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Abstract

In this work, CFD is used to show how the combined motion of heaving and pitching a 2D square

cyliner located in the middle of the channel can be used to enhance mixing of two fluids flowing at

a very low Reynolds number along a rectangular channel. Both type of motioins are applied and

enforced with a phase difference at the same time, but at difference frequencies and amplitudes,

in order to see if mixing efficiency can be enhance. The characteristics of five governing input

parameters and output results are examined. The input parameters consist of two frequencies, one

for heaving and one for pitching, and two amplitudes, one for heaving and one for pitching. The

output results are mixing efficiency, input power coefficient and mixing energy cost. The Optimal

Space Filling algorithm is used to generate 60 different combinations of the input parameters

which are used in the numerical studies. Different response surfaces of the output parameters

are obtained. It is noted that certain combinations of the input parameters produce the highest

mixing efficiency (around 55%), the lowest input power coefficient (around 260 units). or the lowest

mixing energy cost (around 13 units) are found. On the other hand a multi-objective optimisation

is also carried out in order to find the input parameters that give rise to the highest possible

mixing efficienty with lowest possible input power coefficient. A set of optimal solutions leading

to Pareto Front is obtained which shows the trade-off between the objectives. Three potential

optimal candidates are proposed in this paper.

Keywords: Micromixing, Rectangular cylinder, Low Reynolds numbers, Mixing efficiency,

Mixing cost, Single and multi-objective optimisation.
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1. Introduction

Mixing with microscale is nowadays a great challenge due to the wide variety of LOC (Lab On

a Chip) microdevices where an efficient mixing between entering fluids is highly desired. These

devices are quite important specially in microfluidic systems, with applications for both biomedical

and biological analysis, or for chemical synthesis. Some reviews on these topics are listed here

[Beebe et al., 2002, Hessel et al., 2005, Mansur et al., 2008, Carpeto et al., 2011, Lee et al., 2011].

Due to the very small dimensions of the devices, the governing Reynolds number is quite small

and laminar flow appears throughout the device. Together with frequently low molecular diffusion

between mixing fluids, any kind of actions should be taken into account in order to improve mixing

efficiency. One effective solution for enhancing efficiency is by increasing the interfacial contact

surface between the different liquids to be mixed. Either active or passive mechanisms may be

used and the aim is to reduce the diffusion distance using Fick’s first law. There are many different

ways that active mechanisms may be applied in order to increase the mixing efficiency. This paper

examines such mechanism through the use of moving elements. Some related work in the literature,

including the use of only the heaving motion of a square cylinder to improve mixing when fluids flow

at a very low Reynolds number [Ortega-Casanova, 2016], the improvement of channel exit by simply

pitching a square cylinder [Ortega-Casanova, 2017], and the development of a micromixer with a

stirrer being drived at speeds of 100-600 rpm based on a micromachined magnetic-bar powered by

a rotating magnetic field in some biological laboratory-on-a-chip applications [Lu et al., (2002)].

Lu et al in fact examined an array of bars and showed that at zero rotor spped the mxing efficiency

was 80% 3 mm downstream, but when rotating at 600 rpm the same efficiency was achieved as

soon as the fluids passed the stirrer. This effect of enhancing mixing was confirmed at each of

the rotor speeds they tested Ryu et al improved the micromixer that was proposed by Lu et al.

[Lu et al., (2002)] and manufactured a “micro magnetic stir-bar integrated in parylene surface-

micromachined channels with improved design features, including small tolerance of the stir-bar to

channel wall” [Ryu et al., (2004)]. This improved design increased not only the mixing efficiency

but also showed that the magnetic stir-bar could be used to pump liquid along the microdevice.

They also demonstrated that complete mixing was achieved instantly just downstream of the stir-

bar. In comparison with Lu et al., this full mixing was thought to be due to the fluid going through

the stirrer instead of passing around it as happened in [Lu et al., (2002)]. Lin et al. presented a

novel approach to achieve efficient mixing by using the Lorentz force to induce two counter-rotating
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streams producing a in-plane resonance of a rectangular microplate [Lin et al., (2011)]. After using

different excitation voltages, Reynolds and Peclet numbers attained the maximum efficiency of

around 93% at a Reynolds number of 0.0037 just one device length-scale downstream. Chen et

al. studied a new beating behaviour of artificial cilia looking for rapid and complete fluid mixing

in microdevices [Chen et al., 2014]. In comparison with the mixing with static cilia, for which the

micromixing was relatively low, the beating of the artificial cilia made the mixing performance

increased sharply up to around 90%. Rahbar et al. also presented a micromixer Rah14 with

artificial cilia doped with rare-earth magnetic powder which was controlled by magnetic fields. It

was shown that the cilia can be manufactured as either individual microdevices or in arrays, which

increase the mixing performance. An efficiency of around 85% in 3.5 minutes and that time could be

reduced to 70 seconds by using an array of eight cilia filaments was obtained. Other recent studies

dealt with different active mechanisms, among others, are those by Kunti et al. [Kunti et al., 2017]

and Erkoc [Erkoç et al., 2016]. In the former study, a microgrooved channel floor with asymmetric

pairs of electrodes and an array of them on the top wall consisting of a novel alternating current

electrothermal micromixer, was able to obtain full, uniform and homogeneous mixing. In the latter

study, a 2D T-jets mixer was used to assess the effect of the pulsation/modulation of jets flow rates

on the dynamics of mixing. It was observed that the impact of the jets flow rate modulation on

the flow field dynamics increases when modulation amplitude increases up to the point where it

can completely drives the dynamics of the system.

As can be seen, different active mixing strategies can be used to enhance mixing where, when

necessary and mainly by means of magnetic forces, certain parts of the microdevices can be forced

to move which, usually, increases mixing efficiency. In this work the combined motions of heaving

and pitching a 2D square cylinder located inside a straight channel is used to demonstrate the

benefits when mixing two fluids at a low Reynolds and high Schmidt/Peclet numbers. This work

can be see then as a third way of mixing fluids by means of moving a 2D square of which previous

motions were heaving [Ortega-Casanova, 2016] and pitching [Ortega-Casanova, 2017] on its own.

The aim of this work is to show optimal working points and as high as possible the mixing efficiency

is as high as possible. Note that in single motion type of mixing the input power requirements and

mixing energy cost are as low as possible.
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Figure 1: Sketch of the mixing domain.

2. Geometry

The proposed active mixing mechanism intends to mix two identical fluids entering through the

left hand side of a 2D channel when the Reynolds number based on the channel width is very low.

Fig. 1 shows a sketch of the geometry in this study: it is Ĥ meters wide and L̂ meters long (−̂ is

used to denote dimensional magnitudes). Both fluids enter with an identical and uniform velocity

Û and with the same physical properties such as, the density ρ, the viscosity µ and the mass

diffusivity D which are constants. The inlet streams have different solute mass concentrations.

The lower one contains all solute (fluid 1) to be mixed while the upper one does not (fluid 2)

(see Fig. 1). In the figure, one can also see the Cartesian coordinate system used throughout the

study (x̂, ŷ), with origin located in the middle of channel width and at a distance X̂u downstream

the inlet (x̂ is the streamwise direction while ŷ the spanwise). The square cylinder, with side ˆ̀,

is located initially at a distance from the cylinder centre to the side walls of Ĥ/2 and with an

incidence angle of 45°, i.e. with its corners aligned with both coordinate axes. The position shown

in Fig. 1 corresponds to a certain instant when the square cylinder has undergone heaving and

pitching.

3. The governing equations

The equations governing the flow and mixing of both fluids are, as in [Ortega-Casanova, 2016,

Ortega-Casanova, 2017], the unsteady Navier-Stokes (NS) equations (continuity and momentum

equations) and the Advection-Diffusion (AD) equation. Therefore, under the consideration of an

incompressible fluid with velocity v̂, pressure p̂ and mass (concentration) of solute m̂ of a specie

moving with the fluid, the governing equations in a dimensionless way can be written as

∇ · v = 0, (1)

∂v

∂t
+ (v · ∇)v = −∇p+

1

Re
∇2v, (2)

∂m

∂t
+ (v · ∇)m =

1

Pe
∇2m, (3)
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wall[c][c][1]Side wall 1[c][c][1]Sliding lines for heaving 2[c][c][1]Sliding line for pitching

Figure 2: Sketch of the sliding curves for Dynamic Mesh configuration.

where as characteristic magnitudes, as usual in channel flow problems, have been chosen Û , Ĥ and

Ĥ/Û as characteristic distance, velocity and time, respectively, while regarding the mass of solute,

m̂o has been selected as its characteristic value (ρÛ2 would be the characteristic pressure). As

can be seen from the set of governing equations (1)-(3), the dimensionless governing parameters

are the Reynolds number Re = ÛĤ
ν

and the Peclet number Pe = ÛĤ
D

, where ν is the kinematic

viscosity and D the mass diffusivity. Additionally, the Peclet number can be written in terms of

the Reynolds number as Pe = ReSc, where Sc is the Schmidt number given by Sc = ν
D

, which is

only fluid properties dependent.

This set of equations, together with the corresponding boundary conditions (see [Ortega-Casanova, 2016]),

will be solved numerically in this work by means of the commercial software ANSYS-Fluent© [1]

together with its dynamic mesh option to implement the pitching and heaving motions of the

square cylinder. Fluent mathematical formulation was based on pressure, and all the discretiza-

tion methods used for space and time were second order accuracy, while the velocity-pressure

coupling was handled by the SIMPLE algorithm. The cylinder heaving and pitching oscillations

were achieved by the Dynamic Mesh technique available in Fluent©, as in [Ortega-Casanova, 2016,

Ortega-Casanova, 2017], but now the mesh will slide around the sliding lines indicated in Fig. 2 to

account for both kind of motions. Finally, the motion of the centre of gravity of the cylinder and

its orientation are indicated by means of an User Defined Function (UDF in Fluent’s terminology)

where motion equations (see next Section) are implemented.

4. Kinematics of the square cylinder

With the square cylinder initially located at the origin of coordinates, as the time goes, it will

heave with the spanwise location and velocity given, respectively, by

h(t) = Ah sin(2π Sth t), (4)

and

V (t) = 2π SthAh cos(2π Sth t), (5)

where Ah is maximum displacement of the pitching motion and Sth is the dimensionless frequency

of the heaving oscillation, i.e. the heaving Strouhal number. The square cylinder will also pitch
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with the incidence angle and angular velocity given, respectively, by

α(t) = α0 + Ap sin(2π Stp t+
πφ

180
), (6)

and

Ω(t) = 2π StpAp cos(2π Stp t+
πφ

180
), (7)

where α0 and Ap are the initial and maximum angle of the pitching motion, respectively, Stp is

the dimensionless frequency of the pitching oscillation, i.e. the pitching Strouhal number, and φ

is, in degrees, the phase difference between the heaving and pitching motions.

Initially, at t = 0, α = α0(= 45°) and h = 0, being the upper (or lower) initial gap between

the cylinder and the channel walls given by Hg = H−2` sin(π/4)
2

. Regarding the amplitudes Ah and

Ap, they will be rewritten as Ah = KhHg and Ap = Kp2π, where Kh is the percentage, so much

per one, of Hg the cylinder moves up and downward while Kp is also the percentage, so much

per one, of a complete revolution. The range of both motion amplitudes used in this study are

0.1 ≤ Kh ≤ 0.8 and 0.05 ≤ Kp ≤ 1.

5. Numerical considerations

Both in [Ortega-Casanova, 2016] and [Ortega-Casanova, 2017] were carried out validation tests

to assess if the followed methodology was good enough to solve both low Reynolds number flows

around square cylinders and mixing fluid problems. It was then shown that both kind of problems

were solved adequately by means of Fluent software. Additionally, grid and time step convergence

studies were also done in order to find the optimal mesh size ds and time step ∆t. For that

reason, the same optimal configurations used in [Ortega-Casanova, 2016, Ortega-Casanova, 2017]

have been used now, since they were shown to give very good results. In particular, regarding the

time step, it has been now based on the highest frequency motion (lowest oscillation period) thus

StM = max(Sth, Stp) so ∆t = St−1M /N , with N = 2000 being the time steps per lowest oscillation

period. Regarding the size ds of the used mesh, ds/` = 0.025 with a discretization uncertainty in

terms of GCI of ∼2.41%.

6. Assessment of the mixing

To assess the quality of a device in mixing fluid processes, it is frequently used a mixing

efficiency. It is based on the mass fraction standard deviation σ of one of the fluid at the channel
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outlet. Thus, by using the standard deviation σ given by

σ(t) =

{∫ 1/2

−1/2
[m(t, y′)−m]2 dy′

}1/2

, (8)

the mixing efficiency η, in %, is then defined as [Ortega-Casanova, 2016, Cheri et al., 2013, Hsiao et al., 2014,

Sarkar et al., 2014]

η(t) =

(
1− σ(t)

σmax

)
× 100. (9)

The magnitude m in (8) is the mean mass fraction at the channel outlet while in (9), σmax is the

maximum standard deviation at inlet (in our problem, both m and σmax are 0.5). Besides this,

since 0 ≤ m ≤ 1, at the outlet we will have 0 ≤ σ ≤ 0.5: σ = 0 means full mixing (η = 100%);

and σ = 0.5 no mixing at all (η = 0%).

In [Ortega-Casanova, 2016], a mixing energy cost mec was also used to identify the best com-

bination of input parameters in order to find out the heaving configuration giving the best mixing

but with the lowest input power requirements, i.e. the cheapest configuration from a cost point

of view, so it will be also used now. To that end, first of all, the input power requirements to run

the channel and pitch and heave the square cylinder must be assessed. In terms of input power

coefficients (made dimensionless, as usually, with 1
2
ρÛ3Ĥ), firstly, the one for running the channel

can be evaluated as [Ortega-Casanova, 2016, White, 2003]

CPrunning
(t) = 2 Eu(t), (10)

with Eu(t) = ∆p̂(t)/(ρÛ2) being the instantaneous Euler number based on the pressure drop

along the channel (in (10) it has also been taken into account that dimensionless flow rate is

unity). Secondly, the input power coefficient for pitching the square cylinder can be evaluated as

[Ortega-Casanova, 2017, Ashraf et at., 2011, Hoke et al., 2015]

CPpitching
(t) = −CM(t) Ω(t) `2, (11)

with CM = M̂/(1
2
ρÛ2 ˆ̀2) being the coefficient of moment and M̂ the pitching moment. And thirdly,

the corresponding input power needed to heave the cylinder, in terms of the corresponding input

power coefficient, can be written as [Ortega-Casanova, 2016]

CPheaving
(t) = −` Cl(t) V (t), (12)

with Cl(t) being the instantaneous lift coefficient. The way input power coefficients have been

made dimensionless is the reason because ` appears in (12), since Cl has been based on ˆ̀.
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Figure 3: Input parameter planes with the corresponding simulated values.

Now, if all three input power coefficients are integrated together in time over a period T , its

time-averaged value can be evaluated as

CP =
1

T

∫ t0+T

t0

(
CPrunning

(t′) + CPpitching
(t′) + CPheaving

(t′)
)
dt′. (13)

t0 is a reference time once the flow reaches a periodic, or quasi-periodic, behaviour. Similar

expressions could be used to get mean input running, pitching and heaving coefficients). Finally,

the mixing energy cost can be evaluated as [Ortega-Casanova, 2016]

mec = CP/η, (14)

where, due to the fact that η is time-dependent, its time-averaged value η, calculated as

η =
1

T

∫ t0+T

t0

η(t′)dt′, (15)

will be also used.

To assess how good pitching and heaving motions are when are used to mix fluids at low

Reynolds numbers, η, CP , and mec will be evaluated in next Section 7.

7. Results

Once the optimal mesh and number of time steps per lowest oscillation period were chosen,

several numerical simulations have been conducted for different values of the 5 input parameters

while, as in [Ortega-Casanova, 2016, Ortega-Casanova, 2017], the Reynolds and Peclet/Schmidt

numbers have been fixed in the study: Re = 1, Pe = Sc = 104. Additionally, instead of study a

big range of input parameter potential good values, we have focus on a small range around their

optimal values found in [Ortega-Casanova, 2016, Ortega-Casanova, 2017]. In particular, 0.5 ≤

Sth, Stp ≤ 1.5, 0.1 ≤ Kh ≤ 0.8, 0.05 ≤ Kp ≤ 1 and 0°≤ φ ≤ 360°. To select their corresponding

studied values we made use of the ANSYS Design of Experiments (DOE) technique, which allows
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Input parameters Output parameters

Kh Kp Sth Stp φ η [%] Cp mec

min(η) 0.176 0.108 1.342 0.942 207° 7.0 531.0 75.3

min(Cp) 0.561 0.042 0.658 0.975 261° 24.5 496.6 20.2

min(mec) 0.771 0.242 0.908 0.692 99° 28.6 537.3 18.77

max(η) 0.712 0.958 1.158 0.875 117° 48.3 1714.8 35.5

max(Cp) 0.631 0.892 0.992 1.442 225° 42.0 3245.0 77.3

max(mec) 0.631 0.892 0.992 1.442 225° 42.0 3245.0 77.3

Table 1: Remarkable results from the 60 simulated cases.

the user to conduct a series of experiment with a given set of parameters, which range between

known values, in order to minimize the number of runs to understand how the parameters affect

the problem solution. Thus, the Optimal Space Filling (OSF) algorithm [Biancoline et al., 2014],

which chooses the design points avoiding having samples with same values of any of the input

parameters [?, more details about the algorithm can be consulted by the reader in]]ansdoe is

used to generate 60 numerical experiments for different values of the input parameters. Their

corresponding values, in different input parameter planes, can be seen in Fig. 3.

7.1. Remarkable simulated results

Once all simulations have been carried out and ready to be analysed, in this Section only some

remarkable cases of the simulated ones will be presented and discussed. From the 60 cases, only

6 have been considered as remarkable and they are those giving the highest and lowest values

of output parameters. In that sense, Table 1 summarises the input parameters of the simulated

configurations with maximum and minimum values of efficiency η, input power coefficient Cp and

mixing energy cost mec. Regarding the efficiency, as can be seen, its minimum value takes place at

low motion amplitudes, both for pitching and heaving, for heaving Strouhal numbers above unity

while for pitching Strouhal numbers below unity. On the other hand, the maximum efficiency is

reached for almost the highest motion amplitudes and Strouhal numbers around unity, above one

for heaving and below one for pitching. Regarding CP , its maximum and minimum values take

place for Kh ∼ 0.6, while the minimum for nearly null pitching oscillation amplitude, Kp ∼ 0, and

the maximum for a high values of Kp. This indicates the strong effect of the pitching amplitude

on the global input power energy needed to generate the combined pitching and heaving motions.
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Figure 4: Mass fraction contours for input parameters giving: (a) min(η); and (b) max(η). (c) is the colormap to

read contour colour levels.

t[c][c][0.7]tefficiency[c][c][0.7]ηeta max[l][l][0.5]max(η)eta min[l][l][0.5]min(η)

Figure 5: Temporal evolution of mixing efficiency at device exit.

Finally, the minimum mec value takes place for low and high values of the pitching and heaving

amplitudes, respectively, while the maximum mec occurs at medium-high amplitudes for both

pitching and heaving amplitudes. It must be noted that, from the 60 simulations, the ones with

max(CP ) and max(mec) are the same.

In order to have an idea about how the worst and best efficiency configurations look like, Fig.

4 shows solute mass fraction contours on the whole domain. As can be seen, in the lowest effi-

ciency configuration, the low pitching and heaving motion amplitudes hardly perturb the interface

between the mixing fluids, which gives place to an almost flat and unperturbed contact surface.

On the other hand, Fig. 4(b) clearly shows why this configuration is the best one: the combined

pitching and heaving motions create a specific and quite irregular pattern downstream with high

contact interface, and thus interaction, between the mixing fluids. As one could expect, the flow

field is highly time dependent and this can be observed in the temporal evolutions of the efficiency

shown in Fig. 5, where those for the configuration giving maximum and minimum efficiency are

shown. After certain dimensionless time, both evolutions reach a quasi-periodic evolution, being

quicker to reach that time the lowest efficiency configuration than the highest one.

7.2. Response surfaces

In order to carry out future optimisation tasks, the Response Surface Methodology [Myers et al., 2016]

will be used by means of the 60 different numerical results corresponding to the previously com-

mented simulated cases. Once the response surfaces are generated, they will be used later to find
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Response surface

Goodness of fit η Cp mec

Root Mean Square error 10−7 7.8× 10−5 7.7× 10−6

Coefficient of Determination R2 1 1 1

Table 2: Goodness of fitting the indicated output parameters with response surfaces.

optimal combinations of input parameters giving best values of any output parameter. Therefore,

a response surface for each output parameter will be obtained but, due to the fact that there are

5 input parameters, to visualize some of the surfaces we are going to fix three input parameters

so a surface can be obtained as other two input parameters change in their studied range. The

goodness of the response surfaces to fit all simulated output parameters can be assessed by differ-

ent indexes. In our case, the Root Mean Square Error between the response surface predictions

and the simulated values, and the Coefficient of Determination R2 have been evaluated and shown

in Table 2. As can be seen, both indexes indicate a very good prediction of the response surface

in relation to the simulated results of the corresponding output parameters. With this in mind

and as examples, different response surfaces can be seen in Fig. 6 for η, Cp and mec when spe-

cific values for Kh, Kp and φ have been used. Actually, φ has been fixed to its medium value, i.e.

φ = 180°, while other two corresponding to pitching and heaving amplitudes have changed. Firstly,

Fig. 6(a)-(c) are results for low values of motion amplitudes (Kh = 0.1, Kp = 0.05). They show

that the efficiency is quite low, between 10 and 20%, with the minimum efficiency taking place

at unity Strouhal numbers, i.e. Sth ∼ Stp ∼ 1. It is also around these specific Strouhal numbers

where, on the one hand, the input power coefficient has its minimum and, on the other, the mixing

cost its maximum. Secondly, Fig. 6(d)-(f) corresponds to medium values of motion amplitudes

(Kh = 0.45, Kp = 0.475). In these figures one can observe that: the efficiency increases with its

minimum values moving to the right-down side of the plane, i.e. high Sth and low Stp values, and

a clear maximum of the efficiency appears at Sth ∼ 0.75 and Stp ∼ 1.25; the low region of input

power coefficient moves to low values of Stp, while high values of input power coefficient appears

for high values of Stp with Sth ∼ 1 in both cases; and that the cheaper configurations, from a

mixing energy cost point of view, are those with low Strouhal number values (∼0.7) while the more

expensive ones are those with the highest Stp and medium-high values of Sth. And thirdly, Fig.

6(g)-(i) are for highest used values of motion amplitudes (Kh = 0.8, Kp = 1). As can be seen, it
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Figure 6: (a)-(c) for Kh = 0.1, Kp = 0.05, φ = 180°; (d)-(f); for Kh = 0.45, Kp = 0.475, φ = 180°; and (g)-(i) for

Kh = 0.8, Kp = 1, φ = 180°.

is observed that the maximum efficiency of ∼45% moves to unity values of Strouhal numbers; in

comparison with previous motion amplitudes, the input power coefficient increases according to

the increase in the motion amplitudes and the maximum values region appears, again, for medium

Sth and high Stp values; and that the cheapest configurations are now those with medium Sth and

low Stp values, being the cost of maximum efficiency configuration around 40 units for high Stp

values and Sth ∼ 1.

Obviously, this analysis has been done for certain values of motion amplitudes and phase

difference, which means that by using other values the behaviour and response surfaces could be

different. As mentioned previously, this is only one example of different response surfaces obtained

from the simulated results. The main interest of this kind of surfaces is that they can be used

to carry out optimisation tasks, both single- and multi-objective, in order to find combinations of

input parameters which gives maximum or minimum values of output parameters, as it will be

shown in next two sections.

7.3. Single-objective optimisation

In this Section, the Response Surface Methodology will be used to get optimal values of the

efficiency η, the input power coefficient Cp and the mixing energy cost mec, which correspond

with their absolute maximum, minimum and minimum value, respectively. Table 3 summarises

these optimal values together with the input parameter configurations to get them. Regarding

the maximum mixing efficiency, from the first row of Table 3 one can see that it takes place for

around unity values of Strouhal numbers (around the same than the ones shown in Fig. 6(g)),

high pitching and medium heaving amplitudes and medium values of phase difference between

both motions. From a cost point of view, this optimal efficiency configuration with mec ' 50

is not one of the more expensive as Fig. 6(i) shows, with other configurations with mec ∼ 65.

Regarding the minimum input power coefficient, from the second row of Table 3 one can see that

it takes place for Strouhal numbers a little smaller than unity, with low pitching and medium
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Input parameters Output parameters

Kh Kp Sth Stp φ η [%] Cp mec

max(η) 0.600 0.909 1.139 1.080 163.057° 53.5 2549.9 49.8

min(Cp) 0.471 0.173 0.972 0.868 175.933° 13.0 260.4 20.0

min(mec) 0.680 0.226 0.802 0.909 177.993° 27.6 367.61 13.3

Table 3: Summary of input parameters for optimal η, Cp and mec configurations. The corresponding output

parameters are also indicated.

heaving amplitudes and, again, medium values of the phase difference. The main inconvenient of

this low power coefficient is the low efficiency it gives with η ' 13%. Due to the low input power

coefficient, the cost of this configuration is also low, but is not the lowest one. And regarding

the minimum mixing energy cost, from table third row one can see that it takes place, again, for

Strouhal numbers a little smaller than unity, amplitudes a little higher than those for minimum

power coefficient configuration (second row of the table) and, as in the two other optimal cases, for

medium values of phase difference. The fact that the motion amplitudes are a little higher means,

in comparison with min(Cp) configuration, that efficiency is doubled while the power coefficient

increases only ∼1.4 times, which gives as a result a lower, actually the lowest, mixing energy cost.

As can be seen in Table 3, the best mixing efficiency configuration gives bad both input power

coefficient and mixing energy cost. This is the problem when optimising just one objective, but

other optimisation techniques can be applied to optimise more than one objective and then we

have which is called as multi-objective optimisation, as the reader will see in next Section.

7.4. Multi-objective optimisation

This section is devoted to find the optimal input parameters combinations to optimise not one

objective, as in the previous section, but two of them by means of a multi-objective optimisation

technique. In our case, the optimisation process has been conducted by using multi-objective

genetic algorithms. They will allow us to to find certain combinations of the input parameters

which lead to the best values of the corresponding selected objectives. A Genetic Algorithm (GA)

is one of the most employed global optimisation techniques. It, briefly, consists in a stochastic

optimisation method based on the evolutionary theory proposed by Darwin and also on the survival

of the fittest scheme [Goldberg, 1989]. Additionally, it takes into account that the best solutions

will be found in zones of the input parameter space where good solutions are able to be found.
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Input parameters Output parameters

POD # Kh Kp Sth Stp φ η [%] Cp mec

A 0.647 0.938 1.139 1.000 153.270° 52.75 2229.2 42.26

B 0.738 0.538 0.812 0.904 217.872° 35.69 897.0 25.13

C 0.505 0.183 0.924 0.867 189.294° 16.19 264.1 16.31

Table 4: Summary of input parameters for indicated PODs. The corresponding output parameters are also included.

Therefore, those regions are exhaustively explored by searching from a set of design points (also

called population). These points are later manipulated by means of genetic operators to obtain

a new population of input parameters. These processes are repeated till a certain percentage

of the population converges to the same design. When a certain GA is used for multi-objective

optimisation purposes, the Multi-Objective Genetic Algorithm (MOGA) usually converges to a

population which consists of individuals belonging to a certain curve known as the Pareto Front

(PF) of the solutions. However, the use of MOGA needs a high number of evaluations of the

objective functions in order to reach an optimum configuration. This will be avoided in the

optimisation methodology we are going to apply by using response surfaces, as the ones shown in

Section 7.2, that can be obtained from the 60 simulations to evaluate the objective functions at the

needed input parameters. Besides this, it also avoids new and expensive CFD simulations of some

thousands of input parameter combinations which are required to get the final set of optimum

solutions.

One can find in the literature different multi-objective genetic algorithms [?, e.g., see]among

others]Deb01. However, the Non-dominated Sorting Genetic Algorithm (NSGA-II) [Deb et al., 2000]

and the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [Zitzler et al., 2001] are the two mains

and more used ones when multi-objective optimisation is required. Despite NSGA-II and SPEA2

algorithms are quite similar both in characteristics and performances, the NSGA-II is the one

used due to the fact its effectiveness is higher when finding the Pareto optimum solutions, see

[Ortega-Casanova and Castillo-Sanchez, 2017] for another work where it has been used.

To start with, let’s suppose we are interested in finding input parameter combinations giving

the maximum possible value of the mixing efficiency η with the minimum possible input power

coefficient CP . After the NSGA-II algorithm is run, the PF with the obtained set of optimal

solutions is obtained and it can be seen as solid squares in Fig. 7. It has been also included a
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eta[c][c][0.5]ηCp[c][c][0.5]CPA[c][c][0.5]AB[c][c][0.5]BC[c][c][0.5]Cpareto front[l][l][0.45]Pareto

Frontspline fitting[l][l][0.45]Spline fittingdesign points[l][l][0.45]PODs

Figure 7: Pareto Front with the set of optimal solutions with high mixing efficiency and low input power coefficient.

The figure also includes the spline fitting (R2 ' 0.99) and three PODs.

non-linear least square fitting of the corresponding points indicated by a solid curve. As one can

see, an improvement in one objective (higher values of η) means a degradation of the other (higher

values of CP ) and vice-versa, i.e. it shows a clear trade-off between the mixing efficiency and the

input power coefficient: an increase in η gives as result an increase CP . Additionally, the PF also

indicates that the nature of this trade-off is not uniform with optimal solution with both high or

low efficiency. To analyse the Pareto-optimal set of solutions regarding the performance of the

two objectives, three representative Pareto-Optimal Designs (PODs) have been selected. They are

indicated in Fig. 8 with solid circles and letters A, B and C and summarised in Table 4. These

PODs have been selected from the PF candidates but having high, medium and low efficiency, i.e.

POD A, B and C, respectively. However, other user may use his/her preference to select other

representative PODs that can help to explain the trend in Pareto-optimal set. In particular, PODs

A and C are close to the extreme ends of the PF, as shown in Fig. 8, indicating η-oriented and

CP -oriented designs, respectively: POD A will give high η with the high CP , while POD C will

give low η with low CP . On the contrary, POD B will give an intermediate solution between A

and C with medium values of both η and CP .

Once the set of optimal solutions is drawn as a PF of the optimised output parameters, η and

CP , another PF can be plotted with optimal values of the remaining output and input parameters.

This can be seen in Fig. 8 where 6 more PFs are depicted: the PF is indicated with solid squares,

the non-linear least square fitting with a solid curve and the PODs with solid circles. In particular,

subfigure (a) shows the η–mec PF which can help the end user to know the mixing energy cost

for a desired efficiency of the PF. From this PF, one can even obtain the efficiency of the cheapest

(lowest mec) configuration, which corresponds to mec ' 13 and η ∼ 25%, which nearly coincides

with the absolute min(mec) configuration shown in Table 3. Subfigure (b) shows the η–Kh PF

which gives the optimal values of Kh for η values on the optimal set. As can be seen, the highest

efficiencies are obtained for 0.6 . Kh . 0.7 and it is also noticeable that for η . 30, Kh almost

changes linearly. Subfigure (c) shows the η–Kp PF where clearly can be seen well defined values

for low efficiencies, for which Kp ∼ 0.2, and high efficiencies, for which Kp ∼ 0.9. Regarding the
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(a)

R2 =

0.99

(b)

R2 =

0.96

(c)

R2 =

0.99

(d)

R2 =

0.98

(e)

R2 =

0.77

(f)

R2 =

0.86

Figure 8: Pareto Fronts for the indicated parameters. The Coefficient of Determination R2 is also indicated for

each PF.

Strouhal numbers, on the one hand, subfigure (d) shows the η–Sth PF which gives the optimal

values of Sth for η on the optimal set. One can see that Sth values above unity usually gives high

mixing efficiencies with its highest values for 1.1 . Sth . 1.2. On the other, subfigure (e) shows

the the η–Stp PF which gives the optimal values of Stp for η on the optimal set. One can see that

there is a range of optimal efficiencies with 15 . η . 40% which takes place for Stp ∼ 0.9 but Stp

needs to be around unity to get the highest efficiency of ∼55%. Finally, subfigure (f) shows the

η–φ PF which gives the optimal values of φ for η values on the optimal set. Three different regions

are clearly observed: one for low efficiencies, with φ ∼ 170°; another for medium efficiencies, with

φ ∼ 220°; and the third one for high efficiencies, with φ ∼ 150°.

As it has been shown, when dealing with multi-objective optimisation (two objectives in our

case), genetic algorithms are a good option to carry out the optimisation process. Once it finishes,

the PF with the set of optimal solutions can be obtained. This set of solutions represents a trade-

off between the desired objectives and none of these Pareto-optimal solutions is superior to the

other ones for both objectives. Thus, the final choice by the user is important when selecting a

solution of the PF that meets his/her needs. In that sense, three optimal solutions from the PF

have been proposed (PODs #A, #B or #C). However, the final application can help to decide if

it is better to have higher values of one objective and lower ones of the other or vice versa.

7.5. Comparison with previous works

In this section we are going to compare the present results with previous ones in order to have

an idea about how good the present active mixing mechanism is, in terms of efficiency, power input

energy and mixing energy cost, in comparison with other mechanisms both active and passive.

Table 5 summarised output mixing results from the present work and 7 more for configurations

giving the highest mixing efficiency at the indicated Reynolds number. First of all, it is interesting
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Author, Re

Present, 1 Ort16, 1 Ort17, 1 Chu07, 1 Che13, 1 Hsi14, 1 Par14, 10 Ort18, 0.1

CP ' 2550 1000 2500 104 120 9× 103 795 33× 104

η ' 54 30 46 55 60 70 40 95

mec ' 50 33 56 182 2 128 20 350

Table 5: Comparison of mixing parameters got by different authors.

to make a comparison with heaving [Ortega-Casanova, 2016] and pitching [Ortega-Casanova, 2017]

mechanisms working separately at the same Reynolds and Schmidt numbers when the highest effi-

ciency is wanted. As can be seen, in the present combined mechanism, the input power coefficient

is the highest one, 2.5 times higher than when just heaving and only few units higher than when

just pitching. This clearly shows that, to get highest efficiencies, the pitching motion is a highly

energy-consumed motion. On the other hand, the mixing efficiency got in the present work is also

higher than when just heaving or pitching, being 80% and 17% higher, respectively. However,

regarding the cost of getting just 1% of efficiency, despite the fact the present combined mixing

mechanism has the highest input power coefficient, it is not the one with the highest cost since the

highest mixing efficiency it gives makes mec be a little lower than when just pitching, although it

is higher than when just heaving. Additionally, it has been also included in Table 5 other works

with mixing studies at the same Reynolds number when using not active but passive mixing mech-

anisms. In particular, in the work by Chu07, similar mixing efficiencies than here are obtained but

with a higher cost. However, in works by Che13 and [Hsiao et al., 2014], higher mixing efficiencies

are reported with much lower and much higher mixing energy cost, respectively. In that sense,

it is remarkable the passive mixing mechanism presented in [Cheri et al., 2013], where geometries

with expansion chambers and obstacles inside them were studied with quite satisfactorily results

both from mixing efficiency and input power energy points of view. Finally, regarding different

Reynolds numbers, Par14 were able, for a higher Reynolds number, to get mixing with lower cost

but also with lower efficiency, while Ort18 obtained, for a lower Reynolds number, a much expen-

sive mixing but with an almost full mixing. This shows that, frequently, high values of mixing

efficiency need high requirements of input power energy to get efficient mixing, so multi-objective

optimisation, as it has been carried out in this work, is a good option to find a trade-off between

the high efficiency and low input energy needs.
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8. Conclusions

CFD has been used to assess the mixing performance of a mixing device based on the combined

motion of both heaving and pitching a 2D square cylinder located inside a straight channel. Thanks

to a total of 60 numerical simulations for different values of the 5 governing input parameters (i.e.

pitching and heaving frequencies, amplitudes and phase difference), different response surfaces of

the 3 output parameters (i.e. mixing efficiency, input power coefficient and mixing energy cost)

have been able to be obtained. From them, it has been found optimal combinations of the input

parameters in order to get: the highest mixing efficiency of∼54%; the lowest input power coefficient

of ∼260 units; and the lowest mixing energy cost of ∼13 units. Regarding the combined motion

giving the highest mixing efficiency, it is worth saying that the highest efficiency is higher than

when mixing by heaving (with η ∼ 30%) or pitching (with η ∼ 46%) separately, being remarkable

that the mixing energy cost is now even lower (∼50) than when just pitching (for which mec ∼ 56)

because of the higher efficiency of the combined motion. It has been also carried out a multi-

objective optimisation looking for input parameter combinations giving optimal solutions with

high efficiency and low input power coefficient. In this case, a set of optimal solutions is proposed

from which the end user can choose any of them depending on the desired mixing efficiency and

power input coefficient: high efficiency solutions means high input power needs and vice versa.

Once both the mixing efficiency and power input are chosen from the optimal set, the end user can

also estimate the input parameters giving the desired optimal results. Just as an example, three

optimal candidates are proposed: with high, medium and low mixing efficiency.
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