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A generic travelling wave solution in dissipative laser cavity
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Abstract. A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation
(CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stabil-
ity region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide
insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the not-
so-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters,
only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case.
These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-
Gaussian with variable central dip. A split-step Fourier method and pseudospectral method have been used for
direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been
obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian trav-
elling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would
be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics and
localization in semiconductor laser cavity.

Keywords. Complex Ginzburg–Landau equation; dissipative system, stability analysis; He’s variational
method; cosh-Gaussian travelling wave solution.
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1. Introduction

Self-sustaining localized structure that occurs in dissi-
pative nonlinear systems, far from equilibrium, can be
termed as dissipative soliton (DS) [1]. DSs are more
wide-ranging than conservative solitons and occur in a
larger variety of systems such as physical [2–4], chem-
ical [5], mathematical [6], and biological systems [7].
They are also commonly observed in nature [8]. Since
most of the practical systems are ‘lossy’, an external
energy supply is required to keep the soliton ‘alive’ in
such a dissipative system. On the contrary, conserva-
tive systems, which are comparatively rare in practice
or ‘oversimplified’, do not require such energy sup-
ply. During the last decade, optical dissipative solitons
(ODSs) attracted significant research attention. Cavity
solitons (CSs) are a special type of ODS which can be
excited inside a laser cavity. These are bright light spots
on the dark background or conversely, dark spot on a
homogeneous bright or grey background and appear
on a plane transverse to the cavity axis [9]. CS can be

assumed to be conventional propagating soliton bound-
ed by the mirrors of the cavity, i.e., they are boundary
localized along the propagating direction. Laser cavi-
ties of different types are available commercially, but
the excitation of CS has been realized particularly
in the vertical cavity surface emitting laser (VCSEL)
because of its advantage over the other available
devices [10]. The complex Ginzburg–Landau equation
(CGLE) with cubic nonlinearity is a well-known model
used for investigating pattern formation and dissipa-
tive optical solitons in VCSEL [11]. The generalized
CGLE is such a classic equation that can be used for
such purposes.(

∂

∂t
− ε

)
ψ = (1 + ic1)

∂2ψ

∂x2
−(1 − ic3) |ψ |2 ψ, (1)

where ψ is the slowly-varying field envelope, x is the
spatial coordinate transverse to the cavity axis and t is
the cavity round trip time. To connect it with VCSEL,
the coefficients ε, c1 and c3 should be considered as
real-valued cavity parameters. Here, (∂t − ε) describes
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the basic cavity dynamics. The system is considered to
be simple and lossy, where ε represents the cavity loss
coefficient, scaled with respect to the evolution coordi-
nate t. The term (1 + ic1)∂xx describes the spatial cou-
pling, wherein the real part represents diffusive coupling
and imaginary part represents diffractive coupling. The
last term (1 − ic3)|ψ |2 ψ is the nonlinearity-induced
loss/gain term in the system. The real and imaginary
parts of the term describe, respectively, cubic nonlinear
loss and nonlinear gain/absorption processes depend-
ing upon its sign. Equation (1) transforms to real
Ginzburg–Landau equation for c1 = c3 = 0, resulting
in the onset of stationary periodic solution or stationary
bifurcations [12]. The CGLE can also be converted to
NLSE that counts the conservative system by setting
ε = 0 and eliminating unity terms in second and third
terms of eq. (1):

∂ψ

∂t
= ic1

∂2ψ

∂x2
+ ic3 |ψ |2 ψ. (2)

The prototype CGLE model described by eq. (1) has
wide applications in a variety of physical phenomena
starting from superconductivity to Bose–Einstein conden-
sation [13]. Here, some primary references are brought
forward. The study of travelling wave (TW) solution
[14], spatiotemporal intermittency regime of Nozaki–
Bekki holes [11] and Benjamin–Feir stable region [15],
localized TW solution [14,16], controlling of TW with
feedback [17], turbulence in electromagnetic fields [18]
and instability in nonlinear chemical kinetics [19] are to
cite but a few. It is also sought after in superfluidity,
second-order phase transitions, Rayleigh–Bénard con-
vection [20]. The CGLE is also a commonly chosen mod-
el for pattern-forming systems and supports a variety of
coherent and complex patterns [21,22]. This classic equa-
tion has been investigated to find localized structure in
spatially extended non-equilibrium systems [21]. Sev-
eral path-breaking experiments have been performed in
optical systems that can be described by eq. (1) and its
variants. Cavity soliton lasers, which can be driven exter-
nally through holding beam or self-driven with the help
of feedback can host self-localized ODS. Such ODS,
more particularly, CSs have been realized experimen-
tally [16,23,24]. CS in self-driven system has been ob-
tained by providing frequency-selective feedback to the
cavity using Bragg grating [24–26].

A true CS can be envisaged as localized TW solu-
tions. In a VCSEL coupled with feedback, many tilted
TW can be excited [16]. They coexist, in some para-
metric region only, with the stable trivial solutions that

correspond to the laser ‘off’ state. The tilted TWs inter-
act with each other. The introduction of an annular spa-
tial filter into the feedback path leads to a single
dominant localized TW. Such localized structures are
the basic requirement for CS generation. In the present
investigation, we derived the TW solution of the CGLE,
i.e., the primary step of the aforesaid mechanism of CS
generation. However, our TW solution profile is new
for such a system. Most of the theoretical works used
bell shaped, i.e., sech or Gaussian profiles as an ansatz
of the CGLE to start with. Moreover, different types
of solutions have been reported for the generalized
CGLE. In addition to stable stationary solutions, exact
periodic and blow-up solutions have been derived using
the homogeneous balance principle and Jacobi elliptic
function. Peculiar results like periodic kink wave solu-
tions, have been reported in ref. [27]. Depending upon
the system dynamics and boundary conditions, types
of periodic, quasiperiodic and chaotic solutions have
been obtained for both the cubic [28] and cubic–quintic
CGLE [14,21,29]. For a similar CGLE as described in
eq. (1), but with cubic–quintic nonlinearity, kink and
antikink stable bound states of solitons have been ob-
tained analytically [30,31]. Stable vortical solitons for
such quintic CGLE with radially inhomogeneous losses
have been derived numerically [32]. Recently, triggered
fronts of the CGLE have been reported in ref. [33].

In this paper, we determine a large family of cosh-
Gaussian TW solution of eq. (1). To the best of our
knowledge, this is the first time that cosh-Gaussian pro-
file has been used in the study of VCSEL, as well as of
eq. (1). The cosh-Gaussian ansatz is found to be more
generic as it gives rise to a number of different profiles,
e.g., Gaussian, near-sech, flat-top and a typical dou-
ble humped cosh-Gaussian profile with varying central
dip, for different parametric values. This seems to be
more interesting in comparison to the common sech
profile for the spontaneous emergence and tunability
of self-organized structures. Also, this profile promises
more intriguing spatiotemporal patterns in spatially
extended systems. Equation (1) is non-integrable by
means of inverse scattering transform method, and
hence no general exact solution is possible. However,
a particular exact solution can be obtained [17,34,35].
Analytical approaches like Painlevé analysis and its
variant [36] and Hirota bilinear method [37] have
been employed to solve the CGLE. Soliton solutions
of discrete CGLE have been obtained using extended
hyperbolic function approach [38]. Besides, separation
method has been found to be a very strong tool to solve
such CGLE [30]. Approximate analytical method, such
as variational method has been successfully used to
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find the dynamics of CGLE system [32,39]. Numer-
ical solution of such CGLE mostly relies on Crank–
Nicholson method. Time splitting spectral method is
another strong contender [39,40].

In the present investigation, He’s variational method
[41] is adopted to find the sech and cosh-Gaussian TW
solutions of CGLE. We have identified a parametric
region of stable solution for the system. Bifurcation
analysis is done to study the nature of the solution and
to get better insight of the system. To validate the ana-
lytical results, split-step Fourier method, pseudospec-
tral method and ETD2 exponential time-stepping
method have been used. The versatile cosh-Gaussian
TW thus obtained can be further used for the realiza-
tion of CS in semiconductor laser cavity, which will be
reported in the forthcoming communication.

This paper is organized as follows: §2 consists of the
stability analysis of the system under study. We present
a brief bifurcation study in §3 for the totality of the
investigation. In §4, the CGLE has been solved follow-
ing He’s variational method and standard sech as well
as non-standard cosh-Gaussian TW solutions are obtain-
ed. Both analytical as well as numerical results are dis-
cussed in §5, which is followed by a conclusion in §6.

2. Stability analysis

One of the important and necessary exercises for study-
ing a dynamical system is its stability analysis. A
number of established mathematical techniques are
available to analyse the stability criteria of a dynamical
system. Lyapunov exponent’s method [42], perturba-
tion method [43], Eckhaus instability criteria [44] and
Benjamin–Feir–Newell instability criteria [13], are a
few to be listed. The system described by eq. (1) is non-
conservative, and therefore, perturbative technique can
be applied to the system in order to determine the sta-
ble and unstable zones in the parametric space. In
order to obtain the homogeneous and steady state for
the system, the following conditions must be satisfied:

∂2ψ

∂x2
= 0 and ψ = E0, (3)

assuming E0 = √
I0eiωt , where I0 is the intensity

and ω is the frequency of oscillation of the TW solu-
tion. Applying the conditions, stated in eq. (3) to
eq. (1), we get

iω = ε − (1 − ic3)I0. (4)

On comparing real and imaginary parts, the follow-
ing results are derived: (i) frequency of oscillation for
the system ω = c3ε and (ii) the intensity of the TW
profile I0 = ε. To carry the study forward, perturbative
analysis is applied to the system. The TW solutions are
very useful in the starting hypothesis of perturbation
theory or stability analysis [45]. The perturbed solution
for the system described in eq. (1) can be written in the
form: ψ = E0 + δEeiqx , where δE is the amplitude of
perturbed function and q is the propagation constant of
the TW. Substitution of the perturbed TW solution in
eq. (1) results in

∂

∂t
(δEeiqx) = εδEeiqx − q2(1 + ic1)δEeiqx

−(E2
0δE∗e−iqx + 2I0δEeiqx)

+ ic3(E
2
0δE∗e−iqx + 2I0δEeiqx). (5)

Assuming Q = δEeiqx and its complex conjugate
Q∗ = δE∗e−iqx in eq. (5), we get

∂Q

∂t
= εQ − q2(1 + ic1)Q − (E2

0Q∗ + 2I0Q)

+ ic3(E
2
0Q∗ + 2I0Q). (6)

For steady state, the parameters assume the value:
E0 = I0 = 0. Therefore, eq. (6) takes the following
form:

∂Q

∂t
= [(ε − q2) − ic1q

2]Q. (7)

Equation (7) concludes that the system would bifur-
cate with frequency (−c1q). For non-steady state, i.e.,
E0 �= 0, I0 �= 0, E0 = √

I0eiωt , eq. (6) can be written
in the rearranged form:

∂Q

∂t
= AQ + BQ∗, (8)

where

A = ε − q2(1 + ic1) + 2I0 + 2ic3I0

and

B = (−E2
0 + ic3E

2
0).

The complex conjugate of eq. (8) is

∂Q∗

∂t
= A∗Q∗ + B∗Q, (9)

where A∗ and B∗ are the complex conjugates of A and
B respectively. Equations (8) and (9) can be written in
the matrix form as follows:

∂

∂t

[
Q

Q∗
]

=
[

A B

B∗ A∗
] [

Q

Q∗
]

. (10)
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The eigenvalue determinant for eq. (10) is given by∣∣∣∣ A − λ B

B∗ A∗ − λ

∣∣∣∣ = 0, (11)

where λ is the eigenvalue of the system. The charac-
teristic equation corresponding to the determinant in
eq. (11) reads as

λ2 − 2Re(A)λ + |A|2 − |B|2 = 0. (12)

For real values of λ, the system would transit from
instability (for positive values of λ) to stability (for
negative values of λ). In the proximity of this bifur-
cation, i.e., for |λ| � 1, the term λ2 in eq. (12) can be
neglected. Thus, we obtain

λ = |A|2 − |B|2
2Re(A)

. (13)

Substituting the values of A and B in eq. (13), the
expression for λ takes the form:

λ = (3ε−q2)2 + (2c3ε−q2c1)
2 −ε2(1+c2

3)

2(3ε−q2)
. (14)

In figure 1, the parametric space for eigenvalue λ is
plotted. Three distinct regions are identified. Regions
I and III correspond to the negative eigenvalues and
hence represent the stable TW solutions, whereas,
Regions II and IV correspond to positive eigenvalues,
thus represent the unstable region in parametric space.

3. Bifurcation analysis

The CGLE (eq. (1)) can be justifiably derived as an ap-
proximation at the wake of an oscillatory instability in
dissipative systems [13]. Instability of CGLE has been
observed in a variety of systems, for instance, Rayleigh–
Benárd convection in binary mixtures, hydrothermal
waves and electroconvection in nematic liquid crystals
[46]. For a better insight of the stability of the solution,
bifurcation analysis of dynamical system is in order.
Equation (1) is a regular form to show a large class of
bifurcation phenomena in a spatially extended dissipa-
tive system. Bifurcation analysis of a system similar
to eq. (1) has been done in ref. [47]. However, that
investigation has been carried out by eliminating the
diffusion term. Our analysis includes the total equa-
tion. If the term λ2 is not neglected in the quadratic
equation, (eq. (12)), then it results in

λ = Re A ±
√

(Re(A))2 − |A|2 + |B|2. (15)

Smooth variation of the parameter ε gives rise to a
bifurcation. To obtain bifurcation diagram, we choose
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Figure 1. Stability region corresponding to eq. (13) for
ε = 1 and q = 2. Regions I and III represent the stable
region.

the values of the system parameters c1 and c3 from the
stable zone of the stability plot (figure 1). For para-
metric values c1 = 0.2, c3 = 0.8, I0 = ε and q = 4,
the system bifurcates at ε = 0. Figure 2 shows the
behaviour of dynamical system with the change in
bifurcation parameter ε. Figure 2i corresponds to ε > 0
that represents a stable spiral or attractor making the
dynamical system stable. Figure 2ii shows the unstable
spiral for ε < 0 that represents the unstable dynami-
cal system. The behaviour of the system resembles the
Hopf bifurcation [47]. The equilibrium point for the set
of eqs (8) and (9) is (0, 0). This is represented by the
red circle in figures 2i and 2ii.

4. Travelling wave solutions

With the stability criteria for the system established, we
proceed to find the TW solution of the system. Con-
sidering the TW hypothesis, the TW solution for the
system can be written as

ψ(x, t) = g(ξ)ei(−kx+ωt+θ), (16)

where g(ξ) is the profile function, the parameter ξ =
x − vt , v is the TW velocity, k is the wave number, ω

is the frequency of the TW and θ is the phase constant.
This TW solution is the natural extension of the station-
ary wave solution of the real equation corresponding to
eq. (1). Substituting the value of ψ(x, t) from eq. (16)
in eq. (1), we obtain

i(vg′ + εg + g′′ − k2g + 2c1kg
′ − g3) + ωg + 2kg′

− c1g
′′ + c1k

2g − c3g
3 = 0, (17)

where g′ = ∂ψ/∂ξ and g′′ = ∂2ψ/∂ξ2. Separating the
real and imaginary parts of eq. (17), we get

ωg + 2kg′ − c1g
′′ + c1k

2g − c3g
3 = 0 (18)

and

vg′ + εg + g′′ − k2g + 2c1kg
′ − g3 = 0. (19)
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Figure 2. Bifurcation plot for the system of eqs (7) and (8).
(i) The stable spiral for ε > 0 and (ii) the unstable spiral for
ε < 0. (0, 0) (red circle) represents the equilibrium point for
the system.

Equation (19) is then used to obtain the velocity of the
TW using Laplace transform as follows:

Rearranging eq. (19), we get

g′′ + (v + 2c1k)g′ + (ε − k2)g = g3, (20)

with initial conditions g(0) = g0 and g′(0) = 0. Here,
g0 is the initial value of the profile function g(ξ ) at
ξ = 0. The solution for nonlinear differential equations,
like, eq. (20) is generally given by Volterra integral
equation with initial value conditions as described in

Theorem 3.3 in ref. [48]. As in ref. [48], we con-
sider two cases for λ, i.e., λ > 0 and λ < 0, where

λ = (v + 2c1k)2 − 4(ε − k2). (21)

Case 1. For λ > 0, the solution for eq. (20) is

g(ξ) = k1eα1ξ + k2eα2ξ

+ 1√
λ

∫ ξ

0
(eα1(ξ−z) − eα2(ξ−z))g3(z)dz, (22)

where

α1 =
√

λ − (v + 2c1k)

2
,

α2 = −√
λ − (v + 2c1k)

2
,

k1 = (
√

λ − (v + 2c1k))g0 + 2(v + 2c1k)

2
√

λ

and

k2 = (
√

λ − (v + 2c1k))g0 − 2(v + 2c1k)

2
√

λ
.

Case 2. For λ < 0, the solution for eq. (20) is

g(ξ) = eαξ (b1 cos ω1t + b2 sin ω1t)

+ 2√
λ

∫ ξ

0
eα(ξ−z) sin ω1(ξ − z) g3(z) dz, (23)

where

α = − (v + 2c1k)

2
,

b1 = g0,

b2 = 2g0(v + 2c1k)√
λ

and

ω1 =
√

λ

2
.

Further, four cases for the velocity v of TW arise out
of eq. (21), considering the conditions for λ > 0 and
λ < 0. However, in our present discussion, we have
considered only the case for λ > 0 in order to keep the
velocity positive. The limiting condition for velocity
comes out to be

v > −2c1k + 2
√

ε − k2. (24)

Now, from eqs (18) and (19) we get

ωg + 2k

(
(g3 + (k2 − ε)g − g′′)

v + 2c1k

)

− c1g
′′ + c1k

2g − c3g
3 = 0. (25)
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Rearranging eq. (25), multiplying with g′ and integra-
ting over the whole space, we obtain
(
ω+c1k

2+ 2k(k2 −ε)

v+2c1k

)
g2

2
+

(
2k

v + 2c1k
− c3

)
g4

4

−
(

c1 + 2k

v + 2c1k

)
(g′)2

2
= K1. (26)

A new quantity J is introduced, which can be defined
as

J =
∫ ∞

−∞
K1dξ . (27)

This physical quantity J in conjugation with an appro-
priate profile function, gives rise to the TW solution.
In literature, numerous profile functions have been dis-
cussed starting from the simple Gaussian to chirped
Gaussian [1,49] and sinh-Gaussian [50]. In this work,
the simplest sech [30,51] and rarely used, but more
generic, cosh-Gaussian profile functions [52] have
been discussed.

Case I. Standard sech TW ansatz

We derived the standard sech TW solution of eq. (1) for
the totality of the investigation and comparison with the
cosh-Gaussian profile. We take the profile function as

g(ξ) = S sech(T ξ), (28)

where S represents the amplitude and T represents
the inverse width. Substituting eq. (28) in eq. (27) and
integrating, we obtain

J1 = S2

T

(
ω + c1k

2 + 2k(k2 − ε)

v + 2c1k

)

+ S4

3T

(
2k

v + 2c1k
− c3

)

−S2T

3

(
c1 + 2k

v + 2c1k

)
. (29)

In order to obtain the values of constant parameters S

and T, the principle of variation, i.e., ∂J1/∂S = 0 and
∂J1/∂T = 0 is applied. This results in the following
conditions respectively:

S

T

(
ω+ c1k

2+ 2k(k2 − ε)

v +2c1k

)
+ 2S3

3T

(
2k

v + 2c1k
− c3

)

− ST

3

(
c1 + 2k

v + 2c1k

)
= 0 (30)

and

S2

T 2

(
ω + c1k

2 + 2k(k2 −ε)

v +2c1k

)
+ S4

3T 2

(
2k

v + 2c1k
− c3

)

+ S2

3

(
c1 + 2k

v + 2c1k

)
= 0. (31)

Upon solving eqs (30) and (31), thus result in

S =
⎡
⎣2

(
ω + c1k

2 + 2k(k2−ε)
v+2c1k

)
(
c3 − 2k

v+2c1k

)
⎤
⎦

1/2

and

T =
⎡
⎣−

(
ω + c1k

2 + 2k(k2−ε)
v+2c1k

)
c1 + 2k

v+2c1k

⎤
⎦

1/2

. (32)

The TW profile function assumed in eq. (28) and the
conditions derived for parameters S and T in eq. (32),
results in figure 3. The values of the system parameters
used are chosen from the stable zone of figure 1 and
are given by c1 = 0.3, c3 = −0.8, ε = 1, I0 = ε,
ω = c3, k = 0.3 and v = 11.7279. We also obtained
similar TW profiles with other suitable points of the
stable zone.

Figure 3. 3D Intensity profile for sech TW solution with 2D profile in the inset.
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Case II. Non-standard cosh-Gaussian TW ansatz

In this case, we propose the following unchirped cosh-
Gaussian ansatz as profile function:

g(ξ) = P cosh(Qξ) exp(−ξ2/R2), (33)

where P represents the amplitude, Q is the cosh param-
eter and R is the pulse width parameter of the profile.
Such cosh-Gaussian TW is rarely adopted but quite
generic in nature. Substituting eq. (33) in eq. (27) and
integrating, we obtain the expression for physical quan-
tity J2 as

J2 = √
π

[√
2

8
a1P

2R

(
1 + e

Q2R2
2

)

+a2

64
P 4R

(
eQ2R2 + 4e

Q2R2
4 + 3

)

−
√

2a3

8

P 2

R

(
1 − Q2R2 + e

Q2R2
2

) ]
, (34)

where

a1 =
(

ω + c1k
2 + 2k(k2 − ε)

v + 2c1k

)
,

a2 =
(

2k

v + 2c1k
− c3

)

and

a3 =
(

c1 + 2k

v + 2c1k

)
.

Applying the principle of variation to eq. (34), i.e.,
∂J2/∂P = 0, ∂J2/∂Q = 0 and ∂J2/∂R = 0, we obtain
the following three equations respectively:

√
2a1

4
PR

(
1+ e

Q2R2
2

)
+ a2

16
P 3R

(
eQ2R2 +4e

Q2R2
4 +3

)

−
√

2a3

4

P

R

(
1 − Q2R2 + e

Q2R2
2

)
= 0, (35)

√
2a1

8
P 2R3Qe

Q2R2
2 + a2

32
P 4R3Q

(
eQ2R2 + e

Q2R2
4

)

−
√

2a3

8
P 2QR

(
−2 + e

Q2R2
2

)
= 0 (36)

and
√

2a1

8
P 2

(
1 + e

Q2R2
2

)
+

√
2a1

8
P 2Q2R2e

Q2R2
2

+a2

64
P 4

(
eQ2R2 + 4e

Q2R2
4 + 3

)

+a2

32
P 4Q2R2

(
eQ2R2 + e

Q2R2
4

)

+
√

2a3

8

P 2

R2

(
1 − Q2R2 + e

Q2R2
2

)

−
√

2a3

8
P 2Q2

(
−2 + e

Q2R2
2

)
= 0. (37)

Equations (35)–(37) are solved to determine the param-
eters P , Q and R.

5. Results and discussion

It is very cumbersome to solve eqs (35)–(37) analytically.
Subsequently, these equations are solved graphically.
Different values of parameters generate different solu-
tion points, hence different nature of profiles are wit-
nessed in each case. One of the possible cases is
discussed in this study. Figure 4 depicts the first quad-
rant of solution plot for eqs (35)–(37) with variation
in parameters P and Q, keeping R (= 0.3) constant for
parametric values c1 = 0.3, c3 = −0.8, ε = 1, I0 = ε,
ω = c3, k = 0.3 and v = 11.7279. It may be noted
that all the figures in this section, obtained from both
analytical as well as numerical analysis, are plotted
for system parameters that correspond to stable zone
of figure 1. Red line corresponding to eq. (35) and
black dotted line corresponding to eq. (36), intersect
at eight different points, thus creating eight different
solution points for the same width R. Inset provides the
zoom-in view of the intersection points (c), (d), (e), (f),
(g) and (h) marked in figure 4. Each solution point gen-
erates different pulse profiles, providing a variety of pro-
file shapes. Figure 5i shows the intensity profile plots
in 3D with 2D plot in figure 5ii for point (a) that cor-
responds to P = 2.7994 and Q = 0. Intensity profile in
figure 5i is a purely Gaussian shape profile, closely
matching the nature of standard sech profile shape.
Figure 5iii is the 3D intensity profile for P = 1.9402
and Q = 4.7740 corresponding to the point (b) in
figure 4 and the corresponding 2D profile shape shown
in figure 5iv. It is a flat-top profile. Typical cosh-Gaussian
profile with 3D and cross-sectional 2D profile is plot-
ted for the solution point (j) in figures 5v and 5vi,
respectively. Solution points (c)–(h) in figure 4 gene-
rate a similar pulse with a dip in between two equally
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Figure 4. Parametric solution space plot for parameters P and Q in eqs (32) and (33) for constant R (= 0.3). Insets are
zoom-in view of solution points marked in the main plot: (i) correspond to points (c) and (d), (ii) correspond to points (e)
and (f), (iii) corresponds to points (g) and (h) and (iv) corresponds to point (j).

distributed maxima. These points represent the typical
cosh-Gaussian nature of the profile. Solution point
pairs (c) ((P, Q) = (0.1217, 13.0282)) and (d) ((P, Q) =
(0.0908, 13.5247)), (e) ((P, Q) = (0.0897, 13.5435))
and (f) ((P, Q) = (0.0603, 14.1817)), generate almost
similar pulse profiles, with a dip nearly touching the
base line (see figures 6i and 6ii, 6iii and 6iv). 2D pro-
file plots of the next two solution points, i.e., (g) ((P,
Q) = (0.0600, 14.1859)) and (h) ((P, Q) = (0.0301,

15.2294)), are depicted in figures 6v and 6vi. As the
value of Q increases, the dip in between two humps
flattens at the base. Each solution point shows simi-
lar nature of pulse profile with almost well separated
peaks. It is interesting to note that as the value of cosh-
Gaussian parameter Q increases, the central dip starts
forming in the intensity profile. As the value of P

decreases and Q increases, the dip tends to touch the
x-axis with flattening bottom. The root mean square

Figure 5. 3D intensity profile for (i) solution point (a), i.e., (P, Q) = (2.7994, 0), (iii) solution point (b), i.e., (P, Q) =
(1.9402, 4.7740), (v) solution point (j), i.e., (P, Q) = (0.0301, 15.2294). Respective 2D profiles are plotted in (ii), (iv)
and (vi).
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Figure 6. 2D intensity profiles corresponding to (i) solution point (c) ((P , Q) = (0.1217, 13.0282)), (ii) solution point
(d) ((P , Q) = (0.1189, 13.0664)), (iii) solution point (e) ((P , Q) = (0.0908, 13.5247)), (iv) solution point (f) ((P , Q) =
(0.0897, 13.5435)), (v) solution point (g) ((P , Q) = (0.0603, 14.1817)) and (vi) solution point (h) ((P , Q) = (0.0600,
14.1859)) at R = 0.3.

Figure 7. Numerically obtained spatiotemporal evolution of field envelope ψ with respect to spatial coordinate x and time
t. (i) Re(ψ) for point (a), (ii) Im(ψ) for point (a), (iii) Re(ψ) for point (b) and (iv) Im(ψ) for point (b), points (a) and (b)
are marked in figure 4. Colour bar for each plot is represented besides each plot. Red colour represents crest and blue colour
represents trough of the oscillating wave.

width of the pulse can be calculated using the relation
given by eq. (10) in ref. [50]. We have extensively inves-
tigated the solutions with different R values. A large
family of solutions is obtained. The solution set obtained
for different R values almost show a similar trend. The
solution point lying on the x-axis in figure 4 generates
the fundamental shape, here, purely Gaussian for this
system, followed by flat-top or nearly flat-top profiles.
As the value of P decreases and Q increases, the dou-
ble hump starts forming in the profile with increasing
depth, thus generating the family of cosh-Gaussian
solutions. In a nutshell, it can be said that, the system
is highly tunable within the range of the choice of
parameters.

The evolution of TW solution has been studied
by solving eq. (1) numerically. The split-step Fourier
method [49], pseudospectral method and ETD2 expo-
nential time-stepping method [53] have been applied
to the system as referred in ref. [54]. Cosh-Gaussian
function given by eq. (33) is considered as the ini-
tial profile of the TW. The spatio-temporal profile of
the real and imaginary parts of field envelope ψ corre-
sponding to solution point (a) in figure 4 is presented
in figures 7i and 7ii respectively, while those profiles
corresponding to solution point (b) are portrayed in
figures 7iii and 7iv respectively. Along with initial TW
condition, slight noise of the order 10−3 is introduced
in the system. Slightly disturbed initial oscillations of
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Figure 8. Numerically obtained spatiotemporal evolution of field envelope for sech input profile. Inset plot (i) corresponds
to pulse broadening ratio with respect to time t and (ii) corresponds to phase change countered by the field envelope with
respect to time t.

the real and imaginary parts in the plots of wave envelope
eventually become periodic, thus presenting the robust-
ness of the system. The typical oscillatory nature of the
real and imaginary parts is evident in the figures. We
numerically solve the CGLE for other solution points
(c)–(i) in figure 4. The oscillatory behaviour of the
real and imaginary parts of ψ, similar to that shown
in figure 7, is observed for each point.

Split-step Fourier method (SSFM) is applied to the
system described by eq. (1) to study the TW solution.

Stable propagation of a TW is clearly shown in figure 8
for sech and, figures 9 and 10 for cosh-Gaussian field
profiles, respectively. Figures 9 and 10 represent dif-
ferent profiles of cosh-Gaussian envelope obtained by
direct numerical solution of eq. (1) with parameters
corresponding to the analytically found solution points
in figure 4. Figure 9i represents the stable propagation
of fundamental Gaussian profile, followed by the flat-
top profile represented in figure 9iii. As P decreases
and cosh parameter Q increases, the double hump

Figure 9. Numerically obtained spatiotemporal evolution of cosh-Gaussian field profile |ψ(x, t)|2 for points: (i) solution
point (a), (iv) solution point (b), (vii) solution point (c), marked in figure 4. Corresponding pulse broadening ratio and phase
change countered by the field envelope with respect to time t are shown in figures (ii) and (iii), (v) and (vi), and (viii) and
(ix), respectively.
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Figure 10. Numerically obtained spatiotemporal evolution of cosh-Gaussian field profile |ψ(x, t)|2 for solution points (i)
(d), (ii) (e), (iii) (f), (iv) (g), (v) (h) and (vi) (j), marked in figure 4.

starts forming in the peak. This nature of the profile
is evident in figures 9vii and 10i–vi. In dissipative sys-
tems, diffraction as well as nonlinearity play important
roles. The phenomenon of diffraction is mainly respon-
sible for the pulse broadening and it can be detrimental
in the systems dealing with the TW. For each solution
point, pulse broadening ratio, i.e., the ratio of full-
width at half-maxima of the input and output pulses,
has been studied with respect to time. As expected, it is
observed that for each case the pulse broadening ratio
comes out to be unity for the total travelling time. The
diffraction effect is completely balanced by the non-
linearity present in the system. Hence, the system under
consideration does not undergo pulse broadening, thus,
leading towards stability and robustness of the system.
The other major aspect to countercheck the stability of
the system is to study the phase instabilities witnessed
by the system. Although phase changes insignificantly
affect the pulse spectrum, but can alter the pulse shape
[49], it becomes important to study the phase instabil-
ities witnessed by the system. In the analytical study,
it was considered that the system is stable against any
phase changes. The numerical study of the system
determined that the system has not undergone any sig-
nificant phase change throughout the considered travel
time. For each possible case, pulse broadening ratio
and phase change are studied. Inset (i) of figures 8, 9ii,
9v and 9viii represent the pulse broadening ratio and
inset (ii) of figure 8, 9iii, 9vi and 9ix represent phase
change with respect to time. Analytical and numeri-
cal results are found to be in impeccable conjugation

with each other. Thus the numerical results qualita-
tively assert analytically obtained existence points of
cosh-Gaussian TW solutions.

6. Conclusion

TW solutions of commonly used sech-type and not-
so-explored cosh-Gaussian type are derived for a dissi-
pative semiconductor laser cavity. The cosh-Gaussian
solution is found to be more generic as it can yield
different TW profiles including the standard sech and
Gaussian. A wide family of solutions with varying pro-
file shapes are obtained. The outcome of this investiga-
tion has potential application in mode shaping, pattern
formation and switching. Also, the wide parametric
range will be beneficial for experimental investiga-
tions of such systems. Analytical results thus obtained
open an exciting opportunity to generate family of
TW profiles from a single solution set of parametric
values. This can have vast applicability in different
physical systems. Analytical results can build experi-
mental basis of the systems described by eq. (1). The
numerical simulation of eq. (1) is presented, which
qualitatively supports the analytical results. Finally, the
output of the present investigation can be used to find
complicated localized pattern and CS in VCSEL.
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