
Approximation Schemes for Non-Separable Non-Linear

Boolean Programming Problems under Nested Knapsack

Constraints

Nir Halman∗, Hans Kellerer† and Vitaly A. Strusevich‡§

Abstract

We consider a fairly general model of “take-or-leave” decision-making. Given a
number of items of a particular weight, the decision-maker either takes (accepts) an
item or leaves (rejects) it. We design fully polynomial-time approximation schemes
(FPTASs) for optimization of a non-separable non-linear function which depends on
which items are taken and which are left. The weights of the taken items are subject to
nested constraints. There is a noticeable lack of approximation results on integer pro-
gramming problems with non-separable functions. Most of the known positive results
address special forms of quadratic functions, and in order to obtain the corresponding
approximation algorithms and schemes considerable technical difficulties have to be
overcome. We demonstrate how for the problem under consideration and its modifica-
tions FPTASs can be designed by using (i) the geometric rounding techniques, and (ii)
methods of K-approximation sets and functions. While the latter approach leads to
a faster scheme, the running times of the of both algorithms compare favourably with
known analogues for less general problems.

Keywords: Combinatorial optimization; Non-linear Boolean programming; dynamic
programming; geometric rounding; K-approximation sets and functions; FPTAS.

1 Introduction

One of the most popular types of decision in business decision-making is related to accepting
or rejecting a certain activity. In this paper, informally we call this types of decisions
“take-or-leave” decisions. This, for example, happens in make-or-buy situations, when a
particular product could be either manufactured internally or bought from outside. More
meaningful examples are contained below.

We address Boolean programming problems, in which it is required to either minimize or
maximize a non-linear function that facilitates the leave-or-take decision making. Suppose
we are given a set N = {1, 2, . . . , n} of items, so that each item j is associated with a
positive integer αj , which we call its weight. For a vector x = (x1, x2, . . . , xn) be with n
Boolean components, such a leave-or-take function can be written as

Z (x) =

n∑
j=1

fj

(
j∑
i=1

αixi

)
xj +

n∑
j=1

gj

(
j∑
i=1

αi (1− xi)

)
(1− xj). (1)

∗The Hebrew University of Jerusalem, Israel. halman@huji.ac.il
†Institut für Statistik und Operations Research, Universität Graz, Universitätsstraße 15, A-8010, Graz,

Austria. hans.kellerer@uni-graz.at
‡Department of Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row,

Greenwich, London SE10 9LS, U.K. V.Strusevich@greenwich.ac.uk
§Corresponding author

1

Here we assume that xj = 1 if item j is taken, and xj = 0 if item j is left. The functions
fj represent the cost or penalty for taking items; they are non-decreasing functions that
depend on total accumulated weight of the taken items i, 1 ≤ i ≤ j. On the other hand,
the functions gj represent the cost or penalty for leaving items; they are non-decreasing
functions that depend on total accumulated weight of all left items i, 1 ≤ i ≤ j. Addressing
the issues of approximability of function Z (x) further in this paper we make assumptions
on computability of the functions fj and gj , 1 ≤ j ≤ n. Besides, further in this section
we present several examples of problems from various application areas which reduce to
minimizing function Z (x) of the form (1) subject to additional linear constraints.

We start with the examples that involve a knapsack constraint

n∑
j=1

αjxj ≤ A. (2)

Notice that the presented examples are given here for illustration only; in fact the results
contained in the paper concern optimization of (1) under more general constraints than (2).
Function fj represents the cost that depends on the total weight of all taken , while function
gj represents the cost that depends on the total weight of all left items i, 1 ≤ i ≤ j. All
these functions are non-negative and non-decreasing.

Safe Helicopter Pickup. In the offshore petroleum industry, employees are trans-
ported by helicopters to and from offshore installations. Assume that set N is a set of
installations, and αj people who have to be picked up from an installation j. We have a
helicopter H1 of total capacity A and another helicopter H2 of sufficient capacity. In a
safe helicopter transportation model, the risk of visiting an installation j is measured by a
function that depends on the type of aircraft used and on the number of people on board
the aircraft that take off at installation j and land at the next installation of the route; see
Qian et al. (2015) and Rustogi and Strusevich (2013) for detailed descriptions of the model
and approaches to its solution for simple risk-measuring functions. If installation j is visited
by helicopter H1, then xj = 1; otherwise, xj = 0. For helicopter H1, the risk is measured
by a function fj , and for helicopter H2 function gj is used. In either case, the argument
of each of these functions is the total number of people that take off at installation j. It
is required to decide which installation is visited by which aircraft so as to minimize total
risk.

Two-Chamber Holding. Assume that set N is a set of orders, so that they arrive
one order per time period and order j consists of αj items to be put on hold. The holding
facility consists of two chambers, one of capacity A and the other of sufficient capacity. The
functions fj and gj measure the holding costs in the respective chamber, that depends on
the total number of items currently on hold in that chamber. The purpose is to decide to
which chamber to place an order so that total holding cost is minimized.

Production with Dirt Accumulation. The quality of equipment often deteriorates
as it is used due to accumulation of unwanted by-products. This is, for example, observed
when a floor sanding machine operates and saw dust is accumulated. Formally, assume that
set N is a set of jobs to be processed on a single machine. Processing job j accumulates
αj units of dirt. No more than A units of dirt can be accumulated; after that cleaning is
required. The cleaning operation takes constant time. The actual processing time of job j
is defined either by function fj if the job is processed in the first group, before the cleaning,
or by function gj , if the job is processed in the second group, after the cleaning. In either
case, the function depends on the amount of dirt generated by all previously scheduled jobs
of the group. The difference in these functions can be explained by the fact that a cleaning

2

operation does not necessarily return the machine to the initial “as good as new” state.
The purpose is to split the jobs into two groups so as to minimize the makespan, i.e., the
maximum completion time of all jobs.

We next elaborate on the hardness of minimizing function (1) under knapsack con-
straints and the need for its approximation. Clearly, the problem of minimizing function
(1) subject to a knapsack constraint is no easier that the famous linear knapsack problem
and is therefore at least NP-hard in the ordinary sense; see Kellerer et al. (2004). This
is why in this paper we study a possibility of developing approximation schemes for the
problems of optimizing (1) subject to linear constraints. Consider the function of n Boolean
variables

S(x) =
∑

1≤i<j≤n
αiβjxixj +

∑
1≤i<j≤n

αiβj(1−xi)(1−xj) +

n∑
j=1

µjxj +

n∑
j=1

νj(1−xj) + Γ, (3)

which has a been a popular object of study. The function is called symmetric quadratic
function, because both the quadratic and the linear parts of the objective function are
separated into two terms, one depending on the variables xj , and the other depending on
the variables (1− xj). Following Kellerer and Strusevich (2010a,b), we call the problem of
minimizing the objective (3) subject to the linear knapsack constraint (2) the Symmetric
Quadratic Knapsack Problem. That problem is known to be an underlying mathemati-
cal model for many scheduling problems; see the focused surveys Kellerer and Strusevich
(2012, 2016). Notice that the non-separable quadratic terms in (3) are special cases of the
corresponding non-linear terms in (1).

In turn, the symmetric quadratic function is a variant of the well-studied non-separable
quadratic function known as the half-product. The latter function has been introduced by
Badics and Boros (1998) and can be written as

H (x) =
n∑

1≤i<j≤n
αiβjxixj −

n∑
j=1

γjxj . (4)

There are numerous publications on the design and analysis of problems of optimizing
function (4) and its variants, with and without an additive constant, as well as with and
without linear constraints; see surveys Kellerer and Strusevich (2012, 2016). The key
issue of these studies has been design and analysis of fully polynomial-time approximation
schemes.

For a collection of decision variables x, consider a problem of minimizing a function
ϕ(x) that takes positive values. Recall that a polynomial-time algorithm that finds a
feasible solution xH such that ϕ(xH) is at most ρ ≥ 1 times the optimal value ϕ(x∗)
is called a ρ−approximation algorithm; the value of ρ is called a worst-case ratio bound.
A family of ρ−approximation algorithms is called a fully polynomial-time approximation
scheme (FPTAS) if ρ = 1 + ε for any ε > 0 and the running time is polynomial with
respect to both the length of the problem input and 1/ε. If a function ϕ(x) takes both
positive and negative values, then an FPTAS delivers a feasible solution xH such that
ϕ(xH)−ϕ(x∗) ≤ ε |ϕ(x∗)| . The latter definition is applicable to the problem of minimizing
the half-product function (4).

The main problem studied in this paper can be formulated as follows.

Minimize Z =
∑n

j=1 fj

(∑j
i=1 αixi

)
xj +

∑n
j=1 gj

(∑j
i=1 αi (1− xi)

)
(1− xj)

Subject to
∑k

j=1 αjxj ≤ dk, 1 ≤ k ≤ n,
xj ∈ {0, 1}, j = 1, 2, . . . , n.

(5)

3

The set of constraints for this problem is not just a single linear knapsack constraint
of the form (2) but a set of n nested linear constraints with the right-hand sides forming
a non-decreasing sequence d1 ≤ d2 ≤ · · · ≤ dn. As above, here for each j, 1 ≤ j ≤ n,
functions fj and gj are non-negative non-decreasing functions of a positive argument.

Nested restrictions with a triangle matrix of constraints are often use in mathematical
programming. For instance, in non-linear resource allocation problems with submodular
constraints there is class of problems called (Nested) which is represented by the triangle
matrix; see Hochbaum and Hong (1995).

Below, we illustrate the relevance of the problem (5) by linking it to several problems.

Single-Item Lot-Sizing Problem. The single-item lot-sizing problem is among the
most popular problems of combinatorial optimization; see the recent survey by Brahimi et
al. (2017). The classical lot-sizing problem involves minimizing the sum of the production
costs and the holding costs of items of a single product over a given number of periods to
satisfy the demand. Typically, there are two sets of decision variables that for each period
represent the number of the produced items and the number of the held items. These
variables are in general non-negative integers. Among the results obtained for the general
lot-sizing problem are fully polynomial approximation schemes, see e.g., Chubanov et al.
(2006, 2008) and (Halman et al., 2012, end of Sect. 6.1).

Since in our model we are concerned with the Boolean variables, below we follow Hardin
et al. (2007) and describe a model with 0− 1 decision variables. Given n periods, define a
variable yi such that yi = 1 if no production takes place in period i, 1 ≤ i ≤ n; otherwise
yi = 0 and that means that during period i exactly ci items are produced. Let di denote
the demand for period i, 1 ≤ i ≤ n. Introduce

Cj =

j∑
i=1

ci, Dj =

j∑
i=1

di, 1 ≤ j ≤ n,

where Cj is the number of items that could be produced in periods 1, 2, · · · , j and Dj is
the aggregated demand in these periods. To satisfy the demand, the inequalities

j∑
i=1

ci (1− yi) ≥ Dj

must hold for all j, 1 ≤ j ≤ n. They can be rewritten as nested constraints

j∑
i=1

ciyi ≤ Cj −Dj , 1 ≤ j ≤ n.

Let fj be the cost function of producing cj items in period j, while hj be the cost
function of all held items, i.e., those items that have been manufactured by period j on top
of the demand Dj , 1 ≤ j ≤ n. Notice that in the model studied in Hardin et al. (2007) the
production cost function is linear and no holding cost is taken into consideration.

The resulting problem can be formulated as

Minimize Z =
∑n

j=1 fj (cj (1− yj)) +
∑n

j=1 hj

(
Cj −Dj −

∑j
i=1 ciyi

)
Subject to

∑j
i=1 ciyi ≤ Cj −Dj , 1 ≤ j ≤ n,

yi ∈ {0, 1}, i = 1, 2, . . . , n.

(6)

Single Machine Scheduling with Rejection. Assume that set N is a set of jobs
to be processed on a single machine, owned by the decision-maker. Each job j ∈ N has

4

the processing time pj and the deadline dj by which it must be completed. The jobs are
supposed to be numbered in non-decreasing order of their deadlines. The decision-maker
may either accept a job to process internally or reject a job, e.g., by subcontracting it. In the
former case, define the decision variable xj = 1; otherwise, xj = 0. The cost of processing

of each accepted job j is defined by fj (Cj), where Cj =
∑j

i=1 αjxj is its completion time.
The other jobs are given to be processed to the subcontractor, and the cost of handling the
rejected job is defined by function gj . In the simplest case, gj can be just a positive number
βj that represents the rejection penalty of job j; see, e.g., Shabtay et al. (2013) and Kellerer
and Strusevich (2013) for examples of scheduling problems with simple rejection penalties.
In a more general case gj is a non-decreasing function that depends on the processing of
all rejected jobs i, 1 ≤ i ≤ j ≤ n.

Minimize Z =
∑n

j=1 fj

(∑j
i=1 pixi

)
xj +

∑n
j=1 gj

(∑j
i=1 pi (1− xi)

)
(1− xj)

Subject to
∑k

j=1 pjxj ≤ dk, 1 ≤ k ≤ n,
xj ∈ {0, 1}, j = 1, 2, . . . , n.

(7)

It can be seen that problems (6) and (7) share many features with the problem (5), the
main problem of this study.

The main outcome of this paper is that we demonstrate that under some reasonable
additional conditions on functions fj and gj , which, e.g., hold when the functions are
polynomials of a fixed degree, the problem (5) admits an FPTAS.

The remainder of this paper is organized as follows. In Section 2, we briefly review
general principles and known approaches to the design of FPTASs for the problems of
integer non-linear programming. In Section 3, we show that problem (5) is solvable by
a pseudopolynomial-time dynamic programming algorithm and such an algorithm can be
easily converted into an FPTAS by using a popular geometric rounding technique. An
alternative approach to designing an FPTAS for problem (5) and its generalizations is
presented in Section 4. Here we show that the powerful technique of K-approximation sets
and functions developed by Halman et al. (2014) can be adapted to converting another
dynamic programming algorithm to an FPTAS. While the second FPTAS is faster, the
running time of each scheme, although not strongly polynomial, is still computationally
acceptable, and the proofs of their correctness are relatively simple. In Section 5, we discuss
various extensions to the basic model, i.e., handling more general cost functions and nested
knapsack constraints. Moreover, we show that very similar principles can be applied to
developing an FPTAS for the maximization counterpart of problem (5). Section 6 contains
concluding remarks.

2 Approaches to FPTAS Design

In this section, we review most influential results on designing approximation schemes for
solving problems of non-linear Boolean programming.

Since the pioneering works by Ibarra and Kim (1975), Sahni (1977) and Lawler (1979),
the development of fully polynomial-time approximation schemes for various combinatorial
optimization problems has become a major direction of research. From the point of view
of accuracy of the found solution, an FPTAS is the best approximation result one may
expect for an NP-hard problem. An FPTAS provides a piece of evidence that the problem
under consideration allows finding a solution arbitrarily close to the optimum. Still, many
researchers consider an FPTAS to be an algorithm of a limited practical value due to
its fairly large time and space requirements. On the other hand, for many problems, e.g.,

5

various versions of the linear knapsack problems, there are approximation schemes that show
a good computational behaviour for instances of practical interest. Examples include an

FPTAS for the linear knapsack problem with the running time of O(n log(1
ε)+ (log(1/ε))2

ε3
)by

Kellerer and Pferschy (1999, 2004) and an FPTAS for the subset-sum problem with the

running time of O(n + log(1/ε)
ε2

) and the space requirement of O(n + 1
ε) by Kellerer et al.

(2003). References to the papers that report positive results on computational experiments
with FPTASs are contained in the survey Kovalyov and Kubiak (2012).

Virtually all known FPTASs are obtained by converting a dynamic programming (DP)
algorithm available for solving the problem under consideration. Typically, such a DP algo-
rithm requires a pseudopolynomial running time and using various algorithmic techniques
(e.g., trimming of the state space, rounding of the input data or the output values, etc.)
the time is appropriately reduced, while the accuracy is (insignificantly) lost.

Multiple attempts have been made to identify general principles and techniques for
developing an FPTAS. Below we briefly and informally review several papers which we see
as the most influential ones regarding the design of FPTASs, and at the same time most
relevant to our study.

Woeginger (2000) provides a series of conditions on a DP algorithm such that the
algorithm converts into a FPTAS. A problem that admits such a DP algorithm is called
DP-benevolent, and each DP-benevolent problem is proved to admit an FPTAS. The paper
describes several subclasses of the DP-benevolent problems for which an FPTAS can be
developed within a simpler framework than in the general case. Multiple examples of
DP-benevolent problems are given and many previously known results are shown to be
consequences of the DP-benevolence of the corresponding problems. On the other hand,
Woeginger (2000) demonstrates that several versions of the linear knapsack problem do not
exhibit the DP-benevolence and in fact do not admit an FPTAS unless P = NP .

Among examples given in Woeginger (2000) is the problem of minimizing the comple-
tion time variance on a single machine. The problem is not known to exhibit the DP-
benevolence, and although it admits an FPTAS, the scheme is developed based on different
principles. It is interesting to point out that the problem of minimizing the completion
time variance can be reformulated in terms of minimizing the half-product function (4); see
Badics and Boros (1998). Thus, the problem of minimizing the half-product is not known
to be DP-benevolent, although it admits an FPTAS with a running time of O

(
n2/ε

)
given

by Erel and Ghosh (2008). The same holds for various versions of the latter problem, for
example, for minimizing a so-called positive half-product function

P (x) =
n∑

1≤i<j≤n
αiβjxixj +

n∑
j=1

µjxj +
n∑
j=1

νj (1− xj) + Γ, (8)

with positive coefficients introduced by Janiak et al. (2005). The best known FPTAS for
minimizing a convex positive half-product is due to Kellerer and Strusevich (2013). See
Kellerer and Strusevich (2012, 2016) for reviews of similar results. We note that it is not
clear whether minimizing (1) under knapsack constraints exhibits DP-benevolence.

Kovalyov and Kubiak (2012) study the class PTopt of problems for which an objective
function is defined over partitions of a finite set of items into a given number of subsets.
They formulate four quite natural and fairly easily verifiable conditions which guarantee
that if these conditions hold for a problem of class PTopt, then such a problem admits an
FPTAS.

Among problems that admit an FPTAS due to the conditions established in Kovalyov
and Kubiak (2012) are two problems related to minimizing a version of the half-product
objective (4) subject to a linear knapsack constraint. One of these functions is a positive

6

half-product function (8), and the other is a non-separable quadratic function similar to (3)
with the coefficients in the two quadratic terms being not the same. For both functions, all
coefficients are positive and an appropriate sum U of these coefficients serves as an upper
bound. The FPTAS obtained in Kovalyov and Kubiak (2012) for minimizing function
(8) require O

(
log3 (U) log

(
max {logU, n, 1/ε}n3/ε2

))
time, while that for minimizing a

generalization of function (3) takes O
(
log4 (U) log

(
max {logU, n, 1/ε}n5/ε4

))
time.

The results presented in Kovalyov and Kubiak (2012) are quite relevant to this pa-
per, since function (1) can be seen as defined over partitions of a set of n items into two
subsets (taken and left items). However, even if the objective (1) satisfies all required
conditions, it is unlikely that the resulting FPTAS will have the running time faster than
O
(
log4 (U) log

(
max {logU, n, 1/ε}n5/ε4

))
, even if the nested constraints are simplified to

a single knapsack constraint.
Notice that the problem of minimizing a convex function of the form (8) under the

knapsack constraint (2) admits an FPTAS that requires O
(
n2/ε

)
time; see Kellerer and

Strusevich (2013). Besides, the problem of minimizing the symmetric quadratic func-
tion (3) under the same constraint (2) admits an FPTAS that can be implemented in
O
(
n4 max

{
log n, 1/ε2

})
time, as shown by Xu (2012) who extends the technique devel-

oped in Kellerer and Strusevich (2010a,b). Notice that the running times of these FPTASs
are strongly polynomial and they are developed by totally different approaches than those
outlined by Woeginger (2000) and Kovalyov and Kubiak (2012).

For minimizing a (quasi-)concave function of Boolean variables under linear constraints,
several authors explore the fact that a (quasi-)concave function of continuous variables
achieves its minimum at an extremal point of a polytope. If a (quasi-)concave objective
function is of a low rank k, i.e., depends on k input vectors, then for its minimization over
a polytope several FPTASs are available; see Goyal and Ravi (2013) and Mittal and Schulz
(2013). A special case of such a function of rank 2 is the product of two linear functions,
which has multiple applications in combinatorial optimization; see Kern and Woeginger
(2007) and Goyal et al. (2011) for FPTASs for minimization of such an objective. The
running time of all mentioned approximation schemes is not strongly polynomial.

Halman et al. (2014) develop a powerful framework for converting DP algorithms for
FPTASs for a wide range of problems of deterministic and stochastic optimization, pro-
vided that the objective function is separable. Their approach is based on establishing two
novel sets of computational rules, which the authors call the calculus of K-approximation
functions and K-approximation sets. This approach is illustrated on ten problems, for al-
most all of them no FPTAS has been previously known. Among the problems which are
especially relevant to this study is a generalized non-linear knapsack problem

Maximize
∑n

j=1 πj (xj)

Subject to
∑n

j=1 vj (xj) ≤ B,
lj ≤ xj ≤ uj , xj ∈ Z+, j = 1, 2, . . . , n.

(9)

to maximize a separable non-linear objective function subject to a non-linear knapsack
constraint. The decision variables are non-negative integers that have individual upper
and lower bounds. Problem (9) has been known to admit an FPTAS, provided either the
functions πj are concave and the functions vj are convex (see Hochbaum (1995)) or these
functions are monotone (see Kovalyov (1996)). It is shown in Halman et al. (2014) that
problem (9) admits an FPTAS provided that functions πj and vj are non-decreasing and
the length of any of their values under the binary encoding is polynomially bounded by
the length of the problem’s input. They also consider the minimization counterpart of this
problem. These two problems are among the most general problems of integer programming

7

with a single constraint that are known to admit an FPTAS, provided that the objective
function is separable.

While the framework of Halman et al. (2014) cannot be applied “as is” to problem (5)
due to the non-separability of the objective function, we show in Section 4 how to apply
their technique of K-approximating sets and functions in order to design an FPTAS for it.
That section also contains a brief review of the general framework based on the technique
of K-approximation sets and functions. Moreover, the approach can further be adapted to
handling more general problems than problem (5).

In the forthcoming sections, we show that the DP algorithms available for problem
(5) and its maximization counterpart can be converted into FPTASs. This is done in a
surprisingly simple and not particularly novel way, and the analysis of the performance of
these schemes is rather elementary. Moreover, the running time of our FPTASs, although
not strongly polynomial, can be seen as computationally acceptable.

3 Minimization Problem: FPTAS by Geometric Rounding

In this section, we describe a version of a dynamic programming (DP) algorithm for solv-
ing problem (5). Then we show that under certain conditions the DP algorithm can be
converted into an approximation scheme that behaves as an FPTAS.

In the DP algorithms below, the decision variables xj are scanned in the order of their
numbering and are given either the value of 1 (an item is taken) or 0 (an item is left).

Define

Ak =
k∑
j=1

αj , k = 1, 2, . . . , n. (10)

and suppose that the values x1, x2, . . . , xk have been assigned. One version of our DP
algorithm deals with partial solutions associated with states of the form

(k, Zk, yk) ,

where

k is the number of the assigned variables;

Zk is the current value of the objective function;

yk :=
∑k

j=1 αjxj is the state variable, whose value is the total weight of the taken items.

Let us call the states of the form (k, Zk, yk), i.e., states whose state variable is y,
the primal states, and let the DP algorithm that manipulates the primal states be called
the primal algorithm. The primal DP algorithm is used further in this paper as a basis
for designing an FPTAS for the maximization counterpart of problem (5). Its formal
description is given in Section 5.4.

For obtaining an FPTAS for problem (5), in which the objective has to be minimized,
it is convenient to use another form of the DP algorithm that manipulates the states of
the dual form (k, Zk, ŷk), where k and Zk have the same meaning as above, while the state
variable is ŷk = Ak − yk. It is clear that ŷk is the total weight of the considered items that
have not been taken.

We refer to the DP algorithm for solving problem (5) that manipulates dual states of
the form (k, Zk, ŷk) as dual algorithm. Its formal statement is given below.

8

Algorithm DDP

Step 1. Start with the initial state (0, Z0, ŷ0) = (0, 0, 0). Compute the values Ak, k =
1, 2, . . . , n, by (10).

Step 2. For all k from 0 to n− 1 do

Make transitions from each stored state of the form

(k, Zk, ŷk) , (11)

into the states of the form
(k + 1, Zk+1, ŷk+1) (12)

by assigning the next variable xk+1.

(a) Define xk+1 = 1, provided that it is feasible to take item k+1, i.e., if the (k + 1)-
th nested constraintAk+1− ŷk ≤ dk+1 holds. If feasible, the assignment xk+1 = 1
changes a state (11) to a state of the form (12), where

ŷk+1 = ŷk; Zk+1 = Zk + fk+1 (Ak+1 − ŷk+1) , (13)

(b) Define xk+1 = 0, which is always feasible. This assignment changes a state of
the form (11) into the state of the form (12) such that

ŷk+1 = ŷk + αk+1; Zk+1 = Zk + gk+1 (ŷk+1) . (14)

Step 3. Output the optimal value of the function that corresponds to the smallest value
of Zn among all found states of the form (n,Zn, ŷn).

To develop an FPTAS for problem (5) we need certain assumptions regarding com-
putability and properties of functions fj and gj :

• each function fj and gj , 1 ≤ j ≤ n, can be computed in constant time;

• there exists a constant r ≥ 1 such that for each j, 1 ≤ j ≤ n, and for any positive u

gj (ux) ≤ urgj (x) . (15)

Notice that these assumptions hold, e.g., if the functions fj and gj are polynomials of a
fixed degree that does not exceed r in the case of the functions gj . Notice that if (15) holds
as the equality then the corresponding function is homogeneous. Moreover, inequality (15)
with r = 1 represents the relation known as the decreasing returns to scale.

The role of the assumption (15) is discussed further in this section, after the presentation
of the FPTAS and the proof of its correctness. Since the argument of functions gj is the
total weight of the non-taken items, it is natural to base the FPTAS on conversion of
Algorithm DDP which uses variables ŷk, 1 ≤ k ≤ n, as state variables.

Additionally, throughout the paper we assume that for a given positive ε a power of
1 + ε can be computed in constant time.

In the description and the analysis of the FPTAS the following upper bound

ZUB =

n∑
j=1

fj (dj) +

n∑
j=1

gj (Aj) (16)

is used. The algorithm below splits the range of ŷ-values and the range of Z-values into
subintervals with the endpoints that form geometric sequences.

9

Algorithm EpsMin1

Step 1. Compute ZUB by (16) and Ak, 1 ≤ k ≤ n, by (10). For a given positive ε,
introduce the intervals, whose endpoints form geometric sequences. For the ŷ−values,
introduce the intervals

[0, 0],
[
1, (1 + ε)

1
rn

]
,
[
(1 + ε)

1
rn , (1 + ε)

2
rn

]
, . . . ,

[
(1 + ε)

u−1
rn , An

]
where u is the largest integer such that

⌈
(1 + ε)

u−1
rn

⌉
≤ An. Call these intervals I`,

` = 0, 1, . . . , u. For the Z−values, introduce the intervals

[0, 0],
[
1, (1 + ε)

1
n

]
,
[
(1 + ε)

1
n , (1 + ε)

2
n

]
,
[
(1 + ε)

2
n , (1 + ε)

3
n

]
, . . .

[
(1 + ε)

v−1
n , ZUB

]
,

where v is the largest integer such that
⌈
(1 + ε)

v−1
n

⌉
≤ ZUB. Call these intervals Jt,

t = 0, 1, . . . , v.

Step 2. Store the initial state (0, 0, 0). For each k, 0 ≤ k ≤ n− 1, do the following:

According to Algorithm DDP move from a stored dual state (k, Zk, ŷk) to at most two
feasible dual states of the form (k + 1, Zk+1, ŷk+1), where Zk+1 ≤ ZUB, using the
relations (13) and (14). If the number of generated states (k+ 1, Zk+1, ŷk+1) with the
Z-values in the same interval Jt and with the ŷ-values in the same interval I` exceeds
one, then keep only one of these states, that with the largest ŷ-value.

Step 3. Among all values Zn found in Step 2 identify the smallest one. Starting from a
state associated with this value of Zn, perform backtracking to find the corresponding
decision variables xj , j = 1, . . . , n. Compute the value of the objective function with
the found xj ’s, call this value Zε and accept it as an approximate value of the objective
function.

We now analyze the performance of Algorithm EpsMin1.

Lemma 1 Assume that the dynamic programming Algorithm DDP is applied to problem
(5) that satisfies (15) and finds a chain of dual states

(0, 0, 0), (1, Z∗1 , ŷ
∗
1), . . . , (n,Z∗n, ŷ

∗
n)

leading to the optimal value Z∗ = Z∗n. Then for each k, 1 ≤ k ≤ n, Algorithm EpsMin1
finds a state (k, Zk, ŷk) such that

ŷ∗k ≤ ŷk ≤ (1 + ε)
k
rn ŷ∗k (17)

and
Zk ≤ (1 + ε)

k
n Z∗k . (18)

Proof: The proof is by induction. To establish the basis of induction for k = 1, notice
the following. If x∗1 = 1 then take ŷ1 = 0, Z1 = Z∗1 = f1 (α1), while if x∗1 = 0 then take
ŷ1 = ŷ∗1 = α1, Z1 = g1 (α1). The conditions (17) and (18) hold for k = 1.

10

Assume that the lemma holds for all k, 1 ≤ k ≤ q < n. In the optimal chain of dual
states, in accordance with (13) and (14) we have that for k = q a state (q + 1, Z∗q+1, ŷ

∗
q+1)

is computed, where
ŷ∗q+1 = ŷ∗q + αq+1

(
1− x∗q+1

)
.

This state is obviously feasible, i.e., Aq+1 − ŷ∗q+1 ≤ dq+1.

Take a stored state (q, Zq, ŷq) and consider a state (q + 1, Z̃q+1, ỹq+1) obtained from it
by the transformation

ỹq+1 = ŷq + αq+1

(
1− x∗q+1

)
.

It follows from (17) applied with k = q that

ỹq+1 ≥ ŷ∗q + αq+1

(
1− x∗q+1

)
= ŷ∗q+1, (19)

i.e., Aq+1− ỹq+1 ≤ Aq+1− ŷ∗q+1 ≤ dq+1. This implies that state (q+1, Z̃q+1, ỹq+1) is feasible
and will be contained among states computed in Step 2.

We also deduce from (17) applied with k = q that

ỹq+1 ≤ (1 + ε)
q
rn ŷ∗q + αq+1

(
1− x∗q+1

)
≤ (1 + ε)

q
rn
(
ŷ∗q + αq+1

(
1− x∗q+1

))
= (1 + ε)

q
rn ŷ∗q+1.

(20)
If x∗q+1 = 1, then it follows from (19) and (18) for k = q as well as from the monotonicity

of function fq+1 that

Z̃q+1 = Zq + fq+1 (Aq+1 − ỹq+1) ≤ (1 + ε)
q
n Z∗q + fq+1

(
Aq+1 − ŷ∗q+1

)
(21)

≤ (1 + ε)
q
n
(
Z∗q + fq+1

(
Aq+1 − ŷ∗q+1

))
= (1 + ε)

q
n Z∗q+1.

If x∗q+1 = 0, then it follows from (20), (18) for k = q as well as from the monotonicity
and the main property (15) of function gq+1 that

Z̃q+1 = Zq + gq+1 (ỹq+1) ≤ (1 + ε)
q
n Z∗q + gq+1

(
(1 + ε)

q
rn ŷ∗q+1

)
(22)

≤ (1 + ε)
q
n Z∗q + (1 + ε)

q
n gq+1

(
ŷ∗q+1

)
= (1 + ε)

q
n Z∗q+1.

Thus, in any case,
Z̃q+1 ≤ (1 + ε)

q
n Z∗q+1. (23)

If state
(
q + 1, Z̃q+1, ỹq+1

)
is kept as a state (q + 1, Zq+1, ŷq+1), i.e., if we define ŷq+1 :=

ỹq+1 and Zq+1 = Z̃q+1, then (17) and 18) hold for k = q + 1.

If state
(
q + 1, Z̃q+1, ỹq+1,

)
is not kept, then there exists a feasible state (q, Zq+1, ŷq+1)

such that both values Z̃q+1 and Zq+1 belong to the same interval Jt, while both values ŷq+1

and ỹq+1 belong to the same interval I` and ŷq+1 > ỹq+1. Since ŷ∗q+1 ≤ ỹq+1, we have that
ŷ∗q+1 ≤ ŷq+1 as required by (17). Besides, it follows that if two ŷ-values belong to the same

interval I`, then their ratio never exceeds the ratio of its endpoints equal to (1 + ε)
1
rn , and

we derive from (20) that

ŷq+1 ≤ (1 + ε)
1
rn ỹq+1 ≤ (1 + ε)

q+1
rn ŷ∗q+1.

Similarly, the ratio between the values Z̃q+1 and Zq+1 does not exceed the length of the
interval Jt, so that due to (23) we have that

Zq+1 ≤ (1 + ε)
1
n Z̃q+1 ≤ (1 + ε)

q+1
n Z∗q+1.

Hence, (18) holds for k = q + 1.

11

Theorem 1 For problem (5) that satisfies (15), Algorithm EpsMin1 is an FPTAS that
requires O

(
n3
ε2

logAn logZUB
)

time.

Proof: By Lemma 1 Algorithm EpsMin1 outputs a state (n,Zn, ŷn), and due to property
(18) for k = n we have that

Zn ≤ (1 + ε)
n
n Z∗n = (1 + ε)Z∗n.

Thus, the algorithm delivers the required quality of approximation. Let us esti-
mate its running time. Computing ZUB in Step 1 takes O (n) time. Since r is a
constant, the numbers of used intervals can be estimated as u = O

(
n log1+εAn

)
and

v = O
(
n log1+ε Z

UB
)
. In each of n iterations the number of kept states does not exceed

uv, and at most 2uv new states are created of which at most uv are kept. The overall
running time is O (n+ nuv) = O

(
n3 log1+εAn log1+ε Z

UB
)
. Since for any positive b the

equality log1+ε b = O
(

1
ε log b

)
holds, we obtain the running time of O

(
n3

ε2
logAn logZUB

)
,

which is polynomial (but not strongly polynomial) with respect to the length of the prob-
lem’s input.

There are several reasons why the assumption (15) turns out to be essential. First,
the constant r helps us to define the intervals for the ŷ-variables and to make sure that
their number, u, is appropriately bounded; see the proof of Theorem 1. Second, one of
the crucial points in the proof of Lemma 1 is to demonstrate that Z̃q+1 ≤ (1 + ε)

q
n Z∗q+1.

Since ỹq+1 ≥ ŷ∗q+1, to derive the chain of inequalities (21) we need no assumptions on the
behaviour of function fj , except its monotonicity. On the other hand, to derive the chain
of inequalities (22), we need to rely on (15).

Notice that the running time stated in Theorem 1 holds, provided that computing each
function fj and gj takes constant time. The algorithm still behaves as an FPTAS if we
assume that such computation requires polylogarithmic time. The latter assumption is
widely used in the analysis of the FPTASs for problems of nonlinear optimization, see, e.g.,
Halman et al. (2014).

4 Minimization Problem: FPTAS by K-Approximation Sets
And Functions

In this section, we give another FPTAS for problem (5), which is faster with respect to
the number of items n and is based on the technique of finding K-approximation sets and
functions briefly discussed in Section 2. We first formulate a DP algorithm, then review the
K-approximation sets and functions technique, and finally design and analyze an FPTAS.

4.1 A DP formulation

Let y, 0 ≤ y ≤ dn, denote a possible value of the total weight of all taken items; we refer to
this value as the available space. The improved DP algorithm presented below manipulates
states of the form

(k, zk (y) , ak (y) , bk (y)) ,

where for 0 ≤ k ≤ n and 0 ≤ y ≤ dn, the state variables are as follows:

• k, is the number of considered items, for which the “take-or-leave” decisions have
been made;

12

• zk (y), 0 ≤ k ≤ n, is the optimal value of the objective (5), provided that only items
1, . . . , k have been considered and the available space is min {y, dk} ;

• ak (y) ≤ y is the actual used space, i.e., the total weight of the taken items in the
optimal solution associated with zk(y);

• bk(y) ≤ Ak is the total weight of the left items in the optimal solution associated with
zk(y); as above, Ak is defined by (10).

The improved DP algorithm can be stated as follows.

Algorithm DPab

Step 1. Start with the initial states (0, z0 (y) , a0 (y) , b0 (y)), 0 ≤ y ≤ dn, defined by

z0(y) = a0(y) = b0(y) = 0, y = 0, . . . , dn.

Step 2. For all k from 1 to n find the states (k, zk (y) , ak (y) , bk (y)), as follows:

(a) Compute

z′ (y) = fk(ak−1(y) + αk) + zk−1(y − αk), αk ≤ y ≤ dk;
z′′ (y) = gk(bk−1(y) + αk) + zk−1(y), 0 ≤ y ≤ dk.

(b) For each y, 0 ≤ y ≤ dk, compute

zk (y) =

z′′ (y) , if 0 ≤ y < αk
min {z′ (y) , z′′ (y)} , if αk ≤ y ≤ dk
zk(dk), if dk < y ≤ dn

.

(c) For each y, 0 ≤ y ≤ dk, compute

ak (y) =

ak−1(y), if 0 ≤ y < αk
ak−1(y), if αk ≤ y ≤ dk and zk (y) = z′′ (y)
ak−1(y) + αk, if αk ≤ y ≤ dk and zk (y) = z′ (y)
ak(dk), if dk < y ≤ dn

.

(d) For each y, 0 ≤ y ≤ dk, compute

bk (y) =

bk−1(y) + αk, if 0 ≤ y < αk
bk−1(y) + αk, if αk ≤ y ≤ dk and zk (y) = z′′ (y)
bk−1(y), if αk ≤ y ≤ dk and zk (y) = z′ (y)
bk(dk), if dk < y ≤ dn

.

Step 3. Output zn (dn) as the optimal value of the function. The actual take-or-leave
decisions (i.e., the values of the decision variables) can be found by backtracking.

Note that each function zk(y) is monotone non-increasing, since as y grows the problem
becomes less constrained, i.e., the more space is available for items to be taken, the less we
are forced to make the “leave” decisions. Using similar arguments, note that each function
ak(y) is monotone non-decreasing, since the more space y is available to accommodate the
taken items, the more items we may take. Furthermore, note that each function bk(y)
is monotone non-increasing: by a symmetric argument, the more space y is available to
accommodate the taken items, the less items we may actually leave. Note also that our DP
formulation is univariate and involves three univariate and monotone functions. The time
and space needed to solve the recurrences is O(ndn), i.e., pseudopolynomial in the input
size.

13

4.2 Overview of K-approximation sets and functions

In this subsection, we provide an overview of the technique of K-approximation sets and
functions. In the next subsection, we adapt the discussed tools to constructing an FPTAS
for our problem.

For a function ϕ : {A, . . . , B}→R that is not identically zero, denote ϕmin :=
minA≤x≤B{|ϕ(x)| : ϕ(x) 6= 0}, and ϕmax := maxA≤x≤B{|ϕ(x)|}.

Halman et al. (2009) have introduced the technique of K-approximation sets and func-
tions, and used it to develop an FPTAS for a certain stochastic inventory control problem.
Halman et al. (2014) have applied this tool to develop a framework for transforming rather
general classes of stochastic DPs into FPTASs including (i) non-decreasing (respectively,
non-increasing) DPs with the single-period cost functions that are non-decreasing (respec-
tively, non-increasing) in the state variable and (ii) convex DPs with the single-period cost
functions that have a certain convex structure and the transition function is affine.

This technique has been used to yield FPTASs to various optimization problems, see
Halman et al. (2014) and the references therein. Notice that for many of these problems
no FPTAS was previously known.

We now present formal definitions related to K-approximation set and functions. Let
K ≥ 1, α, α̃ ≥ 0 be arbitrary real numbers and let ϕ, ϕ̃ : {A, . . . , B} → R+ be arbitrary
functions. We say that α̃ is a K-approximation value of α if α ≤ α̃ ≤ Kα. We say
that ϕ̃ is a K-approximation function of ϕ if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) (i.e., ϕ̃(x) is a K-
approximation value of ϕ(x)) for all x = A, . . . , B. Below, we sometime omit the word
“value” (respectively, “function”) from the term “K-approximation value” (or respectively,
“K-approximation function”) whenever it is clear from the context.

The following property of K-approximation functions is extracted from (Halman et al.,
2014, Prop. 5.1), which provides a set of general computational rules of K-approximation
functions. Its validity follows directly from the definition of K-approximation functions.

Property 1 (Calculus of K-approximation functions) (Halman et al., 2014,
Prop. 5.1) For i = 1, 2 let Ki ≥ 1, let ϕi, ϕ̃i : {A, . . . , B} → R+ and let ϕ̃i be a Ki-
approximation of ϕi. Let ψ1 : {A′, . . . , B′}→{A, . . . , B} be an arbitrary function and
α, β ∈ R+ be arbitrary positive real numbers. The following properties hold:

Linearity of approximation: α+ βϕ̃1 is a K1-approximation function of α+ βϕ1.

Summation of approximation: ϕ̃1 + ϕ̃2 is a max{K1,K2}-approximation function of
ϕ1 + ϕ2.

Composition of approximation: ϕ̃1(ψ1) is a K1-approximation function of ϕ(ψ1).

Minimization of approximation: min{ϕ̃1, ϕ̃2} is a max{K1,K2}-approximation of
min{ϕ1, ϕ2}.

Maximization of approximation: max{ϕ̃1, ϕ̃2} is a max{K1,K2}-approximation of
max{ϕ1, ϕ2}.

Approximation of approximation: If ϕ2 = ϕ̃1 then ϕ̃2 is a K1K2-approximation of ϕ1.

Since the problem studied in this paper has a monotone structure over intervals of
integer numbers, to simplify the discussion, we concentrate on Halman et al.’s definitions
for K-approximation sets and functions specialized to monotone functions over intervals of
integer numbers. We next turn to defining K-approximation sets. The idea behind such

14

approximation sets is to keep a small (i.e., of a polynomially bounded size) set of points in
the domain of a function, ensuring that step interpolation between the function’s values on
this set guarantees rigorous error bounds.

Definition 1 (Halman et al., 2014, Def. 4.4) Let ϕ : {A, . . . , B} → R be a monotone
function. For any subset W ⊆ {A, . . . , B} satisfying A,B ∈ W , the approximation of ϕ
induced by W is the function

ϕ̂(x) =

{
ϕ(miny∈W {y ≥ x}), if ϕ is a non-decreasing function,
ϕ(maxy∈W {y ≤ x}), if ϕ is a non-increasing function.

Definition 2 (Halman et al., 2014, Def. 4.2 and Prop. 4.5) Let K ≥ 1 and let ϕ :
{A, . . . , B} → R+ be a monotone function. Let W ⊆ {A, . . . , B} be a subset satisfying
A,B ∈ W . We say that W is a K-approximation set of ϕ if the approximation of ϕ
induced by W is a K-approximation function of ϕ.

In all algorithms discussed in this section, we assume that for an input function ϕ an
oracle is available which for any x returns the value ϕ(x) in tϕ time. The statement below
asserts that for a monotone function ϕ a K-approximation set of a polynomial size can be
found in polynomial time.

Proposition 1 (Halman et al., 2014, Prp. 4.6) Let ϕ : {A, . . . , B} → R+ be a monotone
function, for which an oracle with a query time of tϕ is available. Then for every K > 1,
it is possible to compute a K-approximation set of ϕ of size O(logK

ϕmax

ϕmin) in O
(
tϕ(1 +

logK
ϕmax

ϕmin) log(B −A)
)

time.

A procedure for constructing a K-approximation function for any monotone function
ϕ : {A, . . . , B}→R+ is stated as Function Compress.

Function Compress
Inputs: ϕ, {A, . . . , B},K, where ϕ : {A, . . . , B}→R+ is a monotone function repre-

sented by an appropriate oracle
Returns: a monotone K-approximation of ϕ

Step 1. Obtain a K-approximation set W over the domain of {A, . . . , B}.

Step 2. Return ϕ̃, the approximation of ϕ induced by W as an array{(x, ϕ̃ (x)) |x ∈W}
sorted in increasing order of x.

As demonstrated by (Halman et al., 2014, Prop. 4.5), K-approximations of a function
ϕ can be found even if the function itself is not available, but there exists an oracle that
computes values of some function ϕ̄ that is an approximation function of ϕ. Below we
present a statement, adapted from (Halman et al., 2014, Prop. 4.5), that applies to finding
approximations of a monotone function ϕ by calling Function Compress.

Proposition 2 Let K1,K2 ≥ 1 be real numbers and let ϕ : {A, . . . , B}→R+ be a mono-
tone function. Let ϕ̄ be a monotone K2-approximation function of ϕ. Then Function
Compress(ϕ̄, {A, . . . , B},K1) returns in O

(
tϕ(1 + logK1

ϕmax

ϕmin) log(B − A)
)

time a mono-

tone step function ϕ̃ with O(logK1

ϕmax

ϕmin) steps that K1K2-approximates ϕ, and of which the

query time is tϕ̃ = O(log logK1

ϕmax

ϕmin).

In Proposition 2, the estimates of computation times and approximation quality fol-
low from the discussion above and an application of the calculus of approximation (the
approximation of approximation rule).

15

4.3 FPTAS Design and Analysis

We now develop and analyze an FPTAS for problem (5). For our FPTAS to work, we
need certain assumptions regarding properties of the non-decreasing functions fj and gj .
The first assumption is identical to the one used in Section 3, i.e., there exists a constant
r ≥ 1 such that for any positive u inequality (15) holds. The second assumption is that the
following similar inequality

fj(ux) ≤ urfj(x) (24)

holds for each j, 1 ≤ j ≤ n, and for any positive u. Assumption (15) (respectively, (24))
tells us that if x̃ is a K-approximation value of x then gj(x̃) (respectively, fj(x̃)) is a Kr-
approximation of gj(x) (respectively, of fj(x)). Notice that the assumption (24) is used for
convenience in the beginning of our reasoning and is later dropped.

Our FPTAS is based on Algorithm DPab given in Subsection 4.1. In every iteration
k, we obtain z̃k(·), ãk(·) and b̃k(·) that are approximation functions of the true functions
zk(·), ak(·) and bk(·), respectively. Each of these approximate functions is obtained by
call of Function Compress with the relevant input. The input functions z̄k (·) , āk (·) and
b̄k (·) used in these calls are represented by the corresponding oracles built in line with
Algorithm DPab, and are, in turn, approximation functions of the true functions zk (·) , ak (·)
and bk (·), respectively. Due to the calls of Compress in Step 3(b) and 3(c), with each
iteration the quality of approximation of each ãk(·) and b̃k(·) deteriorates by a factor of K
compared to ãk−1(·) and b̃k−1(·), respectively. The approximation of z̃k(·) deteriorates by
a factor of Kr+1 due to the call of Compress in Step 3(a) coupled with the fact that when
computing each function fk(·) and gk(·) with an argument that is a K-approximation value
of the true argument, the calculated value is a Kr-approximation value of the true value;
see the discussion in the previous paragraph.

Formally, the approximation scheme can be stated as follows.

Algorithm EpsMin2

Step 1. Compute ZUB by (16). For a given positive ε, compute K = (1 + ε)
1

r(n−1)+n .

Step 2. Start with the initial states
(

0, z̃0 (y) , ã0 (y) , b̃0 (y)
)

, where each function is rep-

resented as a two-component array compatible with the structure of the output of
Function Compress, i.e., by ((0, 0) , (dn, 0)) .

Step 3. For all k from 1 to n, do

(a) Determine function z̃k(·) returned by calling Function Com-
press(z̄k (·) , {0, . . . , dn} ,K), provided that for computing values of the
input function z̄k (·) the following oracle is used:

z̄k (y) =

z′′ (y) , if 0 ≤ y < αk
min {z′ (y) , z′′ (y)} , if αk ≤ y ≤ dk
z̄k(dk), if dk < y ≤ dn

,

where

z′ (y) = fk(ãk−1(y) + αk) + z̃k−1(y − αk);
z′′ (y) = gk(b̃k−1(y) + αk) + z̃k−1(y).

16

(b) Determine function ãk(·) returned by calling Function Com-
press(āk (·) , {0, . . . , dn} ,K), provided that for computing values of the
input function āk (·) the following oracle is used:

āk (y) =

ãk−1(y), if 0 ≤ y < αk
ãk−1(y), if αk ≤ y ≤ dk and z̄k (y) = z′′ (y)
ãk−1(y) + αk, if αk ≤ y ≤ dk and z̄k (y) = z′ (y)
āk(dk), if dk < y ≤ dn

.

(c) Determine function b̃k(·) returned by calling Function Com-
press

(
b̄k (·) , {0, . . . , dn} ,K

)
, provided that for computing values of the

input function b̄k (·) the following oracle is used:

b̄k (y) =

b̃k−1(y) + αk, if 0 ≤ y < αk
b̃k−1(y) + αk, if αk ≤ y ≤ dk and z̄k (y) = z′′ (y)

b̃k−1(y), if αk ≤ y ≤ dk and z̄k (y) = z′ (y)
b̄k(dk), if dk < y ≤ dn

.

Step 4. Output z̃n(dn) as an approximate value of the smallest value zn (dn) of the original
objective. The actual take-or-leave decisions (i.e., the values of the decision variables)
can be found by backtracking.

We now analyze the performance of Algorithm EpsMin2.

Lemma 2 If applied to problem (5) that satisfies (15) and (24), Algorithm EpsMin2 for
each j, 0 ≤ j ≤ n, computes functions such that

• z̃j(·) is a Krmax{j−1,0}+j-approximation of zj(·);

• ãj(·) and b̃j(·) is a Kj-approximation of aj(·) and of bj(·), respectively.

Proof. We notice first that z̄k(·), āk(·), b̄k(·) are all monotone functions for each k,
0 ≤ k ≤ n. Therefore, all calls to Compress are well defined and we may use Proposition 2
in our analysis.

For some q, 1 < q < n, assume that the lemma holds for each j, 1 ≤ j ≤ q − 1 < n. In
particular, we assume that

• z̃q−1(·) is a Kr(q−2)+q−1-approximation of zq−1(·);

• ãq−1(·) and b̃q−1(·) is a Kq−1-approximation of aq−1(·) and of bq−1(·), respectively.

We want to prove that

• z̃q(·) is a Kr(q−1)+q-approximation of zq(·);

• ãq(·) and b̃q(·) is a Kq-approximation of aq(·) and of bq(·), respectively.

Running Step 3(b) of Algorithm EpsMin2 for k = q, we get by the induction hy-
pothesis and the calculus of approximation (the linearity of approximation rule) that
āq(·) is a Kq−1-approximation of aq(·). Looking at the output of Function Com-
press(āq (·) , {0, . . . , dn} ,K), we deduce from Proposition 2 applied with K1 = K and
K2 = Kq−1, that ãq(·) is a Kq-approximation of aq(·), as required. Similarly, considering
Step 3(c) of Algorithm EpsMin2, we deduce that b̃q(·) is a Kq-approximation of bq(·).

17

We now turn to evaluating the approximation ratio of z̃q(·). By the induction hypoth-
esis and the calculus of approximation (the linearity of approximation rule), we get that
b̃q−1(y) + αj is a Kq−1-approximation of bq−1(y) + αj . Therefore, it follows from (15)
that gq(b̃q−1(y) + αj) is a Kr(q−1)-approximation of gq(bq−1(y) + αj). Using the induction
hypothesis for z̃q−1 and the calculus of approximation (the summation of approximation
rule), we get that gq(b̃q−1(y) + αj) + z̃q−1(y) is a Kmax{r(q−1),r(q−2)+q−1}-approximation
and, therefore, is a Kr(q−1)+q−1-approximation of gq(bq−1(y) + αj) + zq−1(y). Similarly,
using (24), the composition of approximation rule and the summation of approximation
rule, we obtain that fq(ãq−1(y) + αj) + z̃q−1(y − αj) is a Kr(q−1)+q−1-approximation of
fq(aq−1(y) + αj) + zq−1(y − αj). Using once more the calculus of approximation (the min-
imization of approximation rule) we derive that z̄q(y) is a Kr(q−1)+q−1-approximation of
zq(y). Looking at the output of Function Compress(z̄q (·) , {0, . . . , dn} ,K), we deduce
from Proposition 2 applied with K1 = K and K2 = Kr(q−1)+q−1, that z̃q(·) is a Kr(q−1)+q-
approximation of zq(·), as required.

Theorem 2 For problem (5) that satisfies (15) and (24), Algorithm EpsMin2 is an FPTAS
that computes a (1 + ε)-approximation value of zn(dn) in

O

(
n2(logZUB + logAn) log dn

ε

(
log

n logZUB

ε
+ log

n logAn
ε

))
time.

Proof: Lemma 2 implies that z̃n (dn) is a Kr(n−1)+n-approximation value of the optimal
value zn (dn) of the objective function. For K defined as in Step 1 of Algorithm EpsMin2,
we obtain that z̃n (dn) ≤ (1 + ε) zn (dn), which provides the desired accuracy.

Now, we turn to analyzing the running time of the algorithm. Steps 1 and 2 require
constant time. Note that Step 2 defines oracles to retrieve the zero values z̃0(y), ã0(y) and
b̃0(y) for y values that are required in computation in Step 3 for k = 1.

For any k, 1 ≤ k ≤ n, the largest value that function z̃k(y) may achieve is ZUB and its
domain is {0, . . . , dn}. Thus, Proposition 2 implies that the running time of Step 3(a) for a
fixed k is O

(
tz̄k logK Z

UB log dn
)
. Using the oracle defined for function z̄k (·), we have that

tz̄k = O(tz̃k−1
+tãk−1

+tb̃k−1
). It follows from Proposition 2 applied withK1 = K that tãk−1

=

tb̃k−1
= O (log logK An), since the largest value that each function ãq(·) and b̃q(·) may

achieve is An, i.e., the sum of the weights of all items. Similarly, tz̃k−1
= O(log logK Z

UB),
so that

tz̄k = O(log logK Z
UB + log logK An). (25)

The running time of Step 3(b) for a fixed k is O
(
tāk logK An log dn

)
, and the structure

of the corresponding oracle implies that

tāk = O(tz̄k + tãk−1
) = O(log logK Z

UB + log logK An). (26)

By symmetry, the running time of Step 3(c) for a fixed k is O
(
tb̄k logK An log dn

)
, where

tb̄k = O(tāk).
We enter Step 4 having found the array representation of function z̃n(·). By Propo-

sition 2 it takes O(log logK Z
UB) = O

(
log n logZUB

ε

)
time to compute z̃n(y) for any value

y (i.e., the dependency on n is only logarithmic). In order to build the feasible solution
that z̃n(x) approximates, we need to perform backtracking to discover the various values
of the n leave-or-take decisions and then re-evaluate zn, exactly as is done in Step 3 of
Algorithm EpsMin1. This additionally takes O (n) time.

Thus, the running time of Algorithm EpsMin2 is determined by
the total time complexity of Step 3 over all iterations, which is

18

O(n
(
logK Z

UB + logK An
)

log dn
(
log logK Z

UB + log logK An
)
). Moving to the base 2

logarithms, using the equation logK = log r(n−1)+n
√

1 + ε = O(ε
rn) and taking into account

that r is constant, the claimed running time follows.

As reflected in its name, Algorithm DPab computes both values ak (y) and bk (y). Notice
that the value ak (y) is closely related to yk, introduced in Section 3, since both of them
represent the total weight of the taken items after items 1, . . . , k have been considered; the
difference is that there is a space limit y in the case of ak (y). Similarly, bk (y) is closely
related to ŷk.

5 Extensions

In this section we extend the approach described earlier in this paper to designing an
FPTAS for the same problem without assuming that both conditions (15) and (24) hold
(Subsection 5.1), and for problems that are generalizations or variations of problem (5)
(Subsections 5.2-5.4).

It turns out the method of K-approximation sets and functions is flexible enough, so
that only minor adjustments are required to handle these variations. As a rule, we only
state the changes that are needed in the corresponding DP algorithm, while its conversion
to an FPTAS can be done quite similarly to Algorithm EpsMin2. In Subsections 5.2-5.4 it
is assumed that both conditions (15) and (24) hold; if required, one of them can be removed
as described in Subsection 5.1.

5.1 Only one of the conditions (15) and (24) holds

If we want to design an FPTAS for problem (5) for which the condition (24) is dropped, we
need to compute the quantities ak (y) not directly as done in Algorithm DPab, but express
them in terms of bk (y). This observation leads to the following modified DP algorithm,
which we call Algorithm DPb, since it computes values bk (y) only.

Algorithm DPb

Step 1. Start with the initial states (0, z0 (y) , b0 (y)), 0 ≤ y ≤ dn, defined by

z0(y) = b0(y) = 0, y = 0, . . . , dn.

Step 2. For all k from 1 to n find the states (k, zk (y) , bk (y)), as follows:

(a) Compute

z′ (y) = fk(Ak − bk−1(y)) + zk−1(y − αk), 0 ≤ y ≤ dk;
z′′ (y) = gk(bk−1(y) + αk) + zk−1(y), αk ≤ y ≤ dk.

(b) For each y, 0 ≤ y ≤ dk, compute

zk (y) =

z′′ (y) , if 0 ≤ y < αk
min {z′ (y) , z′′ (y)} , if αk ≤ y ≤ dk
zk(dk), if dk < y ≤ dn

.

19

(c) For each y, 0 ≤ y ≤ dk, compute

bk (y) =

bk−1(y) + αk, if 0 ≤ y < αk
bk−1(y) + αk, if αk ≤ y ≤ dk and zk (y) = z′′ (y)
bk−1(y), if αk ≤ y ≤ dk and zk (y) = z′ (y)
bk(dk), if dk < y ≤ dn

.

Step 3. Output zn (dn) as the optimal value of the function. The actual take-or-leave
decisions (i.e., the values of the decision variables) can be found by backtracking.

Algorithm EpsMin2 should be modified accordingly, i.e., in Step 1 we also need to
compute the values Ak, k = 1, 2, . . . , n, by (10), in Step 2 ã0(y) has to be removed, Step 3(b)
has to be removed all together and the formula for z′ (y) in Step 3(a) has to become

z′ (y) = fk(Ak − b̃k−1(y)) + z̃k−1(y − αk), 0 ≤ y ≤ dk.

The analysis of the accuracy of the resulting scheme is similar to that in the proof of
Lemma 2. However, we should be aware that the fact that b̃q−1(y) is a Kq−1-approximation
of bq−1(y) does not imply that Aq− b̃q−1(y) is a Kq−1-approximation of Aq− bq−1(y). Nev-
ertheless, it follows that Aq− b̃q−1(y) ≤ Aq−bq−1(y), so that the right value is appropriately
approximated.

In Step 4 of the modified scheme, finding the value of z̃n(y) will take time that is linear
in n, not logarithmic in n, as in the proof of Theorem 2. The reason is that while the value
of the resulting z̃n(dn) is assured to be bounded by (1 + ε) times the optimal value Z∗n, it
may be below it. Therefore, once an approximated value z̃n (dn) is found, we must perform
backtracking in order to identify “take-or-leave” decisions that lead to a feasible solution
corresponding to z̃n(dn) and then calculate the exact value of this feasible solution using
the previously-identified “take-or-leave” decisions.

If we want to design an FPTAS for problem (5) for which the condition (15) is dropped,
we need to compute the quantities bk (y) not directly as done in Algorithm DPab, but
express them in terms of ak (y). This observation leads to a modified DP algorithm, which
we call Algorithm DPa, since it computes values ak (y) only. For the sake of brevity, we
will not state the algorithms but instead outline the changes needed to be performed in
Algorithm DPab and EpsMin2. In algorithm DPab we delete all references to function
bk(·). In Step 2(a) the formula for z′′(y) has to become

z′′(y) = gk(Ak − ak−1(y)) + zk−1(y), 0 ≤ y ≤ dk.

We also drop Step 2(d) all together. Algorithm EpsMin2 should be modified accordingly,
i.e., in Step 1 we also need to compute the values Ak, k = 1, 2, . . . , n, by (10), in Step 2
b̃0(y) has to be removed, Step 3(c) has to be removed all together and the formula for z′′ (y)
in Step 3(a) has to become

z′′ (y) = gk(Ak − ãk−1(y)) + z̃k−1(y), 0 ≤ y ≤ dk.

Thus, the performed modifications do not alter neither the accuracy of the approxima-
tion scheme, nor its running time, and the following statement holds.

Theorem 3 For problem (5) that satisfies only one of the conditions (15) and (24), there
exists an FPTAS that takes

O

(
n2(logZUB + logAn) log dn

ε

(
log

n logZUB

ε
+ log

n logAn
ε

))
time.

We note that all three algorithms DPab, DPa, and DPb are primal DP algorithms with
respect to the state variable y that represents an available space y

20

5.2 Generalized objective function

Consider the problem that differs from problem (5) in the additional terms
∑n

j=1 ϕj(xj) +∑n
j=1 ψj(1−xj) added to the objective function, where all ϕj and ψj are non-negative and

non-decreasing functions of the binary variables xj . To modify Algorithm DPab to attend
this change, we only need to replace the computation in Step 2(a) by the following

Step 2(a′). Compute

z′ (y) = fk(ak−1(y) + αk) + zk−1(y − αk) + ϕj(1) + ψj(0), 0 ≤ y ≤ dk;
z′′ (y) = gk(bk−1(y) + αk) + zk−1(y) + ϕj(0) + ψj(1), αk ≤ y ≤ dk.

The Steps 2(b)-(d) remain the same, provided that z′ (y) and z′′ (y) are those com-
puted in Step 2(a′) above. The boundary condition remains the same as in Step 1 of
Algorithm DPab.

5.3 Generalized nested constraints

Similarly, we can handle an extension of problem (5) in which different coefficients αj and
βj are involved in the lines of constraints and the objective function, respectively. The
extended problem can stated as

Minimize Z(x) =
∑n

j=1 fj

(∑j
i=1 βixi

)
xj +

∑n
j=1 gj

(∑j
i=1 βi(1− xi)

)
(1− xj),

Subject to
∑k

j=1 αjxj ≤ dk, 1 ≤ k ≤ n,
xj ∈ {0, 1}, j = 1, . . . , n,

Similarly to the above, to obtain an updated DP algorithm for solving this problem, we
only need to replace the computation in Step 2(a) by the following

Step 2(a′′). Compute

z′ (y) = fk(ak−1(y) + βk) + zk−1(y − αk), 0 ≤ y ≤ dk;
z′′ (y) = gk(bk−1(y) + βk) + zk−1(y), αk ≤ y ≤ dk.

The Steps 2(b)-(d) remain the same, provided that z′ (y) and z′′ (y) are those computed
in Step 2(a′′) above. The boundary condition remains the same.

5.4 Maximization problem

In this subsection, we show that principles similar to those presented earlier in this paper
can be used to develop an FPTAS for the maximization variant of problem (5), i.e., the
problem

Maximize Z =
∑n

j=1 fj

(∑j
i=1 αixi

)
xj +

∑n
j=1 gj

(∑j
i=1 αi (1− xi)

)
(1− xj)

Subject to
∑k

j=1 αjxj ≤ dk, 1 ≤ k ≤ n,
xj ∈ {0, 1}, j = 1, 2, . . . , n.

(27)

Recall that for the maximization problem, the definition of an FPTAS has to be ad-
justed. For a vector of decision variables x, consider a problem of maximizing a function
ϕ(x) that takes positive values. An FPTAS finds a feasible solution xH such that for a

21

small positive ε the inequality ϕ
(
xH
)
≥ (1− ε)ϕ (x∗), and the required running time is

polynomial with respect to the length of the problem’s input and 1/ε.
Notice that in combinatorial optimization the approximability issues are not symmetric

if one switches from a minimization problem to its maximization. First, it is possible that
the minimization problem is polynomially solvable, while its maximization analogue is NP-
hard. The best known example of this type is the min-cut vs the max-cut problem. Another
example is the problem of minimizing of the half-product function (4) with no additional
constraints, which is NP-hard Badics and Boros (1998), while its maximization counterpart
is solvable in O

(
n3
)

time, as shown in Kellerer et al. (2017).
Second, it is possible that the minimization problem admits an approximation algorithm

or even an FPTAS, while the maximization version is not approximable. Such examples
can be found even within the range of problems of immediate interest to this paper. The
problem of minimizing the half-product function (4) subject to the knapsack constraint (2)
admits an FPTAS that requires O

(
n2/ε

)
time Sarto Basso and Strusevich (2017), while its

maximization counterpart does not admit a constant ratio approximation algorithm unless
P 6= NP , as proved in Kellerer et al. (2017).

Still, in the case under consideration an FPTAS for problem (27) is fairly easy to derive
from the same principles as either Algorithm EpsMin1 or Algorithm EpsMin2.

5.4.1 Geometric rounding approach

We will apply the same principles as Algorithm EpsMin1. This is done by converting a
primal version of the DP algorithm, which is presented below. Such an algorithm uses state
variables yk, which denote the total weight of taken items j, 1 ≤ j ≤ k.

Although the primal DP algorithm is very similar to Algorithm DDP presented in
Section 3, to avoid ambiguity we provide its formal description below.

Algorithm PDP

Step 1. Start with the initial state (0, Z0, y0) = (0, 0, 0). Compute the values Ak, k =
1, 2, . . . , n, by (10).

Step 2. For all k from 0 to n− 1 do

Make transitions from each stored primal state of the form (k, Zk, yk) into the states of
the form (k + 1, Zk+1, yk+1) by assigning the next variable xk+1.

(a) Define xk+1 = 1, provided that it is feasible to take item k+1, i.e., if the (k + 1)-
th nested constraint yk+αk+1 ≤ dk+1 holds. If feasible, the assignment xk+1 = 1
creates a state of the form (k + 1, Zk+1, yk+1), where yk+1 = yk + αk+1; Zk+1 =
Zk + fk+1 (yk+1) .

(b) Define xk+1 = 0, which is always feasible. This assignment creates a state of the
form (k + 1, Zk+1, yk+1), where yk+1 = yk; Zk+1 = Zk + gk+1 (Ak+1 − yk+1) .

Step 3. Output the optimal value of the function that corresponds to the largest value of
Zn among all found states of the form (n,Zn, yn).

Similarly to Section 3, in order to convert this DP algorithm to an FPTAS, we assume
that each function fj and gj , 1 ≤ j ≤ n, can be computed in constant time. Additionally,
we assume that the condition (24) holds

22

An FPTAS for problem (27) uses similar principles as Algorithm EpsMin1. We refer
to the resulting scheme as Algorithm EpsMax. Its Step 1 is identical to the one of Al-
gorithm EpsMin1 with the exception of changing the single occurrence of ŷ to y. The
remaining two steps are:

Step 2. Store the initial state (0, 0, 0). For each k, 0 ≤ k ≤ n− 1, do the following:

According to Algorithm PDP move from a stored primal state (k, Zk, yk) to at most two
primal states of the form (k + 1, Zk+1, yk+1), where Zk+1 ≤ ZUB. If the number of
generated states (k+1, Zk+1, yk+1) with the Z-values in the same interval Jt and with
the y-values in the same interval I` exceeds one, then keep only one of these states,
that with the smallest y-value.

Step 3 Among all values Zn found in Step 2 identify the largest one. With this value of Zn,
perform the backtracking to find the corresponding decision variables xj , j = 1, . . . , n.
Compute the value of the objective function with the found xj ’s, call this value Zε

and accept it as an approximate value of the objective function.

The following statement holds for the output of Algorithm EpsMax.

Lemma 3 Assume that the dynamic programming Algorithm PDP is applied to problem
(27) and finds a chain of primal states

(0, 0, 0), (1, Z∗1 , y
∗
1), . . . , (n,Z∗n, y

∗
n)

leading to the optimal value Z∗ = Z∗n. Then for each k, 1 ≤ k ≤ n, Algorithm EpsMax finds
a state (k, Zk, yk) such that

yk ≤ y∗k ≤ (1 + ε)
k
rn yk (28)

and
(1 + ε)

k
n Zk ≥ Z∗k . (29)

The proof of Lemma 3 is symmetric to that of Lemma 1 and is therefore omitted. The
running time of Algorithm EpsMax is the same as that of Algorithm EpsMin1. To verify
the accuracy of Algorithm EpsMax, notice that it outputs a feasible state (n,Zn, yn) such
that (29) holds for k = n, i.e.,

(1 + ε)Zn ≥ Z∗n,

which implies that
Zn >

(
1− ε2

)
Zn ≥ (1− ε)Z∗n,

as required by the definition of an FPTAS for a maximization problem.

5.4.2 K-approximation sets and functions approach

The technique of K-approximation sets and functions also applies to maximization prob-
lems. However, for the maximization problems the definitions presented in Section 4.2 have
to be adjusted, as described, i.e., in Section 10.1 of Halman et al. (2014).

For the minimization problems, we have considered the one-sided approximation, where
for every K ≥ 1 we construct a function z̃ that K-approximates z, i.e., z(x) ≤ z̃(x) ≤
Kz(x), for every x. It is convenient to say that z̃ is a K-approximation of z from above.
For the maximization problems, we would like to construct an approximation function z̃ so
that the error remains one-sided but is on the other side. In other words, z̃ is said to be a

23

K-approximation of z from below if z
K ≤ z̃ ≤ z. Clearly, if z̃ K-approximates z from above,

then z̃
K K-approximates z from below. Similarly, if z̃ K-approximates z from below, then

Kz̃ K-approximates z from above.
In the following, we describe the changes needed in Algorithms DPab and EpsMin2

in order to approximate the maximization problem (27). In Step 2(b) of algorithm DPab
we change the single occurrence of “min” to “max”. We notice that thus each function
zk(y) becomes monotone non-decreasing (as opposed to non-increasing in the minimization
problem (5)), since as y grows the problem becomes less constrained, i.e., the more space
is available for items to be taken, the less we are forced to make the “leave” decision. We
also notice that each function ak(y) is monotone non-decreasing and each function bk(y) is
monotone non-increasing, exactly as in the minimization problem (5). Since all functions
zk(y), ak(y), bk(y) are monotone, we can still apply the K-approximation sets and functions
technique outlined in Section 4.2. The changes required in Algorithm EpsMin2 are the
following. In Step 3(a) we change the single occurrence of “min” to “max”. In Step 4

we output z̃n(dn)
1+ε (instead of z̃n(dn)). The proof of Lemma 2 remains the same with the

exception of using the maximization of approximation rule (as opposed to minimization of
approximation rule). The proof of Theorem 2 remains the same.

6 Conclusion

We consider the problem of Boolean programming with a non-separable non-linear objective
function that reflects the take-or-leave decisions to be made n regarding available items.
We present several examples of practical situations in which such a problem arises. We
report two approaches to developing an FPTAS based on converting a DP algorithm by the
use of the geometric rounding technique and by adapting the K-approximation sets and
functions technique. The running times of the resulting approximation schemes compare
favourably with known analogues for less general problems.

The FPTAS given in Section 3 uses a dual DP formulation and is based only on geometric
rounding. The FPTAS given in Section 4 uses a primal DP formulation and the technique
of K-approximation sets and functions. While the latter FPTAS uses less elementary
methods, it runs faster with respect to both the number of items n and the relative error ε,
and can be relatively easily adjusted to cope with more general problems, as demonstrated
in Section 5.

It is remains to be seen whether the approaches developed in Woeginger (2000), Ko-
valyov and Kubiak (2012) can lead to faster FPTASs than the best ones presented in this
paper.

Notice that both approaches require additional assumptions on the rate of growth of
either functions fk or gk. It is interesting to point out, that despite the difference in the
applied approaches, the same conditions given either by (24) or by (15) are introduced.
Although theses assumptions reduce an applicability range of the studied models, still they
are satisfied by the polynomial functions, which is a quite representative class of objectives;
see, e.g., the survey Hochbaum (2007). It is an interesting research goal to design an FPTAS
for problem (5), provided that functions fk and gk are general monotone non-decreasing
(i.e., without assuming (24) or (15)) or to establish that such a general version of the
problem does not admit an FPTAS.

24

References

Badics, T., & Boros, E. (1998) Minimization of half-products. Mathematics of Operations
Research, 33, 649–660.

Brahimi N., Absi N., Dauzère-Pérès S., & Nordli A. (2017) Single-item dynamic lot-sizing
problems: An updated survey. European Journal of Operational Research, 263, 838–863.

Chubanov S., Kovalyov M., & Pesch E. (2006) An FPTAS for a single-item capacitated
economic lot-sizing problem with monotone cost structure. Mathematical Programming
A, 106, 453–466.

Chubanov S., Kovalyov M., & Pesch E. (2008) A single-item economic lot-sizing problem
with a non-uniform resource: Approximation. European Journal of Operational Research,
189, 877–889.

Erel, E., & Ghosh, J.B. (2008) FPTAS for half-products minimization with scheduling
applications. Discrete Applied Mathematics, 156, 3046–3056.

Goyal, V., Genc-Kaya, L., & Ravi, R. (2011) An FPTAS for minimizing the product of two
non-negative linear cost functions. Mathematical Programming, 126, 401–405.

Goyal, V., & Ravi, R. (2013) An FPTAS for minimizing a class of low-rank quasi-concave
functions over a convex set. Operations Research Letters, 41, 191–196.

Halman, N., Klabjan, D., Mostagir, M., Orlin, J., & Simchi-Levi, D. (2009) A fully polyno-
mial time approximation scheme for single-item stochastic inventory control with discrete
demand. Mathematics of Operations Research, 34, 674–685.

Halman, N., Orlin, J., & Simchi-Levi, D. (2012) Approximating the nonlinear newsvendor
and single-item stochastic lot-sizing problems when data is given by an oracle. Operations
Research, 60, 429-446.

Halman, N., Klabjan, D., Li, C.-L., Orlin, J., & Simchi-Levi, D. (2014) Fully polynomial
time approximation schemes for stochastic dynamic programming. SIAM Journal on
Discrete Mathematics, 28, 1725–1796.

Hardin J.R., Nemhauser G.L., & Savelsbergh M.W.P. (2007) Analysis of bounds for a
capacitated single-item lot-sizing problem. Computers and Operations Research, 34, 1721-
1743.

Hochbaum, D.S. (1995) A non-linear knapsack problem. Operations Research Letters, 17,
103–110.

Hochbaum, D.S. (2007) Complexity and algorithms for nonlinear optimization problems.
153, 257–296.

Hochbaum, D.S., & Hong, S.P. (1995) About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Mathematical Programming A, 69,
269–309.

Ibarra, O.H., & Kim, C.E. (1975) Approximation algorithms for certain scheduling prob-
lems. Mathematics of Operations Research, 4, 197–204.

25

Janiak, A., Kovalyov, M.Y., Kubiak, W., & Werner, F. (2005) Positive half-products and
scheduling with controllable processing times. European Journal of Operational Research,
165, 416–422.

Kellerer, H., Mansini, R., Pferschy, U., & Speranza, M.G. (2003) An efficient fully poly-
nomial approximation scheme for the subset-sum problem. Journal of Computing and
System Sciences, 6, 349–370.

Kellerer, H., & Pferschy, U. (1999) A new fully polynomial time approximation scheme for
the knapsack problem. Journal of Combinatorial Optimization, 3, 59–71.

Kellerer, H., & Pferschy, U. (2004) Improved dynamic programming in connection with an
FPTAS for the knapsack problem. Journal of Combinatorial Optimization, 8, 5–11

Kellerer, H., Pferschy, U., & Pisinger, D. (2004) Knapsack problems. Berlin: Springer.

Kellerer, H., Sarto Basso, R., & Strusevich, V.A. (2017) Approximability issues for un-
constrained and constrained maximization of half-product related functions. Theoretical
Computer Science, 659, 64–71.

Kellerer, H., & Strusevich, V.A. (2010a) Fully polynomial approximation schemes for a
symmetric quadratic knapsack problem and its scheduling applications. Algorithmica,
57, 769–795.

Kellerer, H., & Strusevich, V.A. (2010b) Minimizing total weighted earliness-tardiness on a
single machine around a small common due date: an FPTAS using quadratic knapsack.
International Journal of Foundations of Computer Science, 21, 357–383.

Kellerer, H., & Strusevich, V.A. (2012) The symmetric quadratic knapsack problem: ap-
proximation and scheduling applications. 4OR - A Quarterly Journal of Operations Re-
search, 10, 111–161.

Kellerer, H., & Strusevich, V.A. (2013) Fast approximation schemes for Boolean program-
ming and scheduling problems related to positive convex half-product. European Journal
of Operational Research, 228, 24–32.

Kellerer, H., & Strusevich, V.A. (2016) Optimizing the half-product and related quadratic
Boolean functions: approximation and scheduling applications. Annals of Operations
Research, 240, 39–94.

Kern, W., & Woeginger G.J. (2007) Quadratic programming and combinatorial minimum
weight product problems. Mathematical Programming, 110, 641–649.

Kovalyov, M.Y. (1996) A rounding technique to construct approximation algorithms for
knapsack and partition-type problems. Applied Mathematics and Computer Science, 6(4),
789–801.

Kovalyov, M.Y., & Kubiak, W. (2012) A generic FPTAS for partition type optimisation
problems. International Journal of Planning and Scheduling, 1, 209–233.

Lawler, E.L. (1979) Fast approximation schemes for knapsack problems. Mathematics of
Operations Research, 4, 339–356.

Mittal, S., & Schulz, A.S. (2013) An FPTAS for optimizing a class of low-rank functions
over a polytope. Mathematical Programming, 141, 103–120.

26

Qian, F., Strusevich, V.A., Gribkovskaia, I., & Halskau, Ø. (2015) Minimization of pas-
senger takeoff and landing risk in offshore helicopter transportation: models, approaches
and analysis. Omega 51, 93–106.

Rustogi, K., & Strusevich, V.A. (2013) Parallel machine scheduling: impact of adding an
extra machine. Operations Research, 61, 1243–1257

Shabtay D., Gaspar, N. & Kaspi, M. (2013) A survey on offline scheduling with rejection.
Journal of Scheduling, 16, 3–28.

Sahni, S. (1977) General techniques for combinatorial approximation. Operations Research,
25, 920–936.

Sarto Basso, R., & Strusevich, V.A.: Differential approximation schemes for half-product
related functions and their scheduling applications. Discrete Applied Mathematics, 217,
71–78.

Woeginger, G.J. (2000) When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS Journal
on Computing, 12, 57–74.

Xu, Z. (2012) A strongly polynomial FPTAS for the symmetric quadratic knapsack problem,
European Journal of Operational Research, 218, 377–381.

27

