
An Efficient Null Space-Based Homomorphic MAC Scheme Against Tag
Pollution Attacks in RLNC

Alireza Esfahani, Student Member, IEEE, Georgios Mantas, Member, IEEE,
and Jonathan Rodriguez, Senior Member, IEEE

Abstract—This letter proposes an efficient null space-based
homomorphic message authentication code scheme providing
resistance against tag pollution attacks in random linear network
coding, where these attacks constitute a severe security threat. In
contrast to data pollution attacks, where an adversary injects into
the network corrupted packets, in tag pollution attacks the adver-
sary corrupts (i.e. pollutes) tags appended to the end of the coded
packets to prevent the destination nodes from decoding correctly.
Our results show that the proposed scheme is more efficient com-
pared to other competitive tag pollution immune schemes in terms
of computational complexity.

Index Terms—Network coding, random linear network coding,
tag pollution attacks, homomorphic MACs.

I. INTRODUCTION

R ANDOM Linear Network Coding (RLNC) was proposed
by Ho et al. in [1] as a fully distributed approach for per-

forming Network Coding (NC) [2]. In RLNC, each node selects 
randomly a set of coefficients and uses them to make linear 
combinations of the incoming packets. Furthermore, it is worth-
while to mention that RLNC achieves the same capacity as 
that achieved by the Max-flow Min-cut theorem [3]. However, 
RLNC is susceptible to data pollution attacks, where an adver-
sary (e.g., compromised intermediate node) injects into the 
network corrupted packets that prevent the destination nodes 
from decoding correctly. This has as a result not only network 
resource waste but also energy waste at the nodes [4]. Hence, 
during the past few years, several schemes have been presented 
to provide resistance against data pollution attacks. Among 
them, those based on homomorphic Message Authentication 
Codes (MACs) are considered as a low-complexity solution for 
data pollution attacks [5]–[7]. However, most of the homomor-
phic MAC schemes are vulnerable to tag pollution attack, which 
was first defined by Li et al. in [8]. In tag pollution attacks, the 
adversaries modify tags (i.e., homomorphic MACs) appended 
to the end of the coded packet. A tag is a piece of information 
appended to the end of the coded packet to ensure integrity of 
the transmitted packet data. Each tag has a fixed position in the 
coded packet and thus, it is easy for an adversary to control its 
pollution.
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Therefore, in this letter, we propose an efficient homomor-
phic MAC scheme, where each tag has not a fixed location
in the coded packet, providing resistance against tag pollution
attacks. In the proposed scheme, the tags are calculated based
on null space properties and then, they are secretly swapped
with the packet data [9]. Hence, they are not appended to the
end of the coded packet and thus, an adversary is not able to
distinguish them from the packet data. Our results show that
the proposed scheme is more efficient compared to the schemes
proposed in [7] and [10], in terms of computational complexity
without incurring additional communication overhead. To the
best of our knowledge, the proposed schemes in [7] and [10]
are the most competitive schemes in the literature for providing
resistance against tag pollution attacks in RLNC.

II. SYSTEM MODEL

A. RLNC Model

We consider that the RLNC model, where our proposed
scheme is applied, is based on a directed multigraph (S, I, E)

which consists of the source node S, the non-source node
set I (i.e., I = {I1, . . . , Iw}), and the link set E (i.e., E =
{e1, . . . , e j }), as it is shown in Fig. 1. The source node S
transmits its packets to the destination nodes (i.e., Iw−1 and
Iw) through a number of intermediate nodes. We consider two
types of packets: native packets and coded packets. The native
packets are packets generated at the source node. On the other
hand, the coded packets are packets encoded and recoded at
the source and intermediate nodes. At the setup phase, the
source divides each message into a sequence of native pack-
ets and partitions them into generations. Thus, we consider
that each generation consists of m native packets denoted as
u1, u2, . . . , um . Each native packet ui , for 1 ≤ i ≤ m, is repre-
sented as a vector u1, u2, . . . , un in the finite field F

n
p, where

p = 28 and it denotes the size of the finite field. In [11], it
has been shown that 28 is usually sufficient for practical use
and convenient for computation. Then, the source S generates
a coded packet ui for each native packet ui by prefixing ui
with the i th unit vector of dimension m. The coded packet is
represented as a row vector in the finite field F

m+n
p as follows:

ui = (

m︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0, ui,1, · · · , ui,n) ∈ F
m+n
p (1)

For simplicity, Equation 1 can also be written as follows:

ui = (ui,1, · · · , ui,m+n) ∈ F
m+n
p (2)



Fig. 1. RLNC model where the proposed scheme is applied.

After that, the source S transmits the coded packets to its neigh-
bor nodes. Each intermediate node buffers its received packets
ui temporarily and creates a coded packet y, which is a linear
combination of a number of h coded packets u1, u2, . . . , uh

belonging to the same generation. A coded packet is repre-
sented as follows:

y =
h∑

i=1

αi ui (3)

where αi is randomly selected from Fp, and all the arith-
metic operations are done over the finite field Fp. A coded
packet y is considered to be valid if it is in the linear sub-
space spanned by the coded packets generated at the source.
This is denoted as y ∈ span {u1, · · · , um}. In fact, when y is
valid, the linear combination coefficients are the first m sym-
bols of the packet y. Otherwise, y is invalid and it is denoted
as y /∈ span {u1, · · · , um}, which may be caused due to trans-
mission errors or pollution attacks. At the destination, when a
sink node obtains m linearly independent coded packets, it can
decode them by using Gaussian eliminations [1].

B. Adversary Model

In our adversary model, the adversary aims to corrupt (i.e.,
pollute) tags of coded packets belonging to the same generation,
and not to multi-generations [12], so that coded packets with
legitimate content will be discarded later from next intermedi-
ate nodes due to the corrupted tags. It is possible for a coded
packet with legitimate content and corrupted tags to travel mul-
tiple hops if the intermediate nodes hold the same keys with
the adversary or they do not hold those keys that can verify
the coded packet and detect the corrupted tags. Otherwise, if
the next intermediate nodes hold the keys that verify the coded
packet, then the corrupted tags will be detected immediately
and the coded packet will be discarded. Moreover, we assume
the source node and the destination nodes are trustworthy and
secure. Finally, the process of key distribution is considered
secure.

III. NULL SPACE-BASED HOMOMORPHIC MAC SCHEME

A. Construction

The proposed homomorphic MAC scheme is based on null
space properties [6] for tag generation and verification. The
proposed scheme consists of the following five steps:

Fig. 2. Swapping process in the proposed null space-based homomorphic MAC
scheme.

1) Key Distribution to Source Node: A Key Distribution
Center (KDC) distributes L key vectors K1,K2, . . . ,KL to
the source node. Each of them is represented in the finite field
F

m+n+L
p .
2) Tag Generation: The source node S uses the L key vec-

tors K1,K2, . . . ,KL to produce L tags for each coded packet
consisting of m + n symbols. These L tags (t1, t2, . . . , tL ,
where ti ∈ Fp) are calculated according to the following
formula:

⎡
⎢⎣

K1,1 . . . K1,m+n
...

...
...

KL ,1 . . . KL ,m+n

⎤
⎥⎦

L∗(m+n)

∗

⎡
⎢⎢⎣

ui,1
ui,2

:
ui,m+n

⎤
⎥⎥⎦

(m+n)∗1

+
⎡
⎣ K1,m+n+1 . . . K1,m+n+L

: : :
KL ,m+n+1 . . . KL ,m+n+L

⎤
⎦

L∗L

∗

⎡
⎢⎢⎢⎣

t1
t2
...

tL

⎤
⎥⎥⎥⎦

L∗1

= 0 (4)

Afterwards, the source node appends the L calculated tags to
the end of the coded packet ui , which is created by prefixing
the native packet ui with m coefficients, as it is shown in Fig 2.

3) Swapping: To avoid tag pollution attacks, the L tag sym-
bols of the coded packet ui are swapped with only L out of the
n symbols of the coded packet ui . It is worthwhile to mention
that the coefficients of the coded packet do not participate in
the swapping process so that the destination nodes can decode
correctly. Particularly, the swapping process is based on a secret
value SV (i.e., positive integer) that plays the role of the swap-
ping vector. This secret value is generated randomly by the
KDC, through a pseudorandom function, and it is known to
the source node and all the destination nodes. However, it is
unknown to the intermediate nodes. The result of this swapping
process is a swapped coded packet ui , where the L tags sym-
bols are mixed with the n symbols of the coded packet ui , as it
is shown in Fig 2, where SV = 2. Each swapped coded packet
is represented as follows:

ui = Swap(ui )SV (5)

On the other hand, at the destination nodes, an inverse swapping
is required, before RLNC-decoding, to obtain the native packet.



4) Key Distribution to Intermediate and Destination Nodes:
Based on the swapping vector SV , the KDC creates new key
vectors K′

1,K
′
2, . . . ,K

′
L by swapping accordingly the sym-

bols of each key vectors K1,K2, . . . ,KL , which have been
used by the source node for tag generation. Each new key vector
is represented as follows:

K′
i = Swap(Ki )SV (6)

The KDC of our scheme adopts a key distribution model, based
on the cover free set systems [13], in order to provide resistance
against c compromised nodes. In this model, the maximum
number of key vectors that should be assigned to each interme-
diate and destination node cannot be more than R = e∗ln(1/q),
where q is a security parameter (usually q = 10−3). In our pro-
posed scheme, this assumption is satisfied since only one key
vector is required to be assigned by the KDC to each inter-
mediate and destination node. This is why each key vector is
orthogonal to the swapped coded packet, and thus the interme-
diate and destination nodes require only one key vector to verify
the swapped coded packet.

5) Verification: Given that each intermediate and destina-
tion node holds a key vector, K′

i , they verify a swapped coded
packet ui based on the following formula:

δ = Swap(Ki )SV ∗Swap(ui )SV =
m+n+L∑

j=1

K′
i, j ∗ ui, j (7)

If δ = 0, then the swapped coded packet ui is accepted and
transmitted to the next nodes. Otherwise, it is discarded.

B. Correctness

Theorem 1 (Correctness) The proposed scheme is correct.

Proof: (Poof by Contradiction) We assume to the contrary
that the proposed scheme is not correct. If this is the case, from
Equation 7 we have that δ �= 0. We consider a coded packet
xi = (xi

1, . . . , xi
m+n) and L key vectors K = (K1, . . . ,KL),

to generate L tags t i = (t i
1, . . . , t i

L) based on Equation 4.
According to Equation 7 and by considering SV = 1, we have
the following:

Swap(K)SV ∗Swap(xi T
)SV

=
⎡
⎢⎣

K1,1 . . .K1,m+n+1 . . .K1,m+n+L K1,m+1 . . .K1,m+L
...

KL ,1 . . .KL ,m+n+1 . . .KL ,m+n+L KL ,m+1 . . .KL ,m+L

⎤
⎥⎦

∗ [
xi

1 . . . t i
1 . . . t i

L . . . xi
m+n xi

m+1 . . . xi
m+L

]T

=
⎡
⎢⎣

K1,1 ∗ xi
1 + . . .K1,m+n+L ∗ t i

L
...

KL ,1 ∗ xi
1 + . . .KL ,m+n+L ∗ t i

L

⎤
⎥⎦

L∗1

(8)

However, the vector xi = [xi
1, . . . , xi

m+n, t i
1, . . . , t i

L ] is orthog-
onal to each of the L key vectors according to Equation 4. Thus,
we have the following:

K ∗ xi T =
⎡
⎢⎣

K1,1 . . . K1,m+n+L
...

...
...

KL ,1 . . . KL ,m+n+L

⎤
⎥⎦ ∗

⎡
⎢⎢⎢⎣

xi
1

xi
2
...

t i
L

⎤
⎥⎥⎥⎦

=
⎡
⎢⎣

K1,1 ∗ xi
1 + . . .K1,m+n+L ∗ t i

L
...

KL ,1 ∗ xi
1 + . . .KL ,m+n+L ∗ t i

L

⎤
⎥⎦

L∗1

=

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦

L∗1
(9)

From Equations 8 and 9, it is obvious that δ = 0. However,
this contradicts the original assumption that δ �= 0. Thus, the
proposed construction is correct. According to the inductive
reasoning, it can also be proved that the proposed scheme is
correct for each SV (1 ≤ SV ≤ n). �

IV. SECURITY ANALYSIS

We consider that an adversary can wiretap all the swapped
coded packets (i.e., ui ) of the network and obtain the key vec-
tor K′

i of each compromised node. In this section, we firstly
calculate the probability of the adversary to guess the swapping
vector SV of the source and then, we calculate the probability
of the adversary to launch a tag pollution attack.

A. Probability of Guessing the Swapping Vector SV

SV cannot be obtained from compromised intermediate
nodes, since it is known only to the source node and the des-
tination nodes which are considered trustworthy and secure.
Also, SV cannot be derived from the transmitted swapped
coded packets ui because they are already swapped and RLNC-
encoded. Thus, the adversary can only take a random guess,
which has a probability of 1

n to be correct. Moreover, the adver-
sary is not able to confirm whether the random guess is correct
or not.

B. Probability of Launching a Tag Pollution Attack

To launch a tag pollution attack, an adversary has to corrupt
a swapped coded packet and send it to a neighbor node, where
it should pass the verification step. According to Equation 7,
the corrupted packet will pass the verification in a neighbor
node, if this node keeps the same key vector with the adversary.
Otherwise, the corrupted packet will be detected and discarded
by the neighbor node. According to our key distribution model,
each intermediate and destination node is assigned only one key
vector out of the L source key vectors. Thus, in the case that the
adversary has only one neighbor node, the probability that the
adversary has the same key with its neighbor node is not greater
than 1/L . In other words, in this case, the probability that the
adversary can launch a tag pollution attack is not greater than
1/L . However, according to the RLNC model that we have con-
sidered for the proposed scheme, the case that the adversary has
only one neighbor node is not possible at all. Indeed, it is only
a theoretical case that we take into consideration for the sake of
completeness.

On the other hand, in the case that the adversary has d neigh-
bor nodes, the probability that the adversary has the same key
vector with one of its d neighbor nodes is not greater than
1/Ld . Consequently, the probability of launching a tag pol-
lution attack in this case is not greater than 1/Ld , which is
negligible. As a result the corrupted packet will be detected



Fig. 3. The number of multiplications required for tag generation at the source
node.

immediately. This case is realistic according to the RLNC
model considered for the proposed scheme.

V. PERFORMANCE EVALUATION

We analyze the performance of our proposed null space-
based homomorphic MAC scheme in terms of computational
complexity and communication overhead. We follow the set-
tings defined in [7] and thus, we set p = 28, n = 1024, and
m = 32. We compare our proposed scheme with MacSig [7]
and KEPTE [10] which are the most competitive schemes in the
literature for providing resistance against tag pollution attacks
in RLNC.

A. Computational Complexity

The computational complexity of our proposed null space-
based homomorphic MAC scheme is considered for the source
and non-source nodes. For the source node, we calculate the
complexity of tag generation. For non-source nodes, we calcu-
late the complexity of the verification step.

At source node: The number of tags which is generated
at the source node is equal to L . According to Equation 4,
L ∗ (m + n + L) finite field multiplications are required for
generating the L tags. From Figure 3, we observe that our
proposed scheme requires almost the same number of multi-
plications for tag generation as both the MacSig and KEPTE
schemes.

At Non-source nodes: According to Equation 7, the verifica-
tion step requires m + n + L finite field multiplications. From
Figure 4, we observe that our proposed scheme requires much
less number of multiplications for tag verification compared to
both the MacSig and KEPTE schemes.

B. Communication Overhead

To calculate the communication overhead of our proposed
scheme, we take into consideration the number of the tags
appended to the end of each coded packet. However, each tag
is one symbol of the finite field F

n
p, where p = 28, and the total

number of tags is L = 1
1−δ

e(c + 1) ln( 1
q ), as it is shown in [7].

Consequently, the communication overhead of our proposed
scheme is L ∗ �log2 p� bits per packet. Moreover, for the three
different values of L given in [7] (i.e. L = 27, 42 and 54), our

Fig. 4. The number of multiplications required for tag verification at each non-
source node.

proposed scheme incurs 2% to 5% communication overhead,
which is similar to the one incurred by the KEPTE scheme [10],
but half of the communication overhead incurred by the MacSig
scheme (i.e., 5% to 10%) [7].

VI. CONCLUSION

In this letter, we have proposed a null space-based homomor-
phic MAC scheme providing resistance against tag pollution
attacks in RLNC. The performance evaluation of our scheme
shows that it is more efficient compared to the MacSig and
KEPTE schemes, which are the most competitive tag pollu-
tion immune schemes, in terms of computational complexity
without incurring additional communication overhead.
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