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Abstract

For a scheduling problem to minimize the makespan on parallel machines, we consider
schedules with at most one preemption. We show that in the case of two machines the
problem is solvable in polynomial time. For m ≥ 3 uniform parallel machines, we measure
the quality of a single preemption as the worst-case ratio of the makespan of an optimal
schedule with at most one preemption over the makespan of an optimal preemptive
schedule. We show that the global bound on such a ratio is 2− 2/m.
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1 Introduction

In this paper, we analyze schedules with at most one preemption for scheduling problems on
parallel machines.

In parallel machine scheduling, we are given the jobs of set N = {J1, J2, . . . , Jn} and m
parallel machines M1, M2, . . . ,Mm. If a job Jj ∈ N is processed on machine Mi alone, then
its processing time is known to be pij . There are three main types of scheduling systems
with parallel machines: (i) identical parallel machines, for which the processing times are
machine-independent, i.e., pij = pj ; (ii) uniform parallel machines, which have different
speeds, so that pij = pj/si, where si denotes the speed of machine Mi; and (iii) unrelated
parallel machines, for which the processing time of a job depends on the machine assignment.

In a non-preemptive schedule, each job is processed on the machine it is assigned to
without interruption. In a preemptive schedule, the processing of a job on a machine can be
interrupted at any time and then resumed either on this or on any other machine, provided
that the job is not processed on two or more machines at a time, and the amount of processing
assigned to each machine guarantees that the job is fully completed.

In all problems considered in this paper the objective is to minimize the makespan, i.e., the
maximum completion time across all m machines. For a schedule S, the makespan is denoted
by Cmax(S). For an instance of a scheduling problem on parallel machines, let S∗(q) and S∗p
denote an optimal schedule with at most q preemptions, and an optimal preemptive schedule
which uses an unlimited number of preemptions, respectively. We will refer to schedules with
an unlimited number of preemptions as simply preemptive. The case q = 0 corresponds to a
non-preemptive schedule, and an optimal non-preemptive schedule is denoted either by S(0)
or by S∗np.
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The number of preemptions in an optimal schedule S∗p does not exceed m− 1 in the case
of identical machines [12] and 2 (m− 1) in the case of uniform machines [7].

For m ≥ 3, the problem of finding an optimal preemptive schedule with at most q ≤ m−2
preemptions on identical parallel machines is NP-hard [14] and the corresponding problems
on uniform or unrelated machines are obviously no easier. If any number of preemptions is
allowed, then all these problems are polynomially solvable, even in the most general settings
with unrelated machines. See a focused survey [3] on parallel machine scheduling with the
makespan objective for details and references.

For m ≥ 3 uniform machines, the problem of finding an optimal schedule with the number
of preemptions q such that q is even and q ≤ 2 (m− 3) is shown to be NP-hard by [17].

For unrelated machines, it has been shown by [9] that an optimal preemptive schedule
requires no more than O

(
m2
)

preemptions. Clearly finding optimal schedules with a limited
number of preemptions is no easier than for the uniform machines case, but no results have
yet quantified any difference.

This paper resolves the complexity issue for q = 1, on two uniform machines and two
unrelated machines in Section 3.

For a scheduling problem on parallel machines (parallel, uniform or unrelated), the quality
of a schedule with a restricted number of preemptions is defined as the worst-case ratio of
the makespan of an optimal schedule with at most q preemptions over the makespan of an
optimal preemptive schedule. In Section 4, we show that in the case of q = 1, the global
bound on such a ratio for the problem on uniform parallel machines is 2− 2/m, m ≥ 3, and
this bound is tight.

2 Scheduling with a Restricted Number of Preemptions: Re-
view

Consider an instance of a scheduling problem to minimize the makespan Cmax on m parallel
machines (identical, uniform or unrelated). For the corresponding problem, we measure

the quality of a schedule with at most q preemptions as a tight upper bound ρ
(q)
m on the

ratio Cmax(S∗(q))/Cmax(S∗p) across all instances of the problem at hand. The value of ρ
(q)
m

determines what can be gained regarding the maximum completion time if instead of at
most q preemptions any number of preemptions is allowed. For q = 0 this concept coincides
with a well-studied notion of the power of preemption.

In order to determine the exact value of ρ
(q)
m for a particular problem and to give the

concept some practical meaning, the following should be done:

(i) demonstrate that the inequality

Cmax

(
S∗(q)

)
Cmax

(
S∗p
) ≤ ρ(q)m (1)

holds for all instances of the problem;

(ii) exhibit instances of the problem for which (1) holds as equality, i.e., show that the value

of ρ
(q)
m is tight; and
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(iii) develop a polynomial-time algorithm that finds a heuristic schedule S(q) with at most
q preemptions such that

Cmax

(
S∗(q)

)
Cmax

(
S∗p
) ≤ Cmax

(
S(q)

)
Cmax

(
S∗p
) ≤ ρ(q)m . (2)

Most of the known results in this area address the situation of q = 0, i.e., are aimed at
comparing an optimal non-preemptive schedule with an optimal preemptive schedule.

If the machines are identical parallel, then it is known that ρ
(0)
m = 2 − 2/ (m+ 1), as

independently proved in [1] and [10]. It is shown in [13] that the value of ρ
(0)
m can be reduced

for some instances that contain jobs with fairly large processing times, i.e., longer than the
average machine load.

According to [18], for m uniform parallel machines ρ
(0)
m = 2− 1/m. In [16], the necessary

and sufficient conditions under which the global bound of 2− 1/m is tight are given. If the
makespan of an optimal preemptive schedule S∗p is defined by the ratio of the total processing
time of r < m longest jobs over the total speed of r fastest machines, it is shown in [16] that

the tight bound on the power of preemption ρ
(0)
m is 2− 1/min{r,m− r}.

For two uniform machines, a parametric analysis of the power of preemption ρ
(0)
2 with

respect to the speed of the faster machine is independently performed in [8] and [15]. For
m = 3, a similar analysis is contained in [15], provided that the machine speeds take at most
two values.

For unrelated parallel machines, a rounding procedure that is attributed to Shmoys and
Tardos and reproduced in [11] and [4] finds non-preemptive schedules S(0) such that the

bound (2) holds for ρ
(0)
m = 4. This bound is tight, as proved in [4].

Studies that compare optimal schedules with a limited number of preemptions to optimal
preemptive schedules are fewer in number. For identical machines, Braun and Schmidt [1]

prove that ρ
(q)
m = (2m) / (m+ q + 1), where 0 ≤ q ≤ m − 1, and that this bound is tight.

Jiang et al. in [8] perform a parametric analysis of a single preemption for two uniform
machines with speeds s′ and s′′, where s′ ≥ s′′, from which it follows that

ρ
(1)
2 =

2 (s′)2 + s′s′′ − (s′′)2

2 (s′)2
, (3)

This function attains its maximum value of 9/8 when s′ = 2s′′.

Among the results on the power of preemption measured with respect to the objective
functions other than the makespan, we mention the recent studies on the single machine
problem to minimize the weighted completion time [5] and on the problem on uniform parallel
machines to minimize the total completion time [6].

3 Complexity Results

In this section, we study the complexity of the problems on parallel machines, provided that
at most one preemption is allowed. Extending standard scheduling notation, we denote the
corresponding problems by αm |#pmtn ≤ 1|Cmax, where m is the number of machines and
α ∈ {P,Q,R} for identical, uniform and unrelated machines, respectively.
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In the case of identical machines, it follows from [12] that problem P2 |#pmtn ≤ 1|Cmax

is solvable in O (n) time, since in the case of two machines an optimal preemptive schedule
has at most one preemption. On the other hand, Pm |#pmtn ≤ 1|Cmax is NP-hard for each
m ≥ 3; see [1] and [14]. To clarify the complexity status of the remaining scheduling problems
on parallel machines with at most one preemption we address the problems on two uniform
and two unrelated machines.

First, we show that problem Q2 |#pmtn ≤ 1|Cmax can be solved in polynomial time.
We present this result in a generic way, so that the two machines are denoted by M ′ and
M ′′, while their speeds are s′ and s′′, respectively, where s′ ≥ s′′. Assume that the jobs are
numbered in accordance with the LPT rule, i.e., in non-increasing order of their processing
times

p1 ≥ p2 ≥ · · · ≥ pn. (4)

For a non-empty subset R ⊆ N , define

p (R) =
∑
j∈R

pj ,

and for completeness define p (∅) = 0.

It follows from [7] that problem Q2 |pmtn|Cmax is solvable in O (n) time, provided that
there is no restriction on the number of preemptions. Besides,

Cmax (S∗) = max
{
p1/s

′, T2
}
,

where

T2 =
p (N)

s′ + s′′
. (5)

Algorithm Q2Pr1

Step 1. Compute T2 by (5). If
p1 < s′T2,

go to Step 2; otherwise, output a non-preemptive schedule S(1) with job J1 on machine
M ′ and the other jobs on machine M ′′ and stop.

Step 2. Scanning the jobs in the order of their numbering, find job Jk such that

k−1∑
j=1

pj < s′T2,
k∑

j=1

pj ≥ s′T2.

Step 3. Compute

xk = s′T2 −
k−1∑
j=1

pj , yk = pk − xk.

If

yk
s′′

>
1

s′

k−1∑
j=1

pj ,

go to Step 4; otherwise, output the following schedule S(1): on M ′ the jobs J1, . . . , Jk−1
are processed in any order, followed by a part of job Jk for xk/s

′ time units; on M ′′

process a part of job Jk for yk/s
′′ time units, followed by an arbitrary sequence of jobs

Jk+1, . . . , Jn. Stop.
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M ′ J1 J2 · · · Jk−1 Jk

� -xk/s
′

M ′′ Jk Jk+1, . . . , Jn
� -yk/s

′′

(a)

M ′ J1 J2 · · · Jk−1 Jk

� -x̃k/s
′

M ′′ Jk Jk+1, . . . , Jn
� -ỹk/s

′′

(b)

Figure 1: (a) Schedule S(1) in Step 3; (b) schedule S(1) in Step 4

Step 4. For job Jk, compute the values x̃k and ỹk such that

ỹk
s′′

=
1

s′

k−1∑
j=1

pj , x̃k = pk − ỹk.

Output the following schedule S(1): on M ′ the jobs J1, . . . , Jk−1 are processed in any
order, followed by a part of job Jk for x̃k/s

′ time units; on M ′′ process a part of job Jk
for ỹk/s

′′ time units, followed by an arbitrary sequence of jobs Jk+1, . . . , Jn. Stop.

Theorem 1 Schedule S(1) found by Algorithm Q2Pr1 is optimal for problem
Q2 |#pmtn ≤ 1|Cmax.

Proof: If p1 ≥ s′T2 then p1 (s′ + s′′) ≥ s′p (N), i.e.,

p1
s′
≥ p (N\ {1})

s′′
.

For schedule S(1) found in Step 1 machines M ′ and M ′′ terminate at p1/s
′ and at

p (N\ {1}) /s′′, respectively. Thus,

Cmax

(
S(1)

)
= p1/s

′,

i.e., schedule S(1) is a non-preemptive optimal schedule for problem Q2 |pmtn|Cmax, and
therefore for problem Q2 |#pmtn ≤ 1|Cmax.

We come to Step 2 if
p1 < s′T2.

Since
1

s′

n∑
j=1

pj >
1

s′ + s′′

n∑
j=1

pj = T2,

it follows that job Jk exists.

For schedule S(1) found in Step 3, both machines terminate at time T2; see Figure 1(a).
This schedule is feasible since the part of the preempted job Jk completes on M ′′ at time
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yk/s
′′, while this job starts on M ′ at time 1

s′
∑k−1

j=1 pj , which produces no clash due to
yk
s′′ ≤

1
s′
∑k−1

j=1 pj . Since Cmax

(
S(1)

)
= T2, schedule S(1) is an optimal schedule for problem

Q2 |pmtn|Cmax, and therefore for problem Q2 |#pmtn ≤ 1|Cmax.

We come to Step 4 if

yk
s′′

>
1

s′

k−1∑
j=1

pj ,

which implies that
yk
s′′

+
xk
s′
> T2. (6)

Combining (6) with pk/s
′ ≤ p1/s′ < T2 yields s′ > s′′. Define

T̃2 =
x̃k
s′

+
ỹk
s′′
.

Since

yk
s′′

>
1

s′

k−1∑
j=1

pj =
ỹk
s′′
,

it follows that
yk > ỹk, xk < x̃k.

Then

T2 =

∑k−1
j=1 pj + xk

s′
=
ỹk
s′′

+
xk
s′
<
x̃k
s′

+
ỹk
s′′

= T̃2.

Let S′(1) denote the best schedule for problem Q2 |#pmtn ≤ 1|Cmax in which the jobs of

set Nk = {J1, · · · , Jk} are processed without preemption. If all these jobs are assigned to
machine M ′ then

Cmax

(
S′(1)

)
=

1

s′
p (Nk) =

pk
s′

+
1

s′

k−1∑
j=1

pj =
pk
s′

+
ỹk
s′′

>
x̃k
s′

+
ỹk
s′′

= T̃2.

If at least one of these jobs is assigned to be processed on machine M ′′, then due to the
the LPT numbering of jobs we deduce that

Cmax

(
S′(1)

)
≥ pk
s′′

=
x̃k
s′′

+
ỹk
s′′

>
x̃k
s′

+
ỹk
s′′

= T̃2.

Thus, in an optimal schedule S(1) no job of set Nk can be processed in full on machine
M ′′ and exactly one job of set Nk must be processed with preemption.

Take a job J` ∈ Nk and consider a schedule in which only job J` is processed with
preemption. Define

ỹ`
s′′

=
1

s′
p (Nk\ {`}) , x̃` = p` − ỹ`.

Introduce a schedule S (`), in which on machine M ′ the jobs of set Nk\ {J`} are pro-
cessed without preemption in accordance with an arbitrary sequence and are followed by the
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processing of J` for x̃`/s
′ time units, while on machine M ′′ job J` is processed for ỹ`/s

′′ time
units, followed by an arbitrary sequence of jobs of set N\Nk.

In schedule S (`) machine M ′ terminates at time

ỹ`
s′′

+
x̃`
s′

=
ỹ`
s′′

+
p` − ỹ`
s′

=
p`
s′

+ ỹ`

(
1

s′′
− 1

s′

)
=

p`
s′

+
(p (Nk)− p`)

s′

(
1− s′′

s′

)
=
s′′p` + (s′ − s′′) p (Nk)

(s′)2
.

The final right-hand side of the above expression increases in p`, thus it takes its minimum
for ` = k. Such a minimum is equal to T̃2 > T2.

Notice that in schedule S (`) machine M ′′ must terminate before time T2. Indeed, assume
that the machines terminate at times C ′ = P ′/s′ and C ′′ = P ′′/s′′ and min {C ′, C ′′} > T2.
Then we derive a contradiction p (N) = P ′ + P ′′ > s′T2 + s′′T2 = p (N).

Thus, the makespan Cmax (S (`)) is determined by the time that machine M ′ terminates.
As long as no job of set Nk is processed in full on machine M ′′, schedule S (`) is optimal
among all schedules in which job J` is processed with preemption, since for machine M ′ it
guarantees the smallest possible allocation of the jobs other than J` and the smallest possible
part of job J`.

The smallest makespan value of Cmax (S (`)) is delivered for ` = k. Since schedule S(1)
found in Step 4 is actually schedule S (`) for ` = k (see Figure 1(b)), we deduce that S(1) is
optimal for problem Q2 |#pmtn ≤ 1|Cmax.

Algorithm Q2Pr1 requires O (n) time, provided that the LPT numbering of the jobs is
available. Obtaining such a numbering can be seen as a preprocessing stage, which takes
O (n log n) time. Thus, problem Q2 |#pmtn ≤ 1|Cmax is solvable in O (n log n) time.

Theorem 1 completely resolves the complexity status of the problem of finding an opti-
mal schedule with a single preemption on uniform machines: polynomially solvable on two
machines and NP-hard on three or more machines (even identical). For a more general pro-
cessing system, with two unrelated machines, finding an optimal schedule with at most one
preemption becomes NP-hard, as stated below.

For a non-empty index set R, similarly to the earlier introduced notation p (R), for a
sequence e1, e2, . . . the notation e (R) =

∑
i∈R ei is used. Notation a (R) , b (R) is defined

analogously.

Theorem 2 Problem R2 |#pmtn ≤ 1|Cmax is NP-hard in the ordinary sense.

Proof: We provide reduction from the following well-known NP-complete problem.

Partition: Given r positive integers ej and an integer E such that ej ≤ E and
∑r

j=1 ej =
2E, does there exist a partition of the index set R = {1, 2, . . . , r} into two subsets R1 and
R2 such that e(R1) = e(R2) = E?

Consider problem R2 |#pmtn ≤ 1|Cmax with two machines A and B and the set N =
{J1, J2, . . . , Jn} of jobs. If a job Jj is processed on machine A (machine B) alone, then its
processing time is equal to aj time units (to bj units, respectively).

Given an instance of Partition, define the following instance of the decision version of
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A Jj , j ∈ R1 Jr+2

B Jr+2 Jj , j ∈ R2 ∪ {r + 1}

0 2E 5E

Figure 2: Schedule S(1)

problem R2 |#pmtn ≤ 1|Cmax:

n = r + 2; aj = 2ej , bj = ej , j ∈ R;

ar+1 = 11E, br+1 = 2E; ar+2 = 6E, br+2 = 4E.

It is required to verify whether there exists a schedule S(1) with a single preemption such
that Cmax

(
S(1)

)
≤ 5E.

Suppose that Partition has a solution and R1 and R2 are the required subsets. Then
assign an arbitrary sequence of jobs Jj with j ∈ R1 to be processed on machine A in the
time interval [0, 2E], and an arbitrary sequence of jobs Jj with j ∈ R2 and job Jr+1 to be
processed on machine B scheduled in the time interval [2E, 5E]. Job Jr+2 is processed with
preemption, in the time interval [0, 2E] on machine B and in the time interval [2E, 5E] on
machine A. For the resulting schedule S(1) both machines complete their processing at time
5E. See Figure 2. The preemptive processing of job Jr+2 is feasible, since

2E

4E
+

3E

6E
= 1.

Suppose now that schedule S(1) exists. First, notice that in S(1) either job Jr+1 or job
Jr+2 must be processed with preemption. Indeed, in order to complete by time 5E neither
of these jobs can be processed without preemption on machine A, and if both are assigned
to be processed non-preemptively on machine B they will complete no earlier than time 6E.

Suppose that job Jr+2 is processed without preemption, while job Jr+1 with preemption.
To complete by time 5E, job Jr+2 must be assigned to machine B. Then job Jr+1 can be
processed on B for at most E time units, which is 50% of its overall processing. No less
than 50% of job Jr+1 must be performed on machine A, which makes at least 5.5E units of
processing.

Thus, in schedule S(1) job Jr+2 is processed with preemption and job Jr+1 is processed
on machine B.

Suppose that in S(1) job Jr+2 is processed on machine A for 3E + x time units and on
machine B for 2E− y time units, where x and y are both positive. To finish this job by time
5E we must have that x ≤ y. On the other hand, to guarantee that job Jr+2 completes in
full the equality

2E − y
4E

+
3E + x

6E
= 1

must hold, which implies that y = 2
3x < x; a contradiction.

Now suppose that in S(1) job Jr+2 is processed on machine A for 3E − x time units and
on machine B for 2E + y time units, where x and y are both positive. To finish this job by
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time 5E we must have that x ≥ y. To guarantee that job Jr+2 completes in full the equality

2E + y

4E
+

3E − x
6E

= 1

must hold, which implies that y = 2
3x.

Let NA and NB denote the subsets of R such that the jobs Jj with j ∈ NA and with
j ∈ NB are assigned to be processed in schedule S(1) on machine A and on machine B,
respectively. Then for machine B to complete its jobs by time 5E the inequality(

2E +
2x

3

)
+ 2E + e (NB) ≤ 5E,

must hold, which implies that e (NB) ≤ E − 2x
3 , so that e (NA) ≥ E + 2x

3 . Then machine A
completes its jobs no earlier than time

2

(
E +

2x

3

)
+ 3E − x = 5E +

x

3
.

We deduce that for schedule S(1) to exist, job Jr+2 must be processed on machine B for
2E time units and on machine A for 3E time units. This implies that in S(1), b (NB) =
e (NB) = E, i.e., the sets NA and NB form a solution to Partition.

4 Single Preemption on m Uniform Parallel Machines

In this section, we establish a global tight bound on how much is lost if at most one preemp-
tion is allowed on m uniform parallel machines, compared to the makespan of an optimal
schedule with any number of preemptions.

An instance I of the problem with n jobs andm uniform parallel machines is defined by the
list Ln = (p1, p2, . . . , pn) of the processing times of the jobs and the listMm = (s1, s2, . . . , sm)
of the machine speeds. In what follows, we assume that both lists are non-increasing. In
other words, the jobs are numbered in accordance with the LPT rule (4) and the machines
are numbered in non-increasing order of their speeds, i.e., s1 ≥ s2 ≥ · · · ≥ sm.

Feasible non-preemptive and preemptive schedules for an instance I = (Ln,Mm) are
denoted by Snp (Ln,Mm) or Snp (I), and by Sp (Ln,Mm) or Sp (I), respectively; the corre-
sponding optimal non-preemptive and preemptive schedules are denoted by S∗np (Ln,Mm)
or S∗np (I) and by S∗p (Ln,Mm) or S∗p (I) , respectively. The reference to an instance may be
omitted if it is clear which instance is being discussed.

In our analysis of the power of preemption, we will need precise expressions for the
makespan of the preemptive schedules. The fastest algorithm for finding an optimal pre-
emptive schedule on uniform parallel machines is due to Gonzalez and Sahni [7] and requires
O(n+m logm) time.

Given an instance I = (Ln,Mm), for each v, 1 ≤ v ≤ m, define the total speed of the v
fastest machines Sv =

∑v
i=1 si. Besides, define the set of the v longest jobs Hv = {1, 2, . . . , v}.

Define m′ = min {n,m− 1} and

Tv = p (Hv) /Sv, 1 ≤ v ≤ m′; Tm = p (N) /Sm. (7)
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It is well-known (see, e.g., [2]) that for an optimal preemptive schedule S∗p (I) the makespan
is equal to

Cmax(S∗p (I)) = max
{

max
{
Tv|1 ≤ v ≤ m′

}
, Tm

}
. (8)

Clearly Tm = p (N) /Sm is a lower bound on Cmax(S∗p (I)) even when simultaneous exe-
cution of jobs is allowed, since it is the average machine load, i.e., the time for processing all
jobs, provided all machines are continuously busy.

Definition 1 For an instance I = (Ln,Mm), suppose that in a non-preemptive schedule
Snp (I) the last completed operation is that of processing job Jh, 1 ≤ h ≤ n, on machine Mk,
1 ≤ k ≤ m. We call job Jh the terminal job and machine Mk the critical machine.

For an instance I, a schedule S(1) (I) with exactly one preemption is defined by

(i) a job J` ∈ N which is processed with preemption on two machines M`′ and M`′′ such
that 1 ≤ `′ < `′′ ≤ m; the actual processing times of job J` on these machines are equal
to x`/s`′ and y`/s`′′ , where x` + y` = p`;

(ii) a partition of set N\ {`} into m subsets N1, N2, . . . , Nm, where the jobs of set Ni are
assigned to be processed on machine Mi, 1 ≤ i ≤ m.

Notice that even in an optimal schedule some of the subsets Ni can be empty, since it
may be counterproductive to assign jobs to very slow machines. For a particular instance, it
might be optimal not to preempt any job, in which case a schedule S(1) (I) is defined by a
partition of set N into m subsets N1, N2, . . . , Nm. If there is a preempted job J` in schedule
S(1) (I) then the jobs assigned to machines M`′ and M`′′ must be arranged in a such a way
that the two portions of job J` do not overlap.

Define

ρ(1)m = 2− 2

m
.

Below we present an algorithm that creates a schedule S(1) with at most one preemption
such that

Cmax

(
S(1)

)
Cmax

(
S∗p
) ≤ ρ(1)m .

Algorithm LPT1

Step 1. Compute Cmax

(
S∗p
)

in accordance with equation (8) and the completion time bound

B = ρ
(1)
m Cmax

(
S∗p
)
. Form the LPT list Ln = (p1, . . . , pn). Define

Ni := ∅, p (Ni) := 0, 1 ≤ i ≤ m.

Step 2. For j from 1 to n do

(a) Take job Jj , the first job in the current list Ln. Scanning the machines in the order
of their numbering, search for the first machine Mk such that p (Nk) + pj ≤ skB.
If such a machine exists, then go to Step 2(b). If p (Ni) + pj > siB for all i,
1 ≤ i ≤ m, then if the preemption has not been used go to Step 2(c); otherwise,
go to Step 2(d).
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(b) Update
Nk := Nk ∪ {j} , p (Nk) := p (Nk) + pj

and go to Step 2(e).

(c) First, try to process job Jj as the preempted job J`. If a pair of machines M`′ and
M`′′ can be selected such that 1 ≤ `′ < `′′ ≤ m and the inequalities

y` + p (N`′′) ≤ s`′′B, (9)
x`
s`′

+
y`
s`′′

≤ B, (10)

hold, where

x` = s`′B − p (N`′) ,

y` = p` − x`;

then choose the pair with smallest value of `′′ and assign job J` to be processed
on machine M`′ for x`/s`′ time units and on machine M`′′ for y`/s`′′ time units.
Define

p (N`′) := p (N`′) + x`, p (N`′′) := p (N`′′) + y`.

If the required pair of machines cannot be found, then go to Step 2(d).

(d) Find machine Mk such that

skB − p (Nk) = max {siB − p (Ni) |1 ≤ i ≤ m} (11)

and return to Step 2(b).

(e) Remove job Jj from list Ln.

Step 3. In the found schedule S(1) (I) machine Mi processes the jobs of set Ni in the LPT
order starting from time 0, 1 ≤ i ≤ m. Additionally, if in the loop in Step 2, Step 2(c)
has occurred then (i) in the time interval [0, y`/s`′′ ] process the jobs of set N`′ on
machine M`′ and job J` on machine M`′′ , and (ii) at time y`/s`′′ start the jobs of set
N`′′ on machine M`′′ and the remaining part of job J` on machine M`′ .

Algorithm LPT1 scans the jobs in the LPT order and tries to assign each job to the
first available machine where it can be completed by time B. The first time that such an
assignment is not possible, the corresponding job is assigned to be processed with preemption;
see Step 2(c).

To estimate the running time of Algorithm LPT1, notice that forming the list Ln in
Step 1 requires the numbering of the jobs in the LPT order, which takes O (n log n) time. In
Step 2(a) the search for machine Mk requires O (m) time for each j, 1 ≤ j ≤ n. Step 2(c)
requires O

(
m2
)

time, but is performed only once. Thus, provided that n ≥ m, the running
time of Algorithm LPT1 is O (n log n+ nm).

Notice that the algorithm iteratively updates the values p (Ni), 1 ≤ i ≤ m, which rep-
resent the amount of processing assigned to machine Mi in terms of the original values pj ,
1 ≤ j ≤ n. To maintain that meaning, we go for a slight abuse of notation, when we redefine
values p (N`′) and p (N`′′) in Step 2(c). As a result, in any case

∑m
i=1 p (Ni) = p (N).

11



Theorem 3 Given an arbitrary instance I = (Ln,Mm), let S(1) (I) be a schedule created by
Algorithm LPT1 using at most one preemption. Then

Cmax

(
S(1) (I)

)
Cmax

(
S∗p (I)

) ≤ 2− 2

m
. (12)

Proof: The proof is based on the minimal counterexample technique, often used in worst-
case analysis of approximation algorithms. Suppose that the theorem is not true, i.e., there
exists an instance I = (Ln,Mm), which we call the minimal counterexample, such that

Cmax

(
S(1) (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) > 2− 2

m
(13)

and no job or machine can be removed from the instance without violating the inequality
(13).

For an instance I = (Ln,Mm), let S(1) (I) be a schedule found by Algorithm LPT1.
As a consequence of choosing the first suitable machine(s) in Steps 2(a) and 2(c) of Algo-
rithm LPT1, if some machines receive no load in schedule S(1) (I) , then they will be the
slowest machines.

First, consider instances in which the number of jobs is smaller than the number of
machines, i.e., the instances (Ln,Mm) with n < m. Let Mn be the list of machine speeds
obtained from list Mm by a removal of the m− n slowest machines.

If n < m, then in schedule S(1) (I), the jobs are assigned to at most n fastest
machines. On the other hand, for each instance I there exists an optimal pre-
emptive schedule S∗p (I) in which the jobs are assigned to at most n fastest ma-
chines. Thus, Cmax

(
S(1) (Ln,Mm)

)
= Cmax

(
S(1) (Ln,Mn)

)
, while in the preemptive case

Cmax

(
S∗p (Ln,Mm)

)
= max {Tv|1 ≤ v ≤ n < m} = Cmax

(
S∗p (Ln,Mn)

)
.

Since for an instance (Ln,Mm) with n < m the removal of the m− n slowest machines
does not change the value of the power of preemption, the minimal counterexample cannot
be one of these instances. Hence, in our search for the minimal counterexample we only need
to consider instances in which there are at least as many jobs as machines.

Suppose that in schedule S(1) (Ln,Mm) job Jh is the terminal job and machine Mk is the
critical machine. If h < n then Algorithm LPT1 assigns some jobs Jj with j > h after job
Jh and they complete (on machines other than Mk) earlier than job Jh. Imagine that these
jobs are removed from the instance, so that Lh = (p1, p2, . . . , ph) is the corresponding list of
the processing times. For the modified instance (Lh,Mm), we have

Cmax

(
S(1) (Lh,Mm)

)
= Cmax

(
S(1) (Ln,Mm)

)
; Cmax

(
S∗p (Lh,Mm)

)
≤ Cmax

(
S∗p (Ln,Mm)

)
,

so that
Cmax

(
S(1) (Lh,Mm)

)
Cmax

(
S∗p (Lh,Mm)

) ≥ Cmax

(
S(1) (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) > 2− 2

m
.

Thus, if h < n we deduce that instance (Ln,Mm) cannot be the minimal counterexample,
and we must have that h = n. In other words, for the minimal counterexample (Ln,Mm)
Algorithm LPT1 finds a schedule S(1) (Ln,Mm) that is terminated by the shortest job Jn.
Clearly,

pn ≤
1

n
p (N) ≤ 1

m
p (N) . (14)

12



Suppose that the terminal job Jn is completed on machine Mu, 1 ≤ u ≤ m, and that its
completion time exceeds the bound of B, i.e., p(Nu) > suB.

In schedule S(1), for each machine, find the value Gi such that

B =
p(Ni) +Gi

si
, 1 ≤ i ≤ m; i 6= u. (15)

Let us call the value Gi the gap on machine Mi. We can interpret the gap on a machine
as the amount of processing that could be additionally assigned to that machine so that the
machine completes at exactly time B. Define Gu = 0, i.e., there is no gap on the critical
machine Mu.

Summing up the equalities (15) and the inequality p(Nu) +Gu > suB, we deduce

m∑
i=1

p(Ni) +
m∑
i=1

Gi = p(N) +
m∑
i=1

Gi > B
m∑
i=1

si

=

(
2− 2

m

)
Cmax

(
S∗p (Ln,Mm)

)
Sm.

Since Cmax

(
S∗p (Ln,Mm)

)
≥ Tm = p (N) /Sm, we deduce

m∑
i=1

Gi >

(
1− 2

m

)
p(N). (16)

If there exists a gap Gi such that Gi ≥ pn, then job Jn could have been assigned to
machine Mi and it would have completed before B. Thus, for each non-zero gap Gi the
inequalities Gi < pn ≤ p(N)

n ≤ p(N)
m hold.

If the preemption had been used before the last job is scheduled, i.e., if J` 6= Jn, then the
number of such non-zero gaps would have been at most m − 2, since the assignment of job
J` leaves no gap on machine M`′ ; see Step 2(c). It follows from (16) that(

1− 2

m

)
p(N) <

m∑
i=1

Gi < (m− 2) pn ≤ (m− 2)
p (N)

m
, (17)

a contradiction.

Therefore, no preemption has been used prior to scheduling the last job Jn, and the
number of non-zero gaps is at most m − 1. We know that job Jn cannot be processed
non-preemptively to complete by time B.

Suppose that there are two machines M ′ and M ′′ with non-zero gaps G′ and G′′, respec-
tively, such that the total gap G′+G′′ is less than pn. Since each of at most m−3 remaining
non-zero gaps is less than pn, we deduce from (16) that(

1− 2

m

)
p(N) <

m∑
i=1

Gi ≤ (m− 3) pn + pn = (m− 2) pn,

leading to the same contradiction as above. Hence, in the remaining part of this proof, we
only need to consider the situation that the total duration of any two non-zero gaps is at
least pn.
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We show that job Jn can be processed with a single preemption, as described in Step 2(c)
of the algorithm for J` = Jn. Take a pair of machines M`′ and M`′′ such that G`′ +G`′′ ≥ pn.
In accordance with Step 2(c), define

xn = G`′ , yn = pn − xn,

which implies that

yn + p (N`′′) = yn + s`′′B −G`′′ = pn + s`′′B − (G`′ +G`′′) ≤ s`′′B,

i.e., condition (9) holds, as required.

Assume that p (N`′′) > 0, which means that there is at least one job, say, Ji, assigned to
M`′′ such that pi ≥ pn. Compute

xn
s`′

+
yn
s`′′
≤ xn + yn

s`′′
≤ pi
s`′′
≤ p (N`′′)

s`′′
≤ B,

i.e., condition (10) also holds.

Now, we only need to consider the case that p (Nv) = 0 for all machines Mv with v > `′.
Notice that for all these machines Gv = svB.

We can take the fastest machine M1 as machine M`′ , since this machine has a non-zero
gap prior to the assignment of job Jn; otherwise, there are at most m − 2 non-zero gaps in
schedule S(1) (Ln,Mm) and we can use (17) to derive a contradiction.

Thus, we only need to consider the situation that prior to the assignment of job Jn all
machines, other than the fastest machine M1, have no assigned jobs. We show that job Jn
can be processed with a single preemption on the two fastest machines, M1 and M2. Let us
assign the last job preemptively to machines M1 and M2 and according to Algorithm LPT1
we make M1 critical. For job Jn, split its processing time into two parts xn and yn, where
xn = s1B−p (N1) and that part of Jn is assigned to M1, while the remaining part yn = pn−xn
is assigned to M2.

To guarantee feasibility, we need to prove that (10) holds, i.e.,

xn
s1

+
pn − xn
s2

=
s1B − p (N1)

s1

(
1− s1

s2

)
+
pn
s2
≤ B,

which after multiplying by a factor of s2
s1
> 0, simplifies to

p (N1)

s1

(
1− s2

s1

)
+
pn
s1
−B ≤ 0. (18)

We use the fact that pn ≤ p(N)
m , so that the left-hand side of (18) satisfies

p (N1)

s1

(
1− s2

s1

)
+
pn
s1
−B ≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B.

Now ρ
(1)
m Tm = 2(m−1)

m
p(N)∑m
i=1 si

≤ B, so that

p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B ≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−2 (m− 1)

m

p (N)∑m
i=1 si

.
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Since s1 and s2 are the two fastest machine speeds, it follows that
∑m

i=1 si ≤ (s1 + (m− 1) s2),
so that

p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B

≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
− 2 (m− 1)

m

p (N)

s1 + (m− 1) s2

= − p (N)

ms21 (s1 + (m− 1) s2)

(
(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22

)
.

To show that (18) holds, we demonstrate that

(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22 ≥ 0. (19)

Recall that Algorithm LPT1 assigns all jobs except job Jn to machine M1, so that these
jobs complete at time (p (N)− pn) /s1. Since pn ≤ 1

mp (N), machine M1 completes no earlier

than time m−1
m

p(N)
s1

. On other other hand, job Jn cannot be assigned to M2 or to any slower
machine to be processed without preemption and to complete by time B, so that pn

s2
> B.

Thus, we have that
m− 1

m

p (N)

s1
≤ B <

pn
s2
≤ p (N)

ms2
,

which implies that s1 ≥ (m− 1) s2. Then we can express the ratio of the machine speeds as
s1
s2

= (m− 1)α, where α ≥ 1. Substituting into (19), we deduce

(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22

= (m− 2) (m− 1)2 α2s22 − (m− 1)3 αs22 + (m− 1)2 s22

= (m− 1)2 s22
(
(m− 2)α2 − (m− 1)α+ 1

)
= (m− 1)2 s22 ((m− 2)α− 1) (α− 1) ≥ 0,

where the last inequality holds since α ≥ 1 and we are only interested in m ≥ 3. Thus, Al-
gorithm LPT1 creates a schedule with a single preemption in which both machines complete
by time B.

Having considered all possible cases, we conclude that the minimal counterexample does
not exist and Cmax

(
S(1) (Ln,Mm)

)
≤ B for all instances as required.

To see that the established bound is tight, consider an instance of the problem with
m machines, all of unit speed except machine M1, which has speed m − 1, and m jobs
of unit length, i.e., Mm = (m− 1, 1, 1, . . . , 1) and Ln = Lm = (1, 1, . . . , 1). It is clear
that Cmax

(
S∗p (Lm,Mm)

)
= Tm = m

2m−2 . For this instance, an optimal preemptive schedule
requires 2 (m− 1) preemptions, which is the maximum estimate [7].

In an optimal non-preemptive schedule S∗(0) (Ln,Mm) at least one of the slower machines

will receive one job, so that Cmax

(
S∗(0) (Ln,Mm)

)
= 1, and that makespan cannot be reduced

if a single preemption is allowed. Indeed, suppose that there exists a schedule S∗(1) (Ln,Mm)

with exactly one preemption such that Cmax

(
S∗(1) (Ln,Mm)

)
< 1. Then a preempted job,

say job J`, is shared between a slow machine M ′ and the fast machine M1. Apart from the
piece of job J` machine M1 can process at most m − 2 jobs; otherwise it would complete
after time 1. Thus, a slow machine, other than machine M ′, must receive one job, i.e.,

Cmax

(
S∗(1) (Ln,Mm)

)
= 1.
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Observation 1 Theorem 3 still holds if a looser version of Algorithm LPT1 is used. It is
sufficient for the preemption to be used in Step 2(c) at any time, as long as any machine of
the chosen pair is made critical by the preempted job and the preemption is feasible.

Observation 2 We note that if Algorithm LPT1 is modified so that it is run allowing no

preemption and B is redefined as ρ
(0)
m Cmax

(
S∗p
)
, where ρ

(0)
m = 2 − 1/m, then the proof of

Theorem 3 can be appropriately adjusted to establish that ρ
(0)
m = 2 − 1/m is the power of

preemption. This is achieved by using a less restrictive algorithm than those used for the
same purpose in [18] and [16].

5 Conclusion

We have analyzed the scheduling problem on m uniform parallel machines with the objective
of minimizing the makespan, provided that at most one preemption is allowed. We have
shown that finding an optimal schedule for m = 2 can be done in polynomial time, and have
established a global tight bound on how much is lost for an arbitrary m.

For the problem on m uniform parallel machines, it is an interesting research goal to
deduce a bound on the ratio Cmax(S∗(q))/Cmax(S∗p), provided that at most any fixed number

q of preemptions is allowed, where 2 ≤ q ≤ 2 (m− 1). It is of interest to perform a parametric
analysis of the quality of schedules with at most one preemption on three uniform machines,
similar to a study conducted in [15]. Possible extensions may also include an objective
function other than the makespan and/or more general machine environment, e.g., unrelated
parallel machines.
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