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Abstract—We present an improved model for cavity soliton gen-
eration by coupling frequency-selective feedback to a vertical-
cavity surface emitting laser with a saturable absorber. The
frequency-selective feedback is found to lower down the thresh-
old pump power for cavity soliton generation and eventually to
broaden the stability regime. A new dynamics of cavity solitons
is revealed in form of “all-optical push-broom effect.” Also, sta-
ble bound states of cavity solitons that resemble linear diatomic
and polyatomic molecules are predicted with their stability regions
marked. The findings can be exploited for experimental realization
of a soliton force microscope and all-optical memory devices.

Index Terms—All-optical push-broom, bound states, cavity soli-
tons, complex Ginzburg–Landau equation.

I. INTRODUCTION

CAVITY soliton (CS) attracted significant research interest
due to its application as future “bit” of information and

reconfigurable pixels and all-optical memory [1]–[6]. CSs are
bright spots on dark background or dark spots on the bright
background. They can be generated in a broad area device like
vertical-cavity surface emitting laser (VCSEL) with the help
of a holding beam that compensate the loss of the dissipative
system [1]. The need of holding beam and the corresponding
complications (e.g., thermal effects) can be removed either by
coupling a frequency-selective feedback (FSF) with the VCSEL
[7]–[10] or using a saturable absorber (SA) in a VCSEL [1],
[11]–[13]. Both of these configurations lead to a cavity soliton
laser (CSL) [1], [7]–[13]. VCSEL-FSF model uses an external
Bragg reflector (to provide feedback) coupled with a grating for
frequency selection [8]. Although otherwise successful, a CS
system needs a bistability between the lasing and non-lasing
state, which a standard laser usually lacks. VCSEL-SA model

can provide such bistability. But, in turn SA produces undesired
loss. Available literature reports the theoretical study and ex-
perimental realization of CS and CSL in VCSEL coupled either
with SA [11]–[13] or FSF [8], [14]–[18], but a combination
of them has not paid a proper attention in spite their poten-
tial to compensate each other’s drawbacks. Thus, we propose a
combined model where VCSEL with SA layer is coupled with
FSF. This VCSEL-SA-FSF model aims to reap the benefit of the
symbiotic behavior of FSF and SA; while SA will provide bista-
bility, FSF will provide the gain to the system. Moreover, such
integrated configuration may lowers down the required pump
power. Nevertheless, this improved system (VCSEL-SA-FSF)
may lead to intriguing novel CS dynamics, which is not a little
less important. Particularly, the CS dynamics and interaction
are of much interest due to their potential implications in future
all-optical devices. A CS can be excited at any desired point of
the transverse plane of the cavity. The stationary CS can be set
in motion, in principle, by breaking translational symmetry due
to the spatial modulation on any system parameter. Gradients in
the cavity parameters, such as intensity [19], phase [19]–[21],
detuning [22], amplitude [19], [21], [22], thermal [21], [22], in-
homogeneous cavity resonance [5], [21], cavity length [5] and
field gradients [23] play a major role in defining the dynam-
ics of the CSs. The uniform variation of detuning parameter in
the semiconductor resonator (i.e., VCSEL) also sets a gradient
[5]. Any gradient or inhomogeneity in the media leads to the
movement of CS [24]. Gradients in the cavity can be introduced
through injection beam [23], time delay, feedback field strength
[15], [16], feedback field phase [14] or by generating gradients in
the cavity background [5]. A moving CS can come to rest when
it attains an equilibrium state or the corresponding gradient van-
ishes [23]. CS dynamics can be alternatively envisaged through
a bifurcation of the system, which can be done by exploiting
variation of a suitable cavity parameter. The spontaneous and
gradient driven movements of CSs are studied in VCSEL with
periodic phase modulation of injected beam, as well as detuning
[22]. CS dynamics and interactions in broad-area semiconduc-
tor laser (particularly VCSEL) coupled with FSF is reported in
[25]. Theoretical prediction is made for the existence and sta-
bility of oscillating, oscillating-rotating and traveling twin CS
pair [13]. The interaction of attractive and repulsive forces be-
tween two CSs binds them to a particle-like state. This bound
state of CS is referred as CS molecule. CS molecules have fixed
relative positions, but a continuously evolving relative phase.
Depending on the cavity parameters CS molecules can rotate,
oscillate and travel [13]. Various soliton molecules are formed in
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semiconductor micro-cavity, e.g., elliptically polarized polari-
ton soliton molecules [26]. Soliton molecules can be originated
in fiber laser cavity as well [27], [28]. Both an anomalous and
an all-normal dispersion fiber cavity [27] can support soliton
molecules. A pair of group-velocity-locked vector solitons also
exhibit molecule formation [28]. Both the relative phase and
separation between CS change during interactions [29]. Inter-
actions of CSs in higher order nonlinear medium, like materials
exhibiting saturable nonlinearities or higher order nonlineari-
ties, other than Kerr nonlinearity, presents intriguing dynamics
such as fission, fusion and annihilation [30]. Two mutually in-
phase coherent CSs always experience the attraction, whereas,
out-of-phase CSs always lead to the repulsion. However, the in-
termediate phase difference results in the interactions influenced
by the energy exchange. Intensity in the overlapping region in-
creases (decreases) for the in-phase (out-of-phase) CSs. This
results in the local increase (decrease) of refractive index in
the material, and eventual attraction (repulsion) between the
CSs. However, in homogeneous materials, generally the phase
difference of the interacting solitons explicitly influence the tra-
jectories of motion [31]. The afore mentioned CS dynamics can
be used for realization of actual device only if the dynamics is
controllable as well as predictable. Our proposed model looks
forward to provide such desired control on CS dynamics by
means of tuning the FSF. An intriguing CS dynamics can be
envisaged in form of controlling a CS by another. Such control-
lable CS works as an all-optical “push-broom”. Although few
reports [32]–[34] used the term “push-broom”, but those were
merely compression of the signal pulse not an actual movement
of the soliton. We also aim to explore the never found before
all-optical “push-broom” CSs with the improved model.

The organization of the paper is as follows: Section II out-
lines the mathematical model of CS in VCSEL-SA-FSF and
subsequently the stability analysis of CSs. The generation of
CS molecules and the role of cavity parameters on them is stud-
ied extensively in Section III. A novel all-optical “push-broom
effect” is demonstrated in Section IV, followed by a conclusion.

II. MATHEMATICAL MODEL

Our proposed model comprises of a VCSEL with SA, coupled
with the FSF element provided by Bragg’s reflector with neg-
ligible delay. Such optically injected broad area semiconductor
cavity, exhibiting higher order saturation nonlinearity and cou-
pled with FSF configuration can be represented by the following
dimensionless dynamical equations:

Ė = [−(1 − iθ) + (1 − iα)da + (1 − iβ)dp + iΔ⊥]E + F,
(1)

ḋa = ca [da(1 + |E|2) − μ], (2)

ḋp = cp [dp(1 + s|E|2) + γ], (3)

Ḟ = −(λ + iΩ0)F + σλE. (4)

Here, E(r, t) is the slowly varying amplitude of electric field
and F (r, t) is the feedback field. While r (typically measured
in μm) is the spatial coordinate, t (typically measured in ns) is

the normalized time scaled to the round trip time of CS inside
the cavity. The system parameters used in (1)–(4) are as fol-
lows: detuning parameter θ measures the coupling of optically
injected field to the feedback field, μ and γ are pump parameters
for active and passive materials, respectively. α and β are the
line-width enhancement factors for active and passive materials,
respectively, and usually posses large positive values for semi-
conductor devices, so far, VCSELs. On right hand side of (1),
the first term describes the linear loss in the system, the second
and the third terms represent the carrier densities in active and
passive materials, respectively. The fourth term is due to the
diffraction, with Δ⊥ = r(1−D ) ∂

∂r (r(D−1) ∂
∂r ) being the trans-

verse component of diffraction operator. da and dp represent
the carrier densities in the active and passive medium, respec-
tively. Parameters ca and cp are the ratio of the photon lifetime
and carrier lifetime in active and passive materials, respectively.
It is assumed that ca > cp , as the inverse of the carrier lifetime
increases with the carrier density in the semiconductor material
[12]. s represents saturation strength of the nonlinearity and is
defined as s = (apca)/(aacp), where, aa and ap represent the
slopes of differential gain and are functions of carrier densities
in active and passive materials, respectively [12]. σ represents
the strength of feedback field and assumes a value between 0 and
1. The frequency selection of feedback field is accomplished by
a filter. λ represents the band-width of filter reflection and Ω0
represents the corresponding resonant frequency [1], [12], [35].
A pump of suitable duration and transverse profile excites up
the CS in the cavity, while the continuous feedback helps in sus-
taining such localized structure (CS). The trivial HSS solution
for the system of equations (1)–(4) are as follows:

E0 = 0, da0 = μ, dp0 = −γ, F = 0. (5)

The non-trivial HSS solution for the system is determined as
follows:

E0 =
√

I0e
i[qx−(ω+q 2 )t], (6)

da0 = μ/(1 + I0), (7)

dp0 = −γ/(1 + sI0). (8)

F = σλE/(λ + iΩ0). (9)

Here, q is the transverse wave vector and hence (6) represents
a tilted traveling wave solution. Equation (6) can be further
simplified to E0 =

√
I0e

−iω t by setting q = 0. This is valid
for a system having no wave-vector selection mechanism [12].
Also, the absence of diffusion term preserves the degeneracy of
wave-vector. Considering the non-trivial HSS solution of carrier
densities in active and passive materials in semiconductor cavity
[(7) and (8) respectively], and feedback field (9), (1) turns to:

∂E

∂t
=

[
−(1 − iθ) +

μ(1 − iα)
1 + |E|2 − γ(1 − iβ)

1 + s|E|2 + iΔ⊥

]
E

+ (a − ib)E, (10)

with, a = σλ2/(λ2 + Ω2
0) and b = σλΩ0/(λ2 + Ω2

0).
Equation (10) resembles with CGLE and will be used hence-

forth. Equating the real parts on both sides of (10) leads to the



Fig. 1. (a) Variation of reference frequency ω with respect to feedback strength
σ at laser threshold with different detuning strength. (b) Variation of threshold
pump power with respect to the feedback strength. Here α = 2.7, μ = 1.37,
γ = 0.5, β = 0, s = 10, λ = 0.5, Ω0 = 1.7.

following relation of field intensity I0 with the system parame-
ters are obtained:

μ

1 + I0
= 1 − a +

γ

1 + sI0
, (11)

The imaginary part of (10) is too small to modify the diffrac-
tion coefficient, thus, can be neglected. However, the real part is
crucial for the determination of the diffraction coefficient [12],
[36]. The reference frequency (ω) of the system is controlled
by the imaginary part of the governing equation (10) and is
determined as follows:

ω = α(1 − a) − b − θ +
γ(α − β)
1 + sI0

. (12)

Like in VCSEL-SA system, in VCSEL-SA-FSF system too,
the frequency is intensity dependent only for α �= β (i.e. unequal
line-width enhancement factor for active and passive materials).
Besides, the ω is dependent on the feedback field parameters (σ,
Ω0 and λ) and detuning parameter θ. Equation (12) clearly indi-
cates that the inclusion of FSF decreases the reference frequency.
Particularly, increase in feedback strength linearly decreases the
value of ω with a slope of −0.770 [Fig. 1(a)]. For a given feed-
back strength, the reference frequency linearly decreases with
increase in detuning. From (11), the laser threshold (I0 = 0) is
found to be:

μth = 1 − a + γ. (13)

Inclusion of FSF in the system reduces the threshold value
of μ (i.e., μth ). The reduction of μth with respect to σ is linear
with a slope of −0.079 [Fig. 1(b)]. Substitution of laser thresh-
old condition (13) to (11) provides the limit for the saturation
parameter s as:

s > 1 +
1 − a

γ
. (14)

The above is an essential condition for the bistability of the sys-
tem. When plotted with respect to pump parameter μ, the non-
trivial HSS solution becomes parabolic in shape [Fig. 2(a)] and
hence leads to the bistability. The turning point of the parabolic
curve occurs at a pump value of:

μtp =
(
√

(1 − a)(s − 1) +
√

γ)2

s
. (15)

Thus μtp is controlled by parameters s, γ, σ, λ and Ω0 .
Particularly, μtp linearly decreases with increase in σ (Fig. 2(b)

Fig. 2. HSSs solution with and without FSF in VCSEL-SA model: (a) (i)
the field intensity, (ii) carrier density for active medium, (iii) carrier density
for the passive medium, and (b) linear variation of turning point value of pump
power with respect to the feedback strength at σ = 0.7, rest of parameters are
kept same as in Fig. 1.

with slope = −0.088). Fig. 2(a) provides the idea of stability
as well as comparison between models with and without FSF.
While, μth = 1.5 and μtp = 1.347 for VCSEL-SA model, we
determine μth = 1.458 and μtp = 1.327 for VCSEL-SA-FSF
model [Fig. 2(a)]. Therefore, inclusion of FSF lowers both the
threshold and turning point values of pump power. Yet the range
of stable CS, i.e., (Δμ = μth − μtp ), ultimately extends from
0.126 to 0.131 (i.e. nearly 4% increment). This is calculated for
fixed feedback strength of σ = 0.7. As large as 6% enhancement
of Δμ is found by increasing the feedback strength. Similar
extension is observed for both da and dp [Figs. 2(a)(ii) and (iii)].
The positive slope branch (upper solution branch) of the curves
of Fig. 2(a) is Hopf unstable if μ < μH , where μH = γs and
μH assumes same value as stated in [12]. The HSS is stable only
if μ < μth . The negative slope branch (lower solution branch) is
always unstable. These three regions are identified in Fig. 3(a)–
(c). In Hopf instable region, the eigenvalues determined for
the system are purely complex. The stable limit cycle decays
to stable spiral or unstable spiral as the system moves away
from stable region to the Hopf instable region. A comparison
with similar figures for a VCSEL-SA [12] reveals that Hopf
instability region increases with the inclusion of FSF in the
system.

III. CAVITY SOLITON MOLECULES

With the knowledge of the stable parametric zone, we now
explore the existence and dynamics of CS in the system. The
governing equation (10) is solved numerically by the split-step



Fig. 3. Stability plots showing the stable, Hopf instable and unstable regions
for VCSEL-SA-FSF. (a) s = 10, γ = 0.5, (b) cp = 0.005, s = 10, (c) cp =
0.005, γ = 0.5, with ca = 0.01, σ = 0.7 and rest of the parameters are as in
Fig. 1.

Fourier method (SSFM) with parameters chosen from the stable
region. Throughout the numerical study, the step-size is fixed
to 0.01, and simulation is performed for 10 soliton periods. We
consider the following unchirped “sech” function as the profile
of CS:

E(x, t) = Asech(Kr)e−iω t , (16)

where, A represents the peak amplitude of CS and always as-
sumes positive non-zero values, K represents the inverse width
and ω is the angular frequency (a real constant). The most im-
portant system parameters those significantly control CS dy-
namics are the feedback strength σ and resonance frequency
Ω0 . As discussed in stability analysis, the saturation parameter
s has to follow the inequality condition (14), and s assumes
the value greater than unity. Line-width enhancement factor for
active material should always be greater as compared to that of
passive material (α > β). Considering this condition, the onset
of Turing instability can be eluded [12]. Pump parameters for
both active and passive medium (μ and γ) should follow the
conditions stated in the stability analysis (13). In the current
investigation, we set β = 0. The values of the rest normalized
parameters are set as α = 2.7, μ = 1.37, γ = 0.5, s = 10 and
θ = 1.3, unless mentioned otherwise. Generally, a highly in-
tense field undergoes initial perturbations and splits into almost
equal amplitude branches, and then retain their shape, size and
amplitude (Fig. 4). However, another perspective suggests that
the velocity matching of the interacting CSs during interac-
tion increases the chance of splitting the initial pulse into two
or four CSs [37]. Also, the presence of higher order nonlin-
earities supports fission, fusion and annihilation of dissipative
solitons [30]. Our numerical investigation (Fig. 4) gives rise to
different stable bound state structures comprising of two or more
CSs. For example, with A = 0.6278 and σ = 0.7, such bound
state CSs are formed for Ω0 > 1.97 (Fig. 4). Precisely, two-CS

Fig. 4. Effect of variation of resonant frequency (Ω0 ) (a) Ω0 = 1.98,
(b) Ω0 = 1.99, (c) Ω0 = 2.2, (d) Ω0 = 2.5, (e) Ω0 = 2.8 and (f) Ω0 = 3.
Here, σ = 0.7, A = 0.6278 and other parameters are same as in Fig. 1. Corre-
sponding contour plots are shown in supplementary Fig. 1.

bound state is formed for 1.99 < Ω0 < 3 [Figs. 4(c)–(e)]. The
CSs of the bound state vibrate periodically. As these CSs are
born from same source, they can be considered as coherent pairs
[38]. Such bound state of CSs can be referred as linear diatomic
CS molecules. The oscillating CS atoms has potential applica-
tion in tuning the optical clocks [13]. At a lower Ω0 (1.98 and
1.99), four-atom CS molecules are formed [Figs. 4(a) and (b)].
Ω0 � 3 leads to the annihilation of CSs. The annihilation occurs
due to the phase difference developed in the CSs. However, this
annihilation can be opposed by increasing σ (supplementary
Fig. 2). As σ increases the di-atomic CS molecule tends to get
stabilize (supplementary Fig. 2).

The role of σ can be well understood by keeping Ω0 con-
stant. With increase in the σ, the distance between the CSs
decreases. σ can even control the number of atoms in the CS
molecules. To show the effect with a bigger range of σ, we set a
lower value of A (= 0.527). Diatomic CS molecules [Figs. 5(a)–
(d)] are found for 0.25 < σ < 0.35. Higher value of σ leads to
the formation of linear tetra-atomic CS molecules [Figs. 5(e)
and (g)]. Even triatomic linear CS molecules are possible for
a particular σ = 0.49 [Fig. 5(f)]. At very large σ value, CS
molecules get annihilated. Formation of CS molecules is ob-
served with different values of A as lower as 0.27 (supplemen-
tary Fig. 3). The limiting value of σ for which CS molecules sur-
vives catastrophic collapse, however, is dependent on the peak
amplitude A.

Till now, we obtain CSs of bell-shaped profile. Interesting
CS profiles are found in the form of a ∩-shaped [A = 0.2667,
Fig. 6(a)] and flat-top [A = 0.667, Fig. 6(b)] CS. Flat-top solu-
tions for CGLE are generated from the general soliton solutions
by transition of the roots of the general solution. As the two dis-
tinct positive soliton-solutions of a system approach each other,
the soliton shape experiences a transition from standard shape
(sech/bell-shape) to a flat-top shape. When two distinct real roots
of the solution of CGLE become equal to each other, fronts are



Fig. 5. The effect of feedback strength parameter σ on CS at Ω0 = 1.7
and A = 0.527. (a) σ = 0.25, (b) σ = 0.26, (c) σ = 0.31, (d) σ = 0.33,
(e) σ = 0.46, (f) σ = 0.48 and (g) σ = 0.49, keeping rest of the parameters
same as in Fig. 1.

Fig. 6. (a) Generation of ∩-shaped CS with A = 0.667. (b) Flat-top CS with
A = 0.2667. Here, σ = 0.7, Ω0 = 2.12, K = 100 and keeping rest of the
parameters same as in Fig. 1.

formed. The pulse width becomes infinite, and it fragments into
two fronts. The phase assumes constant value in the front re-
gion [39], [40]. Fig. 7 identifies (A, Ω0) parametric region of
different soliton-solutions, such as, flat-top, fronts, ∩-shaped
and region in which the input field decays. Although, CGLE
possesses different solutions in the form of fronts and pulses,
change in parameter values can easily transform one solution
into others [39]. In the present case, the transition of CS-solution

Fig. 7. Regions for ∩-shaped, fronts and flat-top solutions in A-Ω0 plane
for σ = 0.7. Here α = 2.7, μ = 1.37, γ = 0.5, β = 0, s = 10, λ = 0.5 and
K = 100.

shape is shown in terms of resonant frequency of feedback Ω0
and input field amplitude A at a constant feedback strength σ
(Fig. 7). Here, σ = 0.7, Ω0 = 2.12, A = 0.667 and K = 100.
Fronts are formed for Ω0 < 1, flat-top solutions are obtained for
1.0 < Ω0 < 3.0. The amplitude and width of CS decreases with
the increase in Ω0-value. For A = 0.2667, fronts are formed for
Ω0 ≤ 1, a flat-top is obtained for 1.0 < Ω0 < 1.5 and ∩-shaped
CS for 1.5 < Ω0 < 2.6. For Ω0 > 2.6, the CS decays quickly.
The parameter Ω0 has significant impact on the amplitude of the
CS during evolution. As the value of Ω0 increases, the evolution
amplitude increases, but on the other hand the soliton width
decreases significantly.

The experimental realization of CS uses a VCSEL typically of
diameter 200 μm (while effective cavity length is ≈ few μm) or
a vertical cavity semiconductor amplifier of diameter ≈150 μm.
Naturally, a larger diameter device is more suitable for observ-
ing transverse CS dynamics. A variety of experimental schemes
to excite CS are available in [9], [17], [18], and [21]. Our theo-
retical results suggest a range of system parameters that includes
the ones for which CSs have been achieved in [9], [17], and
[18]. Typical VCSEL is a selectively oxidized multilayer system
which can be grown n-GaAs substrate. A half-wavelength thick
GaAs layer in conjugation with multiple (each of thickness
≈8 nm) compressively strained In0.2Ga0.8As quantum wells
(QW) comprises the active layer that may yield an emission of
≈980 nm. The number of the QW may vary, provided suitable
separation barriers (≈10 nm thick) are maintained. Alterna-
tively, an Al0.2Ga0.8As active layer with unstrained GaAs
QWs may cause an emission at 850 nm. A comprehensive
documentation on configuration as well as operating principles
can be found in [41]. The frequency-selection is carried out by
a Lorentzian filter. Usually, a semiconductor saturable absorber
mirror (SESAM); a semiconductor Bragg reflector that provides
the FSF (having single reflection peak at ≈ 981 nm) is coupled
with the VCSEL through a self-imaging external cavity. The
reflectivity is made high (0.98-0.99) and reflection band width
is made of the order of fraction of one nm (≈0.2 nm FWHM).
Besides SESAM, carbon nanotubes and Graphene can be used
as saturable absorber. For optically pumped VCSEL the pump
intensity is typically few tens of kW/cm2 and pump diameter
is few tens of μm. The line-width enhancement factors (α, β),
band-width of filter reflection (λ), detuning parameter (θ) and



Fig. 8. All-optical push-broom: some selective push-broom dynamics of CS
with increasing feedback strength. (a) σ = 0.61, (b) σ = 0.64, (c) σ = 0.65
and (d) σ = 0.82. For all panels β = 1, Ω0 = 2.12, A = 0.2667 and rest of
the parameters are same as in Fig. 1. (Visuals enclosed).

feedback parameter (σ) correspond physically at a time scale
of 1 ns. The typical size of the generated CS ranges ≈13 μm
in spatial scale. Since in the present investigation a primary
CS experiences splitting into several CSs, the spot size of the
resultant CS may be even smaller.

IV. PUSH-BROOM EFFECT

The previous section uses β = 0 and although it is not a
rule of thumb, the CSs are stationary in most of the cases.
In contrary, for β > 0, we witness intriguing dynamics of
the generated CS. The most appealing one is presented in
Fig. 8 where two CSs initially oscillate and eventually one
of them starts pushing the other. Such phenomena is ob-
served for a range of σ, i.e., 0.60 < σ < 0.83, keeping β = 1,
Ω0 = 2.12, A = 0.2667 and rest of the parameters same as in
Section III. This, one of its kind, novel phenomenon can be
termed as “push-broom” effect and is observed for first time.
Notably the “push-broom” of [32]–[34] means heaping up of
the energy of a weak probe by a strong pump pulse, not an actual
manoeuvre of solitons. In the present case, one CS pushes the
other and swipe along the transverse plane of the cavity, there-
fore, shows a “true” all-optical push-broom effect. The push-
broom effect is observed for very limited range of β, σ and
Ω0 . With variation of σ, the dynamics also varies but eventually
leads to push-broom. For σ = 0.61 [Fig. 8(a)] and σ = 0.64
[Fig. 8(b)] the initially colliding CSs never come to rest be-
fore showing push-broom. However, for σ = 0.65 [Fig. 8(c)],
0.70, 0.81 and 0.82 [Fig. 8(d)] one of the colliding CS momen-
tarily comes to rest. In the course of evolution when both the
CSs collide and interact with each other, the phenomenon of
cross-phase modulation (XPM) plays important role between
the stationary and moving CS. Also, the asymmetric spectral
broadening of interacting CSs is a resultant of the XPM. XPM
generally occurs along with the self-phase modulation when

Fig. 9. Variation of the velocity of push-broom CS with the feedback strength.
Points represent the numerical data and solid line represents the fitted data. Other
parameters are same as in Fig. 8.

Fig. 10. Generation of “Marching CSs” for σ = 0.76. Other parameters are
same as in Fig. 8. (Visuals enclosed).

multiple localized structures simultaneously evolve in the cav-
ity. The XPM induced coupling between interacting solitons
results in modulation instability, thus, leads to the asymmetric
spectral broadening. XPM may not be included explicitly in the
initial incident field, but evolution dynamics of CSs encounter its
effect [38]. As a result, the stationary CS is swept by the moving
CS along with it. The velocity of the “push-broom” CSs signifi-
cantly increases with feedback strength and eventually saturates
(Fig. 9). Push-broom is also observed with more than two CSs.
For example, at σ = 0.76, the initial field splits into five CSs
those eventually start moving in the same direction (Fig. 10), as
if, they are marching. Such “marching” CSs maintain a constant
gap during marching. The number of marching solitons can be
controlled by the system parameters, like peak amplitude A and
resonant frequency Ω0 . The marching speed can also be ad-
justed up to certain extent by tuning the feedback strength. By
controlling the feedback strength, not only push-broom dynam-
ics can be influenced but also a stationary CS molecule can be
drifted along the transverse axis of the VCSEL. For an instance,
a reduction in σ from 0.84 to 0.83 leads to migration of a CS
triatomic molecule by 150 μm across the transverse plane of
cavity (Fig. 11). Also, the symmetric triatomic CS molecules
turns to asymmetric one. Few instances of CS migration may
be short-lasting but a proper choice of parameters assures post-
migration stability of CSs. The all-optical “push-broom” CSs,
“marching” CSs and “migrating” CSs found in the present study
are found to be controllable and predictable; thus can open a new
horizons in all-optical devising. Since, any local defect, gradient
or inhomogeneity of the material can be probed using such CSs,



Fig. 11. (a) A stationary tri-atomic CS molecule for σ = 0.84, (b) migration
of the CS molecule for σ = 0.83. Other parameters are same as in Fig. 8.
(Visuals enclosed).

they have potential for applications in soliton force microscopy,
shift register and serial-parallel converter. Since it has multiple
components a group of marching solitons, in principle, can be
useful to accomplish quicker scanning of a spatially extended
media. Migrated solitons can be used for memory relocation.

V. CONCLUSION

An improved system for hosting cavity soliton is modeled
by coupling frequency-selective feedback to a VCSEL with sat-
urable absorber. The inclusion of frequency-selective feedback
lowers down the laser pump threshold and extends the operat-
ing range, thus making the system more energy efficient and
easier for experimental verification. Parametric regimes for ho-
mogeneous stationary bistable CSs is identified analytically and
verified numerically. Also regions of stable solitons, fronts and
flat-top CSs are determined. A large family of linear di-atomic,
tri-atomic and tetra-atomic CS molecule are found in absence of
line-width enhancement for passive medium. A novel all-optical
“push-broom” CSs, marching CSs and migrated CSs are found.
While the parametric stability regions can be important for ex-
perimental realization of CS, the CS molecules may improve
all-optical memory devices. The novel “push-broom” dynamics
of CSs may find its applications in the soliton force microscope;
a still emerging all-optical probing device.
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