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In this paper two swarm intelligence algorithms are used, the first leading the ‘attention’
of the swarm and the latter responsible for the tracing mechanism. The attention mechanism
is coordinated by agents of Stochastic Diffusion Search where they selectively attend to
areas of a digital canvas (with line drawings) which contains (sharper) corners. Once the
swarm’s attention is drawn to the line of interest with a sharp corner, the corresponding line
segment is fed into the tracing algorithm, Dispersive Flies Optimisation which ‘consumes’
the input in order to generate a ‘swarmic sketch’ of the input line. The sketching process is
the result of the ‘flies’ leaving traces of their movements on the digital canvas which are then
revisited repeatedly in an attempt to re-sketch the traces they left. This cyclic process is then
introduced in the context of autopoiesis, where the philosophical aspects of the autopoietic
artist are discussed.

The autopoetic artist is described in two modalities: gluttonous and contented. In the Glut-
tonous Autopoietic Artist mode, by iteratively focussing on areas-of-rich-complexity, as the
decoding process of the input sketch unfolds, it leads to a less complex structure which ul-
timately results in an empty canvas; therein reifying the artwork’s ‘death’. In the Contented
Autopoietic Artist mode, by refocussing the autopoietic artist’s reflections on ‘meaning’ onto
different constitutive elements, and modifying her reconstitution, different behaviours of au-
topoietic creativity can be induced and therefore, the autopoietic processes become less likely
to fade away and more open-ended in their creative endeavour.

1. Introduction

Studies of the behaviour of social insects (e.g. ants and bees) and social animals (e.g.
birds and fish) have proposed several new metaheuristics for use in collective intelligence.
Natural examples of swarm intelligence that exhibit a form of social interaction are fish
schooling, birds flocking, ant colonies in nesting and foraging, bacterial growth, animal
herding, brood sorting (Bonabeau, Dorigo, and Theraulaz, 1999).

Although producing artistic works through the use of swarm intelligence techniques has
been previously explored, this work explores the concepts of attention and autopoiesis
through a type of collective intelligence, which emerges through the interaction of simple
agents (representing the social insects and animals) in nature-inspired algorithms, namely
Stochastic Diffusion Search (SDS) by Bishop (1989) and Dispersive Flies Optimisation
(DFO) by al-Rifaie (2014).

In this work, SDS is deployed to enforce the idea of attention to area of the search
space (digital canvas with line drawings) where there are more details (i.e. more lines or
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points); once the area of attention is identified, DFO through its flies, traces the points of
the line selected and the flies’ movements are visualised on the canvas. As attention moves
from one area of the original line drawing to another, a sketch is produced which is the
collective result of the SDS-led attention and millions of simple interactions facilitated
by DFO algorithm.

In the last couple of years, several research work have been conducted utilising the
two aforementioned swarm intelligence algorithms (e.g. al-Rifaie and al-Rifaie (2016);
al-Rifaie and Aber (2016); al-Rifaie, Aber, and Hemanth (2015); Bedi, Bhasin, Mittal,
and Chatterjee (2014); Salman, Ahmad, and Omran (2015)). Additionally, the authors
have been exploring the artistic capabilities of swarm intelligence techniques in several
publications (al-Rifaie and Bishop (2013a,b)), along with some philosophical arguments
on the computational creativity of such systems (e.g. al-Rifaie, Cropley, Cropley, and
Bishop (2016); Bishop and Al-Rifaie (2016)).

In the following sections, initially a brief overview of some of the work in genera-
tive art and swarm intelligence is provided. Subsequently, the two swarm intelligence
algorithms deployed here are presented. Afterwards, attention and tracing mechanisms
associated with the two swarm intelligence algorithms are presented, thus providing de-
tails on the performance of the computer-generated nature-inspired attentive swarms in
re-interpreting the original line drawings. Finally, the concept of autopoietic swarmic
artist is discussed in the philosophical context of autopoiesis.

2. Generative art and swarm intelligence

Among the many works in the field of generative art are research on swarm painting
(Aupetit, Bordeau, Monmarche, Slimane, and Venturini, 2004; Moura and Ramos, 2007;
Urbano, 2005, 2006), which includes, ant colony paintings (Greenfield, 2005; Monmarche,
Aupetit, Bordeau, Slimane, and Venturini, 2003; Semet, O’Reilly, and Durand, 2004) and
other multi-agent systems, including RenderBots (Schlechtweg, Germer, and Strothotte,
2005) as well as the particle-based non-evolutionary approach of Loose and Sketchy
Animation (Curtis, 1998).

In most of such swarm-based work (Aupetit et al., 2004; Greenfield, 2005; Moura
and Ramos, 2007; Urbano, 2005, 2006), the painting process does not re-work an initial
drawing, but rather focuses on presenting “random artistic patterns”, somewhere between
order and chaos (Urbano, 2006). Other classes of research by (Curtis, 1998; Schlechtweg
et al., 2005) are based on reworking an initial drawing. There is a significant number
of related papers in the area of non-photorealistic rendering; particularly, many papers
approach drawing and painting using an optimisation framework. Furthermore, particles
have been used for stippling and to achieve other aesthetic styles in numerous papers.
The work by Turk and Banks (1996) is an early example of optimising particle positions
to control a stroke-based rendering. Hertzmann (Hertzmann, 2001) optimised a global
function over all strokes using a relaxation approach. Collomosse and Hall (2005) have
used a global genetic algorithm to define a rendering algorithm. More recently, Zhao
and Zhu (2011) deployed an optimisation-based approach to study the stroke placement
problem in painterly rendering, and presented a solution named stroke processes, which
enables intuitive and interactive customisation of painting styles.
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3. Communication in social systems

Communication, as a social interaction or information exchange observed in social insects
and social animals plays a significant role in all swarm intelligence algorithms, including
SDS and DFO. Although in nature it is not only the syntactical information that is
exchanged between the individuals but also semantic rules and beliefs about how to
process this information (Kennedy, Eberhart, and Shi, 2001), in typical swarm intelligence
algorithms only the syntactical exchange of information is taken into account.

In the study of the interaction of social insects, two important elements are the in-
dividuals and the environment, which result in two integration schemes: the first is the
way in which individuals interact with each other, and the second is the interaction of
the individuals with the environment (e.g. through pheromones) (Bonabeau, Dorigo, and
Theraulaz, 2000). Self-interaction between individuals is carried out through recruitment
strategies and it has been demonstrated that, typically, various recruitment strategies are
used by ants (Holldobler and Wilson, 1990) and honey bees. These recruitment strategies
are used to attract other members of the society to gather around one or more desired
areas, either for foraging purposes or for moving to a new nest site.

In general, there are many different forms of recruitment strategies used by social in-
sects; these may take the form of global or local strategies; one-to-one or one-to-many
communication; and the deployment of stochastic or deterministic mechanisms. The na-
ture of information sharing varies in different environments and with different types of
social insects. Sometimes the information exchange is quite complex where, for example
it might carry data about the direction, suitability of the target and the distance; or
sometimes the information sharing is simply a stimulation forcing a certain triggered
action. What all these recruitment and information exchange strategies have in common
is distributing useful information throughout their community (de Meyer, Nasuto, and
Bishop, 2006).

However, in many hive-based or flock-based agent systems – similar to the ones de-
ployed in this work – the benefits of memory and communication seem obvious, but as
argued in Schermerhorn and Scheutz (2009), these abilities are not beneficial in every
environment, depending on the way resources are clustered throughout that environment
and whether the quality of the food sources is sufficiently high.

The algorithms reported in this paper both rely on memory and communication to
enable the agents to explore various parts of the search space; albeit the communication
methods outlined herein are less greedy than the one presented in Schermerhorn and
Scheutz (2009).

3.1. From social interactions to intelligent reasoning

The parable of ‘The Blind Men and the Elephant’ suggests how social interactions can
lead to a more intelligent reasoning. This famous tale, set in verse by John Godfrey
Saxe (Saxe, Lathen, and Chief, 1882) in the 19th century, characterises six blind men
approaching an elephant. They end up having six different ideas about the elephant,
as each person has experienced only one aspect of the elephant’s body: wall (elephant’s
side), spear (tusk), snake (trunk), tree (knee), fan (ear) and rope (tail). The moral of
the story is to show how people build their beliefs by drawing them from incomplete
information, derived from partial knowledge about the world (Kennedy et al., 2001). If
the blind men had been communicating about what they were experiencing, they would
have possibly come up with the conclusion that they were exploring the heterogeneous
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qualities that make up an elephant.

4. Swarm intelligence algorithms

This section describes the two swarm intelligence algorithms used in this work (i.e.
Stochastic Diffusion Search or SDS and Dispersive Flies Optimisation or DFO) and
details the process through which they operate.

4.1. Stochastic Diffusion Search (SDS)

This section introduces SDS whose performance is based on simple interactions of agents
(Bishop, 1989). This algorithm is inspired by one species of ants, Leptothorax acervorum,
where a ‘tandem calling’ mechanism (one-to-one communication) is used. The forager
ant that finds the food location recruits a single ant upon its return to the nest, as such
the location of the food is physically publicised (Moglich, Maschwitz, and Holldobler,
1974).

The SDS algorithm commences a search or optimisation by initialising its population
and then iterating through two phases (Algorithm 1).

Algorithm 1 SDS Algorithm

01: Initialise agents

02: While (stopping condition is not met)

04: For each agent

03: Test hypothesis and determine activity

05: For each agent

06: Diffuse hypothesis

07: End While

Algorithm 2 Passive Recruitment Mode

01: For each agent

02: If ( !ag.isActive )

03: r_ag = pick a random agent

04: If ( r_ag.isActive )

05: ag.hypothesis = r_ag.hypothesis

06: Else

07: ag.hypothesis = generate a random hypothesis

08: End If

09: End For

Algorithm 3 Context Sensitive Mechanism

01: If ( ag.activity () )

02: r_ag = pick a random agent ()

03: If ( r_ag.activity () AND

04: ag.getHypothsis () == r_ag.getHypothsis () )

05: ag.setActivity ( false )

06: ag.setHypotheis ( randomHypothsis () )

07: End If

08: End If
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In the test phase, SDS checks whether the agent hypothesis is successful or not by per-
forming a hypothesis evaluation which returns a Boolean value. Later in the iteration,
contingent on the precise recruitment strategy employed (in the diffusion phase), success-
ful hypotheses diffuse across the population and in this way information on potentially
good solutions spreads throughout the entire population of agents. In other words, each
agent recruits another agent for interaction and potential communication of hypothesis.

In standard SDS, a passive recruitment mode is employed (Algorithm 2). In this mode,
if the agent is inactive, a second agent is randomly selected for diffusion; if the second
agent is active, its hypothesis is communicated (diffused) to the inactive one. Otherwise
there is no flow of information between agents; instead a completely new hypothesis
is generated for the first inactive agent at random. Therefore, recruitment is not the
responsibility of the active agents.

Additionally, in this work, context sensitive mechanism (Algorithm 3) is used, such
that if the selected agent is both active and has the same hypothesis, the selecting agent
is set inactive and is made to pick a random hypothesis. This mechanism frees up some
of the resources in order to have a wider exploration throughout the search space as well
preventing cluster size from overgrowing, while ensuring the formation of large clusters
in case there exists a perfect match or good sub-optimal solutions.

4.2. Dispersive Flies Optimisation (DFO)

DFO is an algorithm inspired by the swarming behaviour of flies hovering over food
sources. As detailed by al-Rifaie (2014), the swarming behaviour of flies is determined
by several factors including the presence of threat which disturbs their convergence on
the marker (or the optimum value). Therefore, having considered the formation of the
swarms over the marker, the breaking or weakening of the swarms is also noted in the
proposed algorithm.

In other words, the swarming behaviour of the flies in DFO consists of two tightly
connected mechanisms, one is the formation of the swarms and the other is its breaking
or weakening. The algorithm and the mathematical formulation of the update equations
are introduced below.

The position vectors of the population are defined as:

~xti =
[
xti1, x

t
i2, ..., x

t
iD

]
, i = 1, 2, ...,NP (1)

where t is the current time step, D is the dimension of the problem space and NP is the
number of flies (population size).

In the first generation, when t = 0, the ith vector’s jth component is initialised as:

x0
id = xmin,d + r (xmax,d − xmin,d) (2)

where r is a random number drawn from a uniform distribution on the unit interval
U (0, 1); xmin and xmax are the lower and upper initialisation bounds of the dth dimension,
respectively. Therefore, a population of flies are randomly initialised with a position for
each flies in the search space.

On each iteration, the components of the position vectors are independently updated,
taking into account the component’s value, the corresponding value of the best neigh-
bouring fly (consider ring topology) with the best fitness, and the value of the best fly
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in the whole swarm:

xtid = xt−1
nbi,d

+ U (0, 1)× (xt−1
sb,d − x

t−1
id ) (3)

where xt−1
nbi,d

is the value of the neighbour’s best fly of ~xi in the dth dimension at time

step t − 1; xt−1
sb,d is the value of the swarm’s best fly in the dth dimension at time step

t− 1; and U (0, 1) is the uniform distribution between 0 and 1.
The algorithm is characterised by two main components: a dynamic rule for updating

flies position (assisted by a social neighbouring network that informs this update), and
communication of the results of the best found fly to other flies.

As stated earlier, the swarm is disturbed for various reasons; one of the positive im-
pacts of such disturbances is the displacement of the disturbed flies which may lead to
discovering a better position. To consider this eventuality, an element of stochasticity is
introduced to the update process. Based on this, individual components of flies’ position
vectors are reset if the random number, r, generated from a uniform distribution on the
unit interval U (0, 1) is less than the disturbance threshold or dt. This guarantees a pro-
portionate disturbance to the otherwise permanent stagnation over a likely local minima.
Algorithm 4 summarises the DFO algorithm1.

Algorithm 4 Dispersive Flies Optimisation

1: while Function Evalutions < Evaluations Allowed do
2: for i = 1→ NP do
3: ~xi.fitness← f(~xi)
4: end for
5: sb← {sb, ∀ f(~xsb) = min (f(~x1), f(~x2), ..., f(~xNP))}
6: for i = 1→ NP do
7: nbi ←

{
nbi, ∀ f(~xnbi) = min

(
f(~xlefti), f(~xrighti)

)}
*

8: end for
9: for i = 1→ NP do

10: for d = 1→ D do
11: τd ← xt−1

nbi,d
+ U (0, 1)× (xt−1

sb,d − x
t−1
id )

12: if (r < dt) then
13: τd ← xmin,d + r (xmax,d − xmin,d)
14: end if
15: end for
16: ~xi ← ~τ
17: end for
18: end while

* ~xlefti = ~xi−1 and ~xrighti = ~xi+1

In summary, DFO is a simple numerical optimiser over continuous search spaces. DFO
is a population based stochastic algorithm, originally proposed to search for an optimum
value in the feasible solution space. Despite the algorithm’s simplicity, it is shown that
DFO outperforms the standard versions of the well-known Particle Swarm Optimisation,
Genetic Algorithm (GA) as well as Differential Evolution (DE) algorithms on an extended
set of benchmarks over three performance measures of error, efficiency and reliability
(al-Rifaie, 2014). It is shown that DFO is more efficient in 84.62% and more reliable in

1 The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/
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90% of the 28 standard optimisation benchmarks used; furthermore, when there exists a
statistically significant difference, DFO converges to better solutions in 71.05% of problem
set. In addition to theoretical research on this algorithm, DFO has recently been applied
to medical imaging (al-Rifaie and Aber, 2016).

In the work presented here, DFO is used for its tracing mechanism and its dt parameter
is set to 0.

5. Attention & creativity in the swarms

In this section, a simple attention mechanism, which is controlled by the SDS algorithm
is detailed. This is followed by the process through which the DFO algorithm utilises the
output of the SDS-led attention to visualise the flies movements on the digital canvas
which in turn produces the final sketch rendered by the swarms.

5.1. Attention mechanism

The input digital image consists of line drawings (Fig. 1) where each line is formed up of
a series of points. The swarms’ attention in this work is directed towards the sharpness
of the corners or curves found in the line drawings. In other words, the corner’s (or a
curve’s) sharpness forms the agents’ fitness values, fi,(x,y), where i is the agent number
and (x, y) is the coordinate of the point taken from a certain line in the search space
(input image). The agents’ hypotheses in this scenario are the (x, y) coordinates which
are initially selected randomly from the points on the digital canvas. Fitness of an agent is
calculated by taking two points from either side of the hypothesis (i.e. (x, y) coordinate)
with distance d (which influence how wide or narrow an angle the system is looking for).
Assuming the point referring to the coordinate of the hypothesis is ph and the two points
on either left and right sides, pl and pr, the fitness is the angle formed on ph when lines
are drawn from ph to pl, and from ph to pr. The images in Fig. 2 show the initialisation
of agents on various points on the line drawing, and the result of running one SDS test
phase which will be explained later.

As mentioned earlier in Section 4.1, each agent has two components: status, which is
a boolean value and hypothesis. The hypothesis of each agent in this work is the (x, y)
coordinate which is used to calculate the fitness, fi,(x,y), of the agents located at any
particular point on the line drawing.

After randomly initialising the agents throughout the search space, in order to deter-
mine the status of an agent, i, within the swarm (test phase), its fitness, fi, is calculated
as explained above and another agent, r, is randomly selected; if fi is better than fr (i.e.
the agent i is located on a sharper corner/curve), agent i is set active, otherwise inactive.

In the diffusion phase, each inactive agent randomly picks another one. If the randomly
selected agent is active, the inactive agent adopts the hypothesis of the active one. How-
ever, if the selected agent is inactive, the selecting agent generates a random hypothesis
(x, y) from the search space. Furthermore, as in context-sensitive mechanism if the agent
is active, it selects another agent randomly, if the selected agent is active and has the
same hypothesis, the selecting agent becomes inactive and selects another hypothesis
randomly from the search space. This mechanism allows the agents to maintain their
exploration “attitude”.

After n number of test-diffusion phases cycles, the biggest cluster of the agents is
identified and the associated line (where point ph is located on) is singled out. Once
the (x, y) coordinate of the point is retrieved, the starting and end points of the line is
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Figure 1. Input images: series of points forming line drawings. The image on the left is after one of Matisse’s

sketches, and the image on the right is after one of de Kooning’s.

Figure 2. (a) Agent’s initialisation: Each agent is initialised at a random point on the line drawing. The agent

colour is red which indicate that agents are initially inactive. (b) Agents becoming active are highlighted in green.

(a) (b)

extracted and a string of (x, y) coordinates from starting to end point of the line is passed
on to the DFO flies to trace the points of the line, one by one. Fig. 3 shows the convergence
of agents after n iterations of test and diffusion phases, therefore picking a line to be fed
into the other swarm intelligence algorithm, DFO, for the tracing mechanism.

5.2. Tracing mechanism

The points constituting the lines of the line drawing are treated as targets by the flies
of DFO algorithm. Thus, the flies aim to trace these points one at a time until reaching
the end of the line (the algorithm tries to minimise the distance between the flies’ posi-
tions and the points it aim to track). Flies’s movement is visualised on the canvas (i.e.
trajectory of the flies moving from position (x0, y0) to (x1, y1) and so forth).

Input to DFO algorithm is a series of points forming up a line (whose starting and
end points are extracted as mentioned above). The algorithm is then instructed to trace
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Figure 3. Agents convergence

Figure 4. Visual Display of the System. Left: visualising DFO’s tracing mechanism; middle, the new generation
of points produced by the flies; right: attention of the SDS agents

the line from the beginning to the end. Once the line is traced, it is removed from the
search space and the other lines are considered one by one according to the attention
mechanism deployed.

As shown in Fig. 4, the canvas is divided in three sections: on the left, the result of
DFO’s tracing mechanism can be viewed (i.e. the process through which the DFO flies
trace the points of the lines and their movements are illustrated); during the tracing pro-
cess, the flies leave their trace based on their movements while “consumeing” each point
in the search space; in the middle, the traces of the flies (i.e. new points created from the
first ones) are shown, these points will be traced by the flies in the next generation; and
on the right, the overall performance of the SDS agents and their attention throughout
the sketching process is visualised, thus creating a global map showing where the agents’
attention has been focusing on, from the beginning until the end of generating a sketch.
In the next generation, the points generated and shown in the middle of Fig. 4 are fed to
the system as input and the process is repeated (i.e. SDS’s attention mechanism directs
DFO flies towards one line at a time to trace, and so forth).
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6. Autopoiesis

In 1972, the Chilean biologists, Humberto Maturana and Francisco Varela, coined the
term autopoiesis, referring to the self-maintaining chemistry of living cells (Maturana
and Varela, 1973). Autopoiesis is composed of two Greek words, ‘auto’, meaning self,
and ‘poiesis’ meaning production or creation.

There are many ways to think about systems that create products we socially con-
ceive of as art. This research is inspired by Alfred North Whitehead’s process view of
organisation (Whitehead, 1929), seen though the transformational conceptual-lens of au-
topoietic theory as stated by Varela and Maturana (1973) according to which we view
a creative system as a clearly delineated and identifiable network of continuously op-
erational components producing processes and concomitant elements, bounded as an
autonomous entity within its own artistic environment. Maturana and Varela originally
define autopoiesis (or self-creation) as follows:

“An autopoietic machine is a machine organized (defined as a unity)
as a network of processes of production (transformation and destruction)
of components which: (i) through their interactions and transformations
continuously regenerate and realize the network of processes (relations)
that produced them; and (ii) constitute it (the machine) as a concrete
unity in space in which they (the components) exist by specifying the
topological domain of its realization as such a network”, (p. 78)

On the contrary to autopoiesis, the operation of an allopoietic system is determined in
terms of the concatenation of processes. Such processes do not specify the components of
the system itself, as a unity; instead the components are produced by other processes that
are independent of the organisation of the system. Because the components that make up
an allopoietic system’s existence are contingent upon other systems, an allopoietic system
is never ‘fully autonomous’. Some examples of allopoietic systems are: cars, trains and
robots.

Furthermore, because an allopoietic system is always contingent on the output of other
systems for it existence, its teleology and meaning will always reside in the observers
world, never in its own – the systems – world.

To determine whether a system is or is not autopoietic in its organization, Varela,
Maturana, and Uribe (1974) have developed six key points or criteria that should be
applied to the system; Koskinen (2010) restates these criteria as follows:

(1) Determine, through interactions, if the unity has identifiable boundaries. If the
boundaries can be determined, proceed to 2. If not, the entity is indescribable and
we can say nothing.

(2) Determine if there are constitutive elements of the unity, that is, components of the
unity. If these components can be described, proceed to 3. If not, the unity is an
un-analyzable whole and therefore not an autopoietic system.

(3) Determine if the unity is a mechanistic system, that is, if the component properties
are capable of satisfying certain relations that determine the unity, the interactions,
and transformations of these components. If this is the case, proceed to 4. If not, the
unity is not an autopoietic system.

(4) Determine if the components that constitute the boundaries of the unity consti-
tute these boundaries through preferential neighbourhood relations and interactions
between themselves, as determined by their properties in the space of their interac-
tions. If this is not the case, you do not have an autopoietic unity because you are
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determining its boundaries, not the unity itself. If 4 is the case, however, proceed
to 5.

(5) Determine if the components of the boundaries of the unity are produced by the
interactions of the components of the unity, either by transformation of previously
produced components, or by transformations and/ or coupling of non-component
elements that enter the unity through its boundaries. If not, you do not have an
autopoietic unity; if yes, proceed to 6.

(6) If all the other components of the unity are also produced by the interactions of
its components as in 5, and if those which are not produced by the interactions of
other components participate as necessary permanent constitutive components in
the production of other components, you have an autopoietic unity in the space in
which its components exist. If this is not the case and there are components in the
unity not produced by components of the unity as in 5, or if there are components
of the unity which do not participate in the production of other components, you do
not have an autopoietic unity.

Thus, the successful application of the above six-point taxonomy is sufficient to deter-
mine if a system is autopoietically organised (or not).

7. Autopoietic artist

The continual creative swarmic processes of our autopoietic artists’ attention and recon-
stitution (sketching) mechanisms are detailed in section 5 of this paper and are illustrated
in accompanying video, which displays her behaviour as she artistically decodes a line-
sketch of an abstract painting made in 1986 (in the style of abstract expressionism) by
Willem de Kooning2 (Untitled #2, from Quatre Lithographies).

As observed in section 5, the ‘autopoietic’ artist is composed of two functionally distinct
types of agent: (i) a swarm of attending agents, akin to ants (and governed by the
principles of Stochastic Diffusion Search) and (ii) a swarm of drawing agents akin to
flies (and governed by the principles of a Dispersive Flies Optimisation). The job of the
attending agents is to select areas of meaning3 for the drawing agents to ‘re-interpret’.

Our ‘autopoietic’ artist is thus continually engaged in a process of sensing her en-
vironment and reconstituting it (by iteratively first choosing a line in the scene and
re-rendering it). The bounds of the autopoietic artist are defined by the shifting move-
ments of the swarms that comprise her; the elements of the autopoietic artist are the
agents of the swarms; the behaviour of each swarm is fully defined by the behaviour of
its agents (SDS and DFO); the bounds of the swarms are defined by the hypotheses (po-
sitions) of all the SDS agents, whose behaviour changes and in turn modifies the bounds;
the components of the boundaries are produced by the interactions of the components of
the unity, by transformation of previously produced hypotheses; and because the itera-

2In our case the artistic environment is initially a sketch of Kooning’s abstract canvas, displayed in the middle
panel of the video; with the creative output, initially a tabula-rasa, displayed on the left.
3For example, in our system we have defined such an area of interest (or ‘meaning distinction’) to be a line situated

in a complex region of the image; a line that has a sharper angle or curve in comparison with other lines. Thus,
by suitably redefining the distinction deployed by the population of Stochastic Diffusion agents (as described in
Section V), we can modify what constitutes ‘meaning’ for the autopoietic artist as she interacts with her creative
context/environment. The authors in their previous work have used the concept of attention to direct the swarms

towards areas of the drawing with higher density, however in this work, identifying sharper angles or curves has
been used to define attention. Akin to the complex artist process of creating an artwork, an artist attention is

determined by various factors at different times. In the case of the digital artist introduced here, her attention
could be impacted by either of the above forms, or both, or a combination of other factors.
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tive re-initialisation of the SDS agent-hypotheses are produced by the interactions of the
SDS swarm (and all other DFO agents participate as necessary permanent constitutive
components in the production of other components), Varela et al’s criteria (Varela et al.,
1974) for an autopoietic entity are appropriately instantiated in the organisation of our
‘autopoietic’ artist in the creative space in which her creative unity exists.

Following Luhmann’s conception of information processing Luhmann (1995), we view
the working autopoietic artist as entailing a reduction in complexity, ravenously con-
suming ‘meaning-distinctions’ within her environment; in this way the autopoietic artist
iteratively decodes her environment (the De Kooning abstract) by continuously first
selecting, then processing, areas of meaning.

Over time, with her artistic ‘interest’ drawn to areas of rich complexity, the autopoietic
artist, so construed, iteratively erases meaningful-distinctions (lines) in her current artis-
tic context, so gradually simplifying the structure of the work. By iteratively focussing
on meaning-distinctions as-areas-of-rich-complexity, as the decoding process unfolds it
sometimes leads to a less complex (line) structure and ultimately may result in an empty
canvas; therein reifying the artwork’s ‘death’ and the tabula rasa (see Fig. 5)4. This
process is attributed to the Gluttonous Autopoietic Artist.

Alternatively, in what is called Contented Autopoietic Artist, by refocussing the au-
topoietic artist’s reflections on ‘meaning’ (as explored by the Stochastic Diffusion swarm)
onto different constitutive elements, and modifying her reconstitution (of the resulting
artistic structure), different behaviours of autopoietic creativity can be induced. E.g. by
insisting that the re-constitutive processes must generate as many elements of ‘meaning-
distinction’ as they consume, the induced autopoietic processes becomes less likely to
fade away and more open-ended in their creative endeavour (see Fig. 6)5. Figs. 7, 8 and
9 show three zoomed sample sketches produced by the autopoietic artist.

In summary, in the context of al-Rifaie and Bishop’s ‘weak’ and ‘strong’ taxonomy of
[computational] creativity (al-Rifaie and Bishop, 2015), although we have presented au-
topoiesis as offering a new conception of ‘strong’ artistic creativity6, with her ‘operational
processes’ externally instantiated in the execution of a computer program 7 and her
idea of ‘meaning’ (e.g. as areas with lines of sharp corner and curves) externally engi-
neered8 , sensu-stricto the particular computational autopoieticic artist described herein,
fundamentally remains an allopoietic system; we offer her merely as a simple epistemic
lens though which to better view, understand and frame the underlying processes of
creativity, and not as a computational instantiation of strong creativity. As argued else-
where (al-Rifaie and Bishop, 2015), any such ontological claim must entail a much more
serious engagement with the physical embodiment of the underlying autopoietic system.

4Link to the video of Gluttonous Swarms: https://youtu.be/aaETyhXh-pQ
5Link to the video of Contented Swarms: https://youtu.be/8xc_js7Bos0
6The authors have discussed the concept of autopoiesis in other areas such as creativity, art and dance (Bishop

and Al-Rifaie, 2016; Bishop and al-Rifaie, 2017).
7There is an old debate in the field of computational autopoiesis that effectively rests of the following question:
is a computational simulation of an autopoietic entity a genuine autopoietic unity? Those who argue not assert
that because the components of, say, the computational autopoietic artist described herein, are fundamentally

instantiated via a computer simulation, (whose organisation - power, hardware and software etc – do not participate
in regenerating and maintaining).
8Contra Maturana and Varela’s conception of autopoiesis as a system description to define and explain the nature

of living systems as fully autonomous entities, each with a unique teleological behaviour.
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8. Conclusion

This works deploys two swarm intelligence algorithms: Stochastic Diffusion Search (mim-
icking the behaviour of ants foraging) and Dispersive Flies Optimisation (mimicking the
behaviour of flies hovering over food sources). The former is utilised for facilitating the
attention mechanism and the latter is used for regulating the swarmic sketching process.
In other words, swarms of ants and flies set off to ‘decode’ a painting by Willem de
Kooning in their own ‘swarmic’ way. The step-by-step behaviour of the swarms, through
the attention and tracing mechanisms is detailed.

Through the concepts behind the attention and tracing mechanisms, the paper focuses
on encapsulating the concept of autopoiesis in the behaviour of the autopoietic artist.
In other words, the concepts of attention, tracing and autopoiesis are utilised for the
rendering purpose where the generated sketches exhibit unique, non-identical output
each and every time the swarmic system is set to interpret the line drawings. In terms
of the gluttonous autopoietic artist, following each sketching cycle, the complexity of
the drawing reduces, until the digital canvas finds itself in its simplest form: the state
of emptiness; and in terms of the contented autopoietic artist, the swarms continue to
produce non-identical renderings of the original sketch.

Future work will investigate other forms of (visual) attention and tracing mechanisms
in the context of autopoiesis as well as generative arts.
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Figure 5. Gluttonous Autopoietic Artist

(a) Sketch (b) Line drawing (c) Attention
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Figure 6. Contented Autopoietic Artist

(a) Sketch (b) Line drawing (c) Attention
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Figure 7. Sample sketch #1
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Figure 8. Sample sketch #2
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Figure 9. Sample sketch #3
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