

Accepted version of paper:

Data Driven Predictive Model to Compact a

Production stop-on-fail Test Set for an Electronic

Device

Authors: Ana Elsa Hinojosa Herrera, Stoyan Stoyanov

Conference: 2018 International Conference on Computing,

Electronics &Communications Engineering (iCCECE),

University of Essex, Southend, UK, 16-17 August 2018.

Paper Acceptance Date: 21/06/2018

GALA Repository Upload Date: 16/07/2018

This is IEEE-copyrighted Article. Published version will be

available from IEEE Xplore (details TBC)

Data Driven Predictive Model to Compact a

Production stop-on-fail Test Set for an Electronic

Device

Ana Hinojosa

Computational Mechanics and Reliability Group

University of Greenwich

London, United Kingdom

aehinojosa@ieee.org

Stoyan Stoyanov

Computational Mechanics and Reliability Group

University of Greenwich

London, United Kingdom

S.Stoyanov@greenwich.ac.uk

Abstract— Decision Tree is a popular machine learning

algorithm used for fault detection and classification in the

industry. In this paper, the modelling technique is used to

compact a production test set defined for quality assurance of

an electronic asset. The novelty of this work is in the proposed

method that builds in an iterative way decision trees until an

accurate predictive model that meets classification accuracy

target in a stop-on-fail test scenario. Generated test data is

characterized with missing values which is a major challenge to

the traditional use of decision trees. The developed

computational procedure handles this application-specific data

attribute. Exemplary results show that the method is able to

significantly reduce a production test set with parametric and

non-parametric tests, and generate a truthful prognostic

model. In addition, the method is computationally efficient and

easy to implement. It could also be combined with another test

compaction strategies such as variables association analysis.

Furthermore, the method proposed offers the flexibility of

exploring the trade-off between the number of removed tests

from the production test set and the prediction accuracy. The

results can enable production costs reduction without

impacting quality detection accuracy. The paper details and

provides discussions on the advantages and limitations of the

proposed algorithm.

Keywords— Decision Tree, Production test set compaction,

Incomplete dataset, stop-on-fail test, Electronic device

I. INTRODUCTION

The fourth industrial revolution is transforming electronic
industries into smart factories, where machines are connected
to another machines, people or assets. Different type of data
is generated at high speed, big volume and with uncertainty.
Cloud technology, Internet of Things and Artificial
Intelligence are pillars of these transformations.

As part of the intelligent production processes, electronic
devices are tested after assembly for quality assurance.
Automatic test equipment are popular to execute parametric
and non-parametric set of tests, generating massive and
valuable information. On the other hand, the testing process
impacts the cost production due to time and resources
needed. Cost reduction can be achieved by mining test data
for predicting quality of a batch, improving process
robustness, or by reducing the production test sequence.

There are successful business cases where testing
processes were compacted using data analysis. Parametric
analyses are widely used to predict the outcome of a test set,
for instance in [1] the authors analysed correlation between
each pair of tests items. Variations of Group LASSO method
were used in [2] and [3] to identify tests which could be
predicted by a linear combination of other tests. Furthermore,

the last one covers stop-to-fail scenario where the test
program stops as soon as a device fails a test and the
remaining tests will not be applied

Authors of work published in [5] applied Chi-Square to
discard test with very small significance values and then used
Support Vector Machine (SVM), in particular C-Support
Vector Classification (C-SVC), to carry out the test process
compaction. Logistic regression is used in [6] to predict
results of test sequences where data type is quantitative or
qualitative. Another approach used frequently to reduce test
dimension is based on Principal Components Analysis
(PCA) [4].

Different Artificial Intelligence (AI) techniques are
useful for this application. In reference [8], a combination of
a multi-objective Genetic Algorithm (GA) for feature
selection, and k-Nearest-Neighbours (k-NN) with Ontogenic
Neural Network (ONN) for prediction is presented.
Reference [9] details a successful application of feed-forward
neural network (FFNN) for the reduction of production tests
and detection of defective assets.

Other research reports on the development of a statistical
methodology based on Binary Decision Trees (BDT) to
reduce test sets by eliminating tests which output could be
predicted using the results from another test [10]. This
methodology is advantageous from computational time point
of view, since considerably less training time is required to
build a tree than to train a network. In contrast, sometimes
BDT model is less accurate. In addition, it is difficult to say
how the classification model accuracy is affected when the
test data is characterised with missing values.

With regards the computational resources used, the most
common software for data mining and big data applications
in electronics industry are Excel, Visual Basic, C, C++,
Python, MATLAB, WEKA, SAS, SPSS, Minitab, Statistics,
and R [11].

In this paper we propose a novel classification method
based on Decision Trees to compact production test sets in a
stop-on-fail scenario. The approach could be applied with
both numerical and non-numerical test results. In addition,
the method proposed offers the flexibility of exploring the
trade-off between the number of removed tests and the
prediction accuracy. The data mining approach was written
in an R script which covers data gathering, data pre-
processing, variables association analysis, and iterative
within-set decision tree model building.

The remainder of this paper is organized as follows. In
Section II we compare different data analysis techniques, in
particular decision trees, and challenges of using these

methods for modelling stop-on-fail test scenarios. In Section
III we present our novel method. The method is illustrated in
Section IV using historical production tests data of an
electronic device, and Section V concludes the paper.

II. DATA ANALYSIS TECHNIQUES

A. Qualitative Comparison of Techniques

The usage of different techniques for reducing test
sequence in electronics manufacturing is summarized in
Table I. In addition, an evaluation if those methods could be
used with datasets containing numerical and non-numerical
variables is included. On the other hand, missing data was
evaluated only in reference [3] where the case of stop-on fail
scenario was covered. A data pre-processing is needed to
handle missing values when using any of the other methods.

TABLE I. QUALITATIVE COMPARISON WITH TECHNIQUES

Method Variable Type Missing Values

Correlations between each

pair of tests [1]

Parametric only

Not evaluated (a

handling method is
needed)

Weighted Group LASSO

[2]

Parametric only
Not evaluated

(covered in [3])

Variations to Group

LASSO [3]
Parametric only Stop-on-Fail

PCA [4] Numerical only
Not evaluated (a

handling method is

needed)

Chi-Square & C-SVC [5]
Parametric (useful

for numerical)

Not evaluated (a
handling method is

needed)

Logistic Regression [6]
Numerical and

non numerical

Not evaluated (a

handling method is
needed)

GA, k-NN & ONN [8]

Numerical (useful

for non-
numerical)

Not evaluated (a

handling method is
needed)

FFNN [9]

Numerical (useful

for non-
numerical)

Not evaluated (a

handling method is
needed)

BDT [10]

Numerical (useful

for non-
numerical)

Not evaluated (a

handling method is
needed)

Different methods for linear correlation analysis have
been used for testing reduction [1-3]. However, these
methods cannot be used for non-parametric variables.

The PCA approach followed in [4] was applied to a
dataset of numerical variables. However, PCA is not
recommended for non-numerical variables. On the other
hand, the application reviewed in [5] deals with parametric
variables, while Chi-Square could be used for non-
parametric variables, in particular categorical ones. The
limitation is that SVM cannot be applied to non-numerical
data.

Logistic regression is an approach that could be applied
to numerical and non-numerical variables. However missing
values should be handled before running logistic regression.
In this context, reference [7] provides a comparative analysis
of five popular methods.

The approaches discussed in [8] and [9] could be used
with datasets from stop-on-fail test applications because GA,
k-NN, ONN, and FFNN support numerical and non-
numerical variables. One disadvantage of these methods is

that the training of a NN model is time consuming. In
addition, the biggest limitation of GA is that it cannot
guarantee optimality, furthermore, the solution quality
deteriorates on big datasets.

Finally, BDT is a useful classification method that works
well with numerical and non-numerical variables but is not
suitable for stop-on-failure scenarios. This will be detailed in
sub-section II.C.

B. Classification Models

SVM, ANN, k-NN, GA, fussy sets and Decision Tree
(DT) are some data mining techniques used in electronics
industry [11]. DT is commonly used for classification
because its efficiency, simplicity to be implemented and easy
to be understood by humans.

BDT can be applied to different data, in particular to
sample populations that consist of n observations made on m
variables. The n observations correspond to 2 classes. For
example, Table II illustrate 4 observations, 2 classes {pass,
fail} and 3 variables {Test 1, Test 2, and Test 3}. The final
model will break the observations into groups, each of these
groups is assigned a predicted class as in Fig. 1. The method
is composed of rules which are built recursively by repeated
splits of the training dataset following these 2 steps:

1. Calculate the impurity of each node measuring the
mixture of classes in the sample covered by a node.
Looking for the major reduction of the impurity
metric is selected the variable which best splits the
data into two groups.

2. Data is split in two sub-groups based on the rule
identified in previous step.

Step 1 and 2 is applied recursively to each sub-group
until the subgroups reach a minimum size or there is no more
improvement in the measurement of impurity.

Fig. 1. Example of Binary Decision Tree

The rpart routine [13] branches a tree based on the Gini
index, as in:

(1)

where p is the probability of {pass} class and (1-p) the
probability of {fail} class [12].

f(p) = p (1 - p)

In order to avoid overfitting the DT built needs to be
evaluated using prune.rpart [13]. Prune function evaluates
the nested sequence of subtrees supplied by rpart object and
recursively snipping off the least important splits based on
the amount by which splitting a node improved the relative
error, called complexity parameter (cp). [13]

For easy visualization of the splitting rules and
architecture of the tree built, DT plots can be generated using
rattle R package [14].

C. Stop-on-fail Challenges with Decision Tree Model

When working on big data analytics is common the
presence of missing values because of data low quality or
process definition. This data attribute is present in production
test on stop-on-fail scenario, where the test program stops as
soon as an asset fails a test in the sequence, and the
remaining tests will not be executed.

There are some methods proposed to deal with missing
values. One common technique, known as imputation, fills
the data gaps, for example by using the most frequent value.
On the other hand, the complete cases method eliminates the
records with incomplete data. Both approaches could
generate biased or inaccurate models. In stop-on-fail
production tests, the second approach reduces the dataset to a
sample with pass devices only. Table III is the result of
cleaning the dataset provided in Table II. Furthermore,
dataset of Table III is not useful for prognosis, because the
model consists of 1 node for which all elements are {pass}
class (Fig. 2).

The next section describes the novel algorithm proposed
to build a BDT in a stop-on-fail scenario.

TABLE II. DATASET BEFORE CLEANING

Overall

Result

Stop-on-fail Test Sample

Test 1 Test 2 Test 3

Pass -76 9A 1

Fail -80 9A

Pass -66 0 2

Fail -74

TABLE III. DATASET AFTER CLEANING

Overall

Result

Stop-on-fail Test Sample

Test 1 Test 2 Test 3

Pass -76 9A 1

Pass -66 0 2

Fig. 2. BDT Clean Dataset on stop-on-fail Test Set

III. ITERATIVE WITHIN-SET DECISION TREE

Using a subset of tests in the sequence the cleansed
dataset is prepared to have adequate mixture of classes as

illustrated in Table IV. Note that this is the result of cleaning
dataset of Table II but taking into account Test 1 and Test 2
only. With the data in Table IV it is feasible to build a BDT
in a stop-on-fail scenario. The decision tree could be used to
compact the test set by identifying the subset of tests needed
to build the classification model and dropping the
consecutive ones. This idea motivated the proposed
algorithm where DTs are built adding one test in the
sequence in each iteration until a model with defined target
accuracy level is built.

TABLE IV. DATASET AFTER CLEANING – FIRST 2 TESTS SUBSET

Overall

Result

Stop-on-fail Test Sample

Test 1 Test 2 Test 3

Pass -76 9A

Fail -80 9A

Pass -66 0

The novel method proposed to build an iterative within-
set BDT and its evaluation is illustrated in Fig. 3. This
algorithm consists of three main phases: (1) data gathering
and data pre-processing, (2) BDT building and its accuracy
calculation, and (3) evaluation of the BDT generated after
running iterations of phases (1) and (2).

Fig. 3. Algorithm Flowchart

A. Data Gathering and Pre-Processing

1) Subset of tests: The first iteration consists of the data

(D_2) recorded for the first two tests in the sequence.

Similar, D_k contains a subset of the first k tests.

2) Data Cleansing: Complete cases were used to clean

D_k. The cleansed dataset is called CD_k.

3) Dataset Split in Training and Test Datasets: CD_k

dataset is split in two independent sets. The training dataset

(TrCD_k) is used to build the decision tree, and the test

dataset (TeCD_k) is used to calculate a confusion matrix to

evaluate the DT accuracy.

4) Training Sample Evaluation: As shown in Section II

is important that training dataset (TrCD_k) contains pass

and fail devices. When TrCD_k does not contain an

adecuate mixture of classes the step 3 should be revisited.

B. Decision Tree Building and Accuracy Calculation

5) Decision Tree Building: Using rpart routine a DT

(Tree_k) is built with TrCD_k training ataset.

6) Accuracy Calculation: The accuracy of Tree_k is the

% of matches between Predicted Class and Actual Class, i.e.

true positives + true negatives in a confusion matrix.

The steps 1 to 6 are repited until the Tree_k accuracy is at

least at the target level set or until there are no more tests in

the sequence.

C. Decision Tree Evaluation

7) Overfitting Evaluation: All complexity parameter

values in vector cp_Tree_k should be above 0.01.

8) Pruning Tree: If at least one element of cp_Tree_k is

below 0.01, the tree should be pruned using prune function,

included in rpart package. During pruning the least

important splits of Tree_k are snipped off. After prunning,

Step 6 should be revisited with PR_tree_k dataset.

9) Consistency Evaluation: To evaluate the robustness

of Tree_k built in the last iteration, its architecture is

compared against the architecture of the consecutive ones.

10) Trade-off Analysis: The accuracy target could be

evaluated visualizing its growth over the iterations.

IV. STOP-ON-FAIL PRODUCTION TEST APPLICATION

Historical data from a production test process of an
electronic device, in a stop-on-fail scenario, used to
demonstrate and validate the proposed approach. This dataset
enables to illustrate the algorithm proposed to compact a test
set by building a predictive classification model with a subset
of the tests.

The methodology followed to analyse a production test
set includes firstly the problem understanding and definition
of the analysis objective, secondly data pre-processing
strategy to improve the quality of the data, thirdly an analysis
to evaluate association between tests and other variables
recorded in the production test process, to identify redundant
tests but also to detect data noise generated by the test
process, and finally model building and its evaluation

A. Problem Understanding and Objective Definition

As part of the manufacturing process each asset is tested
by an automated sequence which, in this instance, consists of
163 consecutive tests. The sequence is interrupted after a fail
in one of the test items and are not executed for the
remaining items of the test set. The main objective is to
evaluate how the testing process could be compacted,
identifying redundant tests, but also to find a method to
prognosis if a test will fail based on results of previous tests
in the sequence.

B. Data Pre-processing

Data from running production tests to electronic devices
was recollected from large number of .csv files, each one
containing information for one or more devices. For each
device there are records for the respective test results of each
test item in the sequence, and also the overall test result.
When a device fails, no records for the subsequent tests are
obtained as the testing stops at that point.

These are key aspects included in the data pre-process
scope to increase data quality and improve format for a better
data handling:

 Because the sequence is interrupted for a certain
device after one test is failed (when that is the case),
some files do not have the same format, i.e. there are
files containing less columns.

 Files are not tidy datasets. The first rows of every file
contain general information that is not related to the
test result.

 There are different test sequences, and this analysis is
on a particular test (denoted as ‘p’) sequence only.

 Test results variables are of different types:
categorical, logical, integer, decimal or hexadecimal.

 Some records contain a special character ‘@’, which
is used as an indicator that the value of the test result
is outside expected limits.

 Some records contain the character ‘*’, which
indicates failure has occurred at that test.

On the other hand, for each test information with regards
the overall test result, batch number, cell number,
temperature, tester ID, operator ID, computer ID, date time,
Match and Flex Type is available. This information is taken
into account to evaluate if the test conditions added
significant noise to the tests result.

These are the features covered in the R script written for
cleansing pre-process:

 Removing rows that do not correspond to ‘p’ test.

 Removing rows where the test was aborted before a
'Fail' or 'Pass' result.

 For records containing the character '@' or ‘*’ the
values were kept but removed the character '@' or ‘*’.

 Two complementary tables for those values with '@'
or '*' were generated. For joining purposes, a key
indicator was defined containing: batch number, cell
number, date, and time of the record.

 The ‘p’ test sequence stops after a fail, but some
consecutive tests consists of calculations from
previous tests values. Those values were removed
because were calculated with not truthful information.

 Inconsistency was found in the value format for some
character variables, for example 'True' and 'TRUE'.
Standardization is needed because these values could
be taken as different by the R scripts.

 The hexadecimal records were converted to decimal.
Having variables in the same numerical system basis
will help to compare them but also for a better result
when standardizing variables.

After following this cleaning process the dataset contains
the results of testing 68168 devices, where 50882 assets
passed and 17286 failed. Furthermore, there were found
10510 values with '@' and 16495 values with '*'. Is important
to highlight that this dataset contains missing values, hence
additional cleansing steps are needed before analysing data.

C. Variables Association Analysis

Identifying relations between variables is useful not only
to determine redundant tests, but also because while applying
machine learning classification or clustering techniques the
attributes with the least contributions to the resulting
classification or clustering will act as noise. Hence removing
least contributors will improve the model built.

Chi-Square Test and Pearson Correlation Coefficient
were used to analyse the association between categorical
variables and continuous variables, respectively.

a) Chi-Square Test: Before appling Chi-Squre test this

second cleansing process was ran:

Step 1) Eliminate from the analysis the tests items with
variance 0: Test_9, Test_59, Test_62, Test_87,
Test_151, Test_152, Test_156, Test_157, and Test_163.

Step 2) Complete cases approach was applied to each
pair of test before running Chi-Square test.

The pairs of tests with p-value < 0.05 are listed in Table
V. Those pairs are considered as significant associated.

We can conclude that surrounding conditions (Cell
number, Tester ID, Computer ID, and Operator ID) affect
overall test result. Furthermore, Test_162 result is associated
to operator’s interaction (Tester Id, Operator ID, and Match).
We recommend to isolate the operator’s interaction.

TABLE V. VARIABLES ASSOCIATED (CHI-SQUARE TEST)

Test A Test B

OverallResult CellNumber, TesterID, Comp_ID,

Op_ID, and Test_162

BatchNumber Op_ID, Match, and Flex_Type

CellNumber TesterID, Comp_ID, and Match

TesterID Op_ID, Match, Flex_Type, and Test_162

Comp_ID Flex_Type

Op_ID Test_162

Match Flex_Type, and Test_162

b) Pearson’s Correlation Coefficient: The Pearson's

correlation coefficient was calculated for each pair of

numerical continuous variables only, but firstly complete

cases approach was applied to each pair of test items.

Table VI lists the 26 pairs of tests highly correlated
(absolute value of Pearson’s Correlation Coefficient > 90%),
in particular some tests that are ran twice like Test_106.
Based on the results of this analysis is recommended to drop
20 tests from the original test set:

 The second trial of Test_106, Test_122, Test_130,
and Test_138.

 For the other 16 pairs of correlated tests we
recommend to eliminate the more expensive and time
consuming test of each pair.

TABLE VI. VARIABLES ASSOCIATED (PEARSON’S CORRELATION

COEFFICIENT)

Test A Test B

Test_1 Test_2, and Test_4

Test_2 Test_4

Test_3 Test_5

Test_12 Test_27, and Test_92

Test_13 Test_52

Test_14 Test_28, and Test_30

Test_17 Test_20

Test_27 Test_92

Test_28 Test_30

Test_70 Test_80

Test_84 Test_85

Test_88 Test_89

Test_93 Test_94

Test_98 Test_99

Test_106 Test_106B, Test_130, and Test_130B

Test_106B Test_130, and Test_130B

Test_122 Test_122B

Test_130 Test_130B

Test_138 Test_138B

Test_149 Test_154

D. Model Predictive Building and Evaluation

In this analysis the model accuracy target is set to 90%,
the ratio used to split dataset in Training/Test is 75:25. In
addition, we omitted the tests with null variance that were
identified in the previous Chi-Square test analysis.

After pre-processing the dataset and evaluating the
association between variables or tests we are going to apply
the proposed algorithm to compact the test set ‘p’.

In the first iteration (k = 2) Tree_2 using Test_1 and
Test_2 only, was built. This tree consists of 3 nodes and its
accuracy is 75.8%. During consecutive iterations, tests items
were added one by one to the subset used to build DTs.

Finally, in iteration 102 Test_106 was added and built the
Tree_102 (Fig. 4) which consists of a root node and two
leafs. This BDT classifies as Pass whenever Test_106 < -62.
The model accuracy is 90.6%. On the other hand, when
using this BDT to prognosis overall test fail could be omitted
Test_107 to Test_163 of the sequence which correspond to
35% of the original sequence.

Fig. 4. Decision Tree – Iteration 102 (Tree_102)

 Model misclassifies actual pass devices only (Fig. 5),

which means that warranties levels will not be increased,

only production costs. Nevertheless, if the test sequence is

completed for the devices predicted as Fail the cost of

misclassification could be reduced.

Fig. 5. Confusion Matrix of Tree_102

The Tree_102 is not over fitted, all cp values are at least
0.01 (Fig. 6). In addition, the architecture of the tree does not
change in the consecutive 7 iterations.

Fig. 6. Complexity Parameter Calculation Tree_102

E. Production Test Set Compactation

Combining results of Variables Association Analysis and
Iterative Within-set BDT, it is considered possible to omit 75
tests of the tests sequence, which corresponds to 46% of the
original test set (Table VII). The accuracy of classification is
above 90%, warranties levels and quality costs are not
impacted.

TABLE VII. TEST SET COMPACTION

Approach Test Omitted

Iterative within-set DT (all tests after Test_106) 52

Test with variance = 0 9

Test associated (before Test_106) 14

F. Trade-off Analysis between Prediction Accuracy and

Test Set Compactation

The proposed method provides flexibility to evaluate
between model accuracy and test set compaction (Fig. 7)
when the algorithm is executed until the last test is included.
For example, Tree_55 model has an accuracy of 86.2% but
in the next iteration the accuracy grows 1.5%. On the other
hand, from iteration 72 to 101 the growth is 0.87% only.

Fig. 7. Trade-off between Prediction Accuracy and Test Set Compaction

V. CONCLUSIONS

In this paper we presented a novel algorithm to compact
test set on a stop-on-fail test scenario with parametric and

non-parametric tests. This development was enabled through
performing a successful data mining analysis on the
production test data which covered data gathering in raw
format, data pre-processing, and integration of the proposed
novel algorithm and variables association analysis. The
outline algorithm, based on use of decision tree, is found to
be adequate for applications with incomplete datasets and
can be employed in real production lines to offer flexible
trade-off between the model accuracy and test set
compaction. Advantages associated with ease of
implementation and computational efficiency were also
illustrated. Embedding the presented data driven predictive
model has the potential to enable substantial cost savings as a
result of production test set compaction. For the discussed
data and application, we have illustrated 46% test reduction
with prediction accuracy above 90% for faulty components.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
Microsemi Corporation (MSCC) for providing the dataset
and test process information.

REFERENCES

[1] Chen M., and Orailoglu A., “Test Cost Minimization through
Adaptive Test Development,” 2008 IEEE International Conference on
Computer Design, Lake Tahoe, CA, 2008, pp. 234-239.

[2] C. K. Hsu et al., "Test data analytics — Exploring spatial and test-
item correlations in production test data," 2013 IEEE International
Test Conference (ITC), Anaheim, CA, 2013, pp. 1-10.

[3] F. Lin, C. K. Hsu and K. T. Cheng, "Learning from Production Test
Data: Correlation Exploration and Feature Engineering," 2014 IEEE
23rd Asian Test Symposium, Hangzhou, 2014, pp. 236-241.

[4] A. Nahar, R. Daasch and S. Subramaniam, "Burn-in reduction using
principal component analysis," IEEE International Conference on
Test, 2005., Austin, TX, 2005, pp. 155-165.

[5] N. Sumikawa, D. G. Drmanac, L. C. Wang, L. Winemberg and M. S.
Abadir, "Forward prediction based on wafer sort data — A case
study," 2011 IEEE International Test Conference, Anaheim, CA,
2011, pp. 1-10.

[6] H. V. Pham, S. N. Demidenko and G. M. Merola, "Eliminating Re-
Burn-In in semiconductor manufacturing through statistical analysis
of production test data," 2017 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), Turin, 2017, pp. 1-6.

[7] S. Meeyai. “Logistic Regression with Missing Data: A Comparisson
of Handling Methods, and Effects of Percent Missing Values,”
Journal of Traffic and Logistics Engineering vol. 4, no. 2, December
2016.

[8] H. G. Stratigopoulos, P. Drineas, M. Slamani and Y. Makris, "RF
Specification Test Compaction Using Learning Machines," in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
18, no. 6, pp. 998-1002, June 2010.

[9] R. Záluský, D. Ďuračková, V. Stopjaková, J. Brenkuš, J. Mihálov and
L. Majer, "Production test-based classification of antennas using the
feed-forward neural network," 2014 24th International Conference
Radioelektronika, Bratislava, 2014, pp. 1-4.

[10] S. Biswas and R. D. Blanton, "Statistical Test Compaction Using
Binary Decision Trees," in IEEE Design & Test of Computers, vol.
23, no. 6, pp. 452-462, June 2006.

[11] Lv, S.; Kim, H.; Zheng, B.; Jin, H. “A Review of Data Mining with
Big Data towards Its Applications in the Electronics Industry,”
Applied Sciences. 2018, 8, 582, pp. 1-34.

[12] Therneau, T., Atkinson, B., and Ripley, B., “An Introduction to
Recursive Partitioning Using the RPART Routines,” Mayo Clinic.
February 2018.

[13] Therneau, T., Atkinson, B., and Ripley, B., 'rpart,' R package version
4.1-13, February 2018.

[14] Williams, G., et al, 'rattle,' R package version 5.1.0, September 2017

