapted for the purpose
of this research. Next, a brief summary of x-ray mammography
and its use is presented, emphasising on mammographic film
reading as a particularly demanding visual task, which could
be facilitated using the technique presented in this paper.

II. DISPERSIVE FLIES OPTIMISATION

Dispersive Flies Optimisation (DFO) is an algorithm in-
spired by the swarming behaviour of flies hovering over food
sources. The swarming behaviour of flies is determined by
several factors and that the presence of threat could disturb
their convergence on the marker (or the optimum value).
Therefore, having considered the formation of the swarms over
the marker, the breaking or weakening of the swarms is also
noted in the proposed algorithm.

In other words, the swarming behaviour of the flies, in
Dispersive Flies Optimisation, consist of two tightly connected
mechanisms, one is the formation of the swarms and the other
is its breaking or weakening. The algorithm and the math-
ematical formulation of the update equations are introduced



below.
The position vectors of the population are defined as:

~xti =
[
xti1, x

t
i2, ..., x

t
iD

]
, i = 1, 2, ...,NP (1)

where t is the current time step, D is the dimension of the
problem space and NP is the number of flies (population
size).

In the first generation, when t = 0, the ith vector’s jth

component is initialised as:

x0id = xmin,d + r (xmax,d − xmin,d) (2)

where r is a random number drawn from a uniform distribution
on the unit interval U (0, 1); xmin and xmax are the lower and
upper initialisation bounds of the dth dimension, respectively.
Therefore, a population of flies are randomly initialised with
a position for each flies in the search space.

On each iteration, the components of the position vectors are
independently updated, taking into account the component’s
value, the corresponding value of the best neighbouring fly
(consider ring topology) with the best fitness, and the value
of the best fly in the whole swarm:

xtid = xt−1nb,d + U (0, 1)× (xt−1sb,d − x
t−1
id ) (3)

where xt−1nb,d is the value of the neighbour’s best fly in the dth

dimension at time step t−1; xt−1sb,d is the value of the swarm’s
best fly in the dth dimension at time step t− 1; and U (0, 1)
is the uniform distribution between 0 and 1.

The algorithm is characterised by two principle components:
a dynamic rule for updating flies position (assisted by a
social neighbouring network that informs this update), and
communication of the results of the best found fly to other
flies.

As stated earlier, the swarm is disturbed for various reasons;
one of the positive impacts of such disturbances is the dis-
placement of the disturbed flies which may lead to discovering
a better position. To consider this eventuality, an element of
stochasticity is introduced to the update process. Based on
this, individual components of flies’ position vectors are reset
if the random number, r, generated from a uniform distribution
on the unit interval U (0, 1) is less than the disturbance
threshold (dt). This guarantees a proportionate disturbance to
the otherwise permanent stagnation over a likely local minima.

Algorithm 1 summarises the DFO algorithm1.
The next section briefly presents three population-based

algorithms which will be used to compare the performance of
DFO, and then the results of a series of experiments conducted
on DFO over a set of benchmark functions are reported.

III. EXPERIMENTS

This section presents a set of experiment investigating the
performance of the newly introduced Dispersive Flies Opti-
misation (DFO) and discusses the results. Then, to understand
whether disturbance plays an important role in the optimisation

1The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/

Algorithm 1 Dispersive Flies Optimisation
1: while FE < 300, 000 do
2: for i = 1→ NP do
3: ~xi.fitness← f(~xi)
4: end for
5: sb← {sb, ∀ f(~xsb) = min (f(~x1), f(~x2), ..., f(~xNP))}
6: nb← {nb, ∀ f(~xnb) = min (f(~xleft), f(~xright))}
7: for i = 1→ NP do
8: for d = 1→ D do
9: τd ← xt−1nb,d + U (0, 1)× (xt−1sb,d − x

t−1
id )

10: if (r < dt) then
11: τd ← xmin,d + r (xmax,d − xmin,d)
12: end if
13: end for
14: ~xi ← ~τ
15: end for
16: end while

process, a control algorithm is presented DFO-c where no
disturbance is inflicted upon the population of flies.

Recognising the lose of diversity as a common issue in
all distribution based evolutionary optimisers (since dispersion
reduces with convergence), the impact of disturbance on
preserving the diversity of the population is also studied.
Additionally, an optimal value for disturbance threshold, dt, is
suggested. Afterwards the performance of DFO is compared
against few other well-known population-based algorithms,
namely Particle Swarm Optimisation (PSO), Differential Evo-
lution (DE) and Genetic Algorithm (GA).

A. Experiment Setup

The benchmarks used in the experiments (see Table I) are
divided in two sets, f1−14 and g1−14; more details about these
functions (e.g. global optima, mathematical formulas, etc.) are
reported in [4] and [5]. The first set, f1−14, have been used by
several authors [6], [4], [7] and it contains the three classes
of functions recommended by Yao et al. [8]: unimodal and
high dimensional, multimodal and high dimensional, and low
dimensional functions with few local minima. In order not to
initialise the flies on or near a region in the search space known
to have the global optimum, region scaling technique is used
[9], which makes sure the flies are initialised at a corner of
the search space where there are no optimal solutions.

The second test set, g1−14, are the first fourteen functions
of CEC 2005 test suite [5] and they present more challenging
features of the common functions from the aforementioned
test set (e.g. shifted by an arbitrary amount within the search
space and/or rotated). This set has also been used for many
researchers.

One hundred flies were used in the experiments and the
termination criterion for the experiments is set to reaching
300, 000 function evaluations (FEs). There are 50 Monte
Carlo simulations for each experiment and the results are
averaged over these independent simulations. Apart from the



TABLE I
BENCHMARK FUNCTIONS

Fn Name Class D Feasible Bounds
f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low Dimensioal 2 (−5, 5)D

f11 Goldstein-Price Low Dimensioal 2 (−2, 2)D

f12 Shekel 5 Low Dimensioal 4 (0, 10)D

f13 Shekel 7 Low Dimensioal 4 (0, 10)D

f14 Shekel 10 Low Dimensioal 4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated Unimodal 30 (−100, 100)D

High Conditioned Elliptic
g4 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

with Noise in Fitness
g5 Schwefel 2.6 Unimodal 30 (−100, 100)D

Global Optimum on Bounds
g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank Multimodal 30 (−600, 600)D

without Bounds
g8 Shifted Rotated Ackley with Multimodal 30 (−32, 32)D

Global Optimum on Bounds
g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank Expanded 30 (−5, 5)D

plus Rosenbrock
g14 Shifted Rotated Expanded Scaffer Expanded 30 (−100, 100)D

disturbance threshold which is set to dt = 0.001, there are no
adjustable parameters in DFO’s update equation.

The aim of the experiments is to study and demonstrate the
qualities of the newly introduced algorithm as a population
based continuous optimiser. The behaviour of the DFO algo-
rithm is compared against its control counterpart and some
other population based algorithms.

In this work, a standard particle swarm version, Clerc-
Kennedy PSO (PSO-CK) is used. In terms of DE, DE/best/1
variation of mutation approaches is deployed with CR and F
set to 0.5. In GA algorithm, the probabilities of crossover and
mutation of the individuals is set to pc = 0.7 and pm = 0.9
respectively. The tournament size of the tournament selection
is set to two, and elitism with an elite size of one is deployed
to maintain the best found solution in the population.

The details of these algorithms and the rest of configuration
is given in [10].

B. Performance measures and statistical analysis

In order to conduct the statistical analysis measuring the
presence of any significant difference in the performance of
the algorithms, Wilcoxon 1× 1 non-parametric statistical test

is deployed. The performance measures used in this paper are
error, efficiency, reliability and diversity which are described
below.

Error is defined by the quality of the best agent in terms
of its closeness to the optimum position (if knowledge about
the optimum position is known a priori, which is the case
here). Another measure used is efficiency which is the number
of function evaluations before reaching a specified error, and
reliability is the percentage of trials where a specified error is
reached. These performance measures are defined as below:

ERROR = |f (~xg)− f (~xo)| (4)

EFFICIENCY =
1

n

n∑
i=1

FEs (5)

RELIABILITY =
n

′

n
× 100 (6)

where ~xg is the best position found and ~xo is the position of
the known optimum solution; n is the number of trials in the
experiment and n

′
is the number of successful trials, FEs is the

number of function evaluations before reaching the specified
error, which in these experiments, set to 10−8.



In this work, diversity, which is the degree of convergence
and divergence, is defined as a measure to study the popula-
tion’s behaviour with regard to exploration and exploitation.
There are various approaches to measure diversity. The average
distance around the population centre is shown [11] to be a
robust measure in the presence of outliers and is defined as:

DIVERSITY =
1

NP

NP∑
i=1

√√√√ D∑
j=1

(
xji − x̄j

)2
(7)

x̄j =
1

NP

NP∑
i=1

xji (8)

where NP is the number of flies in the population, D is the
dimensionality of the problem, xji is the value of dimension
j of agent i, and x̄j is the average value of dimension j over
all agents.

C. Performance of Dispersive Flies Optimisation

The error, efficiency and reliability results of DFO perfor-
mance over the benchmarks are reported in Table II. The first
five columns detail the error-related figures and the last column
highlights the median efficiency along with the reliability
(shown between brackets) of the algorithm in finding the
optima. The algorithm exhibits a promising performance in op-
timising the presented problem set where half the benchmarks
(f1−2,5−11 and g1−2,7,9) are optimised with the specified
accuracy. The figures in the table are expanded in the following
categories:

1) Unimodal, high dimensional (f1,2, g1−5): The algorithm
optimises 57% of the benchmarks in this category; while both
functions in the first set are optimised (f1,2), only two out of
five benchmarks in the second and more challenging set are
optimised to the specified accuracy. All optimised benchmarks
achieve 100% success.

2) Low dimensional and few local minima (f10−14): In this
category, 40% of the benchmarks are optimised, with 100%
reliability for f10 and 32% for f11. However, none of the
Shekel functions (f12−14) are optimised; Shekel is known to
be a challenging function to optimise due to the presence of
several broad sub-optimal minima; also the proximity of a
small number of optima to the Shekel parameter ~ai is another
reason for the difficulty of optimising these set of functions.

3) Multimodal, high dimensional (f3−9, g6−14): The op-
timiser is able to optimise 50% of the benchmarks in this
category (f5−9 and g7,9), 71% of which achieve 100% success
rate (all except f7, g7 with 28% and 10% success rates
respectively). The optimiser exhibit a promising performance
when dealing with the difficult Rosenbrock functions (f3, g6),
reaching the error of 10−4 and 10−3 respectively. The algo-
rithm performs exceptionally well in optimising the infamous
Rastrigin functions, both common and shifted mode (i.e. f5
and g9), achieving 100% success rate; however it does show
weakness in the more challenging g10 rotated version.

The success of the optimiser in optimising the notorious
Rastrigin function in its common and shifted modes will be

TABLE II
DFO – DISPERSIVE FLIES OPTIMISATION

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 6.46E-47 1.97E-40 1.75E-43 1.07E-41 3.49E-41 46850 (100%)
f2 2.24E-12 6.01E-10 6.46E-11 1.08E-10 1.26E-10 239850 (100%)
f3 1.74E-04 1.45E+01 3.65E-01 2.17E+00 3.62E+00 ∞ (0%)
f4 3.89E-07 5.05E-03 2.87E-05 2.49E-04 7.81E-04 ∞ (0%)
f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 84850 (100%)
f6 2.84E-14 6.39E-14 3.91E-14 3.88E-14 6.49E-15 121200 (100%)
f7 0.00E+00 1.54E-01 1.85E-02 3.25E-02 3.74E-02 47450 (28%)
f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50950 (100%)
f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55550 (100%)
f10 0.00E+00 2.22E-16 0.00E+00 4.00E-17 8.62E-17 1700 (100%)
f11 0.00E+00 8.10E+01 8.10E+01 5.51E+01 3.82E+01 2100 (32%)
f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)
f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)
f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 2.27E-13 1.71E-13 1.49E-13 4.28E-14 45300 (100%)
g2 4.55E-12 9.78E-10 3.88E-11 1.03E-10 1.57E-10 234100 (100%)
g3 3.58E+05 3.22E+06 1.40E+06 1.38E+06 6.23E+05 ∞ (0%)
g4 1.40E+00 2.38E+02 2.18E+01 3.71E+01 4.74E+01 ∞ (0%)
g5 3.47E+03 1.82E+04 8.95E+03 9.26E+03 3.17E+03 ∞ (0%)
g6 1.66E-03 1.51E+02 3.06E+00 1.41E+01 3.05E+01 ∞ (0%)
g7 3.31E-11 2.64E-01 1.97E-02 2.93E-02 4.05E-02 236800 (10%)
g8 2.00E+01 2.02E+01 2.01E+01 2.01E+01 3.11E-02 ∞ (0%)
g9 1.14E-13 2.27E-13 1.71E-13 1.52E-13 3.71E-14 89450 (100%)
g10 1.29E+02 3.42E+02 2.34E+02 2.38E+02 5.62E+01 ∞ (0%)
g11 2.46E+01 4.02E+01 3.11E+01 3.12E+01 3.23E+00 ∞ (0%)
g12 9.73E+01 1.58E+04 2.34E+03 3.62E+03 3.51E+03 ∞ (0%)
g13 9.34E-01 2.01E+00 1.48E+00 1.48E+00 3.07E-01 ∞ (0%)
g14 1.23E+01 1.40E+01 1.35E+01 1.35E+01 3.69E-01 ∞ (0%)

discussed in the context of DFO’s dimension-to-dimension
disturbance mechanism induced by the algorithm.

In order to provide a better understanding of the behaviour
of the algorithm, in the next section, the disturbance is
discarded and the diversity of the algorithm is studied.

D. Diversity in DFO

Most swarm intelligence and evolutionary techniques com-
mence with exploration and, over time (i.e. function evalu-
ations or iterations), lean towards exploitation. Maintaining
the right balance between exploration and exploitation phases
has proved to be difficult. The absence of the aforementioned
balance leads to a weaker diversity when encountering a local
minimum and thus the common problem of pre-mature con-
vergence to a local minimum surfaces. Similar to other swarm
intelligence and evolutionary algorithms, DFO commences
with exploration and over time, through its mechanism (i.e.
gradual decrease in the distance between the members of
the population and as such, each agent’s local and global
best positions), moves towards exploitation. However, having
implemented the disturbance threshold, a dose of diversity (i.e.
dt) is introduced in the population throughout the optimisation
process, aiming to enhance the diversity of the algorithm.

Figure 1 illustrates the convergence of the population to-
wards the optima and their diversities in three random trials
over three benchmarks (i.e. g1,7,9 chosen from the second set)
as examples from unimodal and multimodal functions. The
difference between the error and the diversity values demon-
strates the algorithm’s ability in exploration while converging



to the optima whose fitness reach as low as 10−13 in g1 and
g9.

Exploring the role of disturbance in increasing diversity,
a control algorithm is proposed (DFO-c) where there is no
disturbance (dt = 0) during the position update process. The
graphs in Fig. 1 illustrate the diversity of DFO-c populations in
randomly chosen trials over three sample benchmarks (again
g1,7,9). The graphs illustrate that the diversity of the population
in DFO-c is less than DFO, thus emphasising the impact of
disturbance in injecting diversity which in turn facilitates the
escape from local minima (e.g. as demonstrated in case of
the highly multimodal Rastrigin functions f5, g9). Note the
gradual shrinkage of diversity in g9 (≈ 10−13) which is a
clear indication of a premature convergence to a local minima
with very poor chance of escape.

In order to compare the performance of DFO and its control
counterpart, Table III presents the result of optimising the
benchmarks using DFO-c. Additionally, a statistical analysis
is conducted and the output is reported in Table IV where
the performance is compared using the three aforementioned
measures of error, efficiency and reliability (see Section III-B
for the definitions of the measures). The results show that in
89% of cases (where there is a significant difference between
the two algorithms), DFO is performing significantly better
than its control counterpart (DFO-c) which is stripped from the
diversity inducing disturbance. Furthermore, in all multimodal
functions (f3−9 and g6−12), whenever there is a statistically
significant difference between DFO and DFO-c, the former
demonstrates significant outperformance over the later.

Following on the results from measuring error, Table IV also
shows that in terms of efficiency and reliability measures, DFO
is 79% more efficient than its control counterpart, and 92%
more reliable.

E. Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity of DFO
population is discussed earlier (Section III-D). Also, the im-
portance of disturbance is investigated on the optimisation
capability of DFO by introducing a control algorithm which
lacks the disturbance mechanism and the results demonstrate
the positive impact of this mechanism. The aim of this section
is to recommend a value for the disturbance threshold, dt. The
range of disturbance probabilities used in this experiment is
between 1 to 10−9 and the values were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9

Fig. 2 illustrates the performance of DFO using these dt
probabilities. Both set of benchmarks (i.e. f1−14 and g1−14)
have been used to find a suitable value for the disturbance
threshold. As the heat map highlights, the optimal range is
10−2 < dt < 10−4 and the overall recommended value of
dt = 10−3 is suggested as a good compromise.
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Fig. 1. DFO and DFO-c: diversity and error in g1,7,9.

F. Comparing DFO with other Population-Based Optimisers
Having presented the performance of the DFO algorithm

(taking into account the three performance measures of error,



TABLE III
DFO-C – CONTROL DFO ALGORITHM

Min. Max. Median Mean StdDev Eff. (Rel.)
f1 1.44E-56 3.09E-36 1.27E-45 9.65E-38 4.55E-37 65400 (100%)
f2 7.29E-09 3.23E+01 1.28E-04 7.60E-01 4.60E+00 298200 (2%)
f3 5.27E-05 1.61E+02 5.08E+00 1.67E+01 3.08E+01 ∞ (0%)
f4 4.48E-09 3.20E+03 1.55E+03 1.40E+03 8.66E+02 141500 (2%)
f5 1.87E+02 4.17E+02 2.96E+02 2.94E+02 5.76E+01 ∞ (0%)
f6 1.97E+01 2.00E+01 1.98E+01 1.98E+01 5.24E-02 ∞ (0%)
f7 2.22E-16 6.00E+00 9.30E-02 3.51E-01 8.72E-01 64050 (8%)
f8 1.03E-32 3.30E+02 2.14E+00 2.35E+01 5.84E+01 132950 (24%)
f9 0.00E+00 1.57E+02 1.54E-01 5.35E+00 2.27E+01 176500 (30%)
f10 0.00E+00 2.22E-16 0.00E+00 7.99E-17 1.08E-16 1700 (100%)
f11 0.00E+00 8.10E+01 8.10E+01 5.99E+01 3.59E+01 2100 (26%)
f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0%)
f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0%)
f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0%)

g1 5.68E-14 9.37E-05 1.14E-13 1.91E-06 1.33E-05 70600 (94%)
g2 1.68E-09 2.23E+01 1.23E-04 4.63E-01 3.14E+00 257700 (2%)
g3 2.18E+05 5.38E+06 1.67E+06 1.73E+06 9.39E+05 ∞ (0%)
g4 2.23E+02 1.74E+04 1.80E+03 2.91E+03 3.36E+03 ∞ (0%)
g5 5.79E+03 1.38E+04 8.50E+03 8.69E+03 2.00E+03 ∞ (0%)
g6 2.25E-04 9.53E+01 8.61E+00 1.68E+01 2.52E+01 ∞ (0%)
g7 3.01E-10 2.13E-01 3.02E-02 4.17E-02 4.41E-02 263900 (2%)
g8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 3.89E-02 ∞ (0%)
g9 8.36E+01 2.64E+02 1.62E+02 1.64E+02 4.61E+01 ∞ (0%)
g10 1.22E+02 4.93E+02 2.69E+02 2.71E+02 7.69E+01 ∞ (0%)
g11 1.98E+01 4.11E+01 3.10E+01 3.13E+01 3.97E+00 ∞ (0%)
g12 2.32E+02 1.38E+04 3.04E+03 4.78E+03 3.88E+03 ∞ (0%)
g13 4.79E+00 3.56E+01 1.47E+01 1.58E+01 6.47E+00 ∞ (0%)
g14 1.28E+01 1.45E+01 1.36E+01 1.37E+01 3.38E-01 ∞ (0%)
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Fig. 2. Fine tuning disturbance threshold

efficiency and reliability, as well as the diversity of its pop-
ulation and the impact of disturbance on its behaviour), this
section focuses on contrasting the introduced algorithm with
few well-known optimisation algorithms. The three population

TABLE IV
COMPARING DFO AND DFO-C PERFORMANCE

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error differ-
ence between each pair of algorithms is significant at the 5% level, the pairs
are marked. X–o shows DFO is significantly outperforming its counterpart
algorithm; and o–X shows that the algorithm compared to DFO is significantly
better than DFO. In terms of the efficiency and reliability measures, 1 – 0 (or
0 – 1) indicates that the left (or right) algorithm is more efficient/reliable. The
figures, n – m, in the last row present a count of the number of X’s or 1’s in
the respective columns.

DFO – DFO-c
Error Efficiency Reliability

f1 o – X 1 – 0 –
f2 X – o 1 – 0 1 – 0
f3 X – o – –
f4 X – o 0 – 1 0 – 1
f5 X – o 1 – 0 1 – 0
f6 X – o 1 – 0 1 – 0
f7 X – o 1 – 0 1 – 0
f8 X – o 1 – 0 1 – 0
f9 X – o 1 – 0 1 – 0
f10 o – X 0 – 1 –
f11 – 0 – 1 1 – 0
f12 – – –
f13 – – –
f14 – – –

g1 – 1 – 0 1 – 0
g2 X – o 1 – 0 1 – 0
g3 X – o – –
g4 X – o – –
g5 – – –
g6 – – –
g7 X – o 1 – 0 1 – 0
g8 – – –
g9 X – o 1 – 0 1 – 0
g10 X – o – –
g11 – – –
g12 – – –
g13 X – o – –
g14 X – o – –

16 – 2 11 – 3 11 – 1

TABLE V
DE (DIFFERENTIAL EVOLUTION), PSO (PARTICLE SWARM

OPTIMISATION) AND GA (GENETIC ALGORITHM)

DE PSO GA
Error Eff. (Rel.) Error Eff. (Rel.) Error Eff. (Rel.)

g1 1.38E-13 21500 (100%) 5.23E-14 656236 (100%) 5.04E-05 ∞ (0%)
g2 1.72E-07 ∞ (0%) 1.33E-01 ∞ (0%) 1.21E+04 ∞ (0%)
g3 9.65E+06 ∞ (0%) 1.52E+06 ∞ (0%) 1.47E+07 ∞ (0%)
g4 4.92E-01 ∞ (0%) 7.89E+03 ∞ (0%) 5.13E+04 ∞ (0%)
g5 2.34E+03 ∞ (0%) 5.04E+03 ∞ (0%) 2.09E+04 ∞ (0%)
g6 2.30E+00 265800 (12%) 2.16E+01 ∞ (0%) 7.23E+02 ∞ (0%)
g7 5.39E-01 ∞ (0%) 1.04E-02 279653 (10%) 5.48E+03 ∞ (0%)
g8 2.09E+01 ∞ (0%) 2.09E+01 ∞ (0%) 2.04E+01 ∞ (0%)
g9 3.47E+01 ∞ (0%) 9.59E+01 ∞ (0%) 2.20E+01 ∞ (0%)
g10 1.47E+02 ∞ (0%) 1.14E+02 ∞ (0%) 1.39E+02 ∞ (0%)
g11 3.65E+01 ∞ (0%) 3.00E+01 ∞ (0%) 1.17E+01 ∞ (0%)
g12 5.85E+05 ∞ (0%) 9.51E+03 ∞ (0%) 8.14E+03 ∞ (0%)
g13 5.70E+00 ∞ (0%) 5.35E+00 ∞ (0%) 2.70E+00 ∞ (0%)
g14 1.34E+01 ∞ (0%) 1.25E+01 ∞ (0%) 1.39E+01 ∞ (0%)

algorithms deployed for this comparison are Differential Evo-
lution, Particle Swarm Optimisation and Genetic Algorithm.
In this comparison, only the second and the more challenging
set of benchmarks, g1−14 are used. Table V presents the
optimising results of the aforementioned algorithms, and as



TABLE VI
COMPARING ERROR IN DFO WITH DE, PSO AND GA

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference
between each pair of algorithms is significant at the 5% level, the pairs are
marked. X–o shows that the left algorithm is significantly better than the right
one; and o–X shows that the right one is significantly better than the left. n
– m in the row labeled Σ is a count of the number of X’s in the columns
above.

DFO - DE DFO - PSO DFO - GA
g1 – o – X X – o
g2 X – o X – o X – o
g3 X – o – X – o
g4 o – X X – o X – o
g5 o – X o – X X – o
g6 o – X X – o X – o
g7 X – o o – X X – o
g8 X – o X – o X – o
g9 X – o X – o X – o
g10 o – X o – X o – X
g11 X – o – o – X
g12 X – o X – o X – o
g13 X – o X – o X – o
g14 – o – X X – o∑

8 – 4 7 – 5 12 – 2

shown, the algorithms have optimised some of the benchmark
to the specified accuracy, 10−8. Table VI shows the result
of the statistical analysis comparing DFO with the other
three optimisers. Based on this comparison, whenever there
is a significant difference between the performance of DFO
and the other algorithms, DFO significantly outperforms DE,
PSO and GA in 66.67%, 58.33% and 85.71% of the cases,
respectively. Table VII summaries the efficiency results of the
three optimisers with that of DFO; note that only the efficiency
of functions reaching the specified error is given. As shown in
the table, DFO, in the majority of cases, outperforms the other
algorithms. In other words, although, when compared with DE,
DFO only outperforms marginally (60%), it outperforms both
PSO and GA in all cases (100%). The reliability comparison
of DFO with the other optimisers is given in Table VIII. DFO
is shown to be the most reliable algorithm in this comparison.
While DFO outperforms DE in 75% of cases, it show 100%
outperformance when compared with PSO and GA. In order
to compare the diversity of the DFO algorithm with the
other three optimisers, three benchmarks were chosen from

TABLE VII
COMPARING EFFICIENCY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
efficient. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA
g1 0 – 1 1 – 0 1 – 0
g2 1 – 0 1 – 0 1 – 0
g6 0 – 1 – –
g7 1 – 0 1 – 0 1 – 0
g9 1 – 0 1 – 0 1 – 0∑

3 – 2 4 – 0 4 – 0

TABLE VIII
COMPARING RELIABILITY IN DFO WITH DE, PSO AND GA

In this table, 1 – 0 (0 – 1) indicates that the left (right) algorithm is more
reliable. The figures, n – m, in the last row present a count of the number of
1’s in the respective columns. Note that non-applicable functions have been
removed from the table.

DFO - DE DFO - PSO DFO - GA
g2 1 – 0 1 – 0 1 – 0
g6 0 – 1 – –
g7 1 – 0 – 1 – 0
g9 1 – 0 1 – 0 1 – 0∑

3 – 1 2 – 0 4 – 0
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Fig. 3. Diversity of the population in DFO, DE, PSO and GA over three
random trials in g1,7 and 9.

unimodal and multimodal categories (g1,7,9). The result of this
comparison is illustrated in Fig. 3. It is shown that DE has the
least diversity in both uni- and multimodal functions. On the
other hand, the diversity of the population in PSO decreases
as the population converges towards an optimum (see g1);
however, when convergence does not occur (e.g. in g7,9), PSO
maintain its high diversity throughout the optimisation process.
GA shows a similar pattern to that of PSO in multimodal
functions, which is the gradual diversity decrease over time;



however it maintains a higher diversity for the unimodal
function than PSO (perhaps attributable to the difference in
the fitness of the best positions found in both algorithms). In
terms of DFO, diversity is less convergence-dependent and
more stable across all modalities.

IV. COMPUTER AIDED DIAGNOSIS AND METASTATIC
DISEASE

Computer aided diagnosis (CAD) is an emerging field in
medicine. The technique introduced in this paper can help
radiologists to examine the image in greater depth and has the
potential to help doctors from different medical disciplines
to interpret medical imaging with greater confidence. Fur-
thermore CAD is a promising learning tool for both medical
students and junior doctors to develop basic diagnostic skills.
This paper presents a new CAD approach in which a recently
developed swarm intelligence algorithm – Dispersive Flies
Optimisation [10] – is applied to a medical imaging modality
where the potential areas of microcalcifications on the x-ray
mammography are detected.

X-ray mammography has been shown to be effective as a
method for detecting early breast cancer, but the success of
mass screening depends critically on the availability of highly
skilled film readers to interpret the images. The majority of
film readers in the UK are consultant radiologists and in
order to maintain a sufficiently high standard of interpretation,
readers are required to undergo training, to keep in practice
and to evaluate their performance at regular intervals [12].
Mammographic film reading is a particularly demanding visual
task. In screening programmes, the film reader must search for
extremely infrequent and often very subtle signs of cancer
superimposed on complex and variable backgrounds. Early
breast cancer may appear in a variety of forms: a few particles
of microcalcification; a small ill-defined or speculated mass;
abnormal asymmetry between right and left breast images,
or subtle distortion of the underlying structure of the breast.
These abnormalities vary in size, shape, structure, brightness
and location and may share a great deal of similarity with
normal mammographic appearances. False negative cases, in
which signs of cancer are missed by a reader, sometimes occur.
Retrospective evaluation of the previous screening films of
cancers detected between screening rounds (interval cancers)
and screen-detected cancers show evidence of abnormality
in between 16% and 27% of cases. Some of these signs
are very subtle, and may have been seen by the readers but
dismissed as being insignificant, but others are clear signs of
malignancy [13], [14], [15]. However, different readers miss
different cancers, as is evidenced by the success of double
reading in which two readers independently read the films
[16]. The most accurate method of interpretation is double
reading with arbitration, where a third reader reviews cases
about which the two readers disagree [16], [17]. In the UK
particularly with the National Health Service Breast Screening
Programme (NHSBSP) there is an increased demand for
skilled manpower to effectively interpret mammographs and
double or triple reading of the mammograph is not viable

option due to the increased workload. A novel and different
method of coping with this is the use of computer-based
aids. Researchers have been developing algorithms to detect
mammographic abnormalities for more than 30 years with
the aim of either automating mammographic interpretation or,
more realistically, providing a tool which will enhance human
film-reading performance. There are two basic approaches to
the problem of detecting abnormalities in mammograms: either
to search the images for specific appearances suggestive of
cancer, or to characterize normal mammographic appearance
to the extent that it is possible to detect anything that fails to
conform to the generated model of normality.

The purpose of the current study is to apply for the first
time an swarm intelligence algorithm namely dispersive flies
optimisation to perform the task of identifying the microcal-
cifications on the mammographs.

V. APPLYING DISPERSIVE FLIES OPTIMISATION

In this paper, we are presenting a unique approach by
deploying the recently developed DFO algorithm to detect mi-
crocalcifications on the mammographs. This approach demon-
strates a promising ability to undertake this task with similar
level of sensitivity. The scan used in this paper is processed by
the DFO agents which are responsible for locating the affected
areas.

The reproducibility and the accuracy of the DFO algorithm
can be utilised in developing a standardised system to interpret
bone scans and mammographs preventing operator errors and
discrepancies. This technology can be employed as an adjunct
to help radiologists assess the various parts of the bone scans
and mammographs making the diagnosis of the lesions more
thorough and less time consuming. Additionally this technique
can be effectively used to develop programs for teaching and
training medical students and junior doctors.

A. Experiments and Results

This section presents the technical details and the exper-
iment setup, followed by the results and discussions of the
performance of the algorithm.

The number of agents used in this experiment is 50,000.
This figure depends on the size of the input scan (in the case
of the paper the size of the scan is 500 × 667 pixels) and
the algorithm is run for 25 iterations (i.e. 25 cycles of test
and diffusion phases). The output images shown later in the
paper are snapshots taken after every 5 iterations recoding the
behaviour of the agents at each stage. As stated earlier, in the
beginning of the process, all the agents are initialised randomly
throughout the search space.

DFO is adapted here to search for areas of metastasis or
calcifications in the feasible solution space. Given that the
problem is a multi-objective problem, on the contrary to Eq.
3 the local neighbourhood architecture of the algorithm is
implemented as shown below:

xtid = xt−1nb,d + U (0, 1)× (xt−1nb,d − x
t−1
id ) (9)
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Fig. 6. rad = 10 for Model II
The symbol x represents the position of the agent and the o’s represent the

pixels used in the calculation of the fitness value of the DFO agent.

In order to evaluate the fitness of each agent, a radius (rad)
value is specified which determine how many pixels around
the pixel chosen by the agent is used to calculate the fitness
of each agent. In Model I of the algorithm the radius is set to
1, rad = 1 as shown in Fig 5. In this model, the purpose is to
highlight the area of calcification by allowing the DFO agents
to converge on the areas of interest. In Mode II, radius is set
to rad = 10 in order to segregate the areas that radiologists
should pay particular attention. In this mode, the exact points
of high calcifications are not marked but DFO agents form a
border around the area of interest.

As shown in Figs. 7 and 8 areas with higher potential of
metastasis and calcifications are identified using Mode I and II
respectively. These figures visually present the technique used,
illustrating how agents congregate over the areas of interest
over time (i.e. iterations) when fed with the scans as inputs
of the algorithm. As the figures show, DFO agents converge

to the areas of interest (as confirmed by the medical experts)
throughout the entire search space.

VI. CONCLUSION

Dispersive Flies Optimisation (DFO), a simple numerical
optimiser over continuous search spaces, is a population based
stochastic algorithm, proposed to search for an optimum value
in the feasible solution space; despite its simplicity, the algo-
rithm’s competitiveness over an exemplar set of benchmark
functions is demonstrated. As part of the study and in an
experiment, a control algorithm is proposed to investigate
the behaviour of the optimiser. In this experiment, the al-
gorithm’s induced disturbance mechanism shows the ability
to maintain a stable and convergence-independent diversity
throughout the optimisation process. Additionally, a suitable
value is recommended for the disturbance threshold which is
the only parameter in the update equations to be optimised.
This parameter controls the level of diversity by injecting a
component-wise disturbance (or restart) in the flies, aiming to
preserve a balance between exploration and exploitation.

In addition to diversity, DFO’s performance has been in-
vestigated using three other performance measures (i.e. error,
efficiency and reliability). Using these measures, it is estab-
lished that the newly introduced algorithm, outperforms few
generic population based algorithms (i.e. differential evolution,
particle swarm optimisation and genetic algorithm) in all of
the aforementioned measures over the presented benchmarks.
In other words, DFO is more efficient and reliable in 84.62%
and 90% of the cases, respectively; furthermore, when there
exists a statistically significant difference, DFO converges to
better solutions in 71.05% of problem set.

Additionally, this paper details the promising results of the
novel application of DFO in detecting areas of interest and
the identification of the potential microcalcifications on the
mammographs. Two modes are proposed to further investigate



Fig. 7. Mode I: detecting calcifications

the behaviour of the agents in the population and offer two
representations of the outcome in order to emphasis on the
area of interest and draw the attention of the clinicians in
charge.

Finally, it is emphasised that the presented technique could
be effectively utilised as an adjunct to the expert’s eyes of a
specialist.
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