

# COPPER- AND ZINC-BEARING COMPOSITE MEMBRANES FOR PERIODONTAL REPAIR

<u>Ryan Heath</u>,\* Gemma Hooper, Victoria K. Elmes, Nichola J. Coleman University of Greenwich Corresponding author: <u>rh10969@gre.ac.uk</u> – MChem student (4<sup>th</sup> year)

Submitted for POSTER ⊠

#### Introduction

Periodontitis (inflammation and destruction of the tooth attachment apparatus) is one of the most widespread diseases in the world [1]. Polymer-bioactive glass composite membranes can be used for the guided tissue regeneration (GTR) of diseased periodontal structures [2]. GTR involves the placement of the membrane to exclude soft epithelial and gingival tissues from the exposed tooth in order to facilitate the regeneration of the more slow-growing periodontal ligament and hard tissues [1]. Bioactive glasses incorporating antimicrobial ions such as silver, zinc and copper have been shown to resist biomaterial-centred infection; although, the presence of these metal ions is reported to reduce bioactivity in some instances [3]. Chitosan, a biodegradable carbohydrate polymer, is a popular choice for GTR membranes as its structure resembles that of bone extracellular matrix [2]. In the present study, copper- and/or zinc-bearing bioactive glasses were prepared by the sol-gel process and incorporated into chitosan membranes by solvent-casting. The *in vitro* bioactivity and degradation rates of the chitosan-bioactive glass membranes were evaluated with respect to their potential use as GTR membranes.

#### **Materials and Methods**

Bioactive glass (BG), in the system SiO<sub>2</sub>-P<sub>2</sub>O<sub>5</sub>-CaO, was prepared by the sol-gel method [3] and ionexchanged with copper or zinc by immersion in 50 mM metal nitrate solution for 24 h (to produce samples BG-Cu and BG-Zn, respectively). BG samples incorporating a combination of both copper and zinc ions were similarly prepared by exposure to mixed metal nitrate solutions at concentrations of 25 mM (BG-25mix) or 50 mM (BG-50mix) with respect to both metals. The resulting gel-glasses were calcined in air at 680 °C for 2 h to decompose the nitrate ions and stabilise the glasses. The samples were characterised by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). Chitosan and bioactive glass were blended in 1% aqueous acetic acid solution at a chitosan:glass mass ratio of 5:1. The solutions were cast on to polycarbonate surfaces and dried in air at 60 °C. The *in vitro* bioactivity of the composite membranes was evaluated by monitoring hydroxyapatite (HA) formation on their surfaces in simulated body fluid (SBF) at 1, 3, 7 and 14 days [4]. HA was confirmed by FTIR, SEM and EDX. The extent of degradation of the membranes during residence in SBF was evaluated on a mass basis. Each analysis was carried out in triplicate.

## **Results and Discussion**

XRD and FTIR analyses indicated that all glass samples were essentially amorphous with traces of calcite (CaCO<sub>3</sub>) prior to calcination. Calcined BG, BG-Cu and BG-Zn samples were similarly shown to be amorphous with trace quantities of calcite. In addition to the glassy matrix, samples BG-25mix and BG-50mix were found to comprise HA at approximately 2 and 12%, respectively. Hence, the incorporation of a combination of copper and zinc into the glass induced the progressive crystallisation of HA during calcination which resulted in glass-ceramic products.

The characteristic sharp doublet of crystalline hydroxyapatite at 570 – 605 cm<sup>-1</sup> appeared in the FTIR spectra of all composite membranes following a residence time of 1 day in SBF, which intensified as a function of time. The presence of HA was additionally confirmed by SEM and EDX. In contrast, pure chitosan membranes did not elicit the precipitation of HA within the 14-day timeframe. Similar rates of degradation were observed for all specimens irrespective of their composition.

## Conclusions

In combination, the presence of copper and zinc promotes the crystallisation of HA during the calcination of the sol-gel-derived glasses to form glass-ceramic products. All chitosan-bioactive glass composites were found to exhibit bioactivity *in vitro*. Further work is now in progress to investigate the biocompatibility, mechanical properties and antimicrobial activity of these potential GTR membranes.

## References

- 1. Hurt AP et al. Polímeros 25: 311-316, 2015.
- 2. Hurt AP et al. Int. J. Biol. Macromol. 64: 11-16, 2014.
- 3. Fan JP et al. Mat. Sci. Eng. C 36: 206-214, 2014.
- 4. Kokubo T & Takadama H. Biomaterials. 27: 2907-2915, 2006.