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Metabolic Biomarkers of Ageing in
C57BL/6J Wild-Type and
Flavin-Containing Monooxygenase 5
(FMO5)-Knockout Mice

Q1 Q3Dorsa Varshavi 1†, Flora H. Scott 2†, Dorna Varshavi 1, Sunil Veeravalli 2, Ian R. Phillips 2,3,

Kirill Veselkov 4, Nicole Strittmatter 4†, Zoltan Takats 4, Elizabeth A. Shephard 2 and

Jeremy R. Everett 1*

1Medway Metabonomics Research Group, University of Greenwich, Birmingham, United Kingdom, 2 Institute of Structural

and Molecular Biology, University College London, London, United Kingdom, 3 School of Biological and Chemical Sciences, Q10

Queen Mary University of London, London, United Kingdom, 4Department of Surgery and Cancer, Faculty of Medicine,

Imperial College, London, United Kingdom

It was recently demonstrated in mice that knockout of the flavin-containing

monooxygenase 5 gene, Fmo5, slows metabolic ageing via pleiotropic effects. We

have now used an NMR-based metabonomics approach to study the effects of ageing

directly on the metabolic profiles of urine and plasma from male, wild-type C57BL/6J

and Fmo5−/− (FMO5 KO) mice back-crossed onto the C57BL/6J background. The aim

of this study was to identify metabolic signatures that are associated with ageing in

both these mouse lines and to characterize the age-related differences in the metabolite

profiles between the FMO5 KO mice and their wild-type counterparts at equivalent

time points. We identified a range of age-related biomarkers in both urine and plasma.

Some metabolites, including urinary 6-hydroxy-6-methylheptan-3-one (6H6MH3O), a

mouse sex pheromone, showed similar patterns of changes with age, regardless of

genetic background. Others, however, were altered only in the FMO5 KO, or only in

the wild-type mice, indicating the impact of genetic modifications on mouse ageing.

Elevated concentrations of urinary taurine represent a distinctive, ageing-related change

observed only in wild-type mice.

Q14Keywords: metabonomics, metabolomics, ageing, C57BL/6J, FMO5 KO, urine, plasma, 6-hydroxy-6-methyl-

heptan-3-one

INTRODUCTION

The ageing of the human population represents a huge, current challenge to global healthcare, so Q6

much so that it is argued that ageing should be tackled as a disease (Faragher, 2015). Delaying
one age-related disease may be associated with beneficially delaying the onset of others (Fontana
et al., 2014). However, ageing is a complex biological process that is associated with a number
of diseases, such as type-2 diabetes, cardiovascular disease and neurodegeneration (North and
Sinclair, 2012; Stoyanova, 2014). In spite of many efforts, the mechanism of ageing is not yet
completely understood. The ageing process is characterised by a progressive decline in physiological
functional capacity as well as deterioration of metabolic function. The signature of these metabolic
changes that occur during the process of maturation and ageing can be investigated using global
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metabolite profiling (Houtkooper et al., 2011), that is,
metabonomics or metabolomics (Lindon et al., 2000).

Ageing can be affected by genetic modification and a number
of studies have been performed on long-lived, model mammals,
such as growth hormone (GH)/GH receptor-deficient dwarf mice
(Coschigano et al., 2003), various insulin/insulin-like growth
factor (IGF)-signalling (IIS) pathway (Selman et al., 2011), and
mammalian target of rapamycin (TOR)-signalling mutant mice
(Selman et al., 2009), in order to identify the mechanisms
underlying healthy lifespan and translate this knowledge into
practical therapies for humans.

In the present study, a metabonomic, metabolic profiling
approach was used to study the effects of ageing in mice in which
the gene encoding flavin-containing monooxygenase 5 (FMO5)
had been disrupted (Fmo5−/−) and to compare the ageing profile
of these knockout mice (FMO5 KO) with their wild-type (WT)
counterparts at equivalent time points. FMO5 is known to be
a key regulator of metabolic ageing (Gonzalez Malagon et al.,
2015). FMO5 KO mice exhibit both reduced plasma glucose and
cholesterol concentrations as they age compared with their WT
counterparts (Gonzalez Malagon et al., 2015). In addition, recent
studies (Scott et al., 2017) have shown that an absence of FMO5
protein confers the high glucose tolerance and insulin sensitivity
associated with young mice onto older mice as they age, and
also protects against high-fat diet-induced weight gain and loss
of insulin sensitivity. FMO5 was proposed to have a key role in
sensing or responding to gut bacteria, with the gut microbiome of
FMO5 KO mice being reported as “invisible” to the host mouse
(Scott et al., 2017).

The aim of the present study is to identifymetabolic signatures
that are associated with ageing and to understand the differences
in metabolic ageing between WT and FMO5 KO mice. The
identification of ageing-associated biomarkers may give a better
understanding of the mechanisms of ageing and, thus, provide
targets for therapeutic approaches to help extend healthy human
lifespans.

MATERIALS AND METHODS

Study Design
All animals used in this study were male mice bred at UniversityQ7

College London (UCL). FMO5 KO mice were obtained after
eight generations of backcrosses of heterozygous FMO5 KOmice
with WT C57BL/6J mice (Gonzalez Malagon et al., 2015). WT
C57BL/6J mice were used as controls. Mice were fed a standard
chow diet (Teklad Global 18% Protein Rodent Diet, Harlan
Laboratories, Inc., Madison,WI) (GonzalezMalagon et al., 2015).
Animal experiments were carried out in accordance with the UK
Animal Procedures Act and with local ethics committee approval
(Animal Welfare and Ethical Review Body).

To study the metabolic effects of ageing, blood was collected
from the tail vein into heparin-coated tubes and plasma isolated
as described. (Hough et al., 2002) Urine samples were collected as
described in Kurien et al. (2004) from WT C57BL/6J and FMO5
KO mice, at the ages of 15 (n = 4, KO; n = 4, WT), 30 (n = 4,
KO; n = 4, WT), 45 (n = 5, KO; n= 4, WT), and 60 (n = 4, KO;
n= 4, WT) weeks. All samples were collected between 09:00 and

11:00 onto an ice-cooled surface and then frozen on solid CO2

and stored at 193K until analysed by NMR spectroscopy.
The week 15 and week 45 animals were from different

cohorts and were each followed longitudinally for 15 weeks. To
investigate the effect of batch differences (Li et al., 2013) on
the metabolic profiles of urine and plasma, a batch comparison
experiment was performed on two different cohorts at the
same week 30 time point (week 30 set 2, n = 5, KO; n = 5,
WT, Supplementary Figures 1–4). Since no significant metabolic
changes were found between different batches, using ANOVA
(Moyé, 2016) with a false discovery rate (FDR) set at 10%
(Benjamini, 2010), we proceeded to study the longitudinal effects
of ageing on the urinary and plasma metabolic profiles and to
compare the profiles of WT and FMO5 KOmice.

Sample Preparation for NMR Spectroscopy
Urine samples were prepared by mixing 50 µl of urine from
each mouse with 25 µl of phosphate buffer (81:19 (v/v)
comprising 0.6M K2HPO4 and 0.6M NaH2PO4 in 100% 2H2O,
pH 7.4, containing 0.5mM sodium 3-(trimethylsilyl)-2,2′,3,3′-
tetradeuteropropionate (TSP), as a chemical shift reference, and
9mM sodium azide, as an anti-microbial agent. The buffered
samples were then centrifuged (13,000 g for 5min at 4◦C) to
remove any suspended particles. After centrifugation, 60 µl of
supernatant was transferred into new 1.7mm outer diameter
(o.d.) NMR tubes (Norell, S-1.7-500-1) using an accurate
electronic syringe (SGE eVol XR).

Plasma samples were prepared by mixing 50 µl of mouse
plasma with 25 µl of saline (0.9% NaCl in 2H2O which was
then centrifuged and 60 µl transferred into new 1.7mm o.d.
microtubes as described above.

Several urine samples and two plasma samples were also
prepared as above, but at larger volumes, for analysis in 5mmo.d.
NMR tubes (NORELL, 508-UP-7), in order to provide greater
sensitivity for two-dimensional NMR experiments, including 2D
1H JRES (J-resolved), COSY (correlated spectroscopy), TOCSY
(total correlation spectroscopy), HSQC (heteronuclear single
quantum coherence), and HMBC (heteronuclear multiple bond
correlation) (Claridge, 2009).

Ultrafiltration of Urine Samples for NMR
Spectroscopic Line-Width Analysis
Urine samples from male, week 12 and week 16 WT and a
week 16 FMO5 KO mouse were ultra-filtered by centrifugation
at 16,500 g for 20min at 4◦C using a microfilter with a 10
kDa molecular mass cut-off (Merck, UFC501024). Filtered and
matching unfiltered samples were then prepared by mixing 40
µl of urine with 20 µl of phosphate buffer (pH 7.4, as above).
Aliquots (50 µl) of buffered samples were then transferred into
new 1.7mm o.d. NMR tubes as described above.

The line width of the 6-hydroxy-6-methylheptan-3-one
(6H6MH3O) methyl triplet peak at 1.017 ppm was determined
by first performing line fitting in MNova 11.0 on the central
line, followed by manual half band width measurement. The line
width of the 6H6MH3Omethyl singlet peak at 1.209 ppm and the
peaks due to taurine at 3.433 ppm and trimethylamine at 2.884
ppm were determined by manual half band width measurement.
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Changes in signal half band width due to the removal of proteins
by ultrafiltration were then determined using a 2-tailed student
t-test, assuming unequal variance, in the StatPlus:mac core v
5.9.50 (AnalystSoft Inc.) plug-in for Excel for Mac 2011 v 14.7.2
(Microsoft Inc.).

One-Dimensional NMR Spectroscopic
Analysis
1H NMR spectra of biofluids were recorded on a Bruker
Avance III spectrometer (Bruker BioSpin GmbH, Rheinstetten,
Germany) operating at 600.44 MHz and at a temperature of
300.0 K.

For urine samples, a standard one-dimensional (1D) NOESY
presaturation pulse sequence with gradient pulses (RD-90◦-t1-
90◦-tm-90◦-acquire, Bruker sequence code noesygppr1d) was
acquired with water suppression applied during the relaxation
delay (RD) of 2 s, a mixing time (tm) of 100ms and a 90◦ pulse of
11.2µs. For each spectrum, 8 dummy scans were used to establish
spin equilibrium, then 256 free induction decay transients were
collected into 65,536 data points with a spectral width of 20 ppm.

For all mouse plasma samples, two types of 1D 1H
NMR experiments were acquired. The first was the standard
1D NOESY presaturation pulse sequence (noesygppr1d) with
gradient pulses and saturation of the water peak during the
relaxation delay (RD). After 8 dummy scans, 128 transients
were collected into 65,536 data points over a spectral width
of 20 ppm, using a relaxation delay (RD) of 2 s and a mixing
time of 100ms. Standard 1H NMR spectra provide information
on both low- and high-molecular-mass metabolites. However,
signals from low intensity, low-molecular-mass molecules can
be obscured by broad signals arising from high-molecular-mass
macromolecules. A second set of data was therefore acquired with
the Carr–Purcell–Meiboom–Gill (CPMG) spin-echo experiment,
RD [90◦x–(τ -180◦y–τ )n–collect FID], using the Bruker pulse
sequence (cpmgpr), where RD = 2 s, the number of loops n =

100 and the spin-echo delay τ = 400 µs, to allow spectral editing
through T2 relaxation and therefore attenuation of broad signals.
During the relaxation delay, irradiation was applied to achieve
suppression of the water peak. For each spectrum, after 8 dummy
scans, 128 transients were collected into 65,536 data points with
a spectral width of 20 ppm and total spin–spin relaxation delay
(2n.τ ) of 80ms.

Two-Dimensional NMR Spectroscopic
Analysis
Two-dimensional (2D) NMR experiments (Claridge, 2009) were
carried out for selected urine and plasma samples to aid/confirm
the assignment of metabolites. The detailed parameters for
the acquisition of the 2D NMR spectra are provided in
Supplementary Tables 1, 2.

NMR Data Processing of Mouse Urine and
Plasma
NMR spectra were processed using the software TopSpin 3.2
(Bruker Biospin, UK). Prior to applying Fourier transformation,
the free induction decays (accumulated transients) were

multiplied by an exponential function corresponding to a line
broadening of 0.3Hz. The 1D 1H NMR spectra were manually
phased, baseline corrected and referenced to the chemical shift
of TSP (0.0 ppm), for urine, and to the anomeric doublet of
α-D-glucose at δ 5.233, for plasma samples.

The NMR data were then imported into Matlab (R2010
b, Mathworks) using in-house routines (MetaSpectra, Dr O.
Cloarec, Imperial College) with a resolution of 0.00025 ppm. All
subsequent data processing and analysis, unless stated otherwise,
was carried out using in-house Matlab routines, written by Dr
K. Veselkov’s team as previously described and exemplified.
(Veselkov et al., 2011, 2014) For urine samples, regions of the
spectra upfield of 0.8 ppm, downfield of 10 ppm, and the spectral
region containing water (δ 4.7–4.9) were omitted to eliminate
the effects of background noise and variable water saturation
respectively.

For the plasma NMR spectra, regions of the spectra downfield
of 10 ppm and upfield of 0.8 ppm (CPMG) and 0.2 ppm (1D),
as well as resonances corresponding to the water signal region (δ
4.2–5.2, 1D) and (δ 4.6–5.15, CPMG), were excluded.

All NMR spectra were normalised using “Probabilistic
Quotient Normalization” (Dieterle et al., 2006) in order to
compensate for differences in concentration between samples.
All 1H NMR spectra were then aligned using recursive segment-
wise peak alignment (RSPA) method. (Veselkov et al., 2009)
Alignment was performed in two steps: first, a global correction
was carried out using the RSPA algorithm, and second, a custom
interval approach was performed for signals that exhibited
high chemical shift variation, like citrate and taurine, to align
peak positions in baseline-separated regions defined by the
researcher. All NMR spectra were also log-transformed to
convert multiplicative noise into additive noise for downstream
pattern recognition analysis. (Veselkov et al., 2011)

Mass Spectrometry Analysis of Mouse
Urine Samples
High-resolution ultra-performance liquid chromatography—
mass spectrometry (UPLC-MS) analysis was carried out using
an UPLC system coupled to an accurate-mass Quadrupole Time-
of-Flight (Q-TOF) mass spectrometer. Samples were introduced
into an ACQUITY UPLC HSS T3 column (2.1mm × 100mm,
1.8µm, Waters, UK) with a VanGuard Pre-column (5.0 ×

2.1mm, 1.8µm). The mobile phase consisted of 0.1% aqueous
formic acid (A) and acetonitrile (ACN) and 0.1% formic acid (B).
The following gradient program was used, with A + B = 100%
at each timepoint: 1% B at 0–1min, 15% B at 1–3min, 50% B at
3–6min, 95% B at 6–10min, and 1% B at 10–10.1min, followed
by re-equilibration for 2min. The flow rate was 0.5 ml/min and
the injection volume was 5 µl.

Mass spectrometry was performed using a Waters Synapt
G2, operating in ESI mode (positive ion) with lock mass in
operation. The source temperature was set to 140◦C with a cone
gas flow of 90 l/h, a desolvation temperature of 350◦C and a
desolvation gas flow of 900 l/h. The capillary voltage was 1.50
kV for positive ionization mode and the cone voltage was 20V.
A scan time of 1 s with an inter-scan delay of 0.024 s was used
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for all analyses. Leucine-enkephalin at a concentration of 2 ng/µl
(in 50:50 acetonitrile: 0.1% aqueous formic acid) was used as the
lock-mass to ensure mass accuracy and reproducibility. The lock-
spray frequency was 30 s. Mass detection was carried out in the
full-scan mode with an m/z range from 50 to 800 in positive-
ion mode. All output accurate mass measurements were then
corrected for the mass of the electron, which the commercial
software currently fails to do.

Desorption Electrospray Ionisation Mass
Spectrometry Imaging (DESI-MSI)
Cryosections of samples were stored in closed containers at
−80◦C and were allowed to thaw at room temperature under
nitrogen flow for 5min prior to DESI-MS acquisition. DESI-
MS analysis was performed using an Exactive Orbitrap MS
(Thermo Fisher Scientific Inc., Bremen, Germany) controlled by
XCalibur 2.1 software. The following instrumental parameters
were used: nominal mass resolution 100,000 (mass accuracy of
<4 ppm), injection time 1,000ms, mass to charge (m/z) range
150-1,000, capillary temperature 250◦C, capillary voltage 50V,
tube lens voltage −150V, and skimmer voltage −40V. DESI-MS
was performed in negative- and positive-ion modes on separate
adjacent tissue sections. The following DESI sprayer settings
were used: sprayer to surface distance 2mm, sprayer to MS
inlet capillary distance 14mm, solvent flow rate 1.5 µl/min, gas
flow rate 7 bar, 90:10 v/v methanol/water solvent composition,
electrospray potential 5 kV, and an incidence angle of 75◦.

Pattern Recognition and Statistical Data
Analysis
Pattern recognition analyses were performed on the processed
spectral data using Matlab (The MathWorks Inc., Natick USA).
Initially, principal component analysis (PCA) of the NMR
spectral data was performed to visualize group clustering, that
is, overall similarities and differences between spectroscopic
profiles, and to identify any abnormalities or outliers within
the data set. Bi-cross validation was used to ensure that
the principal components captured systematic variation not
attributable to noise. (Owen and Perry, 2009) Subsequently,
a supervised, multivariate analysis method, maximum margin
criterion (MMC) (Veselkov et al., 2014) was employed to
simultaneously maximize the variation between groups, whilst
minimizing intra-group differences. “Leave-mouse-out” cross-
validation with quadratic classification was used to assess the
predictive capacity of the models. The spectral profiles of
each animal were withheld from the dataset one at a time.
The discriminating components, that is, linear combinations
of metabolic features that separate classes in a mathematically
optimal way, were derived based on the remaining data. The
withheld profiles were then projected onto the discriminating
space and assigned to the class to which they had the smallest
distance via the quadratic classifier. The cross-validation was
repeated until the spectral profiles of all animals were predicted.
The classification accuracies (that is, confusion matrices) and
predicted variance were used to assess the performance of
the supervised multivariate models. Potentially discriminatory

metabolites were selected using “training” profiles by one-way
analysis of variance with a liberal p-value threshold of 0.05
(ANOVA Moyé, 2016, p-value < 0.05) and their collective
capacity to discriminate between classes was tested on withheld
(“test”) profiles using the above multivariate modelling strategy.
Additionally, one-way ANOVA with a FDR of either 0.1 or
0.05, to account for multiple hypothesis testing (Benjamini,
2010), was applied to identify metabolites that individually
(irrespective of other metabolites) discriminate between classes,
based on suitably adjusted threshold p-values. Typically, the
adjusted p values corresponding to an FDR of < 10% would
be significantly < 0.05.

Metabolite Identification
Metabolite identification was carried out using standardmethods
(Dona et al., 2016) and using information from the literature
and public databases including the Chenomx NMR Suite
(http://www.chenomx.com/), the Human Metabolite Database
(HMDB, http://www.hmdb.ca/) (Wishart et al., 2013), the
Biological Magnetic Resonance Data Bank (BMRB, http://
www.bmrb.wisc.edu/metabolomics/) (Ulrich et al., 2008), the
Birmingham Metabolite Library (BML, http://www.bml-nmr.
org/) (Ludwig et al., 2012), and COLMAR (Complex Mixture
Analysis by NMR, http://spin.ccic.ohio-state.edu/index.php/
colmarm/index) (Bingol et al., 2015). A series of 2D NMR
experiments, including J-resolved, correlation spectroscopy
(COSY), TOCSY, HSQC, and HMBC (Claridge, 2009), were
acquired for a number of samples in order to assist or
confirm the identification of a range of metabolites. The
identities of the key discriminating metabolites were also
confirmed by the spiking of authentic standards into urine
and plasma samples. Confidence in the identification of these
known metabolites was assessed using the new metabolite
identification carbon efficiency (MICE) (Everett, 2015) and
topological MICE (tMICE) (Sanchon-Lopez and Everett, 2016)
methods.

IDENTIFICATION OF
6-hydroxy-6-methyl-heptan-3-one
(6H6MH3O)

One of themost distinctive, ageing-correlated features of the low-
frequency region of the 1HNMR spectra of male WT and FMO5
KO mice was a sharp singlet at ca. 1.209 ppm. Extensive 1D
and 2D NMR analyses, confirmed by orthogonal high-resolution
UPLC-MS analyses proved that this signal and others were
due to 6H6MH3O. This metabolite has previously only been
identified via its degradation products in the headspace above
and, after derivatisation, within male urine samples, by GC-MS,
but has not previously been identified by NMR spectroscopy and
is not present in the BML, BMRB, or HMDB databases. This
metabolite is unusual in that it exists in two distinct tautomeric
forms.

Across the two tautomers, a total of 24 bits of metabolite
identification information were obtained. Thus, in this 8-carbon
metabolite, the MICE (Everett, 2015) value is 24/8 = 3.0; and
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6H6MH3O shown in the linear, achiral, hydroxy-ketone tautomeric form (left), and the cyclic, chiral, hemi-ketal tautomeric form (right).

6H6MH3O is, thus, confidently identified. A topological MICE
analysis (Sanchon-Lopez and Everett, 2016) of the metabolite
identification is not reported, as the two tautomers each have
different molecular topologies.

The metabolite is not commercially available, so an authentic
sample of the metabolite (Tashiro et al., 2008) was obtained
from Professor Kenji Mori, Emeritus Professor, University of
Tokyo, and it was also independently synthesized by Enamine,
Ukraine. The NMR data for the authentic metabolite match
those for the metabolite found in the mouse urine with high
precision (Supplementary Table 3). For the nine 13C and eight
1H NMR shifts reported across the two tautomers, the average
differences and the standard deviations of those differences were
0.156 ± 0.106 and 0.002 ± 0.001 ppm respectively, well within
expected shift deviations for the same metabolite in different
matrices: buffered urine compared with buffer (Dona et al., 2016;
Sanchon-Lopez and Everett, 2016).

The 6H6MH3O metabolite is, thus, unambiguously identified
(MSI identification level 1) (Sumner et al., 2007). Full
information on the identification of both tautomers of this ageing
biomarker is given in the Supplementary Information.

RESULTS

Metabolic Signature of Ageing in the
Urinary Metabolome
The 1H NMR spectra of urine samples from WT and FMO5 KO
mice contain hundreds of resonances from dozens ofmetabolites,
of which ca. 100 have been confidently identified (Everett,
2015; Sanchon-Lopez and Everett, 2016). Typical spectra of the
urine from WT mice at 15 and 60 weeks of age are shown in
Figure 1.

To visualize the effect of ageing on mouse urinary metabolite
profiles, the NMR data were analysed using an unsupervised
statistical technique, principal components analysis (PCA). This
analysis showed distinct, time-dependent metabolic changes
along principal component 1 (PC1) fromweek 15 to week 45, and
then an excursion along PC2 from week 45 to 60, although the
latter much less so for the FMO5 KOmice. There is tendency to a
higher degree of inter-individual variation within the FMO5 KO
relative to theWTmice at most time points and a clear separation

between FMO5 KO and WT mice, mainly along PC2 at all time
points (Figure 2).

To determine ageing-related metabolites in urine, ANOVA
with p-values adjusted for a FDR of 0.1, that is, 10%, was
performed on NMR spectra acquired at every two adjacent
time points, as well as between the first and the last time
points with a more stringent and conservative FDR of 0.05,
that is, 5%, for both KO and WT mice, to identify metabolites
that individually (irrespective of other metabolites) discriminate
between classes (Table 1). We also determined potentially
discriminatory metabolites by one-way analysis of variance
without an FDR filter, simply using a more liberal p-value
threshold of 0.05 (ANOVA, p-value < 0.05) and their collective
capacity to discriminate between classes was tested using
the above multivariate modelling strategy. These potentially
discriminating metabolites are indicated with the letter p in
Table 1.

The urinary metabolome of 30-week-old WT mice showed
statistically significantly (FDR < 10%) higher concentrations
of taurine, fucose, creatinine, ascorbate, and mammalian
microbiome co-metabolites, including phenylacetylglycine,
4-cresol glucuronide, 4-cresol sulphate, indoxylsulphate,
cinnamoylglycine, and trimethylamine, along with statistically
significantly (FDR < 10%) lower concentrations of 6H6MH3O,
acetate, isovalerate, ureidopropionate, N-acetyl protein at 2.065,
and other unknown signals at 2.74 ppm, when compared with
WT mice at week 15. The other metabolites that were found to
be potentially discriminating with a more liberal, unadjusted
p-value threshold of 0.05 were citrate, succinate, 2-oxoglutarate
and dimethylamine, all of which increased as the WT mice aged
from 15 to 30 weeks (Supplementary Figure 6).

The urinary metabolome of 30-week-old FMO5 KO mice
showed statistically significantly (FDR < 10%) elevated
concentrations of citrate, creatinine, hippurate, ascorbate and,
potentially, succinate, 2-oxoglutarate and trimethylamine, along
with statistically significantly (FDR < 10%) lower concentrations
of putrescine, hexanoylglycine, isovalerate, butyrylglycine,
3-methyl-2-oxovalerate and an unknown peak at 1.31 ppm and,
potentially, 6H6MH3O, when compared with the urinary profile
of FMO5 KO mice at week 15 (Supplementary Figure 7).

The metabolic composition of the urine was more stable as
mice aged from 30 to 45 weeks and only elevated concentrations
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FIGURE 2 | (A) The aliphatic region of 1H NMR spectra of urine from representative WT mice at weeks 15 (bottom) and 60 (top). Key: 1. hexanoylglycine; 2.Q4

Q5 N-butyrylglycine; 3. N-isovalerylglycine; 4. 6-hydroxy-6-methyl-heptan-3-one; 5. 3-methyl-2-oxovalerate; 6. 2-oxoisovalerate; 7. fucose; 8. lactate; 9. alanine; 10.

putrescine; 11. acetate; 12. ureidopropionate; 13. succinate; 14. 2-oxoglutarate; 15. citrate; 16. methylamine; 17. dimethylamine; 18. trimethylamine; 19. creatinine;

20. cis-aconitate; 21. taurine; 22. glycine; 23. phenylacetylglycine; 24. guanidoacetate; 25. creatine; 26. hippurate; 27. trigonelline; 28. 1-methylnicotinamide (1MNA);

29. ascorbate. Supplementary Figure 19 shows the corresponding spectra from all of the mice in the weeks 15 and 60 cohorts. (B) The aromatic region of the 1H

NMR spectra of urine from male WT mice at weeks 15 (bottom) and 60 (top). Key: 20. cis-aconitate; 23. phenylacetylglycine; 26. hippurate; 27. trigonelline; 28.

1-methylnicotinamide (1MNA); 30. allantoin; 31. cinnamoylglycine; 32. 3-indoxylsulphate. Supplementary Figure 20 shows the corresponding spectra from all of the

mice in the weeks 15 and 60 cohorts.
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FIGURE 3 | A PCA scores trajectory plot of the 600 MHz 1H NMR spectra of

urine from male WT and FMO5 KO mice at different time points. PC1 explains

32.2 and PC2 11.6% of the variance.

of taurine and citrate, and of the unknowns U3 and U7, and
lower concentrations of fucose, ascorbate and of the unknown
U1 were significantly different in WT mice at week 45 compared
with WT mice at week 30 (Supplementary Figure 8), whereas
higher concentrations of putrescine and lower concentrations
of 6H6MH3O were observed at week 45 with a more liberal,
unadjusted p-value threshold of 0.05.

In FMO5 KO mice, only lower concentrations of 6H6MH3O
were found to be statistically significantly different (FDR< 10%),
as mice aged from 30 to 45 weeks (Supplementary Figure 9).

At 60 weeks, WT mice exhibited statistically significantly
(FDR < 10%) higher concentrations of D-xylose, D-glucose,
D-glucuronate, arabinose, 1-methylnicotinamide (1MNA) and
trigonelline and statistically significantly (FDR < 10%) lower
concentrations of putrescine, 4-cresol sulphate and 4-cresol
glucuronide, than at week 45 (Supplementary Figure 10).

Correspondingly, FMO5 KO mice at week 60 showed
statistically significantly (FDR < 10%) higher concentrations of
D-glucose, D-glucuronate, and U9 (an unknown peak at 4.57),
along with potentially higher concentrations of trigonelline and
xylose and potentially lower concentrations of indoxylsulphate,
4-cresol glucuronide, 4-cresol sulphate and 6H6MH3O, relative
to 45-week-old mice (p < 0.05, but not adjusted for FDR,
Supplementary Figure 11).

The most profound metabolic differences were observed
in models constructed to analyse the overall changes between
weeks 15 and 60. The dominant ageing-related changes observed
in both FMO5 KO and WT mice were statistically significant
(FDR 5%) increases in creatinine, dimethylamine, 1MNA,
allantoin, D-xylose, D-glucose, D-glucuronate, tricarboxylic acid
intermediates such as citrate, 2-oxoglutarate and succinate,
and host–microbiota metabolites including hippurate,
phenylacetylglycine, trigonelline and trimethylamine N-oxide

(TMAO), along with statistically significant decreases in lactate,
acetate, isovalerate, hexanoylglycine, butyrylglycine, butanone,
and 6H6MH3O.

Unique, statistically significant, ageing-related changes in
the urines of WT mice from weeks 15 to 60 were: elevated
concentrations of taurine, indoxylsulphate, arabinose, and
unknown peaks U9 to U12, as well as reduced concentrations of
ureidopropionate and an unknown peak U5 (Figure 3).

Unique, statistically significant, ageing-related changes in the
urines of FMO5 KO mice only from weeks 15 to 60 were: higher
concentrations of trimethylamine and unknown peaks U8 and
U13, and lower concentrations of α-3-methyl-2-oxovalerate and
putrescine (Figure 4).

The signals from 6H6MH3O were relatively broad, that is,
large half band width, compared with those of other small
metabolites, as would be expected for a sex pheromone in fast
exchange with the major urinary proteins (MUPs) present at
relatively high concentrations in male mouse urine. In agreement
with this, ultrafiltration of three male WT and FMO5 KO urines
showed a half band-width reduction from 1.94 ± 0.06Hz to
1.36 ± 0.06Hz (p = 0.0008) and from 1.18 ± 0.05Hz to 0.90
± 0.05Hz (p = 0.039) for the methyl signals of the linear,
achiral, acyclic tautomer at ca. 1.208 and 1.017 ppm respectively.
These statistically significant reductions in signal half band
width for 6H6MH3O contrasted with the lack of statistically
significant half band width changes for the singlet signal for
trimethylamine at 2.88 ppm (0.73 ± 0.02Hz unfiltered vs. 0.66
± 0.05Hz filtered, p = 0.11) and the central line of the triplet
for taurine at 3.43 ppm (0.73 ± 0.02Hz unfiltered vs. 0.66
± 0.05Hz filtered, p = 0.61), indicating a lack of significant
protein binding to urinary proteins for trimethylamine or
taurine.

Metabolic Signature of Ageing in the
Plasma Metabolome
Typical 1H NMR spectra of plasma samples from WT mice at
weeks 15 and 60 are shown in Figure 5. As was the case for urine,
the plasma NMR data were analysed using PCA, an unsupervised
and unbiased statistical technique. Figure 6 shows a PCA scores
trajectory plot for the plasma from both WT and FMO5 KO
mice. Clear, age-related metabolic changes were observed for
both FMO5 KO and WT mice. In contrast to the urine results
(Figure 2), the plasma PCA trajectory plot shows some more
variance in the WT mice plasma at week 15 relative to the
corresponding FMO5 KO plasma but, after that, less difference
in within-group variances at each time point. The metabolic
trajectory moves “south-west” from week 15 to week 30 and then
“east” i.e., left to right, across PC1 to weeks 45 and 60.

As in urine, discriminatory metabolites associated with ageing
in mouse plasma were determined for every two adjacent time
points, as well as between the first and the last time points,
for both FMO5 KO and WT mice, by one-way ANOVA with
an FDR of 10%. Potentially discriminatory metabolites (denoted
by the letter p associated with the arrows in Table 2) were also
determined by ANOVA without an FDR filter and with simply a
more liberal p-value threshold of 0.05.
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TABLE 1 | Statistically significant (ANOVA) metabolite changes in pair-wise comparison of adjacent time points as well as between the first and the last time points in Q5

urine samples from male FMO5 KO and WT mice.

Compounds δ
1H (multiplicity)

in ANOVA

WT

30 vs.

15

KO

30 vs.

15

WT

45 vs.

30

KO

45 vs.

30

WT

60 vs.

45

KO

60 vs.

45

WT

60 vs.

15

KO

60 vs.

15

ORGANIC ACIDS

Acetate 1.92 (s) ↓ – – – – – ↓ ↓

Ascorbate 4.52 (dd) ↑ ↑ ↓ – – – ↑p –

Isovalerate 0.92 (d) ↓ ↓ – – – – ↓ ↓

Lactate 1.34 (d) – – – – – – ↓ ↓

3-methyl-2-oxovalerate 1.10 (d) – ↓ – – – – – ↓

ACYL-GLYCINE CONJUGATES

Butyrylglycine 0.93 (t), 1.62 (m) – ↓ – – – – ↓ ↓

Cinnamoylglycine 6.73 (d) ↑ – – – – – – –

Hexanoylglycine 0.88 (t) – ↓ – – – – ↓ ↓

ALCOHOLS, SUGARS, AND KETONES

6-hydroxy-6-methylheptan-

3-one

(6H6MH3O)

1.01 (t), 1.21(s),

1.74 (m)

↓ ↓p ↓p ↓ – ↓p ↓ ↓

Arabinose 4.53 (d) – – – – ↑ – ↑ –

D-xylose 4.59 (d), 5.21 (d) – – – – ↑ ↑p ↑ ↑

D-glucose 4.66 (d) – – – – ↑ ↑ ↑ ↑

D-glucuronate 4.65 (d) – – – – ↑ ↑ ↑ ↑

Fucose 1.25(d) ↑ – ↓ – – – – –

CITRATE CYCLE INTERMEDIATES

2-oxoglutarate 2.45 (t), 3.01(t) ↑p ↑p – – – – ↑ ↑

Citrate 2.56 (d), 2.70 (d) ↑p ↑ ↑ – – – ↑ ↑

Succinate 2.41(s) ↑p ↑p – – – – ↑ ↑

AMINES, AMIDES, AMINO ACIDS, AND RELATED

1-methyl nicotinamide

(1MNA)

4.47 (dd) – – – – ↑ – ↑ ↑

Allantoin 5.4 (s) – – – – – – ↑ ↑

Dimethylamine 2.73 (s) ↑p – – – – – ↑ ↑

Creatinine 3.04 (s), 4.05 (s) ↑ ↑ – – – – ↑ ↑

Putrescine 1.78 (m) – ↓ ↑p – ↓ – – ↓

Taurine 3.27 (t), 3.43 (t) ↑ – ↑ – – – ↑ –

Trimethylamine 2.88 (s) ↑ ↑p – – – – – ↑

Trimethylamine-N-oxide 3.27 (s) – – – – – – ↑ ↑

Trigonelline 4.44 (dd) – – – – ↑ ↑p ↑ ↑

Ureidopropionate 2.38 (t), 3.31 (t) ↓ – – – – – ↓ –

MAMMALIAN MICROBIOME CO-METABOLITES

Hippurate 7.56,7.64, 7.84 – ↑ – – – – ↑ ↑

Indoxylsulphate 7.51, 7.71 ↑ – – – – ↓p ↑ –

4-cresol glucuronide 2.30 (s), 5.08 (d),

7.0

↑ – – – ↓ ↓p – –

4-cresol sulphate 2.35 (s), ↑ – – – ↓ ↓p – –

Phenylacetylglycine 7.37 (m), 7.43 (dd) ↑ – – – – – ↑ ↑

UNKNOWNS

U1 1.228 (d) – – ↓ – – – – –

U2 1.31(m) – ↓ – – – – – –

U3 1.83 (m) – – ↑ – – – – –

U4 2.064 (s) ↓ – – – – –

U5 2.182 (s) – – – – – – ↓ –

U6 2.74 (s) ↓ – – – – – – –

(Continued)
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TABLE 1 | Continued

Compounds δ
1H (multiplicity)

in ANOVA

WT

30 vs.

15

KO

30 vs.

15

WT

45 vs.

30

KO

45 vs.

30

WT

60 vs.

45

KO

60 vs.

45

WT

60 vs.

15

KO

60 vs.

15

U7 2.78 (s) – – ↑ – – – – –

U8 4.41 (d) – – – – – – – ↑

U9 4.575 (d) – – – – – ↑ ↑ –

U10 4.99 (d) – – – – – – ↑ –

U11 5.084 (d) – – – – – – ↑ –

U12 5.09 (d) – – – – – – ↑ –

U13 8.06 (d) – – – – – – – ↑

(↑) Indicates an increase in the concentration of metabolites, and a (↓) a decrease in the concentration of metabolites and (–) indicates no significant difference. Arrows (↑↓) indicate

statistically significantly discriminating metabolites with p-values adjusted for a false discovery rate (FDR) of 0.1 generally and a more stringent FDR of 0.05 for the comparisons of weeks

60 and 15 (last two columns). The “p-annotated” arrows (↑p, ↓p) indicate potentially discriminating metabolites with a simple, unadjusted p-value threshold of 0.05. Full NMR data for

all of the identified discriminating metabolites is given in Supplementary Table 4.

FIGURE 4 | The ANOVA plot for the 600 MHz urine 1H NMR spectra of male WT mice at week 60 age vs. the corresponding spectra of WT mice at week 15 age,

showing positive peaks for those metabolite signals that are more intense at week 60 than at week 15, and negative peaks for those metabolite signals that are less

intense. The signals are colour coded by the p-value from the ANOVA analysis. In this case a false discovery rate cut off of 5% was used and the threshold p-value for

significant difference was calculated as 0.0169, corresponding to those signals with colouring to the “red side” of light blue.

FIGURE 5 | The ANOVA plot for the 600 MHz urine 1H NMR spectra of male FMO5 KO mice at week 60 age vs. the corresponding spectra of WT mice at week 15

age, showing positive peaks for those metabolite signals that are more intense at week 60 than at week 15, and negative peaks for those metabolite signals that are

less intense. The signals are colour coded by the p-value from the ANOVA analysis. In this case a false discovery rate cut-off of 5% was used and the threshold

p-value for significant difference was calculated as 0.0185, corresponding to those signals with colouring to the “red side” of light blue.

For both WT and FMO5 KO mice, no age-related
discriminating metabolites were observed up to 45 weeks
(see Supplementary Figures 12–15). However, significant plasma
metabolic changes were observed as mice aged from 45 to 60
weeks of age.

WT mice at week 60 showed statistically significantly (FDR
0.1) elevated concentrations of choline, choline-containing
metabolites including glycerophosphocholine (GPC) and/or
phosphatidylcholine (PtdCho), glcerol and an unknown U2,

and potentially increased (p < 0.05, unadjusted for FDR)
concentrations of the branched-chain amino acids (BCAA)
leucine, and valine, along with statistically significantly decreased
concentrations of ethanol and unsaturated lipid at 2.74 and 5.28
compared with week 45 (Supplementary Figure 16).

FMO5 KO mice at week 60 showed statistically significantly
(FDR 0.1) elevated concentrations of 3-hydroxyisobutyrate,
acetate, lactate, citrate, glutamine, alanine, choline,
trimethylamine (TMA), creatine, BCAAs including leucine
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FIGURE 6 | Typical 600 MHz (1D-CPMG) 1H NMR spectra of plasma (aliphatic region) from male, wild-type mice at weeks 15 and 60. Key. 1. LDL/VLDL; 2. valine; 3

ethanol; 4. LDL/VLDL; 5. lactate; 6. alanine; 7. acetate; 8. lipid; 9. glutamine; 10. pyruvate; 11.citrate; 12. lipid; 13. creatine; 14. choline; 15.

phosphocholine-containing molecule; 16. glycerol; 17. glucose.

FIGURE 7 | Unsupervised PCA scores trajectory plot of the 600 MHz plasma
1H NMR spectra from male FMO5 KO and WT mice at different time points.

PC1 explains 37.9% of the variance, PC2 explains 22.5%.

and valine, choline-containing metabolites including
glycerophosphocholine (GPC) and/or phosphatidylcholine
(PtdCho), glycerol, unsaturated lipids at 2.0 ppm (CH2C=C),
along with unknown metabolites at 2.08 [U1, N-acetyl

glycoprotein (NAG)-associated resonances], U2 and U3.
The week 60 FMO5 KO mice also exhibited statistically
significantly (FDR 0.1) reduced concentrations of unsaturated
lipid at 2.74 ppm (C=CCH2C=C) and 5.28, compared with
week 45 (Supplementary Figure 17).

A model was also constructed between 60- and 15-week-
old mice. Both FMO5 KO and WT mice showed higher
plasma concentrations of lactate, choline (WT potentially
discriminating), glutamine, choline-containing metabolites,
including GPC and/or PtdCho (WT potentially discriminating),
glycerol (WT potentially discriminating), the BCAAs isoleucine,
leucine and valine, the citrate cycle intermediates citrate (WT
potentially discriminating) and succinate, along with lower
concentrations of ethanol, at week 60 relative to week 15. WT
mice alone also showed elevated concentrations of creatine and
an unknown metabolite U2, along with lower concentrations
of lipid at 1.58 (mainly VLDL, CH2CH2CO) and 2.23 ppm
(CH2CO, Supplementary Figure 21), whereas FMO5 KO mice
alone exhibited elevated concentrations of lipid at 2.0 ppm
(CH2C=C), and decreased concentrations of unsaturated lipid
at 5.28, at week 60 vs. week 15 (Supplementary Figure 22).

DISCUSSION

An NMR-based metabonomics approach was applied to
simultaneously study age-related differences in urinary and
plasma metabolic profiles of both male FMO5 KO and male
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TABLE 2 | Metabolic changes in pair-wise comparison of adjacent time points as well as between the first and the last time points in plasma samples from male FMO5

KO and WT mice.

Compounds Chemical shifts in ppm & (multiplicity) WT KO WT KO

week 60 vs. 45 week 60 vs. 15

AMINES, AMIDES, AMINO ACIDS, AND RELATED

Isoleucine 0.94 (t), 1.01 (d), 1.98 (m) – – ↑ ↑

Leucine 0.95 (d), 0.97 (d), 1.73 (m) ↑p ↑ ↑ ↑

Valine 0.99 (d), 1.04 (d), 3.60 (d) ↑p ↑ ↑ ↑

Alanine 1.47 (d), 3.78 (q) – ↑ – –

Creatine 3.04 (s) – ↑ ↑ –

Choline 3.20 (s) ↑ ↑ ↑p ↑

Glutamine 2.45 (m), 2.13 (m) – ↑ ↑ ↑

Trimethylamine 2.89 (s) – ↑ – –

LIPIDS

Lipid, mainly VLDL, CH2CH2CO) 1.58 – – ↓ –

Lipid (CH2C=C) 2.0 – ↑ – ↑

Lipid (CH2CO) 2.23 – – ↓ –

Lipid (C=CCH2C=C) 2.74 ↓ ↓ ↓ ↓

Unsaturated lipid 5.28 ↓ ↓ – ↓

GPC or PtdCho 3.22 (s), 3.62 ↑ ↑ ↑p ↑

Glycerol 3.56 (dd), 3.65 (dd) ↑ ↑ ↑p ↑

ORGANIC ACIDS

3-hydroxyisobutyrate 1.07 (d), 2.47 (m) – ↑ – –

Acetate 1.91 (s) – ↑ – –

Lactate 1.32 (d), 4.10 (q) – ↑ ↑ ↑

TCA INTERMEDIATES

Citrate 2.53 (d), 2.69 (d) – ↑ ↑p ↑

Succinate 2.41 (s) – – ↑ ↑

ALCOHOLS

Ethanol 1.18 (t), 3.65 (q) ↓ – ↓ ↓

UNKNOWN

U1 N–acetyl glycoprotein derivative 2.08 (m) – ↑ – –

U2 2.13 (s) ↑ ↑ ↑ –

U3 3.11 (s) – ↑ – ↑

(↑) Indicates an increase and (↓) a decrease in the concentration of metabolites, with p-value adjusted for FDR of 0.1, and ↑p, ↓p indicates potentially discriminating metabolites

based solely on the p-value threshold of 0.05. (–) Indicates no significant difference metabolite concentration. Full NMR data for all of the identified discriminating metabolites is given in

Supplementary Table 5. No columns are included for WT or FMO5 KO mice for weeks 30 compared with 15 or week 45 compared with week 30, as there were no significant metabolite

concentration changes.

WT C57BL/6J mice, in order to identify a metabolic signature
of ageing and to determine differences in metabolic ageing
between the two genotypes. The global metabonomics overview
of the urine and plasma showed clear age-related changes in the
metabolic composition of both biofluids and differences between
the changes observed in the WT and FMO5 KO mice, the latter
having been found to exhibit slowed metabolic ageing (Gonzalez
Malagon et al., 2015). For both plasma and urine samples, and
for both FMO5 KO andWTmice, the most profound age-related
metabolic differences were observed for models constructed
between mice at 15- and 60-weeks old.

Ageing-Associated Changes in Urinary
Metabolite Profiles
In urine, there weremore numerous, statistically significant (FDR
0.1) metabolite changes for early samples (week 30 vs. week
15) relative to later samples (week 45 vs. week 30 especially
and week 60 vs. week 45). The early differences possibly reflect

changes corresponding to the development of the mice from
young adults to middle age, but by week 30 the composition of
the urine was more stabilised and fewer significant metabolic
differences were observed as a function of ageing to week 45,
particularly in the case of FMO5 KO animals. However, for
all time-point comparisons, there were always more statistically
significant changes in the urines of the WT relative to the FMO5
KOmice. This observation is in agreement with the phenotype of
FMO5 KO animals in which the effects of disruption of the Fmo5
gene were shown to reduce metabolic ageing (Gonzalez Malagon
et al., 2015). The global PCA (Figure 2) also shows that for both
WT and FMO5 KO mice, the urinary metabolic trajectory across
PC1 stops by week 45 and fromweek 45 to week 60, the metabolic
trajectory is along PC2, but to a much lesser extent for the FMO5
KO mice.

In urine, metabolic signatures of ageing were characterized
by alterations in the concentrations of the sex pheromone
6-hydroxy-6-methyl-heptan-3-one (6H6MH3O), metabolites

Frontiers in Molecular Biosciences | www.frontiersin.org 11 March 2018 | Volume 5 | Article 28

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
jeremyeverett
Inserted Text
(



1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

Varshavi et al. Biomarkers of Ageing in Fmo5−/− and Wild-Type Mice

associated with the citric acid cycle, and with fatty-acid, amino-
acid and nucleotide metabolism, including changes to allantoin,
ureidopropionate, and 1-methylnicotinamide and carbohydrate-
related metabolites, as well as mammalian–microbiome
co-metabolites.

Based on multivariate statistical analysis, 6H6MH3O was
found to be one of the most important metabolites whose
concentration reduced significantly with ageing. It is also one of
the most abundant metabolites observable in the high-frequency
region of the 1H NMR spectra of young, male WT or FMO5
KO mice. It is thus surprising that this metabolite is absent
from all of the major metabolite databases, and to the best
of our knowledge has not been reported previously in NMR-
based studies of C57BL/6 mice. Except for WT mice at week
60 vs. week 45, this metabolite was found to be decreased,
either potentially (p < 0.05) or statistically significantly (with
additional, more stringent FDR < 10%) in both FMO5 KO and
WT mice as they aged, at each stage examined (see Table 1).
This observation is in agreement with Osada et al. (2008) who
reported that urinary concentrations of 6H6MH3O in male
C57BL/6J mice dropped significantly as they aged from 3 to 8,
then up to 28 months, as measured by headspace GC-MS analysis
of 6H6MH3O degradation products. Somewhat surprisingly,
Schaeffer et al reported by GC-MS-based headspace analysis
that a tentatively identified dihydrofuran degradation product
of 6H6MH3O was significantly increased in concentration at 8
weeks relative to 4 weeks of age in C57BL/6J-H-2b mice (Schaefer
et al., 2010), but this was at an early age.

6H6MH3O is one of a number of volatile pheromones
(Liberles, 2014) that bind to male mouse MUPs (Phelan et al.,
2014), and are known to be involved in social and sexual
communication and control. The binding constant of 6H6MH3O
to a variety of mouse MUPs is relatively weak and in the range ca.
50 to ca. 200 uM (Sharrow et al., 2002). The mode of binding
of this pheromone to MUP1 has also been elucidated by high-
resolution X-ray crystallography and clearly shows the binding is
specifically to the linear, achiral, hydroxy-ketone tautomer (see
Materials and Methods; Timm et al., 2001). In agreement with
this finding, ultrafiltration of male WT and FMO5 KO urine
showed statistically significant decreases in the half band width
of the singlet signal for the gem-dimethyl groups and the broad
triplet for the ethyl methyl group in the linear, hydroxy-ketone
tautomer, but no significant reductions in half band width for
the signals of trimethylamine and taurine, which were used as
controls. Ultrafiltration removes significant amounts of MUPs
from the mouse urine. As a consequence of this, metabolites such
as 6H6MH3O, that are in fast exchange with the MUPs, when
present, will move to an environment where they are in free
solution, with no contribution to their motional characteristics
from binding to the MUPs. The metabolite will thus have, on
average, a significantly reduced molecular correlation time and
sharper signals with reduced half band width. 6H6MH3O has
also been identified in mouse body odour as well as urine (Röck
et al., 2006).

We believe that ours is the first direct biofluid identification
of this important, high-abundance metabolite, and of both of its
tautomers. Themetabolite was previously identified by extraction

and derivatization, or by headspace sampling, both methods
followed by GC-MS analysis, which suffers from the issue of
significant metabolite degradation, due to the thermal instability
of 6H6MH3O to dehydration on high-temperature GC columns
(Harvey et al., 1989; Novotny et al., 1999). Finally, through
ultrafiltration, we have demonstrated that the linear, achiral
tautomer of 6-hydroxy-6-methylheptan-3-one is in fast exchange
with large macromolecules that we assume are MUPs in urine
solution, through the reduction in signal half band width on
ultrafiltration of the urine to remove the MUPs and any other
biological macromolecules.

In addition, it is known that different strains of mice exhibit
different arrays of pheromones and MUPs (Kwak et al., 2012),
with BALB/b mice being reported to have lower concentrations
of urinary 6H6MH3O relative to C57BL/6J mice. In agreement
with this finding, the NMR spectra from a recent ageing study on
BALB/c mice showed an absence of any significant singlet signal
at ca. 1.21 ppm (that would correspond to the gem-dimethyl
groups of the hydroxyl-ketone tautomer of 6H6MH3O) and the
compound was not reported as being significantly associated with
ageing from 3 to 16 months in these mice (Calvani et al., 2014).
Furthermore, in addition to being present naturally at lower
concentrations in male BALB/cJ urine, synthetic 6H6MH3O was
shown to have no effect on uterine growth in BALB/cJ female
mice, in contrast to its effect in C57BL/6J mice (Flanagan et al.,
2011).

6H6MH3O is a highly unusual metabolite. Although sugars
like D-glucose exist in aqueous solution in equilibrium among
a variety of forms, they largely exist in equilibrium between the
cyclic, chiral, alpha-D-, and beta-D-glucopyranose anomers. By
contrast, 6H6MH3O exists in equilibrium between an acyclic,
achiral tautomer and a cyclic, chiral tautomer (Antonov, 2014).
To the best of our knowledge, the tautomerisation of 6H6MH3O
is unique amongst knownmetabolites. Given the symmetry of the
achiral ketone tautomer, it is probable that the chiral, hemi-ketal
form in solution is a racemic mixture of the R and S enantiomers
at C3.

The citric acid cycle metabolites succinate, 2-oxoglutarate
and citrate all showed higher concentrations in the urine of
FMO5 KO and WT mice as they aged from weeks 15 to 60.
Increased concentrations of citric acid cycle intermediates have
been reported previously in urine of 16-week-old NMRI mice
compared with those aged 14 weeks (Li et al., 2013), as well as
ERCC1d/- mice (Nevedomskaya et al., 2010). However, it should
be noted that in the present study the urinary concentrations
of citric acid cycle intermediates were independent of their
plasma concentrations. This is because these metabolites can be
reabsorbed into the tubular cells, based on the intracellular pH of
the kidney, and hence alterations in their urinary concentrations
could be in response to different age-related physiological factors,
which may influence the intracellular pH of kidney tubular cells.

The concentrations of microbiota-related urinary metabolites,
including hippurate, indoxylsulphate, phenylacetylglycine,
trigonelline, and cinnamoylglycine, as well as aliphatic amines
such as dimethylamine, trimethylamine, and trimethylamine
N-oxide, were also altered with ageing. The aliphatic amines are
produced from degradation of dietary precursors, such as choline
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or trimethylamine N-oxide, by the gut microbiota, (Fennema
et al., 2016) and alteration of these metabolites suggests age-
related changes in the activities or populations of the gut
microbiome. Of particular interest is that at an earlier age (week
15–30), changes in urinary microbiome-related metabolites
were different in WT, relative to FMO5 KO, mice. This was
manifested by higher concentrations of cinnamoylglycine,
4-cresolglucuronide, 4-cresolsulphate, phenylacetylglycine and
indoxylsulphate with age in WT mice, whereas no significant
age-related changes in the concentrations of these metabolites
were observed in FMO5 KO mice. This indicates that the
composition and activity of the microbiome not only changes
with ageing but it is also different in male FMO5 KO mice
compared with male WT mice. These results are consistent with
the recent findings of significant differences in gut microbiomes
between FMO5 KO and WT mice by Scott et al (Scott et al.,
2017) and their hypothesis that FMO5 has a role in sensing
or responding to gut bacteria. Furthermore, we also observed
decreased concentrations of short-chain fatty acids (SCFAs) and
their glycine conjugates, including isovalerate, butyrylglycine
and hexanoylglycine, in the urines of both FMO5 KO and WT
mice over the course of ageing. Although we cannot directly infer
causality, the reduction of SCFAs may also be associated with
changes in the gut microbiome. These findings are in agreement
with other studies demonstrating an age-related decrease in
the abundance of SCFA producers in humans, and increases in
the number of gut bacteria involved in aromatic amino-acid
metabolism as well as facultative anaerobes and opportunistic
pathogens (Rampelli et al., 2013).

Age-related changes were also observed in the urinary
excretion of ascorbate. The level of ascorbate was increased from
15 to 30 weeks in both FMO5 KO and WT mice and then
decreased in WT mice as they age from 30 to 45 weeks while it
remained stable in KO mice. Ascorbate is known to be helpful in
preventing or delaying the progression of ageing and age-related
disease (Monacelli et al., 2017). Iwama et al. (2012) reported
decreased ascorbate concentration in the urine of C57BL/6 mice
as they aged from 6 to 30 months and suggested that ascorbate-
synthesizing ability decreases over time are a key element in
age-related diseases (Iwama et al., 2012).

Elevated urinary concentrations of taurine represent a
distinctive ageing-related change observed only in WT mice.
Urinary taurine was increased as WT mice aged from 15 to
30, 30 to 45 and overall from 15 to 60 weeks. Interestingly,
taurine was also found to be a discriminator between KO
and WT mice and was consistently at statistically significantly
(FDR 0.1 adjusted) lower concentrations in FMO5 KO
mice from 30 weeks of age onwards. Although taurine was
detected by 2D 1H, 13C HSQC NMR experiments at low
concentrations in both WT and FMO5 KO plasma samples, it
was not possible to determine what changes, if any, occurred
with ageing in plasma, as the low level signals in the 1H
NMR spectra were obscured by much larger signals from
glucose.

Increased excretion of taurine with ageing has been previously
observed in dogs (Wang et al., 2007), male Sprague Dawley
rats (Schnackenberg et al., 2007), and male Wistar-derived rats

(Williams et al., 2005). Given that urinary taurine concentration
ismainly regulated by renal reabsorption, the age-related increase
of urinary taurine in WT mice may be caused by reduced
renal reabsorption of taurine. In agreement with this hypothesis,
preliminary desorption electrospray imaging mass spectrometry
(DESI-MS) data comparing concentrations of taurine in the
livers of male FMO5 KO and WT mice at week 30, showed
significantly higher concentrations in the FMO5 KO mouse liver
(Supplementary Figure 18).

Taurine is the most abundant, multifunctional amino
acid, and plays an essential role in a large number of
biological processes including bile acid conjugation, cellular
osmoregulation, modulation of neurotransmitters, maintenance
of calcium homeostasis, and antioxidation (Hayes and Sturman,
1981; Brosnan and Brosnan, 2006). Taurine is also well known
for its protective effect against diabetes mellitus and the
complications of diabetes, including retinopathy, nephropathy,
neuropathy, atherosclerosis, and cardiomyopathy, as well as
protective effects against other age-associated diseases (Ito et al.,
2012). The increase in urinary excretion of taurine with ageing
in WT mice relative to FMO5 KO mice indicates that taurine’s
protective function of anti-inflammation, immunomodulation
and neuroprotection might be attenuated in WT mice and hence
they are likely to be more susceptible to age-related diseases
relative to FMO5 KO mice, a conclusion supported by our
preliminary DESI-MS data (Supplementary Figure 18).

Another characteristic of the ageing WT mouse (week 60
vs. 45, Table 1) was increased urinary concentrations of 1-
methylnicotinamide (1MNA). No such difference was observed
in the FMO5 KO mice between these same two time points but
1MNA was increased in both WT and FMO5 KO mice with age
overall between weeks 15 and 60 (Table 1). 1MNA is produced
in the liver by nicotinamide N-methyltransferase (NNMT) by
catalysis of the N-methylation of nicotinamide. Nicotinamide is
a precursor of nicotinamide adenine dinucleotide (NAD) and
nicotinamide adenine dinucleotide phosphate, which are known
to be associated with longevity through the activity of NAD-
consuming enzymes, such as sirtuins and poly (ADP-ribose)
polymerases (Imai, 2011; Roth et al., 2013). 1MNA contributes
to the regulation of intra- and extra-cellular concentrations of
nicotinamide bymediating its excretion afterN-methylation. The
increased urinary excretion of 1MNA with age may therefore
indicate a perturbation in the “NAD World” homeostasis
(Robertson, 2005; Everard et al., 2011).

Age-related changes were also observed in the urinary
excretion of creatinine. The urinary concentration of creatinine
was increased from 15 to 30 weeks in both FMO5 KO and
WT mice and then remained stable. In general, the excretion
of creatinine can be influenced by factors such as the change
of total muscle mass, dietary protein intake and glomerular
filtration rate. In the present study, the higher concentration of
urinary creatinine observed in week 30 relative to week 15 mice
probably reflects the growth of the animals. Such age-related
increases have been reported previously in male Wistar-derived
rats (Williams et al., 2005), as well as male Sprague Dawley rats
(Schnackenberg et al., 2007). Urinary excretion of creatinine was
also increased in dogs between ages 5 and 9 years and decreased
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thereafter (Wang et al., 2007). Increases in creatinine excretion
have been also noted in children as they progress to adulthood.
In addition, a study on creatinine concentrations that surveyed
a large US population, with ages ranging from 6 to 70 years,
reported a gradual increase in urinary creatinine concentration
up to an age of between 20 and 29 years, followed by a decline
(Barr et al., 2005).

Ageing-Associated Changes in Plasma
Metabolite Profiles
Unlike urine, metabolic profiles of plasma for both FMO5 KO
and WT mice were more constant up to week 45 and the
largest number of statistically significant metabolite changes was
observed as the mice aged from 45 to 60 weeks in both cases
(Table 2).

In plasma, the main metabolic signature of ageing includes
alterations in the concentrations of metabolites associated with
amino-acid and fatty-acid metabolism and the citric acid cycle
(Table 2).

Higher concentration of amino acids including glutamine and
the BCAA leucine, isoleucine and valine were observed in the
plasma of male FMO5 KO and WT mice with ageing. It is likely
that the elevation of amino acids in the plasma with increased
age is caused by decreased rates of transamination and then
subsequent oxidation of their carbon skeletons in the citric acid
cycle.

CONCLUSION

Significant changes in metabolite profiles with ageing were
identified in both the urine and plasma of male WT and FMO5
KO mice through the use of an NMR-based metabonomic
approach. Some metabolites showed similar patterns of changes
with age, regardless of genetic background. However, we also
observed different age-related metabolic changes between WT
and FMO5 KO mice, indicating the impact of the genetic
modification on ageing. The metabolite changes observed and
the differences in ageing profiles between the WT and FMO5 KO

genotypes reflect both general ageing process in both genotypes
and specific changes that are characteristic of the slow

metabolic-ageing phenotype of the FMO5 KO mouse (Gonzalez
Malagon et al., 2015; Scott et al., 2017). The identification of
these metabolites that change with ageing will help understand
the processes of ageing in these two mouse genotypes and
the differences between them, including the important impact
of the gut microbiome and its interactions with the host
genome, and, as such, we hope this work will in future
generate new ideas and understanding to extend healthy human
lifespan.
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