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Abstract 

This paper is concerned with a widely studied problem–that of the identification of the 

modal characteristics of freeway overcrossings and other bridges that their response is 

interacting with their approaching embankments and their foundation. The study 

implements a sophisticated parameter estimation method known as the Prediction Error 

Method and examines in detail the sensitivity of the modal characteristics (frequency and 

damping) of the bridge when the input signals are taken (a) at the free field, (b) at the 

approaching embankments and pile caps and (c) on the abutments and the pile caps. The 

findings of this case study on the Meloland Road Overcrossing with the Prediction Error 

Method are compared with the results from past system identification studies and the 

results from finite-element analyses which examined in depth the contribution of the 

approaching embankments in the bridge response. The study concludes that despite the 

appreciable energy dissipation capability of the approaching embankments the concrete 

bridge structure while interacting mechanically with the embankments its transverse 

modal damping remains small.  

 

Introduction 

At present, system identification methods evolve as a widely accepted practice to 

estimate the dynamic characteristics of bridges and elevated freeways. Most of the work 

published on the modal identification of bridges has been motivated from the availability 

of strong motion response data from several bridges in California which have been 

instrumented by the Strong Motion Instrumentation Program (SMIP) of the California 

Division of Mines and Geology. A complete list of instrumented bridges in California 

can be found in Hipley [1] with details on the bridge configuration and the layout of the 

sensors. Our goal in this paper is not to derive another isolated study, but rather to build 

on the work of others. Several past publications are used in this study to validate 

deformation levels, material parameters and response quantities. Agreement between our 

results and those of other investigations further establish the dependability of the 
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proposed methodologies; while, discrepancies in response quantities have been the 

motivation for further investigation presented herein. 

The seismic response of freeway overcrossings received distinct attention in the late 

1980s. Maragakis and Jennings [2] introduced the “stick model” enhanced with bilinear 

“springs” and “dashpots” at its support to study the motion of skew overpasses. While 

their model accounted for several practical difficulties such as the presence of elastomeric 

pads and the gap between the deck and the back wall, limited information was offered on 

the estimation of the model parameters. Werner et al. [3] developed a system 

identification methodology to extract information from an array of strong-motion 

measurements that were recorded in the vicinity of the Meloland Road Overcrossings 

during the 1979 Imperial Valley earthquake. Their conclusions emphasized the ability of 

linear models to fit the measured response and the effects that the approach 

embankments and foundations have on the response of the bridge. For instance their 

paper identifies relatively low values of modal damping for the bridge structure 

( %6i  to %8 ), although the bridge deck is interacting mechanically with the 

approaching embankments which are massive soil structures with appreciable energy 

dissipation capabilities. This conclusion is also confirmed in this work with the 

Prediction Error Method and the trend is validated with simple mechanical idealizations. 

About the same time, Crouse et al. [4] conducted experimental and analytical studies to 

determine the significance of soil-structure interaction on the response of a single span 

overcrossing with monolithic abutments on spread footings. The small displacement 

gradient generated from the ambient quick-release and forced-vibration tests resulted in 

small values of damping and large values of stiffness that are not representative under 

earthquake loading. About a decade ago, Zhang and Makris [5],[6],[7], and Makris and 

Zhang [8] examined the performance of an elementary stick model and a more 

sophisticated finite element formulation to compute modal characteristics and response 

quantities of highway overcrossings. The validity of their result was established by 

comparing the computed time response quantities with records from the Meloland Road 

and the Painter Street overcrossings located in southern and northern California. More 

recently, Arici and Mosalam [9], [10] investigated the performance of several parametric 

and non-parametric system identification methods by processing data from seven 

instrumented bridges in California.   

Modal identification is a subcategory of system identification and traditionally it has been 

associated with frequency domain techniques. However, over the years various powerful 

time domain methods have been developed and applied successfully. One of these 
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methods that can be applied for the identification of modal parameters, which is one of 

the most well known and powerful methods in the control community, is the Prediction 

Error Method (PEM). It initially emerged from the maximum likelihood framework of 

Aström and Bohlin [11], and was advanced and became popular to system identification 

engineers as a MATLAB [12] identification toolbox was developed following the theory 

by Ljung [13], [14].  

At the same time the large number of experimental programs associated with the 

“resonance testing” in conjunction with the availability of fast Fourier transform 

algorithms advanced frequency domain methods, such as the Peak-Picking Method 

(PPM), the Circle-Fitting Method, the Rational Fraction Polynomial Method, etc [15], 

[16], [17]. The most widely used frequency domain method is the Peak-Picking Method 

(PPM) given its directness and its flexibility to accommodate the user’s intuition. 

However, the need for advancing other more sophisticated frequency domain methods 

has emerged from the need to overcome some of the limitations of the method [17],[18]. 

In this study, our main effort is to investigate the efficiency of the abovementioned 

modal identification methods in order to identify the modal frequencies and damping 

ratios of existing bridges without seismic isolation systems, such as the Meloland Road 

Overcrossing in southern California, and compare the extracted results with previous 

system identification and finite element studies associated with this bridge. The results of 

this study conclude to informative observations about the dynamic characteristics of the 

Meloland road overcrossing. Furthermore, they uncover some of the advantages and 

limitations of the PEM and the PPM method, as modal identification methods.  

 

The Prediction Error Method (PEM) 

Prediction error methods belong to a broad family of parameter estimation methods that 

can be applied to arbitrary model parameterizations [19]. Thus, given an output )(ty due 

to an input )(tu at time t , the target is to identify the parameters of the selected model. 

The recordings are discrete in time and let 

)}(),(),...2(),2(),1(),1({ NyNuyuyuZ N   be all the past data recorded up to 

time Nt  . However, the methods can also deal with continuous-time models. The 

basic idea that lies behind this method is the that the model can be described as a 

predictor of the next output point as a function of the past history, 

1ˆ ( 1) ( )t

my t t f Z                                             (1) 
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where )1(ˆ tty
m

 accounts for the predictor, and )( 1tZf for the chosen, arbitrary 

function of past data. The next conceptual step is to parameterize the predictor using a 

parameter vector, ,  

1ˆ( ) ( , )ty t f Z  .                                             (2) 

The method’s final outcome is an estimate of the parameter vector ,
N

 , according to 

the minimization of an appropriate norm which represents the distance, ( )NV  , 

between the predicted output { (1 ), ... , ( )}y y N  and the recorded output 

)}(,...),1({ Nyy : 

1

1 1

ˆ( ) ( ( ) ( )) ( ( ) ( , ))
N N

t

N

t t

V l y t y t l y t f Z  

 

                (3) 

where 
2

ˆ( ) ( )l y t y t    is the suitable distance measure.  

The parameter vector 
N

̂ is calculated by minimizing the above norm,  

ˆ argmin ( )N NV


  .                                           (4) 

 

STATE-SPACE REPRESENTATION OF THE LINEAR MODEL 

The mathematical model of choice to represent the bridge when applying PEM is the 

state-space model. State-space modeling is most common in structural dynamics, as it 

reduces the second order differential equation of motion to a system of first order 

differential equations [20], [21].  

Thus, the relationship between the input and output signals is written as a system of first 

order differential equations using a state vector )(tx : 

)()]([)()]([)(

)()]([)()]([)(

tuDtxHty

tuGtxFtx








                                    (5) 

where )(tx the state vector, )(ty the output vector and )(tu the input vector. 

)]([)],([  GF  are matrices of appropriate dimensions ( nn  and mn respectively 

for an n -dimensional state and m -dimensional input). The same is true 

for )]([)],([  DH respectively.  represents the unknown parameter vector and the 

overdot denotes differentiation with respect to time [13],[19].  
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In our case, the state vector’s components are the displacement and velocity vectors, 

TTT tututx ])()([)(  : 

)(][)(][)(

)(][)(][)(

tuDtxCty

tuBtxAtx

gCC

gCC








                                  (6) 

where,  

 

][][

0
][

11

11

DC

D

C

CMKMC

CMKM

I
A



















       

][][

0
][

1

1

fC

f

C

BMD

BM
B



















          (7) 

while ][ CA  is the state transition matrix, ][ CB  is the input influence matrix, ][ CC  is 

the output influence matrix, ][ CD  is the direct transmission term, and are composed by 

mass matrix M , stiffness matrix K , damping matrix DC  and influence matrix fB . 

)(tug signifies the strong ground motion input excitation [9], [10]. In this study the 

recordings are accelerations, as the instruments across the bridge are accelerometers, thus 

the output )(ty is the acceleration, )(tu .  

The eigenvalues of the system can be deduced from the eigenvalue problem: 

ppA
iC
][                                                      (8) 

where p  is the mode vector and i are the complex eigenvalues of the system,  

2
1

iiiiiii
ii                               (9) 

where i  is the undamped natural frequency and i the damping ratio of the 
thi mode. 

The complex eigevalues have the above form assuming that damping has a proportional 

viscous form.  

After obtaining the complex eigenvalues, the natural undamped frequency and damping 

ratio for the 
thi mode [9]: 

i

i

iiii





)Re(
, 


                               (10) 
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Modal identification of Meloland Road Overcrossing 

DESCRIPTION OF MELOLAND ROAD OVERCROSSING 

The Meloland Road Overcrossing, located near El Centro in Southern California, is a 

concrete box-girder, two-span bridge with monolithic abutments and a single central 

column that was designed in 1968. Each of the bridge’s two spans has 31.7m length and 

10.36m width. The single-column pier at the center of the bridge is approximately 6.1m 

high and is supported by a pile group consisted by 25 (5x5) concrete friction piles. The 

bridge’s monolithic abutments are supported by 7 concrete piles driven into stiff clay 

embankments overlaying native alluvium. The total structure and the free field were 

instrumented with 26 strong-motion accelerometers [3]. Figure 1 shows the elevation and 

plan views of Meloland Road Overcrossing together with the location of the 

accelerometers. The bridge was strongly shaken by the October 15, 1979, Imperial Valley 

earthquake ( 4.6LM ) with a peak transverse acceleration of 0.51g recorded on the 

bridge deck [5], [8]. Figure 2 (center) shows the free-field motions recorded with 

channels 24 (EW), 15 (NS) and 14 (VRT); while, Figure 2, (left and right) shows the 

motions recorded on the left and right embankment respectively. 

 

Figure 1. Elevation and plan views of Meloland Road Overcrossing along with locations of accelerometers.  
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Figure 2. Recorded acceleration time histories at free field (center), left embankment (left), and right 

embankment (right) of Meloland Road Overcrossing during 1979 Imperial Valley earthquake.   

 

 

 

During ground shaking the dynamic response of the deck is affected: (a) from the 

dynamic response of the embankments which interact with the end-abutments that are 

supports on pile foundations and (b) from the dynamic response of the pile foundation 

at the center bent.  

While the Meloland Road Bridge is a simple two-span bridge overcrossing a four lane 

freeway, the identification of its dynamic properties is challenged by the presence of the 

approaching embankments which have a dominant response. The central question to be 

answered is to what extent the dynamic characteristics of the concrete bridge structure 

are influenced by the dynamic characteristics of the approaching embankments. It is well 

known that approaching embankments exhibit high values of damping in both transverse 

and longitudinal directions [5], [6], [7], [8]. What this paper investigates is to what extend 

the bridge structure while interacting with the approaching embankments enjoys part of 

their ability to dissipate energy. 
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MODAL IDENTIFICATION RESULTS OF MELOLAND ROAD 

OVERCROSSING 

The Prediction Error Method (PEM) 

Following the above-mentioned challenges the modal parameters of the bridge are 

extracted by applying the Prediction Error Method on the acceleration signals recorded 

on the Meloland Road Overcrossing. In this work, we examine, three different cases of 

input and output records following the logic introduced by Werner et al. [3]. They are 

summarized in Table 1. 

 

Case 1  

Figure 3 shows values of the first transverse period (top) and first modal damping ratio 

(bottom) of the bridge system as resulted from single-input-single-output (SISO), single-

input-multi-output (SIMO) and multi-input-multi-output (MIMO) algorithms. The input 

signal in all the single input realizations in Figure 3 is the recorded free-field motion 

(Channel 24) while in the last MIMO realization the crest motions of the approaching 

embankments are also included in the input.  

Clearly, the two period values ( sTTR 63.0 ) that result from the output channels No 26 

and No11 reflect to a large extent the first transverse period of the approaching 

embankments; whereas, the period values that result from channels No9 and No5 

located on the deck are much shorter ( sTTR 42.0 ) and are mostly related to the 

concrete bridge structure.  

The dynamic response of the Meloland Road overcrossing accounting for soil-structure 

interaction was investigated in depth via mechanical modeling and structural analysis by 

Zhang and Makris [5], [6], [7], and Makris and Zhang [8]. In that study, special attention 

was given to the dynamic response of the approaching embankments which was 

calculated with various approaches ranging from the equivalent linear shear-wedge model 

to the 3-D finite element analyses. 

Interestingly, the simple shear-wedge approximation schematically shown in Figure 4, 

yields that when the bridge structure is subjected to the 1979 Imperial Valley earthquake 

(see records shown in Figure 2) the prevailing soil strains are of the order of 01.0  

and the corresponding value of 01.0/
max

GG  [5], [8]. Curves that show the 

dependence of the shear modulus, G , and the damping coefficient,  , of soil material 

have been published in the literature based on the work of Seed and Idriss [22], Iawsaki 

et al. [23], Tatsuoka et al. [24], Vocetic and Dobry [25], among others. For a typical value 
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of soil density, 
3/6.1 mMgS  , and a shear wave velocity smVS /110 , the small-

strain shear modulus is MPaVG SS 20
2

max   and therefore according to the 

aforementioned curves the equivalent linear soil modulus of the working strains is 

0.1 20 2sG MPa MPa   . Now, the shear-wedge model shown in Figure 4 yields 

natural frequencies  

S

S

n

n

n

G
k

T 


 

2
                                        (11) 

where nk is the 
thn wave number that is obtained from the characteristic equation [5], 

[8], [26], 

0)]([)()()]([
00010100

 HzkYzkJzkYHzkJ
nnnn

    (12) 

The value of the constant 0z depends on the geometry of the embankment. In the 

general case of an unsymmetrical embankment, )(0 cbc BBHBz  ; whereas, in the 

case of a symmetrical embankment with slope, S , 2/0 cSBz  . cB  is the crest width 

and H is the height of the embankment. In Equation (12) ,010 ,, YJJ  and 1Y are the 

zero- and first-order Bessel functions of the first and second kind respectively [27].  
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Figure 3. First transverse eigenperiods and damping ratios of the Meloland Road Overcrossing for Case 

1(see Table 1) as they result from SISO, SIMO and MIMO algorithms. 

 

 

 

c
B = 10.36 m 

H = 7.92 m 

S = 1/2 

s
 = 1600

3/mKg  

s
V = 110 sm /  

 

Figure 4. Schematic of the shear wedge model and values of the geometric characteristics associated with 

the Meloland Road Bridge.  
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For the values of mHmBc 92.7,36.10  and 2/1S , Equation (11) in 

association with Equation (12) gives a first modal period of the approaching 

embankment of the Meloland Road Bridge, sT 63.01  . Interestingly, this value 

( sT 63.01  ) is remarkably close to the period values extracted from channels No26 and 

No11 (first two bars shown in Figure 3 top) located atop the approaching embankments 

of the bridge. This remarkable agreement indicates that for the configuration of the 

Meloland Road Bridge the dynamic response of the embankment remains nearly 

indifferent from the presence of the bridge deck/center pier structure.  

The energy dissipation within the approaching embankments and more generally in soil 

structures originates from two sources: (a) from material damping—that is friction 

between the soil particles; and (b) radiation damping—that is energy that travels away as 

outgoing waves. Material damping increases appreciably with the level of shear strains. 

The damping coefficient,  , is defined as the ratio of the imaginary to the real part of the 

dynamic shear modulus of the soil. It can be shown that the first modal damping of the 

shear wedge that originates only from material damping is (Zhang and Makris [5], [6]) 

 
2


   (13) 

In selecting the values of G and , iterations are required, since their values are strain 

dependent and the strain level is not known a priori. Initially, a strain level is projected, 

the associated shear modulus and damping coefficient are estimated, and response time 

histories are computed. Seed and Idriss [22] suggested that two-thirds of the response 

strain should be used as the average strain to evaluate )(G and )(  for the next 

iteration. With a finite element analysis different values of soil parameters can be assigned 

at various locations according to local strain levels [28]. 

When the earth embankments of the Meloland bridge are subjected to the recorded free-

field motion (channel 24—see Figure 1 of the paper), the shear strains that develop are 

of the order of 0.01, and according to the work of Seed and Idriss [22], Iwasaki et al. [23], 

Tatsuoka et al. [24], Vucetic and Dobry [25], among others, / 2 0.30   . Now, as 

indicated earlier, in addition to material damping, there is radiation damping due to 

outgoing waves. Consequently, approaching embankments when subjected to strong 

ground shaking exhibit high values of damping ratios and for the earth embankments 

alone, it is reasonable to have overall damping ratios of the order of 50% as identified in 

this paper. 
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Our study also examines the result from a single input (free field signal) and multi output 

(more than one of the signals recorded with the channels appearing in Figure 1) 

algorithms. The first SIMO identification uses as output only signals recorded on the 

bridge structure (Ch. 3, 13, 5, 7 and 9) and the resulted first transverse period is 

sTTR 49.0
1
 , while the first transverse modal damping is %21.3

1
TR . Note that this 

low damping value indicates that while the bridge structure is interacting mechanically 

with the approaching embankments, not much energy is escaping the concrete structure 

to be dissipated within the embankments. For completeness, the SIMO algorithm that 

also involves as output signals, the records from channels 26 and 11 located on the 

embankments result  higher transverse period value,  sTTR 63.0 and a much higher 

modal damping ratio, %75 . This result indicates that when the crest responses of 

the embankments are included as output signals in a SIMO algorithm the dynamic 

characteristics of the embankment dominate the output; while, they overshadow the 

dynamic characteristics of the concrete bridge structure. Accordingly, our analysis 

proceeds with a multi input (free field and embankment signals) and multi output 

algorithm. The resulted first transverse period is sTTR 36.0
1
 , while the first transverse 

modal damping is %0.7
1
TR . Table 2 shows the period and modal damping values 

extracted with the SIMO and MIMO algorithms and they are compared with the work of 

Werner et al. [3], Zhang and Makris [5], [6], [7], and Makris and Zhang [8].  

In order to get further physical insight on why the concrete bridge structure exhibits 

limited damping ratios ( %0.7%0.6
1

TR ); while, interacting with the approaching 
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Figure 5. Two-degree-of-freedom linear model (top) and its one-degree-of-freedom condensation when 

a
m tends to zero (bottom).  

embankments that exhibit high damping ratios ( %50
a

TR ) our analysis proceeds with 

a simple two-degree of freedom model as shown in Figure 5 (top) in which 
a
m mass 

of the abutments and 
s
m lumped mass of the bridge concrete structure. The spring 

constant
a
K and the dashpot constant 

a
C represent the stiffness and damping of the 

embankment respectively while the second Kelvin element with a spring constant 

s
K and a dashpot constant 

s
C represent the stiffness and damping of a single 

degree of freedom interacting with the abutment. Under free vibrations the two degrees 

of freedom, 
a
u and 

s
u satisfy the following characteristic equation  

2

2
0s s s s s

s s a s s a a

m i c K i c K

i c K m i c K i c K

  

   

    


      
      (14) 

Defining 
2

ssas
mKK   , 

ssaassss
mCmC  2,2  and 

sa
mm / , the 

characteristic equation (14) assumes the form  

4 3 2 2 3 42 ( ) ( 1 4 ) 2 ( ) 0s a s s a s s s a s si i                              (15) 

Given the heavy algebra involved between equation (14) and equation (15), the result of 

equation (15) is validated by computing the characteristic equation of the single-degree-
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of-freedom condensed model of Figure 5 (top) that is shown in Figure 5 (bottom). The 

single-degree-of-freedom, 
s
u , of the model shown in Figure 5 (bottom) satisfies the 

equation  

( ) 0sm u P t                                                    (16) 

where  )(tP is the restoring force from the four-parameter solid model shown on the 

left of the mass 
s
m . In the frequency domain, 

2( 2 )
( ) ( )

2
1

1
21

s s s s

s

s

a

s

m i
P U

i

i

   
 

 



 

 










                                    (17) 

and the characteristic equation of (16) is given by  

3 2 2 32 ( ) ( 1 4 ) 2 ( ) 0a s a s s s a s si i                      
        

(18) 

Equation (18) is the limiting case of equation (15) when 0 . Equation (15) yields two 

pairs of complex conjugate roots ]~Im[]~Re[~
111

 i and 

]~Im[]~Re[~
222

 i  which are obtained with software MATLAB [12]. 

Accordingly, the first modal frequency and damping ratio are given 

by

1

1

1

2

1

2

11

]~Im[
,]~Im[]~Re[




  i .  

According to Appendix I, for the Meloland Road overcrossing, 5/ 
as
KK and 

3.0/ 
sa
mm . With reference to these values Figure 6 plots the value of 

111
/]Im[    as a function of the embankment damping ratio

a
 , for three values of 

5,4  and 6  and three values of ,3.0,1.0  and 5.0 . 

Interestingly, Figure 6 indicates that as the damping of the embankment 
a

 increases, the 

first damping ratio of the entire system does not follow a monotonic curve and when the 

damping ratio of the embankment 
a

 exceeds a certain value (say 45.0
a

 ) the 

damping of the system decreases. The results from this simple physical model explains 
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qualitatively the fundamental result from the system identification analysis depicted in 

 

Figure 6. First modal damping ratio, 
1
 , of the 2-dof  structure shown in Figure 6(top) versus the 

damping ratio, 
a

 (abutment), for different values of the stiffness ratio 
as

KK / . 

Figure 3 –that the bridge structure exhibits limited damping ratios; while, interacting with 

the approaching embankment that exhibits high values of damping ratios. 

 

Case 2  

The difference between the free field motion and the motion of the cap of the pile 

foundation is due to the scattered wave field generated from the difference between pile 

and soil rigidities. Such differences are more appreciable when the input motion is high 

frequency and traditionally the kinematic response factors of pile foundations are plotted 

in terms of the dimensionless frequency SVfd /20   where f is the dominant 

frequency of the input, d pile diameter and SV  shear wave-velocity of the soil. For low 

values of 0 (say 15.00  ) the kinematic response factors of pile groups assume a 

value close to unity which implies that the scatter field is weak and therefore the support 

motion at the pile cap may be considered to be approximately equal to that of the free 

field [29], [30], [31].  
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For the Meloland Road Bridge the soil deposit has an average shear wave velocity, 

smV
S

/110 [5], [8] and the pile diameter md 43.0 . Accordingly, for the high-

frequency content of the input (say Hzf 10 ), the dimensionless frequency 

25.0
0
a  -a value that implies that the high frequency content of the free-field motion 

may be filtered by the pile groups. 

It is interesting to note that Werner et al. [3] in their pioneering system identification 

study on the Meloland road overcrossing used as input motions the records on the pile 

cap of the center piers together with the records on the crest of the embankments.  

Figure 7 shows the values of the first transverse period, 
1

TR
T , and first transverse modal 

damping, 
1

TR
 , obtained with SISO, SIMO and MIMO algorithms when the input 

motions in all these cases are the acceleration signals recorded on the pile cap of the 

center bent and atop the crests of the approaching embankments. The period and the 

damping values extracted with this study are compared with those reported by Werner et 

al. [3] in Table 2.  

 

Case 3 

Finally Figure 8 shows the values of the first transverse period, 
1

TR
T , and the first 

transverse modal damping, 
1

TR
 , obtained with SISO and MIMO algorithms when the 

input motions are the motions recorded on the abutments. The mean values for 

sT
TR

33.0
1
 very close to the value that one obtains from the MIMO algorithm (last 

bar diagram in Figure 9 top); while, the mean value for 77.6
1


TR
  -a value that is very 

close to the damping ratio values reported by Werner et al. [3].  

 

The Peak Picking Method (PPM) 

An alternative way of identifying the modal periods and damping ratios in the frequency 

domain is with PP method. The PP method uses the frequency response functions 

(FRFs) of the structure and assumes that in the vicinity of the resonance the total 

response is dominated by the contribution of the mode whose natural frequency is the 

closest. For applying a single-input-multi-output, SIMO, methodology we need to work 

with the mean of the FRFs of all records in each direction.  

The amplitude of the mean of the FRFs of all records (except the embankment and pile 

cap records) in both transverse and vertical direction is presented in Figure 10. The  
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Figure 7. First transverse eigenperiods and damping ratios of the Meloland Road Overcrossing for Case 

2 (see Table 1) as they result from SISO, SIMO and MIMO algorithms. 
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Figure 8. First transverse eigenperiods and damping ratios of the Meloland Road Overcrossing for Case 

3 (see Table 1) as they result from SISO, SIMO and MIMO algorithms. 
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Figure 9. The mean of the amplitude of the frequency response functions of all records in each direction; 

Top: Transverse direction, Bottom: Vertical direction. 

 

results of the identified modes are presented in Table 4 and in terms of eigenperiods are 

in good agreement with the results of the PEM in both directions. The damping ratio 

values from the PP method are not dependable (except the first transverse mode), as they 

are underestimated. In the longitudinal direction, the data were not adequate for modal 

identification in the frequency domain with PP method. Furthermore, it is obvious that 

the PP method can be used satisfactorily for deducing initial estimations of the 

eigenperiods, even of the damping ratios, despite its various limitations [16], [17].  
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Conclusions  

This paper revisits a widely studied problem–that of the identification of the modal 

characteristics of freeway overcrossings and other bridges that their response is 

interacting with their approaching embankments and their foundation. The study 

implements a sophisticated parameter estimation method known as the Prediction Error 

Method to identify the dynamic characteristics of the Meloland Road Overcrossing and 

compares the results with past system identification studies.  

In the case where the input signal is the free field records (Case 1) and the output signal 

is the crest response of the embankments (single-input-single-output algorithm) the 

resulting transverse period is strongly influenced by the first transverse eigenvalue of the 

approaching embankment. The above result shows that for the configuration of the 

Meloland Road overcrossing the dynamic response of the embankment remains nearly 

indifferent from the presence of the bridge deck/center pier structure.  

When using the single-input-multi-output (SIMO) algorithm without considering the 

embankment recordings in the output signals, the result shows that although the bridge 

structure is interacting mechanically with the approaching embankments not much 

energy is escaping the concrete structure. This “trapping” of energy was validated 

qualitatively  (Figure 6) with a simple two-degree-of-freedom model. On the other hand, 

when the embankment recordings are included in the output signals (SIMO algorithm), 

both the eigenperiod and the damping ratio values become higher, indicating that the 

dynamic characteristics of the embankments dominate the output from the bridge –

embankment structure.  

Table 2 shows that as the system gets more restricted by using as input records the 

signals from the sensors on the crest of the embankments (Case 2) and on the abutments 

(Case 3) respectively, the eigenperiods become shorter and the damping ratios become 

smaller in agreement with the early findings presented by Werner et al. [3].  

A more general conclusion, is that multi-input-multi-output (MIMO) algorithm can 

provide dependable global results of the structure in comparison to the SIMO and 

especially SISO algorithm that provide better local information about the dynamic 

characteristics of particular elements of the structure.  

An alternative method used in this paper for the identification of the dynamic 

characteristics of the Meloland Road Overcrossing, is the Peak-Picking Method.  Despite 

its practical limitations, especially when applied to complex systems, the PPM can be 

used satisfactorily for deducing initial estimations of the eigenperiods of the structure.  
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Appendix I: Estimation of the mass and the transverse stiffness ratio between the pier-

deck and the embankment-abutment system. 

 

With reference to Figure A for the pier-deck system: 

208.4 mA
deck

 , 
367.258 mALV

deckdeckdeck
  

MgmMgmdAm
concdeckdeck

7.646/5.2*67.258 33   

22 81.14/52.1 mA
pier

 , 
338.918.5 mAV

pierpier
  

MgmMgVm
pierpier

59.23/5.2 3   

By assuming that only the one third of the mass of the pier participates in the total mass 

of the structure,  

Mgmmmm
spierdecks

3.65486.77.6463/1   

With reference to Figure 8 (top) the first transverse period of the bridge structure is: 

sradsTT
sTRs

/1933.0/233.0
1

  ; therefore,  

mMNmK
sss

/2.236
2

 .  

With reference to Figure B for the embankment-abutment system: 

24.33 mA
a
  ; therefore,  

MgmmMgmmdHAm
aconcaaa
208/5.25.24.33 32   

The total stiffness of the embankment can be computed via the closed form expression 

[6],[8]: 

mMNK

SB

H
S

A
GBK

a

c

emb

ca
/50

)
2

1ln(

2




                

Based on the above estimations,  

32.03.654/208/ 
sa
mm        

5
50

2.236
/ 

as
KK .                    
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Figure A. Cross-section view of Meloland Road Overcrossing.  

 

 

 

 

Figure B. Plan view of south and north abutments of Meloland Road Overcrossing. 
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Table 1. Input and Output signals used to extract modal properties of the Meloland Road Bridge. 

  Input Output 

Case 
1 

     Longitudinal Free Field signals 
Channels: 15

      Longitudinal Embankment, Abutment and Pile Cap 
signals  
Channels: 25, 12, 8

     Transverse Free Field signals 
Channels:24

      Transverse Embankments, Abutments, Pile Cap and 
Deck signals 
Channels: 26, 13, 9, 7, 5, 3, 11, 2

     Vertical Free Field signals  
Channels:14

      Vertical Embankments, Abutments, Pile Cap and Deck 
signals 
Channels: 23, 6, 20, 22, 17, 21, 16, 18, 19, 10, 1

Case 
2 

   Longitudinal Embankment and Pile 
Cap signals 
Channels: 25, 12, 4

      Longitudinal Abutment signals 
Channels: 8

   Transverse Embankment and Pile 
Cap signals 
Channels: 26, 11, 2

      Transverse Abutment, Deck signals 
Channels: 13, 9, 7, 5, 3

   Vertical Embankment and Pile Cap 
signals 
Channels: 23, 12, 1

     Vertical Abutment, Deck signals 
Channels: 6, 20, 22, 17, 21, 16, 18, 19

Case 
3 

     Transverse Abutment signals 
Channels: 13, 3

      Transverse Deck Signals 
Channels: 9, 7, 5

     Vertical Abutment signals 
Channels: 6, 19

     Vertical Deck Signals 
Channels: 20, 22, 17, 21, 16, 18

  
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Table 2.  Comparison of the eigenperiods (top) and damping ratios (bottom) obtained from this study, Werner et al. [3] and Zhang and Makris [5],[7];  

EIGENPERIODS 
Case 1 Case 2 Case 3   

this study this study Werner et al 
1987 

this study Werner et al 
1987 

Zhang & Makris 
Modes SIMO MIMO SIMO MIMO SIMO MIMO 

1st long. 0.81 (0.28)
*

 

0.27 0.23 0.27 
- 

- - - 0.32 

1st tran. 0.49 0.36 
0.37-
0.39 0.36 

0.4  

0.29-0.37 0.34 0.27 0.46 

2nd tran. 0.3 (0.24) 
*

 0.27 0.21 0.26 
0.31 

- 0.15 0.061-0.076 0.23 

1st vert. 0.31 0.41 
0.27-
0.32 0.33 

0.22 
0.28-0.4 0.31 0.21 0.30 

2nd vert. 0.22 0.22 
0.22-
0.23 0.24 

- 
0.21-0.22 0.22 - 0.22 

 

DAMPING 
RATIOS 

Case 1 Case 2 Case 3   

this study this study Werner et al 
1987 

this study Werner et al 
1987 

Zhang & Makris 
Modes SIMO MIMO SIMO MIMO SIMO MIMO 

1st long. 97.8 (6.54)
 *

 23.47 35.42 23.47 
- 

- - - 56.80 

1st tran. 3.21 6.96 6.41-18.76 6.75 7.2  6.31-6.41 5.96 6.60 18.70 

2nd tran. 19.18 (19.43)
 *

 28.72 79.60 23.62 7.80 7.4-72.9 22.53 - 28.20 

1st vert. 23.69 44.13 31.42-35.51 3.47 5.80 17.13-29.94 6.74 6.60 8.30 

2nd vert. 5.33 3.96 3.9-8.5 11.54 - 6.1-7.13 5.72 - 10.20 

*
: the numbers inside the parenthesis are the corresponding values of the eigenperiod and the damping ratio of the next mode. 
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Table 3.Eigenperiods and damping ratios identified with the Peak-Picking Method. 

 PP PEM 

Modes T (s) ξ(%) T (s) ξ(%) 

1st transverse 0.459 3.55 0.49 3.21 
2nd transverse 0.331 1.5 0.3 19.18 

3rd transverse 0.279 1.07     
4th transverse 0.233 1.47 0.24 19.43 

1st vertical 0.599 1.55     
2nd vertical 0.282 1.14 0.31 23.69 
3rd vertical 0.227 1.12 0.08 5.33 

 


