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Abstract: Quality of electronic products fabricated with additive manufacturing (AM) techniques such 
as 3D inkjet printing can be assured by adopting pro-active predictive models for process condition 
monitoring instead of using conventional post-manufacture assessment techniques. This paper details a 
model-based approach, and associated machine learning algorithms, which can be used to achieve and 
maintain optimal product quality during production runs and to realise model predictive process control 
(MPC). The investigated data-driven prognostics based on state-space modelling of the dynamic 
behaviour of 3D inkjet printing for electronics manufacturing is new and makes it an original 
contribution. 3D printing of conductive lines for electronic circuits is a main targeted application, and 
is used to demonstrate and validate the prognostics capability of machine learning models developed 
from measured process data. The results show that, for moderately non-linear dynamics of the 3D-
Printing process, state-space models can inform on the expected process trends (states) and related 
product quality characteristics even over large prediction horizons. The models can also support the 
realisation of model predictive process control for optimal target performance. 

1. INTRODUCTION 

The past few years have marked a significant growth 

and developments of 3D-Printing (more broadly 

Additive Manufacturing, AM) for digital manufacture 

of electronics products driven by the benefits and 

advantages which these types of technologies can offer. 

While current use can be found predominantly in the 

area of physical prototyping, there is an increasing 

interest and shift towards adoption of additive 

manufacturing techniques within production lines. The 

main drivers for the industry to consider and adopt 

additive manufacturing for their products are the design 

flexibility, the high levels of product customisation at 

relatively low cost and the shorter lead times.  

There are 7 main types of additive manufacturing 

technologies defined in the Standard F2792 produced 

by the American Society for Testing and Materials 

(ASTM) [1]. Within these process types of additive 

manufacturing, examples of technologies that have gain 

popularity and are now used in different applications 

include fused deposition modelling (FDM), selective 

laser sintering, inkjet printing and stereolithography. 

Figure 1 details the main process types in additive 

manufacturing according to F2792 standard. 

 

Fig. 1. Additive manufacturing process types. 

Different additive manufacturing technologies have 

different advantages/disadvantages in terms of 

materials that can be processed, speed of fabrication, 

dimensions and tolerances that can be achieved, etc. 

Although these attributes change and mature 

continually, the wider adoption of 3D-Printing as a 

viable technology in electronic manufacture requires 

that present challenges related to performance, quality 

and reliability of printed electronics are successfully 

addressed. Given the layer-by-layer principle of 

building the physical domain of the product, the most 

critical quality issue with 3D-Printing is the 

dimensional/shape accuracy of the printed structures 

and conforming to required specifications (e.g. 

resistivity requirements for conductive lines fabricated 



with 3D inkjet printing). Residual stress build-up in the 

layered structure that can compromise the structural 

stability and mechanical performance (e.g. warpage, 

residual deformation, etc.) are important reliability 

issues of concern. 

Computational intelligence techniques such as 

artificial neural networks, fuzzy systems and genetic 

algorithms have been used for quality prediction in a 

variety of applications but so far have found limited use 

in relation to 3D printing processes for digital 

electronics manufacturing. The advantages of 

forecasting the printing process dynamics using 

suitable machine learning process models are discussed 

in this paper. Such approach is shown to be highly 

beneficial as it can improve the quality of 3D fabricated 

electronics parts and packages, for example in the 

context of dimensional accuracy. It can also support the 

realisation of in-line process control capability by 

means of model predictive control. 

2. STATUS OF PRINTING FOR ELECTRONICS 

Printing for electronics in general and for electronics 

packaging in particular is not new but has seen growth 

in the past years. Use of printing processes can be found 

in a range of applications including smart packaging, 

medical devices, active clothing and sensors. Examples 

of manufacture using printing processes are reported 

for thin-film transistors, conductive and photovoltaic 

elements of electronics packages, interconnects, 

MEMS and sensors [2-5]. Selected examples of printed 

products are illustrated in Figure 2. 

 

Fig. 2. Electronics products manufactured using printing 

processes. 

3D-Printing aims to deliver opportunities for 

electronics manufacturing in a truly 3D manner. For 

example, in packaging this includes the circuitry and 

the package structure within which electrical 

components are embedded as the package is built. 

There is also stronger focus on the capability of using 

multiple materials (dielectric, conductive and 

functional). For example, Voxel8 in USA are marketing 

their 3D printer for electronics with capability to build 

3D electronics products through FDM, component 

placement and printing conductive inks [6]. The 

European consortium behind the NextFactory project is 

developing an all-in-one printing platform for 

electronics manufacture and packaging that combines 

modules for multi-material 3D inkjet printing, material 

cure/sintering, component assembly and in-line 

inspection [7]. 

3. STATE-SPACE MODELLING AND MODEL 

PREDICTIVE CONTROL (MPC)  

3.1. State-Space Model Identification 

System model identification using measured data is 

an experimental approach to determine a parameterised 

model for the dynamical behaviour of an industrial 

process by using respective input signals [8-10]. The 

parameterised model structure that needs to be 

identified, 𝑀(𝜃), has a predefined form where 𝜃 =
(𝜃1, 𝜃2, … , 𝜃𝑑) ∈ 𝑅𝑑 is the parameter vector of the 

unknown model parameters that require estimation. 

The development of a discrete linear state-space model, 

defined in the so called innovations form, requires 

identification of the system when the model structure 

has the following form:  

  
𝑥(𝑡 + 1) = 𝐴(𝜃)𝑥(𝑡) + 𝐵(𝜃)𝑢(𝑡) + 𝐾(𝜃)𝑒(𝑡)  

𝑦(𝑡) = 𝐶(𝜃)𝑥(𝑡) + 𝑒(𝑡)
 (1) 

where 𝑢(𝑡) ∈ 𝑅𝑚,  𝑦(𝑡) ∈ 𝑅𝑝 and 𝑒(𝑡) ∈ 𝑅𝑝 are the 

system input, output, and disturbance (measurement 

noise) vectors at time t, respectively. The state of the 

system is represented by the column vector 𝑥(𝑡) ∈ 𝑅𝑛 

which has the dimension of the model order (i.e. n). The 

matrices 𝐴(𝜃) ∈ 𝑅𝑛x𝑛, 𝐵(𝜃) ∈ 𝑅𝑛x𝑚, 𝐶(𝜃) ∈ 𝑅𝑝x𝑛 

and 𝐾(𝜃) ∈ 𝑅𝑛x𝑝 are the state-space linear model 

matrices. Their unknown elements, for a particular 

model structure (e.g. canonical form where A, B and C 

are parameterised in a canonical form, as described in 

[8]), constitute the vector 𝜃 ∈ 𝑅𝑑. A diagram of the 

state-space model structure is illustrated in Figure 3. 

 

Fig. 3. State-space model structure. 
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Most system identification techniques, including in 

the case of state-space model identification, are based 

on minimization of the prediction error (PEM) in the 

space of the model structure defined with the model 

parameter vector 𝜃 [8]. Given the availability of 

estimation data that consist of an input sequence 

{𝑢(𝑡)| 𝑡 = 1,2, … , 𝑁} 

and an output sequence 

{𝑦(𝑡)| 𝑡 = 1,2, … , 𝑁}, 

the vector of the prediction error can be defined as 

 𝑒(𝑡, 𝜃) = 𝑦(𝑡) − 𝑦̂(𝑡|𝜃) (2) 

where 𝑦̂(𝑡|𝜃) is the predictor given by  

 𝑦̂(𝑡|𝜃) = 𝐶(𝜃)𝑥(𝑡) (3) 

This is computed using known signals u and y up to 

discrete time t=N. The prediction error  
𝑒(𝑡, 𝜃), 𝑡 = 1,2, … , 𝑁  is the difference between the 

measured output and the predicted output of the model 

at discrete time t. Therefore, the system identification 

of the state space model requires to find out a model 

parameters vector  𝜃𝑁  that minimises the prediction 

error, i.e. 

 𝜃𝑁 = min
𝜃

𝑉𝑁(𝜃) (4) 

where 

 𝑉𝑁(𝜃) =
1

𝑁
∑ |𝑒(𝑡, 𝜃)|2𝑁

𝑡=1  (5) 

and | ∙ | is the Euclidian L2-norm. 

It should be noted that the identification of the 

model parameters uses an initial estimate for the state 

of the system. Algorithm realisations typically assume 

an initial state vector x(0) with zero elements or 

estimate the initial state by treating the values of x(0) as 

independent parameters along with the model 

parameters during the PEM procedure. 

There are also subspace state-space system 

identification methods such as the popular 4SID which 

does not require priori model parameterisation and 

subsequent non-linear optimisation. These methods are 

generally regarded as robust and numerically stable as 

they make use of computational techniques such as the 

QR factorization and the singular-value decomposition 

(SVR) [10].  

3.2. MPC using State-Space Models 

The availability of a dynamic model of the open-

loop process, for example in the form a discrete state-

space model obtained through system identification 

approach provides the opportunity for the realisation of 

model predictive control (MPC). The objective with 

MPC at the current sampling time step k is to bring the 

predicted output as close as possible to a specified 

target (denoted as r(k) at time step k). This objective 

requires to identify the vector for the control input  

Δ𝑈(𝑘) over control horizon 𝑁𝑐, 

∆𝑈(𝑘) =   [∆𝑢(𝑘)𝑇 , ∆𝑢(𝑘 + 1)𝑇 , … , ∆𝑢(𝑘 + 𝑁𝑐 − 1)𝑇]𝑇 ,  

so that the error function between the manipulated 

predicted output, 𝑌̂(𝑘), and the target output trajectory, 

T(k), over the prediction horizon, 𝑁𝑝 , is minimised:  

 
𝐽(𝑘, ∆𝑈(𝑘)) = ‖𝑌̂(𝑘) − 𝑇(𝑘)‖2 + 

+ 𝑄‖∆𝑈(𝑘)‖2 → 𝑚𝑖𝑛
 (6) 

where 

𝑌̂(𝑘) = [𝑦̂(𝑘 + 1)𝑇 , 𝑦̂(𝑘 + 2)𝑇 , … , 𝑦̂(𝑘 + 𝑁𝑝)
𝑇

]𝑇 

𝑇(𝑘) = [𝑟(𝑘 + 1)𝑇 , 𝑟(𝑘 + 2)𝑇 , … , 𝑟(𝑘 + 𝑁𝑝 )
𝑇

]𝑇 

and the increment of a variable v is 

∆𝑣(𝑘) = 𝑣(𝑘) − 𝑣(𝑘 − 1). 

𝑄 > 0 is an NcxNc weighting matrix representing the 

relative importance of the manipulated (input) 

variables, 

𝑄 = [
𝑞(1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑞(𝑁𝑐)

] 

The optimal vector of the manipulated variables that 

minimises the cost function J is ∆𝑈∗(𝑘). For linear 

state-space model ∆𝑈∗(𝑘) can be found analytically. 

The control input value at step k can then be calculated 

and used in the process control: 

𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢∗(𝑘) 

4. STUDY CASE: 3D INKJET PRINTING OF 

CONDUCTIVE LINES  

4.1. Study Case Outline 

The study case for modelling the dynamic behaviour 

of 3D inkjet printing using state-space approach focus 

on the application of printing conductive lines (see 



Figure 4). The dynamic behaviour of interest is 

associated with monitoring and controlling a particular 

measurable process parameter, in this investigation this 

being the thickness of printed conductive lines. 

Dimensional and shape measurements performed in-

line are not imbedded in general in current 3D printers 

for electronics but there are already shifts towards 

making such capability available [7]. 

 

Fig. 4. Schematic of 3D inkjet printing of conductive lines. 

Most piezo-electric drop-on-demand (DoD) 

printheads have integrated temperature control. 

Printhead temperature is one of the main process 

parameters that has direct influence on the ink viscosity. 

Varying temperature, either controlled or uncontrolled, 

affects the printing performance and the material 

characteristics, and therefore has an overall impact on 

the volume of ejected droplets and the quality of the 

printed features. Assuming in-line measurements of the 

thickness of printed lines over equally spaced sampling 

times are available through inspection system, it is 

feasible to imbed machine learning and realise process 

monitoring using model predictions for the dynamics of 

this, or other, product related parameter. 

The ink material used in the study case is reported 

in reference [11]. The temperature dependent viscosity 

of this ink changes from 23.2 mPa.s at 60°C to 18.1 

mPa.s at 70°C. The surface tension is found to vary 

little with temperature and hence assumed constant at 

62.5 mN/m. Experiments are performed to enable 

quantitative analysis of the droplet volume (Voldrop) and 

droplet velocity (vdrop) at different printhead 

temperatures. The measurements are taken in the case 

of printhead with nozzle diameter 100 m and piezo-

electric signal wave form with voltage amplitude 160V 

and pulse duration 25 sec. The following experimental 

data, gathered over the temperature range 60-70°C of 

the heated printhead, are adopted in this work: 

 at 60°C: Voldrop= 179 pL and vdrop= 1.9 m/sec; 

 at 65°C: Voldrop= 200 pL and vdrop= 2.5 m/sec; 

 at 70°C: Voldrop= 209 pL and vdrop= 3.0 m/sec; 

Due to unavailability of real measurements at 

present, the experimental data above is passed through 

a simulator of “measured” values for the thickness of 

printed conductive lines (h). The data simulator uses the 

analytical model in Eq. 7 taken from reference [12]:  

ℎ =
𝑉𝑜𝑙𝑑𝑟𝑜𝑝

𝑑

𝑓

𝑈
[

𝑊𝑒+12

3(1−cos 𝜃)+
4𝑊𝑒

√𝑅𝑒

]

−
1

2

 (7)  

where 

Voldrop  : volume of a droplet 

f  : printing frequency 

U  : printhead scanning speed 

d  : initial diameter of droplet 

Re  : Reynold number  

We  : Weber number  

θ  : contact angle 

 

Such model-generated values for given printhead 

temperature and associated ink viscosity/ droplet 

volume are considered as “measured” data. 

Measurement error is also introduced in the values of 

the thickness.  In the following demonstration studies 

these values substitute the measurements that in real 3D 

inkjet printing equipment can be obtained from an 

inspection system.  

4.2. State-Space Model Development 

The state-space model is identified from data 

associated with a variable sin-shape profile of the 

printhead temperature over the range 60°C to 68°C.  

This profile is shown in Figure 5. The same figure 

details also the resulting profile of normalised values of 

conductive track (line) thicknesses, referred to as 

Process Run #1, measured sequentially over equally 

spaced sampling intervals.  

In the instance of Process Run #1 data, no other 

factors or process variations affect the relationship 

between the printhead temperature and the associated 

thickness of the ink lines printed under specified (fixed) 

piezoelectric printhead attributes, wave form and 

respective ink properties. The varying printhead 

temperature affects the ink viscosity and hence under 

same piezoelectric pulse ejected droplets have different 

volume. Therefore, the resulting thickness of the 

printed tracks becomes variable. 

The dataset associated with Process Run #1 is used 

as training data to construct the state-space model, with 

model input u(t) the printhead temperature and model 

output y(t) the associated thickness of the printed 

conductive line (as with the model structure of Fig. 3).  

V



  

Fig. 5. Input (printhead temperature) and output 

(normalised thickness of conductive lines, Runs #1 and #2) 

process data. 

The definition of the state-space model (model order 

2) for the process of inkjet printing based on the process 

data detailed above is provided in Table 1. 

Table 1. Matrices and vectors defining the state-space 

model for the study case data. 

Model Entity Vector/Matrix 

A [
0 1

−0.9923 1.9922
] 

B [
0.0003080
0.0003066

] 

C [1 0] 

D 0 

K [
1.006291
1.073323

] 

 

The initial state (X0) that minimises the prediction 

error of the developed state-space model is identified as 

the vector-column X0 = [0.70993  0.69319]T. 

4.3. State-Space Model Validation 

The developed state-space process model is 

validated using the measured dataset from the Process 

Run #2 (see Figure 5). A feature of this validation data 

is that the process input parameter, the printhead 

temperature, has the same sin-profile as the one used 

with Process Run #1 but due to the effect of other 

implicit factors (e.g. ink printhead clogging, ambient 

and substrate temperature change, etc.) a progressive 

nonlinear reduction in the thickness of the printed lines 

takes effect. 

Model validation and predictive performance are 

evaluated with three different prediction horizons: (1) 

25 step-ahead, (2) 50 step-ahead and (3) 100 step-

ahead. In all cases, a FIT metric is used to indicate the 

accuracy of predictions over the range of validation 

data.  

𝐹𝐼𝑇 = 100 (1 −
‖𝒚̃ − 𝒚‖

‖𝒚̃ − mean(𝒚̂)‖
)   (in %) 

where  𝒚̃ is the measured output of the validation data 

and y is the respective model output. 

Model validation results are shown in Figure 6. In 

all cases, particularly when the smaller 25 step-ahead 

horizon is monitored and forecasted, the different 

process dynamics of Process Run #2 and the associated 

drift in process performance, indicated by the values of 

the thickness of printed lines, are accurately predicted. 

 

Fig. 6. Model validation with different prediction horizons 

and respective FIT measures for model predictive power 

and accuracy. 

4.4. MPC Demonstration 

Given the availability of a model of the dynamic 

behaviour of the process, the study case is also used to 

demonstrate the use of MPC methodology to achieve 

certain target for the measured thickness of printed 

lines. In this example, the initial state of the printhead 

is given with temperature 64°C and the aim of the 

process control is to achieve alternating normalised 

values of 0.7 and 0.6 of the thickness of the printed 

conductive lines which change from one level to the 

other every 100 units of the sampling time. 

Figure 7 shows the required controlled change of the 

printhead temperature (bottom graph), assumed to be 

the control parameter, and based on the predicted 
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process dynamics using the developed state-space 

model (Table 1). The graph at the top shows the state-

space model predictions for the thickness of the printed 

conductive lines at each sampling point under the MPC-

identified printhead temperature. In this demonstration, 

the MPC is implemented with predictive horizon Np=5 

and control horizon Nc=5. The weight matrix for the 

control parameter change has elements equal to 0.003. 

 

Fig. 7. Computed profile of the control parameter (printhead 

temperature) using MPC approach to achieve 2-level 

stepwise pattern for the thickness of printed lines. 

5. CONCLUSIONS 

Ongoing developments in 3D-Printing technologies 

and associated materials, and software tools for digital 

fabrication, have started to offer real prospects for their 

adoption by the electronics industry in high volume 

production lines. There are still challenges that need to 

be addressed to ensure that the quality and reliability of 

3D-fabricated parts meet customer requirements. 3D-

Printing process monitoring and in-line process control 

capabilities based on use of process data and machine 

learning models does not exist in present 3D-printers. 

This work has formulated and demonstrated the 

approach of development and use of state-space process 

models capable to capture accurately the dynamic 

behaviour of the printing process. The ability to 

perform predictive quality control on required 

dimensions and tolerances using model predictions has 

been discussed. Embedding such capabilities in real 

equipment can have big impact and has been advocated 

as having real potential to support wider technology 

acceptance for electronic manufacture and packaging as 

well as an improved, more robust process performance.   
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