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Abstract Air transport systems are highly dynamic at temporal scales from minutes to years. This

dynamic behavior not only characterizes the evolution of the system but also affect the system’s

functioning. Understanding the evolutionary mechanisms is thus fundamental in order to better

design optimal air transport networks that benefits companies, passengers and the environment.

In this review, we briefly present and discuss the state-of-the-art on time-evolving air transport net-

works. We distinguish the structural analysis of sequences of network snapshots, ideal for long-term

network evolution (e.g. annual evolution), and temporal paths, preferred for short-term dynamics

(e.g. hourly evolution). We emphasize that most previous research focused on the first modeling

approach (i.e. long-term) whereas only a few studies look at high-resolution temporal paths. We

conclude the review highlighting that much research remains to be done, both to apply already

available methods and to develop new measures for temporal paths on air transport networks.

In particular, we identify that the study of delays, network resilience and optimization of resources

(aircraft and crew) are critical topics.
� 2017 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Air transport has been increasingly important as means of
transportation in both developed and undeveloped coun-
tries.1,2 Although associated to relatively high costs, air trans-
port is generally safer and faster in comparison to other means
of transportation3,4 particularly to connect isolated rural areas

and islands with urbanized areas, or to connect mutually dis-
tant locations such as cities in different continents. Unfortu-
nately, air transport also contributes for the efficient spread

of infectious diseases over large spatial regions.5,6 Similarly
to other modes of transport, airplanes follow pre-defined air-
ways according to regulations of the airspace of a given coun-
try. The collection of source-destination of flights however

fundamentally characterizes the air transport network irre-
spective of the routes taken by aircrafts.
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Fig. 1 Illustration of a simple undirected static airport network.
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Altogether, pairs of cities (or airports) form a complex net-
work of flights in which nodes represent the locations and links
represent the fact that at least one flight occurred between the

two locations during some interval of time.7–9 This network
perspective helps to understand the inter-connections and
inter-dependencies between the multiple parts of the air trans-

port system. On the other hand, the network framework also
decreases the own complexity of air transport by reducing
the model to pair-wise interactions without taking directly into

account particularities of the system, as for example, the
impact of the weather, official regulations or types of aircrafts.
This information however can be added in a sophisticated
dynamic network model. Such simplifying approach is not

exclusive of air transport networks but has been used in vari-
ous disciplines to study the most diverse natural and man-
made systems.8,9 It helps to identify the most relevant mecha-

nisms driving the evolution and functioning of the system. The
goal is to reduce the complexity of the problem by focusing on
the structure of connections between its parts. There are a

number of studies focusing on the structural properties of air
transport networks.7,8,10–13 Such studies have been increasingly
appreciated by scholars studying air transport using standard

methods.14 By using network science, one is able to identify
the centrality or importance of certain airports at a global or
regional scale. In other words, one is able to identify bottle-
necks or clusters of airports with global relevance beyond

the trivial measures of accumulated traffic or size of an airport.
Due to the architecture of air transport system, sometimes,
medium-size airports are more strategic to connect different

parts of the network than larger hub-airports.15 These central
airports may not only indicate fragile parts of the network15,
i.e. failure or attack of these airports may severely disrupt a

large portion of the network, but also indicate strategic air-
ports to implement screening and infection control in order
to avoid worldwide pandemics.

One important feature of air transport networks is their
dynamic structure. The timings of departure and arrival of
flights vary considerable within a day, during the week or at
different seasons. Given these intrinsically dynamic character-

istics, the static network framework limits the study of certain
properties of these networks. Although valuable insights have
been provided by analyzing the static structure of flight net-

works at different temporal scales, there is increasing need to
use more advanced methods of network science to characterize
the network temporal evolution at small scales, i.e. at high

temporal resolution. In this review, we introduce basic con-
cepts of network science, particularly emphasizing temporal
networks, to those not familiar with the topic. We also review
the available literature dealing with empirical analysis of evolv-

ing air transport networks. We will not review papers focusing
on theoretical modeling of the evolution of air transport sys-
tems or papers on dynamics on networks even if these studies

aim to reproduce empirical observations or simulate realistic
processes (e.g. Refs.16–21). Our expectation is that this paper
fills in knowledge gaps and encourages further collaboration

between traditional research and network science for better
understanding of the capacities and limitations of air transport
systems. Network science can be used as a quantitative sup-

porting tool to better understand the complexity of the various
layers of the air transport system.

The review is organized by first introducing fundamental
concepts of network science, in particular, the definition of sta-
tic and temporal networks, and basic measures used to extract
information of air transport networks (Sections 2.1 and 2.2).
We then briefly summarize the sources of data used in the

reviewed papers (Section 2.3) and some computational tools
for network analysis (Section 2.4). These are followed by a lit-
erature review of airport networks at local (Section 3) and at

country (Section 4) levels, and the analysis of air route net-
works (Section 5). Afterwards, we present the state-of-the-art
on temporal networks (Section 6) and complete the review

summarizing the past and discussing perspectives for future
use of temporal network methods on air transport networks
(Section 7).

2. Network science

In this section, we first present some fundamental concepts and

measures of network science applied to air transport networks.
Afterwards, we define and discuss some aspects of temporal
networks. The section is closed with a presentation of data
sources and computational tools for network analysis.

2.1. Static networks

The air transport network can be defined by a set of locations

(airports, cities, regions or countries) named nodes (or ver-
tices), and a set of links (or edges), representing the flights,
connecting these locations pair-wise as shown in Fig. 1 (Tow-

ers and aircrafts represent airports, and lines represent the
links between airports, i.e. flights between pairs of airports.
The spatial position of airports in the network representation
does not necessarily correspond to actual geographic loca-

tions)). The level of spatial aggregation, from airports to coun-
tries, depends on the research questions and interests of the
investigator. Although the choice of this spatial resolution

may affect the network measures, the same methods, as
described bellow, may be used in any network model. Net-
works (mathematically described by graphs) are typically rep-

resented by an adjacency matrix A of size N � N (where N is
the number of nodes) which elements aij are equal to 1 if there
is at least one flight between nodes i and j and equal to 0 other-

wise.8,9 One may associate values, called weights, to links in
order to represent features of the flights (e.g. number of pas-
sengers or duration of the flight) or features of the respective
route between the locations (e.g. number of flights per day

or distance). In this case, a matrix W, with elements wij, is used



Fig. 2 Illustration of an airport temporal network.
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to describe the network. In a multiplex framework22–24, nodes
are typically fixed on each layer (though this is not necessary)
and the respective links correspond to different features of the

respective flight or route, e.g. number of passengers or amount
of cargo transported. Note that links can be either directed
(aij – aji) or undirected (aij = aji) according to source-

destination routes.
A fundamental quantity of a network is the number of

links, also called degree, of each node; it is given by ki = RN-

i=1 aij. Similarly, the strength8,9 of a node is given by si = RN-

i=1 wij. For directed networks, one also defines in-degree and
out-degree to represent incoming and out-coming links,
respectively. These quantities not only indicate the number

of secondary nodes (i.e. the node’s neighbors) or load (i.e.
the node’s weight) associated to a node but also gives the cen-
trality of the node in the network. Centrality is a measure of

the importance of the node and the degree, or the strength,
measures how important the node is regarding its local connec-
tivity. In other words, high degree means that a highly con-

nected airport (i.e. a hub) is more important than one that is
poorly connected. This measure is local and thus misses the
fact that some nodes may connect different parts of the net-

work even if they have relatively low degree. A typical example
is an airport with several connections between two distinct
continents or regions of a country, even though this particular
airport is not a major international hub. There are different

ways of estimating this type of centrality8,9; the most common
within air transport research is the betweenness centrality.8,9

Betweenness Bu measures the sum of the number of shortest

paths (measured by the path length) between any two network
nodes i and j passing through node u (r(i,u, j)), divided by the
number of possible shortest paths between all pairs i and j, i.e.

r(i, j). The path length between nodes i and j is defined as the
distance (path length) between the two nodes in terms of links
traversed.8,9 Consequently, high betweenness reflects the fact

that a node is a bottleneck between two or more parts of the
network. Other relevant centrality measures in network science
include the random walk and Page-rank.8,9

The clustering of nodes can be also estimated by different

measures. For example, the clustering coefficient of node i
measures the probability that two neighboring nodes, say u
and v (i.e. aiu = 1 and ajv = 1), are also linked (i.e. auv = 1)

between themselves.8,9 It is given by cci = ni/ei � (ei � 1),
where ni is the number of contacts of node i and ei is the num-
ber of contacts between the contacts of node i. In other words,

the clustering coefficient is a measure of the number (or den-
sity) of triangles in the network. At the mesoscopic level, one
may define the network community structure to identify
groups of nodes more connected between themselves than with

nodes at other groups.25 A typical example is the community
structure formed by a country in which several connections
occur between airports within the country but few connections

link a couple of international airports with their counterparts
at another country. More details on these and other popular
measures (e.g. assortativity or reachability) can be easily found

in the literature, see for example Refs. 8,9

2.2. Temporal networks

A temporal network differs from a static network in the sense
that now a different adjacency matrix26 is defined at each time
t, i.e. A(t) and consequently aij(t) (or the equivalent weighted
matrix W(t) for weighted versions of the network). The stan-
dard procedure is to collect all links within a time window [t,

t + dt) into a network snapshot as shown in Fig. 2 (Each
dashed horizontal line represents a different airport (P, Q, R
and S). Curved vertical lines represent active links between air-

ports, i.e. a flight connecting two airports. The resolution here
is dt = 1 h, therefore, each snapshot aggregates links within
one hour.). The parameter dt can be varied from minutes to

years, depending on the resolution available from data or on
the research questions. For example, daily variations of flights
may be irrelevant if one wants to map the long-term evolution
of the air transport infrastructure in a given country. In this

case, dt can be 1 month or 1 year. On the other hand, high-
temporal resolution (i.e. small dt) becomes important if one
wishes to understand the cascades of delays caused by unex-

pected weather conditions within a single day. The temporal
framework becomes interesting when the scale of the processes
taking place on the network is smaller (or at the same order)

than the scale of variations in the network structure. Under
these conditions, it becomes relevant to measure characteristics
of the network taking into account the temporal dynamics.

In the temporal framework, it is possible to either measure
static network structures for each snapshot, i.e. for each A(t),
and study how they change in time or to study the network as a
continuous temporal sequence of paths. In the second

approach, one considers only a single link per time step. For
example, in order to move from airport P to R in Fig. 2, one
has to move from P to Q at time 2 and then, from Q to R at

time 4. In this simple example, the topological distance is 2
but the temporal distance is 3 h. Temporal paths typically
reduce the number of potential paths and increase the distance

between nodes.27,28 Fig. 3 shows another example; although
node P is central in the static framework as shown in Fig. 3
(a), it is not if the temporal paths are taken into account as

shown in Fig. 3(b), Airport P is the most central. Numbers
represent the times in which the links are active or available.
Airport P looses importance if considering the temporal paths.
Because some flights occur before others and the network

becomes not strongly connected (i.e. not all nodes can be
reached by any other node in the network). Note that in this
simple example, the centrality of a node may completely

change in a way not captured by using the standard static net-
work formalism over a sequence of different network
snapshots.



Fig. 3 Static vs. temporal centrality.

Table 1 Data sources as reported in reviewed papers.

Source Region Refs.

Civil Aviation Administration of China

(CAAC)

China 33,36,43

Official Airline Guide – www.oag.com Worldwide 32,41

www.airdi.net Worldwide 29

Bureau of Transportation Statistics –

www.rita.dot.gov/bts/home

USA 16,28,38,46

Air Traffic Management Bureau

(ATMB) of China

China 51

Brazilian National Agency of Civil

Aviation – www.anac.gov.br/estatistica/

anuarios.asp

Brazil 40

United States Department of

Transportation Federal Aviation

Administration. Form 5010

– www.gcr1.com/5010web

USA 39

Traffic Flow Management System to

Aircraft Situation Display to Industry

Interface Control Document for the

Traffic Flow Management

Modernization Program – Federal

Aviation Administration 2009

USA 44

Eurocontrol – www.eurocontrol.int/ddr Europe 50
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One complication of modeling airports or flights as time-
evolving networks is that a flight departs from airport P say
at time t, and arrives at another airport Q at time t + s, where
s is the flight time. In principle, at times closer to t, the out-link

at P is not ‘‘felt” by airport Q whereas at times closer to t + s,
the in-link at Q is not ‘‘felt” by airport P. This is particularly
relevant for long-haul flights in which a delay on departure, for

example, can be compensated inflight by increasing the aircraft
speed and hence keeping s fixed. In other words, because of the
duration s of the flight, the activation of the link is not syn-

chronized in both airports, a phenomenon generally not
observed in other systems modeled by temporal networks.26

Although relevant at hourly or minute scales, this effect is irrel-

evant if modeling the network at lower temporal resolutions,
as for example, daily or annually. Note however that this does
not impede the propagation of delays (if not compensated
inflight), meaning that a departure 10 min late may imply on

arrival 10 min late as well. The research on temporal paths is
generally not well developed and thus measures and methods
are not extensively used apart from studies of human interac-

tion networks and diffusion dynamics. As a consequence, there
is no agreement on the elementary measures necessary to char-
acterize a temporal network. More details on temporal net-

works, algorithms and measures from the temporal paths
perspective can be found in the literature, see for example
Ref.26

2.3. Flight data

Air transport data are widely available through different
online sources. Nevertheless, many times a financial agreement

has to be done in order to use them for academic purposes.
Data at the country level is typically easier to obtain than
worldwide data, however several times the first lacks structure

and standardization for automatic downloading. Table 1
reports the sources of data used in the reviewed papers when-
ever it was clearly reported. In several studies, the data sources

were not available or multiple sources were used for different
years.

2.4. Computational tools

There are several computational tools to analyze complex net-
work data. Some are more complete than others, and some-
times an implementation of a particular algorithm is
available in the author’s webpage. Those interested on a quick

start to perform network analysis of air transport data but are
unwilling to implement their own codes may look at Table 2
for a range of free stand-alone softwares or network libraries

for known programing languages such as C/C++ (see e.g.
gcc.gnu.org), R (www.r-project.org), Python (www.python.
org) or Matlab� (www.mathworks.com).

3. Airport networks

In airport networks, nodes represent airports and links repre-

sent the fact that at least one flight occurred between two air-
ports. In some studies, airports serving the same city are
collapsed into a single airport to represent the same city. This
approach is recommended to avoid variations in flights serving

the same location e.g. one airport mostly serves domestic des-

http://www.r-project.org
http://www.python.org
http://www.python.org
http://www.mathworks.com
http://www.oag.com
http://www.airdi.net
http://www.rita.dot.gov/bts/home
http://www.anac.gov.br/estatistica/anuarios.asp
http://www.anac.gov.br/estatistica/anuarios.asp
http://www.gcr1.com/5010web
http://www.eurocontrol.int/ddr


Table 2 Stand-alone software and libraries for network data

analysis.

Software or library Web-address

Igraph – Generate networks,

analysis, etc.

For C/C++, R, Python

http://igraph.org/

Networkx – Generate networks,

analysis, etc.

For Python

http://networkx.github.io/

Pajek – Analysis and

visualization.

Stand-alone software

http://mrvar.fdv.uni-lj.si/pajek/

Cytoscape – Analysis and

visualization

Stand-alone software

http://www.cytoscape.org

Gephi – Analysis and

visualization

Stand-alone software

https://gephi.org/

Fitting power-law distributions

For C, R, Python, Matlab

http://tuvalu.santafe.edu/

~aaronc/powerlaws/
MapEquation – Detect

community structure and

visualization

Stand-alone applet

http://www.mapequation.org/

apps.html

Louvain method – Detect

community structure

For C++ and Matlab

https://perso.uclouvain.be/

vincent.blondel/research/

louvain.html
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tinations or low-cost flights whereas the other mostly serves
international destinations or cargo (e.g. Haneda and Narita

airports in Tokyo, Japan, or Charles de Gaulle, Orly and
Beauvais airports in Paris, France). This section reviews funda-
mental and network-based properties of evolving airport

networks.

3.1. Fundamental properties

The long-term evolution of airport networks is a consequence
of a number of factors, as for example, increase of gross
domestic product29, population growth, optimization of
resources, profit, and governmental market regulations.30

There is agreement that the deregulation of air transportation
in the 1970s in the USA caused major impact on the establish-
ment of flight routes.31 Similar governmental actions affected

the European and Chinese markets a decade later. One impor-
tant consequence of deregulation is that airport networks
mostly moved from point-to-point towards hub-spoke sys-

tems. As pointed out in Ref. 32, hub-spoke routes increased
66% while spoke-spoke and hub-hub increased 55% and
26% respectively in Europe in the period 1990–1998. A conse-

quence of this effect was a relative increase in the frequency of
flights between hub-spoke airports followed by a decrease in
hub-hub and spoke-spoke routes.32 The network consequence
is that some major airports became even more important to

define the resilience of the airport system against failures.
In this period following deregulation of air transport in var-

ious countries, different markets showed a strong variation in

the number of airports served by scheduled flights. In China,
several studies identified that the number of airports substan-
tially increased after the 1980s. For example, from 60 airports

in 1984, China moved to 91 airports in 200633 (Note that these
numbers depend on the dataset used). An analysis, dating back
to 1930, shows that the number of airports increased nearly
linearly in China during the 20th century.34,35 The passenger

traffic, on the other hand, increased 40 times during the same
period33, typically following the increase in the GDP.34,36 Sim-
ilar growth was observed in the US airport network, in which

airports increased from �300 in 1990 to �900 in 2010 (Note
that these numbers also depend on the dataset used) and the
number of transported passengers rose by nearly 50% during

the same period.37–39 In contrast to these trends, the Brazilian
airport network has decreased in the period from 1995 to 2006,
respectively from 211 to 142 airports.40 The difference in the
number of airports per dataset (in the same country) is typi-

cally due to inclusion or not of regular and private flights or
flights with few passengers during the entire year. For example,
in Brazil, the decrease in the number of airports is not due to

completely shutting down of airports but an effect of removal
of scheduled flights in certain airports during the interval of
data collection. The average degree has also decreased in the

same period in Brazil40 whereas the growth in the number of
connections seemed to stabilize in China after the mid-
90s.33,36 In Europe and worldwide, the number of connections

per airport has also increased during the 1990s and 2000s.33,41

Various studies reported strong variation in the number of
flights, passengers, cargo and mail in different routes, particu-
larly from the perspective of stable and new cities/

airports.36,38,40,42

It was generally observed a densification, in terms of the
clustering coefficient, of the airport networks in China43,

whereas in both Brazil and the USA, a small decrease occurred
after the 1990s.35,40 Mehta and colleagues reported a relatively
small clustering coefficient for the US airport network if the

network is considered at a daily resolution.44 Nevertheless,
all networks have shown small-world characteristics, i.e. high
clustering coefficient and small average shortest paths. The

concentration of links also varied between low-cost and full-
cost carriers, with a significant variation between winter and
summer months and during the 2000s, as reported in the con-
text of Portugal.45

One important analysis from the complex network point of
view is the degree distribution. The degree distribution is a his-
togram of the number of airports (or cities) with a given num-

ber of connections. All studied networks in the literature
showed a right-skewed distribution of degree, meaning that a
few airports (i.e. hubs) have several routes and flights whereas

the majority of airports have only a few routes and flights. One
attempt to characterize these distributions is to statistically fit
a function to the empirical data. There is an ongoing debate on
which is the most appropriate functional form to fit such dis-

tributions irrespective of the particularities of each context.
From the qualitative perspective, the important feature is the
broad distribution and not the best fit to data (See ‘‘fitting a

power-law distributions” in Table 2). The analysis of the
Brazilian,40 Chinese36,43 and the USA16,35 networks further
showed that the shape of the distribution is conserved over

periods of approximately 10–20 years shown in Fig. 4 (Both
power-law (in blue short-dashed) and power-law with expo-
nential cutoff (green long-dashed) functions were used to fit

the logarithmic binned empirical data (red crosses). See Ref.
40 for the data and related analysis.), meaning that even with
strong rewiring at the micro-level, the macroscopic character-
istics of the network remain roughly the same (i.e. has the same

http://igraph.org/
http://networkx.github.io/
http://mrvar.fdv.uni-lj.si/pajek/
http://www.cytoscape.org
https://gephi.org/
http://tuvalu.santafe.edu/<ucode type=
http://tuvalu.santafe.edu/<ucode type=
http://www.mapequation.org/apps.html
http://www.mapequation.org/apps.html
https://perso.uclouvain.be/vincent.blondel/research/louvain.html
https://perso.uclouvain.be/vincent.blondel/research/louvain.html
https://perso.uclouvain.be/vincent.blondel/research/louvain.html


Fig. 4 Degree distribution of the Brazilian airport network.
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functional form possibly with different parameters). Similar
results are observed for modeling the airport network at the

country-level29 (see more in Section 4). On the other hand,
the analysis of the worldwide air transport network showed
that the slope of the degree distribution decreased in time,

meaning that relatively more airports are observed with larger
degrees41 that indicates a general increase in new routes.

It is relevant to determine the importance of airports
beyond the degree centrality. Such analysis helps to identify

airports that are important in terms of their topological posi-
tions in the network. A widely used measure is the betweenness
centrality (see Section 2.1). The Brazilian airport network was

the first study investigating the annual evolution of the
betweenness for different airports. It was found that in
10 years, within the top 10 airports in Brazil, betweenness

increased almost 200% for one airport whereas it decreased
61% for another. All airports showed a strong variation in
these values.40 In China, the average betweenness centrality
increased from 1930 to 1970 and then maintained relatively

stable in the following years.34 The distribution of betweenness
values for each airport also generally presents a broad distribu-
tion,34 a sign that a few airports are much more central (and

critical) than the majority of them.
Bonnefoy and Hansman also studied the airport network of

the USA by types of aircrafts. Unsurprisingly, routes involving

turboprops and light piston aircrafts mostly generate spatial
networks in which links have short spatial coverage whereas
wide and narrow body jets created the typically observed

long-range connections between distant airports39 as those
described above. A limitation of previous studies is the lack
of connection between node’s importance and network fail-
ures. It is unclear for example if highly connected or central

(in terms of betweeneess) airports are the most critical to keep
the network functioning.

3.2. Community structure

The pattern of connections between airports in a given period
of time may imply that airports are clustered in groups, i.e.

network communities. These groups are not necessarily stable
but may evolve with the network. Gegov and colleagues per-
formed a network community analysis on the USA airport net-
works by looking at a sequence of networks, aggregated every
2 months46, in the USA context. They have observed that com-

munity structure generally overlap with spatial distribution but
some airports may not be in the same area (e.g. west coast and
northwest form a single community, that is more explicit and

stable in 2000 than in 1990, but not in 2010). A variation of
membership on each community or group is also observed
within a year. Interestingly, they have found a strong correla-
tion between air travel within the same (and between) commu-

nity(ies) and migration patterns. The evolution of the US flight
network community structure was also briefly investigated in
Ref. 47 The authors conclude that the community (or modular)

structure is spatially constrained with several mixed communi-
ties in the continental USA and unique communities in Alaska
and Hawaii.

The evolution of the community structure of air transporta-
tion networks remains a poorly studied subject and so far lim-
ited to the USA context. It is not clear for example how and
when communities are created or disappear over time, or if

new and disappearing communities are simply a result of split-
ting and merging of existing communities due to re-routing. In
fact, these questions could be resolved if longer datasets

become available and appropriate clustering algorithms for
evolving network adopted for the respective analysis.48 It is
also unclear if the analysis of weighted networks could change

the geographic constrains observed in non-weighted networks
(see studies above). The highly dynamic changes observed at
the flights’ and passengers’ levels possibly affect the commu-

nity structure of such networks at different times. Finally,
the study of airports connecting different network communi-
ties (bridge nodes) would be valuable information to identify
critical airports that potentially can disrupt parts of the net-

work. Such information should be compared with centrality
measures (see Section 3.1) for better understanding of the net-
work structure.

3.3. Other analysis

Sophisticated methods, beyond betweenness, to analyze the

connectivity and node centrality of airport networks are avail-
able in the literature. For example, Allroggen and collabora-
tors49devised two indexes, named global connectivity and
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global hub centrality, to measure the quality of scheduled air
services taking into account frequency, detours, lay over time
and destination quality derived from passenger behavior.

The goal was to develop a centrality measure taking into
account quality rather than shortest paths between airports.
They have analyzed the worldwide network from 1990 to

2012 and observed a growth of connectivity but heterogeneous
trends in terms of type of connectivity. The USA and Euro-
pean airports accounted for 63% and 23% of global nonstop

connectivity in 1990. This connectivity share of airports
declined from 92.0% to 75.4% in the 2000s. In 1990, 87.4%
of global one-stop connectivity was facilitated through hub
operations in the USA. Between 1990 and 2000, 93.6% of

the global hub centrality growth occurred at airports in North
America and Europe. In particular, strong centrality growth of
European airports caused the global hub centrality share of

European (USA) airports to increase (decrease) from 10.0%
(87.4%) in 1990 to 20.1% (75.3%) in 2000.

Sun and collaborators50 studied the daily and monthly vari-

ation of a number of centrality measures (considering both
weighted and non-weighted versions of the network) on the
European airport network. They have observed significant

variation in the degree and weighted degree at different
months and in the weighted closeness (closeness measures the
reciprocal of the average distance between a given node and
all other nodes in the network) during the week. Furthermore,

they have observed that airports are more clustered and have
shorter distances between them during the week in comparison
to weekends. They emphasize that the distribution of these

centrality measures are heterogeneous and some airports are
much more central than the majority.

These studies have focused on identifying the centrality of

specific airports and connected the estimated centrality to the
airport’s importance in the network without empirical valida-
tion. They did not consider realistic or simplified dynamics of

flights on top of the evolving networks to investigate the
impact on traffic of attacks or failures of these strategic air-
ports. Future studies should focus on comparing node’s impor-
tance with real-life or simulated critical events observed in the

air transport network to study if criticality has also changed in
time.
4. Air transport country network

In order to understand the role of countries in the global air
transport network, it may be useful to group, into a single

node, all airports of a given country such that connections only
occur between different countries. This course-grained
approach helps to identify mobility patterns between coun-

tries. Wandelt and Sun29 showed that the average degree
increases from nearly 35 (in 2002) to nearly 40 (in 2014). As
expected, the average degree suffers a cyclic pattern in which
summer months contain more routes than winter months.

They have also applied a number of network measures to iden-
tify critical nodes, that is, the USA, France, Great Britain,
Australia and South Africa (with United Arab Emirates

increasing its overall importance). Critical links on the other
hand involved Great Britain to USA, Japan to USA, and
France to Great Britain. Such analysis is relevant in the situa-

tion that the airspace of certain countries has to be reduced or
closed temporarily as it happened in northern Europe during
the eruption of Eyjafjallajökull Vulcan in 2010, in Belgium
during the terrorist attacks in 2016 or during country-wide
strikes of air traffic controllers or pilots. The increasing depen-

dence of a few key countries and routes makes the air transport
network more vulnerable to disruption because of unexpected
localized events.

5. Air route network

Similarly to highways or railways, air transport is also limited

by airways, that is, pre-defined regions of the sky in which civil
aircrafts are allowed to fly. Airways not necessarily follow the
shortest path between two airports but they simplify and facil-

itate control by air traffic controllers. Cai and colleagues stud-
ied the air routes (or airways) of China.51 As expected, airways
are strongly constrained by spatial patterns and as a conse-

quence the network has 1013 nodes (in contrast to the airport
network with 147 nodes according to the same study) and 1586
links, with a relatively low average degree of 3.13. The spatial
constrains also imply a large diameter of 39, very small cluster-

ing coefficient (0.08) and low average betweenness. The degree
(and strength) distribution is closer to an exponential distribu-
tion, a direct consequence of the spatial nature of the airway

network, meaning that no nodes are favored and a character-
istic number of links per node is observed. The shape of the
degree distribution remains the same from 2002 to 2010 but

the exponent decreases indicating an increase in the traffic
flow. In fact, traffic flow increased exponentially in this period.

Sun and collaborators50 studied daily and seasonal varia-
tions in the betweenness of airports in the air route network

of Europe in the period from 2011 to 2013. They have found
that most centrality measures do not present large variations
during these cyclic periods but weighted degree shows a strong

monthly variation. Nodes are more clustered and have shorter
distances in summer in comparison to winter months. Further-
more, there is evidence that some nodes are more central than

others, implying that these central nodes may be bottlenecks of
this particular air transport network. These airway networks
are in fact expected to be relatively stable within short time

intervals (e.g. a few months or years) due to demand, regula-
tions and availability of airspace. Consequently few variations
in the network structure are observed. This is in contrast to
flight networks in which the network is expected to be dynamic

during the week or seasonally. In the near future, the expected
implementation of the so-called free flight air traffic control
system will make such airway networks highly dynamic since

pilots will have more freedom to choose pathways within cer-
tain areas. One consequence is that resilience will differ over
time across the network and will be more flight-dependent.

Network modeling efforts in this direction are largely appreci-
ated and could support efficient implementation of such de-
centralized system to avoid congestion, bad weather and to
optimize flight times.

6. Temporal networks

A particular characteristic of the previous studies is that they
estimate network statistics using snapshots of the network at
a given time or interval of time, typically of at least one day.
This approach means that one performs a static network anal-

ysis at different times and studies how these measures evolve in
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time. Nevertheless, if processes taking place in the network
occur at scales comparable to the variations in the network
structure (as for example, flights during the day), it becomes

relevant to measure characteristics of the network taking into
account all temporal paths simultaneously (see Section 2.2).
This high-temporal resolution approach is relatively new in

network science and remains poorly exploited to study air
transport networks. In this section we review state-of-the-art
results on airport networks using temporal paths and time-

series analysis of airport activity.

6.1. Temporal paths

Pan and Saramäki28 introduced the concept of path lengths
and centrality in temporal networks (see also Ref. 27), and
applied their methods to the USA airport network during 10
subsequent days in 2008. They have observed that nodes rela-

tively close in the static network may be connected via slow
(distant) paths in the temporal version of the network. More-
over, correlations and heterogeneities in the event sequences,

due to optimized scheduling of flights, imply that temporal
path lengths decrease in this network. This study illustrates
an important phenomenon that happens when the network is

viewed as an evolving structure, i.e. the order of link activation
decreases significantly the number of paths between two nodes.
This is in contrast to sequences of snapshots in which snap-
shots are independent of each other and nodes are only reach-

able if belonging to the same snapshot. Within this context,
research on temporal centrality is missing and could add signif-
icantly to the field, i.e. the study of the importance of airports

if temporal paths are taken into account. One limitation of
their work is on the meaning of considering subsequent days
to create the temporal network. For example, delays are gener-

ally reset over night and thus, unless under special circum-
stances, rarely propagate from one day to another. It would
be more interesting to consider flights within a single day

instead.

6.2. Delays

Depending on the research questions, the study of temporal

airport networks may also benefit of tools from time-series
analysis. By neglecting the network structure, one may focus
on the temporal aspects of the evolution of some variable, as

for example, the number of flights or accumulated delay in a
given airport. Such perspective may benefit of a vast literature
on time-series analysis,52 including methods for forecast

behavior, synchronization of activity, short or long-term corre-
lations, and Fourier analysis. One such study, by Belkoura and
Zanin,53 involves the analysis of the delay propagation on the

100 busiest airports in Europe during a few months in 2011.
The average delay is calculated using 1-h time intervals for
each airport. By using the Granger causality (to analyze sys-
temic delays) and a new metric for extreme events, the authors

concluded that systemic and extreme delays propagate in dif-
ferent ways within such network of airports.53 Both the thresh-
old (for delay propagation) and the additional delay, needed to

trigger a phase change, increase with the airport traffic. They
have also identified that large airports cause less delay propa-
gation than smaller airports, possibly because of their available

resources to manage critical situations.53,54 One interesting
addition to this analysis would be to identify common charac-
teristics between airports in which the delays propagate, as for
example, if systemic delays propagate in airports belonging to

the same network community or spatial region.
In the context of the USA, Fleurquin and collaborators55

observed that in 2010, delays showed similar statistics for dif-

ferent days of the week and different seasons. Major differ-
ences however were observed for different airports. In all
cases, broad distributions of delays were observed. For long

delays (more than 12 h), they observed a relative concentration
of delays early in the morning and late in the afternoon, in con-
trast to short delays (less than 12 h) that showed a nearly flat
delay distribution during business hours. One limitation of this

study was to consider only delays larger or smaller 12 h that is
a too long interval. It would be interesting to estimate the
statistics of shorter intervals of delays as for example, 1, 2

and 4 h.
Due to the time scale (minutes to hours) in which delays

occur, their studies mostly benefit of high-resolution temporal

network analysis. Delays are dynamic and typically change
over the day and space. Understanding how they propagate
is critical knowledge to develop efficient air transport systems.

Nevertheless, the study of delays at different days is equally
important since one can identify advantages and disadvantages
of re-routing due to weekly or seasonal passengers fluctua-
tions. One important limitation in the previous studies is that

authors missed to distinguish delays at different seasons and
weekdays. One may naturally expect more delays during holi-
days than during regular days.

7. Conclusions and perspectives

Air transport systems play a crucial role in human mobility,

transportation of goods, economics and spread of infectious
diseases. Understanding the mechanisms driving air transport
dynamics is a fundamental step to better control and optimize

such systems. Air transport systems are also highly dynamic,
the long-term evolution reflects population and economic
growth, and the short-term dynamics reflects passenger needs

and optimization of resources due to daily, weekly or seasonal
fluctuations. Here, we briefly survey studies dealing with the
evolution of air transport systems at different temporal and
spatial scales. The goal is to map the state-of-art to identify

the advances in the field and areas in need of further research.
Generally speaking, we have observed that significant

research has been done at the annual, monthly and daily scales

taking the perspective of evolving networks as subsequent
snapshots of static networks, that is, each snapshot is analyzed
using statistics for static networks and the evolution of the

variable of interest is studied. Little research has focused on
understanding the relation between structure and systemic
and exogenous perturbations. For example, several studies
have analyzed centrality measures but did not link these cen-

tralities with critical events such as network failures and
delays. Similarly, the importance of community structure has
not been fully exploited in order to understand the evolution

of the network and the propagation of delays within parts of
the flight network. Similarly, little has been done to understand
how evolving networks affect the spread of infections or the

resilience of the air transport network against failures and tar-
geted attacks. It is unclear if the increasing concentration of
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routes in fewer airports made the network more resilient or
vulnerable. On the other hand, it is a consensus that airport
networks evolve quite dynamically at the route level though

keeping macroscopic quantities, such as degree or betweenness
centralities distributions, constant.

We have also identified that only a few studies approach

evolving networks from the perspective of temporal paths.
The study of temporal paths has gained momentum in recent
years within the broader field of network science, particularly

on the topic of diffusion processes on dynamic networks.56–58

Methods to study temporal network structures remain scarce
and have not reached significantly the discipline of air trans-
port systems. The biggest advantage of temporal paths is that

they capture the relation between subsequent snapshots of the
network in contrast to the previous approach in which this
inter-snapshot relation was discarded or neglected. Temporal

paths are particularly relevant to study highly dynamic struc-
tures, as for example, the hourly dynamics within a single
day. Relevant problems not yet fully studied include the effect

of evolving structures on delays and consequently the resilience
of the network during a given day. The fact that static and
temporal centralities typically differ (as suggested by research

on non-transportation datasets26) may have a major effect
on the dynamics on the network and should be carefully stud-
ied, particularly to understand delays, network resilience and
propagation of infections. Similarly, we currently do not know

the relevance of community structure on the propagation of
delays and infections. It may be that temporal community
structure (and not static community structure) is correlated

with this propagation within a group of airports. Not less
important is how to improve connectivity aiming to decrease
total travel time while optimizing resources (i.e. aircrafts, air-

port slots and crew) and maximizing profits. For example,
heterogeneity of aircrafts has not been considered when study-
ing the evolution of the network. Geographic constrains also

play a role; understanding its importance together with the
temporal aspects of flights remain an open problem.

One challenge on studying air transport networks as tempo-
ral networks is to satisfy the computational requirements.

Since several networks (the network snapshots) are studied
at once, the memory needed to deal with such networks is typ-
ically high. Even if the network is small in terms of nodes, each

snapshot needs a new adjacency matrix. Moreover, a typical
routine of calculating a path can be prohibitively slow if tem-
poral paths are considered.

As mentioned above, research on temporal paths (broadly
known as temporal networks) is still in its infancy.26 Neverthe-
less, some studies already provide useful tools that could be
applied to the understanding of air transport systems. For

example, centrality measures (see Section 4.4 of Ref. 26 for ref-
erences), the characterization of temporal paths (see Section 4.3
of Ref. 26), community structure48, or flow motifs (see Sec-

tion 4.1 of Ref. 26). The caveat however is that such methods
have to be adapted to the asynchronous nature of flights at dif-
ferent airports, as discussed in Section 2.2 of this review. One

possibly fast track is to use methods based on diffusion pro-
cesses, as for example random walks or epidemic models (or
even a realistic model of flights), because in these cases it is rel-

atively easier to deal with asynchronous connections, that is, a
walker (or an infection) may leave a node at a given time t and
arrive at another node at time t + s. Irrespective of the
methodology, further collaborations between air transport
experts and network scientists are necessary to make sense of
network measures in the context of air transport. Currently,
most research has focused on characterizing the evolution of

the network structure of air transport systems but made little
or no connection on practical problems such as optimization,
vulnerability, accessibility or propagation of delays or

infections.
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