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TECHNICAL TERMS

Sustainability of manufacturing
Sustainability issues related to manufacturing process, including: economic,

environmental, social factors.

Sustainability performance

Overall sustainability performance for manufacturing process, including: economic
performance such as cost, time and quality, environmental performance such as energy
consumption, impact of cutting fluid and material waste, and social performance such as

safety issues.

Sustainability considerations
In this thesis, sustainability considerations means the manufacturing processes that

consider multiple criterions from economic, environmental, social aspects.

Sustainable manufacturing process
In this thesis, sustainable manufacturing process refers to the manufacturing process

with sustainability considerations.

Sustainable machining
In this thesis, sustainable machining means the machining process with the
considerations of specific criterions such as cost, time, surface roughness, energy

consumption, cutting force, power and tool life.

Sustainability improvement
Methods for improving sustainability performance of manufacturing process or

machining operations.

Framework for machining optimisation
Generic methodology for improving machining performance by selecting optimal

process parameters.
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ABSTRACT

At present, sustainable manufacturing process has been widely demanded by
manufacturing industry to address the financial pressure from increasing energy price
and the political pressure from legislation on reduction of environmental impact. The
motivation of this research is to reduce the environmental impact caused by high energy

demand and consumption on the manufacturing process.

This research addresses important issues related to the environmental impact of
manufacturing operations. Through a review of literature and industrial practices, the
following requirements have been identified: (i) Sustainability performance measures
which can be used to effectively identify potential inefficiency, and recommend ways of
improvement; (i1) Optimisation of existing manufacturing process which take energy as
an additional factor in the optimisation of machining processes; and (iii) Development
of new machining processes and technologies that move closer to the theoretical

boundaries of energy efficiency.

To address the above requirements, this project developed a set of energy prediction
models and energy efficiency metrics to measure the energy usage during machining
processes. The results show that energy consumption in machining 2!/2D milled features
can be improved by optimising the use of existing machining processes and by

designing new machining processes and technologies.

The characteristics of machining operations with energy considerations have been
investigated using graphical multivariate data analysis techniques. A direct search
method was used to conduct the optimisation procedure. This study showed that energy
consumption decreases monotonically as process parameters (depth of cut, width of cut,
spindle speed and feed rate) increase, and can be minimised up to 75% for machining
Aluminium 7075-T6 by using Haas TM 1CE Vertical milling machine (maximum
spindle speed 4,000rpm) without conflicting with cost and time under the constraints of

spindle speed, cutting force and surface roughness.

Typical optimisation methods have been found which can give similar results, and
methods of opening up the reasoning process have been identified which enable
practitioners to have more confidence in their results. An optimisation method has been

proposed and tested for selecting optimal process parameters for a typical CNC milling
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operation resulting in the reduction of energy consumption. A scenario-based method
has been developed to provide a comprehensive solution for decision makers to solve

machining optimisation problems with sustainability considerations.

An energy-efficient profiling toolpath strategy has also been developed to improve
energy efficiency for 2!/2D milled features. It was found that further reduction in energy

consumption could be achieved compared to conventional cutting strategies.

Finally, the developed methodologies can be integrated as a comprehensive framework
into existing machining process improvement procedures to help process planners and

manufacturing practitioners to improve the sustainability of manufacturing processes.
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CHAPTER 1: INTRODUCTION

This chapter aims to introduce the research field of this thesis. It will firstly describe the
background and motivation that prompted this research, including the challenges and
requirements of environmental impact to be faced in the manufacturing domain. A
summarised review of current sustainable manufacturing research will be analysed to
define the research questions. Based on the research questions, the research aim and
objectives will be set to further explain the tasks of this thesis and to identify the scope
and potential contributions which could be made by this research. The research
methodology will then be discussed to explain the plan on how to answer the research

questions. Finally, the structure of this thesis will be outlined.
1.1 Motivation: Energy Issues in Manufacturing Industry

The motivation of this research is to reduce the environmental impact caused by high

energy demand and consumption on the manufacturing process.

Manufacturing is playing an extremely important role in national economic
development. The rapid development of manufacturing demands a large amount of
energy and resources which placed huge environmental and economic burden. Energy
consumption was selected to be the investigation objective because of the increasing
demand of energy and the greenhouse gas emissions. From manufacturing enterprises'

point of view, large energy consumption will also cause extra economic burden.

The earliest research relating to the limitations of natural resources can be traced back to
the 1970s, when Meadows et al. (1972) published a report named "The Limits to
Growth". In this report, the Club of Rome predicted that natural resources are going to
run low due to the exponential increase of the world's population. According to the
research of the International Energy Agency (2009), the total energy demand in 2030
will increase to 19,000 million tonnes of oil equivalent (Mtoe), which is 270% more
than the energy demand in 1980 (7,000 Mtoe), and 80% of energy will be generated
from non-renewable fossil fuels (see Figure 1.1). The impact of this high energy
demand is not sustainable due to environmental reasons (such as climate change, carbon
dioxide emission), economic reasons (such as increasing energy prices) and social
awareness. The increase in energy consumption and energy prices has become a global
problem for both developed and developing countries which is still not being properly

solved.
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Figure 1.1 World Primary Energy Demand by Fuel (IEA, 2009)

For developed countries, such as the United Kingdom (UK), although the total amount
of electricity consumption has not significantly changed in the last decade, energy
prices have risen rapidly. Compared to 2002, industrial coal and gas, which are the
major electricity generation fuels, increased prices in 2012 by 54% and 122%
respectively. In 2012, electricity prices were 94% higher than in 2002. Since 2001, the
UK government started to charge Climate Change Levy (CCL) and the rate started to
rise annually in line with inflation from 2007 (UK Department of Energy & Climate
Change, 2013). This rise in industrial electricity prices also happened in other EU15 and
G7 countries, such as Japan and Germany (shown in Figure 1.2, additional data can be

found in the Appendix).
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Figure 1.2 Industrial Energy Price for Developed Countries (UK Department of

Energy & Climate Change, 2013)
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For developing countries, such as China, who are playing the role of the “Workshop of
the world”, the energy consumption for industry and manufacturing accounts for over
70% of total energy consumption and has increased rapidly and continuously in the past
decade. The energy consumption of industry increased 140% in 2011 compared to 2002
(see Figure 1.3).

Meanwhile, the increase in energy consumption is not the only problem experienced in
developing countries, the electricity supplied in developing countries is much worse in
fuel type and energy use efficiency than those in developed countries, so more damage
will be created in the global environment. The composition of energy production in
China in 2010 showed that over 90% of energy was generated from non-renewable
natural sources. In addition, electricity generation efficiency was only 42.43%. This
inevitably will cause the problem that the carbon intensity of electricity production in

China is much higher than developed countries (see Figure 1.4).
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Figure 1.3 Energy consumption of industry and manufacturing in China, 2002 to

2011 (National Bureau of Statistics of China, 2011)
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These issues, focussed on energy consumption in manufacturing industry, provide
motivations for conducting this research, specifically looking at developing
methodologies, technologies, knowledge and tools to evaluate and improve the

sustainability performance of manufacturing processes.
1.2 Activities and Issues in Energy-efficient Manufacturing

Traditionally, manufacturing organisations have attempted to produce products of
higher quality at lower cost in shorter time scales. The increasing pressures from
environmental considerations and cost of energy bring the new requirements and
challenges for companies seeking new operating strategies to remain competitive and

create more profit.

As part of the field of environmentally-friendly management, the minimisation of
energy consumption in manufacturing applications is a complex research subject
covering a wide range of manufacturing activities. In terms of the product life cycle,
environmental impact can be reduced across the whole product life cycle at the stages of
product design, manufacturing, distribution/logistics, product use and product end of
life. In addition, from the perspective of the organisation of the system, environmental
impact can be considered at multiple levels, such as factory, department, production
line, work cell, machine tool, discrete part, manufacturing feature and unit

operation/process level (Duflou et al., 2012, Deshpande et al. 2011a, 2011Db).
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A lot of research has already been conducted to address the problem of energy
consumption at different levels of an organisation by many research groups such as the
Laboratory for Manufacturing and Sustainability (UC Berkeley, US), the Centre for
Sustainable Manufacturing and Recycling Technologies (Loughborough University,
UK), the Joint German-Australian Research Group (TU Braunschweig, Germany,
University of New South Wales, Australia) and the Institute for Sustainable
Manufacturing (University of Kentucky, US). From their work, three issues have been

identified as part of a grand challenge for energy-efficient manufacturing:

e The development of performance measures for sustainable manufacturing;

e The improvement of performance in sustainable manufacturing through the
optimisation of existing processes and technologies; and

e The improvement of performance in sustainable manufacturing through the

development of new processes and technologies.

1.2.1 Research Activities and Issues Relating to Performance Measures for

Sustainable Manufacturing

The aim of the research described in section 1.2.1 is to develop prediction models to
evaluate the energy performance of manufacturing processes. Although some energy
audit models and energy-efficient metric have been proposed to help measure and
evaluate the energy usage, these models and metrics still have some identifiable

limitations.

Firstly, most of the models proposed are empirical models which lack scientific
explanations. Some are too simple and not informative enough and relate only to the
material removal rate (e.g. Gutowski et al., 2006), these models cannot be widely

applied in other machining systems.

Secondly, most of the proposed informative models are for turning operations only (e.g.
Rajemi et al, 2010). It is difficult to find a reliable model to calculate the energy

consumption for milled or freeform features.

Thirdly, the definition of energy efficiency has problems and can cause bias. According
to the existing energy efficiency definition, some advanced machine tools have worse
energy efficiency than manual machines because auxiliary functions cost more energy

(Kordonowy, 2001). In addition, even if auxiliary energy consumption can be reduced



to zero and all of the energy is consumed by machining operations. This does not mean

that the efficiency is 100%.

1.2.2 Research Activities and Issues Relating to the Improvement of Performance
in Sustainable Manufacturing through Optimisation of Existing Machining

Processes and Technology

Environmental challenges, such as energy considerations, provide new challenges in
applying the results of optimisation and process planning research. However, as
identified by Roy et al. (2008), most academic optimisation results have not been used
by industry because practitioners mostly prefer to select optimal parameters based on
expert experience. The reasoning behind practices on optimisation is not clear and needs

to be uncovered.

In addition, there are also some issues in the multi-objective optimisation results. Most
of the multi-objective machining optimisation research into energy considerations
reviewed only used priori techniques which will combine the objectives together based
on decision makers' preferences (e.g. Sheng and Srinivasan, 1995). The optimal results
achieved by using these methods are a unique optimal plan, but not a set of feasible
solutions. It is, therefore, necessary to investigate the optimal solutions of multi-
objective machining optimisation with energy considerations by using posteriori

techniques.

In this context, it is important to develop a comprehensive method to achieve a

sustainable manufacturing process by selecting optimal process parameters.

1.2.3 Research Activities and Issues relating to the Improvement of Performance in
Sustainable Manufacturing through Development of New Machining Processes

and Technologies

Instead of the improvement of current manufacturing processes, the aim of develop new
energy-efficient machining strategies is to develop new concepts and machining
strategies to minimise energy consumption for the machining operation. However, these
strategies also have limitations and currently are still not able to replace conventional
strategies. For example, most of these research contributions are related to the coolant
strategies or using different cutting tools (e.g. Campatelli, 2009, Klocke et al., 2014 and
Blau et al., 2014). Although these research contributions can reduce the energy

consumptions, the inherent inefficiency of existing machining processes which is
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caused by the cutting technology, is still not properly solved. In this case, it is really

important to develop a new energy-efficient strategy to further minimise the energy

consumption and improve the energy efficiency of the existing cutting process. A new

proposed energy-efficient strategy should also give direction to the research of new

technologies for tool design, toolpath strategy and machining technology.

1.2.4 Summary of Research Activities in Sustainable Manufacturing

The summary of major researchers, and their research activities and contributions in

sustainable manufacturing are listed in Table 1.1, and the details will be explained in the

Chapter 2 Literature Review.

Table 1.1 Research Contributions in Sustainable Manufacturing

Major Research Activities in Sustainable Key Research
Researchers Manufacturing Contributions
Sustainability Machining New
Measures Optimisation Strategies
Dornfeld et al. v v Energy prediction and
energy-efficient  toolpath
strategy
Rahimifard et v Measures  of  energy
al. consumption and energy
efficiency
Jawabhir et al. v v Machining  optimisation
and sustainable machining
strategies
Rajemi and v v Energy prediction and
Mativenga minimisation by selecting
optimal process parameters
Gutowski et v Measures  of  energy
al. consumption
Sheng et al. v v Measures  of  overall
sustainability performance
and development of new
process planning methods
Kara et al. v Energy prediction
Herrmann et v Measures of energy
al. consumption and energy
efficiency
Newman et al. 4 Measures of  energy
consumptions and process
improvement
Avram et al. 4 Multi-criteria decision
making method for
sustainability improvement
Pusavec et al. 4 New lubricant system
Mori et al. v Energy minimisation
Blau et al. v New lubricant system
Klocke et al. v New coolant strategy
This Project v v v




1.3 Research Questions
This research is an attempt to answer the following main research questions:

What methods can be applied to obtain a sustainable manufacturing process by

improving the energy efficiency in the machining operation?

The main research questions can be further divided into three aspects which correspond

with the identified issues in section 1.2.
The research question of section 1.2.1 is:

e What method should be used to measure and evaluate the performance of

energy use for the machining process?
The research questions of section 1.2.2 are:

e What method should be used to optimise the energy consumption of
machining operations based on a comprehensive understanding of how energy
affects machining optimisation as an additional factor to traditional factors of
cost, time and quality?

e Which method is the most suitable optimisation method from varieties of

options?
The research question of section 1.2.3 is:

e What method should be used to reduce energy consumption for existing

machining methods through applying energy-efficient strategies?

1.4 Aim and Objectives

Based on the formulated research questions, the aim and objectives of this research can

be clearly set as below.

The aim of this research is to provide systematic methods and tools to measure and
evaluate the energy use performance, and reduce the energy consumption for

machining operations thus to achieve sustainable manufacturing processes.



The objectives of this research include:

e To identify the gap in current research contributions by conducting a
comprehensive literature review on the topic of energy-efficient design and

manufacturing to investigate the current research achievements and problems.

e The development of energy prediction models and energy efficient metrics
which can be used to measure and evaluate energy consumption of machining

Process.

e The characterisation of machining operation with energy considerations will be
investigated to provide a comprehensive understanding of the machining

operation and uncover the interaction of different variables.

e The development of a numerical experimentation rig to investigate the reasoning
behind the results obtained in applying typical optimisation methods.
Optimisation procedures will be carried out to determine the optimal process

parameters with energy considerations.

e Development of a scenario-based framework to solve machining optimisation

problems especially when multiple objectives need to be considered.

e An energy efficient machining strategy, which is carried out based on
optimisation of process parameters, will be proposed to further improve energy

efficiency for 2!'/2D milled features.

e A comprehensive framework which integrates the above research findings will
be developed for decision makers to improve sustainability performance of their

manufacturing process.
1.5 Research Scope

The research scope of this thesis can be determined and presented in Figure 1.5. The

detail of research scope is explained as below:

e Firstly, only unit process level energy which is the energy consumed during the
machining process was considered in this thesis. The machining type only refers
to conventional machining process. Other shape/feature forming methods like

net shape manufacturing and 3D printing were not considered.



Secondly, only 2'/2D milled features were considered in this research. But
principles and developed research methodology can be extended to other
features, workpiece material and machining operations.

Thirdly, only optimisation is considered not multi-criteria decision making. The
output of this research such as the characterisation of the machining operation
and analysis of objectives will not directly give any decisions when multiple
objectives need to be considered. But the output can be used as the suggestion

and basis of understanding to help users to make the decision.
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Figure 1.5 Research Scope of this Thesis

1.6 Research Methodology

1

shows the model used for the research methodology.

1

The aim of this section is to design a scientific research methodology for carrying out
the research based on the characteristic of the project. According to the nature of this
research, which is exploratory and explanatory research including quantitative and

qualitative analysis, a three-phase research methodology has been developed. Figure 1.6
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Figure 1.6 Developed Process of Research Methodology

Based on the developed steps in Figure 1.6, the methods of how the research questions
will be answered can be presented. According to issues identified from literature review,
the research can be divided into three stages. The following output will be delivered for

each stage:

e Stage 1 Performance measures: new metrics for measuring energy consumption
and energy efficiency.

e Stage 2 Optimisation of existing processes and technology: a comprehensive

framework for selecting optimal process parameters with energy considerations.
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e Stage 3 development of new processes and technology: new energy-efficient
machining strategy (a profiling toolpath strategy) was proposed based on end

milling operation

The result of Stage 1 will be implemented to carry out the result in Stage 2, and the
result achieved in Stage 2 will be the foundation of stage 3. The design of the thesis is

listed as below:

Stage 1: Performance measures

The aim of this stage is to develop a reliable method to measure and predict the energy
consumption performance of the machining operation system. The specific tasks include:
mathematical modelling, design of energy efficiency metrics and experimental

verification.

The metrics for measuring energy consumption and efficiency will be built based on

existing machining science theories.

Physical experiments will be conducted to collect data (power consumption and cutting
force) by using developed force and power measurement system on a CNC milling
machine. The collected data will be used to determine cutting force coefficient, and then
validate mathematical models. The developed prediction model and energy efficiency

metrics will be used to conduct the following stages.

Stage 2: Improvement of performance in sustainable manufacturing through

optimisation of existing processes and technology

The aim of this stage is to develop a comprehensive framework for selecting optimal
process parameters with energy considerations. The specific tasks include:
characterisation of machining operation by considering energy as an additional factor to
the conventional criteria, investigate optimisation algorithms and provide an optimal
solution for minimising energy consumption, develop solution scenarios for solving

multiple-objective cases and design the optimisation framework.

Numerical experiments will be conducted by using MATLAB simulation based on the

verified mathematical models to collect more data for carrying out the analysis.

Multivariate data analysis techniques such as contour plot, plot matrix and tabular

method will be used to analyse the data.
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Typical machining optimisation methods (such as Taguchi method, Genetic Algorithm,
Direct Search method and Ant Colony method) will be investigated and applied to

conduct the optimisation procedures.

Stage 3: Improvement of performance in sustainable manufacturing through

development of new processes and technology

The aim of this stage is to develop an energy-efficient machining strategy which can
further reduce the energy consumption for machining operation. The specific tasks
include: propose the new strategy, discuss implementing conditions (feature type and

dimension) and carry out case study to show the improvement.

A profiling toolpath strategy will be proposed to get close to the theoretical limitation in

energy consumption for achieving a feature.
1.7 Structure of Thesis

Chapter 2 - Literature Review: This chapter describes the relevant existing published
research works in the research area of sustainable development, sustainable

manufacturing and energy-efficient machining technologies and strategies.

Chapter 3 - Development of Predictive Models and Energy Efficiency Metrics for
Machining Operation and the Experimental Verification: In this chapter, an energy
prediction model will be built based on cutting force model. Experiments will be
conducted to determine the coefficients and verify the energy prediction model. New
energy efficiency metrics will be proposed to measure the energy use performance and
identify the inefficiency of machining operation. Case studies for machining a particular
feature will be carried out to discuss the results obtained by using the new proposed

metrics.

Chapter 4 - Energy Characterisation and Minimisation by Selecting Optimal Process
Parameters: In this chapter, energy consumption of machining operation will be
characterised and investigated. A systematic research methodology will be proposed for
uncovering the reasons behind results obtained when energy is considered in machining
optimisation. An optimisation procedure will be conducted to show the improvement of

energy consumption and energy efficiency by implementing optimal process parameters.

Chapter 5 - Multiple Objectives Optimisation for Sustainable Machining: In this chapter,
a multiple objective optimisation method will be introduced as part of optimisation

14



framework for machining optimisation by developing a problem-solution scenarios

system.

Chapter 6 - Energy-efficient Cutting Strategy - A Profiling Toolpath Strategy for End
Milling Operation: In this chapter, an energy-efficient profiling toolpath strategy will be
proposed for forming 2!'/2D milled feature which can further reduce the energy
consumption and improve the energy efficiency for machining process. Implementing

conditions of different feature shapes will also be discussed.

Chapter 7 - Development of Framework for Machining Optimisation with Sustainability
Consideration: In this chapter, a comprehensive framework which integrates the
research findings in the previous chapters will be introduced to provide a systematic
tool for decision makers to improve sustainability performance of their manufacturing
process. Case studies will also be carried out to demonstrate how the proposed

framework can be implemented.

Chapter 8 - Conclusion and Further Work: This chapter states the conclusion of current
research achievements, limitations and problems. Further work plan is also outlined to

address the current problems.
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CHAPTER 2: LITERATURE REVIEW

The aim of this chapter is to review currently published literature based on the identified
issues in Chapter 1. This chapter will describe the key elements of the research
including theoretical foundations, current research status and contributions. After a
systematic review, the research gaps will be identified in order to lead the research

directions, formulate research questions and define the research scope.

The aim of this research is to provide a systematic methodology for achieving a
sustainable manufacturing process by minimising the energy consumption and
improving the energy efficiency. Therefore, this review of literature seeks to identify
gaps in the methods currently employed for measuring and minimising energy
consumption. The scope of the literature review can be divided into four stages. Firstly,
the literature review begins with the investigation of the general concepts relating to
sustainable manufacturing and the identification of important energy consumption
issues. The second stage focuses on the research output relating to how to measure
energy consumption and efficiency at unit process level. The third stage focuses on the
research on optimisation of process parameters with energy considerations including:
optimisation methods, optimisation frameworks and energy related optimisation. The
final stage will investigate the energy minimisation methods through development of

new processes and technology. Gaps in above areas will be identified after the review.

Various sources and materials were used during this literature review, including
academic reference books, published journals, conference papers, PhD theses and other
research materials. The sources for searching literature include the University of
Greenwich library electronic catalogue and e-library on-line databases, including
Elsevier Science Direct, Compendex and Springer Link. Other Internet resources (e.g.
Google Scholar) and library catalogue (British Library) were also used. The key areas

for this literature review in this thesis include:

e Sustainable manufacturing
e Energy efficient machining and manufacturing

e Machining optimisation
2.1 Concepts of Sustainable Manufacturing

Sustainable development has become an important approach to address the challenges

from economic development, environmental protection and social development. The
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concerns of environmental development have emerged since early 1980’s in response to
the increased awareness and concern over the environmental impact of economic

growth and global expansion of business and trade.

The term sustainability was first defined in the Brundtland report, which stated:
"Sustainable development meets the needs of the present without compromising the
abilities of future generations to meet their own needs" (Alting and Jorgensen, 1993).
The meaning of Sustainable Life Cycle Management (LCM)/ Life Cycle Assessment
(LCA) is to reduce the environmental impact throughout the product life cycle. Current
industrial production and consumption have undergone experienced changes, such as:
an increase in manufacturer responsibility, pollution and waste problems and non-
renewable resource issues. Based on this general concept, the research for achieving
sustainability can be conducted from different points of view (Alting and Legarth, 1995,
Alting, 1996, Westkdmper et al., 2001).

The development of assessment methods for the impact on the environment has been a
concern of sustainability. Researchers have developed different methods based on their
investigations which are mainly using two procedures: Environment Impact Assessment
(ETIA) to evaluate planned projects (e.g. technological process) and Life Cycle
Assessment (LCA). Five profiles were considered to assess the environmental impact
including: raw material, energy, waste, product, and packaging (Fijal, 2007). The effect
on the resource and energy efficiency of production was considered by both academic
and industrial researchers to minimise the cost and environmental impact (Dimitroff-

Regatschnig and Schnitzer, 1998).

The research area of sustainable manufacturing, which aims to address environmental
problems, has become a necessary and important part of the manufacturing process.
Sustainable manufacturing calls for the design and manufacture of the product life cycle
for minimum environmental impact and maximum resource utilisation. Sustainable
manufacturing is part of sustainable development (Leahu-Aluas, 2010). At the 1992
U.N. Conference on Environment and Development (UNCED, 1992) held in Rio de
Janeiro, sustainable production was introduced and adopted for the transition towards
and achieving sustainable development. As sustainability is becoming an expected
business practice by both large and small companies, sustainable manufacturing is
defined as developed and implemented by manufacturing companies and their networks

of suppliers and customers. The US Department of Commerce (DOC) adapted the

17



definition of sustainable manufacturing as "the creation of manufacturing products that
use materials and processes that minimise negative environmental impacts, conserve
energy and natural resources, are safe for employees, communities, and consumers and

are economically sound" (Trade, 2010).

Researchers at the University of Kentucky described sustainable manufacturing as the
6R approach at product-level. 6R is short for remanufacturing, redesign, recover,
recycle, reuse and reduce, which is shown in Figure 2.1. In view of sustainable
production technologies, there are some methods which improve sustainability
performance, including: reduce machining processes energy consumption, minimise
waste generation (e.g. generate less waste, increase the reusage or recycling waste),
effectively use resources, use recyclable materials or reuse machine-tool components at
the end of life-cycle, improve the cooling lubrication fluids (CLF) strategy, and adopt
LCA methods. The main natural resources of concern in production technologies are
material, coolant/lubrication, water and energy (Jawahir, 2007, Pusavec et al., 2010a &

2010b, Kopac, 2009, Jayal et al., 2010).
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Figure 2.1 Sustainable Directed Production (Jawahir, 2007)

World Technology (WTEC) Division organised a study panel and have started to
conduct research relating to Environmentally Benign Manufacturing (EBM) since 2000.
The aim of their research is to investigate and develop new methods and technologies to
reduce the environmental impact and maximise the benefits to industry. Manufacturing

can be considered as an open system which is consisted with the flows of various
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resources, products, waste and pollution. By taking the system view of manufacturing
and the track of Product Life Cycle (PLC), the manufacturing system can be divided
into four stages: raw materials production, manufacturing, use phase and end-of-life
phase; this is shown as a closed system in Figure 2.2 (Gutowski et al., 2001, Krishnan et

al., 2009).

Design
o
Raw Use
Mat’l l—} = _:fi- Phase | =, EOL
‘Rec:.'cle 1
. Reuse
mndustnial Waste
Recycle, post
consumer

Figure 2.2 Manufacturing and Product Life Cycle (Gutowski, 2001)

The machining process is a major manufacturing process which involves a number of
sustainable factors and has significant potential for reducing environmental impact.
Three elements are involved in the machining process, including material, cutting or

machining tool, and cutting fluid.

Research contributions in energy consumption for machining operations can be mainly
divided into two scenarios. One scenario is at the machine tool system level where
research mainly focuses on the energy measurement and energy efficiency for the
machining tool. The second scenario is the machining process and operation level which
focuses on the impact of process planning on energy consumption. The concept of the
Machine Tool System (MTS) is considered as traditional machines endowed with
numerical control part and able to conduct different types of mechanical work on
different faces of the same work-piece. The MTS must have two basic functions which
are machining function (material removal function) and the auxiliary function
(support/control function). Many research contributions have been conducted to
investigate the energy consumption of each section, and develop new methods and
strategies based on different sections (e.g. machining operation, process parameter,

cutting tool and tool-path strategy etc.) to reduce the energy consumption.
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Duflou et al. (2012) summarised the potential energy improvement aspects at unit
process level. One aspect is to develop methodologies for determination/measurement
of energy usage performance. The specific tasks include develop equations or prediction
models to determine the theoretical minimal energy requirement and calculate the
energy consumption, and develop metrics for identifying potential inefficiency,
suggesting the improvement direction and comparing the performances of external
benchmarking. The other aspect is to develop new machining strategies to reduce
energy consumption during machining activities. From machine tool manufacturers’
points of view, implementation of energy-efficient machine tool components (e.g.
drivers, pump, spindle etc.) can effectively reduce the energy usage. However, it does
not mean the real energy efficiency for the process can be improved. The other direction
for reducing energy consumption for machining process is the optimisation of process
control. It can be realised by optimising the planning of existing process (e.g. optimise
process parameters) and by designing new processes/technologies (e.g. change coolant

type, change cutting strategies, select efficient machine tool and cutters).

2.1.1 International Standards of Environmental and Energy Management

Cascio et al. (1996) developed an overall framework of the environmental management
as the ISO 14000 family of standards (see Figure 2.3). It specifies the requirements for
the establishment of an energy management system from organisation and product

aspects.

ISO 14000
Environmental Management Standards

/\

Environmental Management Environmental Aspects in
System Product Standards
Environmental Auditing Environmental Labeling

Environmental Performance

Evaluation Life Cycle Assessmeant
ORGANIZATION PRODUCT
EVALUATION EVALUATION

Figure 2.3 ISO 14000 Family of Standards for Environmental Management

(Cascio et al., 1996)
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ISO 14000 series standards are designed to provide management tools for
company/organisations to manage, improve and assess environmental performance. For
environmental and economic benefits, it can be implemented by following a PLAN-

DO-CHECK-ACT (PDCA) cycle (ISO, 2009).

A new environmental standard ISO 14955 was introduced by Newman et al. (2012)
(Environmental evaluation of machine tools) is currently being developed by ISO/TC
39/WG 12 to improve energy efficiency by implementing unified methods for
measuring, evaluating and reducing energy consumption. Upcoming standard ISO

14955 consists of four major parts which are:

e [SO 14955-1: 2014 Eco-design methodology for machine tools (has already
been published).

e [SO 14955-2: Methods of testing of energy consumption of machine tools and
functional modules.

e ISO 14955-3: Test pieces/test procedures and parameters for energy
consumption on metal cutting machine tools.

e ISO 14955-4: Test pieces/test procedures and parameters for energy

consumption on metal forming machine tools.

Specific to general energy management, new ISO standard, ISO 50001:2011 (Energy
management systems - Requirements with guidance for use) was released by ISO in
June 2011 after the ISO 9001 (Quality Management System) and ISO 14001
(Environmental Management System). The aim of ISO 50001 is to provide management
strategies to public and private sector organisations to improve energy performance
(including energy efficiency, use, and consumption) and reduce costs (ISO, 2011).

Implementation of ISO 50001 also followed a PDCA approach (see Figure 2.4).
The steps of the PDCA cycle of ISO 50001 can be briefly described as follows:
Plan: establishing targets and action plans.

Do: implementing established plans and undertaking improvement measures.

Check: monitoring and reviewing the established targets (e.g. energy performance), and

collecting new suggestions via energy audits.

Act: evaluating the current energy performance, and then establishing new strategies

and optimisation process to further improve the energy performance.
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Figure 2.4 The Four Phases of the PDCA Circle for Implementing ISO 50001 (ISO,
2011)

Nowadays, ISO 50001 has been applied to guide the manufacturing process in some EU
countries (e.g. Germany). Apart from the direct saving though the reduction of energy
consumption, companies who have ISO 50001 certificate can also have reduction in
Renewable Energies Act (Erneuerbare-Energien-Gesetz, EEG) (Kahlenborn et al.,
2012).

2.2 Cutting Force Models

To mathematically build the energy or power consumption model for machining
operation, cutting force models were investigated. The cutting force is considered as
one of the main performance estimators during the machining process. Research into the
cutting force is a typical topic in machining which has been conducted over ten decades.
The effects of the cutting force include: extreme conditions in the machining process,
determining the spindle power requirements and bearings loads, causing the deflection

of the part, tool or machining structure, and the energy transfer in the machining system.

Figure 2.5 shows the process parameters of the end milling operation. Where, ap is
depth of cut, ae is width of cut, n is spindle speed, fz is feed rate per tooth, Vf is feed

rate and Ve is cutting speed.
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Figure 2.5 Process Parameters of End Milling Operation (SECO Tools, 2012)

2.2.1 Investigation of Cutting Force Models

Many different cutting force models have been suggested by a number of authors
throughout the 20th century. At the beginning of the century, a model was proposed as a
direct relation between cutting forces and the chip cross sectional area (Kronenberg

1966, Ehmann et al. 1997, Waldorf et al. 1998) such that:
Fc=K;-A (2.1)

Where, K is specific cutting pressure, A is the area cross sectional area of the
undeformed chip, F, is the force acting at the cutting speed direction (tangential force).

This model considered that the relationship between force and area is linear.

However, it was found that K is not a constant, but a function of process parameters
(e.g. chip thickness and tool rake angle). Kronenberg (1966) introduced a more accurate

method to calculate K.
K, =K, -h¢ (2.2)
where K. and c are coefficients and / is chip thickness.

The milling operation has its characteristics such as variation on the undeformed chip
thickness and interrupted cut. The cutting force model of milling is different from
cutting force models of the other machining operations. A model considering the chip
thickness and depth of cut is accepted and widely used by current researchers to predict
cutting force (Martelotti, 1941, Altintas and Yellowley, 1989, Tlusty, 2000, Lai, 2000,
Coelho et al. 2003).
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Fr = Ks - a, - h($) (23)

h(¢) = f, sin (2.4)
Fp=1-F; (2.5)

where Fr is tangential force, Fy is radial force, a, is axial depth of cut, h(¢) is

(2
instantaneous value of chip thickness, f, is feed per tooth, and ¢ is rotational angle
which is related to diameter of tool and width of cut. According to the total force

Equation 2.6
F? + F? = Ff + F§ (2.6)

The force for conventional up-milling in the X and Y directions can be given as

Equation 2.7.

{Fx(gb) = Frcos ¢ + Fpsin¢

F,(¢) = Fg cos ¢ — Frsin ¢ (2.7)

The rotational force model can be further developed in three dimension spaces, which

consider the Z direction and is shown in Equation 2.8 (Zaman et al., 20006).

Fr=Kr-ap- h(¢)
Fr=Kp-ap- h(¢) (2.8)
F, =K, ap - h(¢)

where F, is the axial force.

Among these cutting forces components, the tangential force which is also called the
main cutting force is considered to contribute most of the power consumption. In this
case, the value of the tangential force is used in the theoretical calculation of machining
operation energy consumption. The instantaneous tangential force can be generated as

in Equation 2.9.
dFy = Kr-a, - f, - sindg (2.9)

where Fr is tangential force N, Kr is cutting force coefficient N/mm?, a, is depth of
cut, f, is feed per tooth mm/tooth, ¢ is tool rotated angle (after the width of cut is
completely engaged to the material), and f, is related to feed rate, number of teeth and
spindle speed. ¢ is rotational angle which is related to the width of cut and diameter of

the tool. The relationships are shown as equation 2.10 and 2.11.
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f,=L (2.10)

b= Gous — bun = cos~ () (211)

where f is feed rate mm/min, n is spindle speed rpm, d is diameter of tool mm, a, is
width of cut mm, and z is number of cutting flutes for milling cutters. Based on these
equations, tangential force in end milling operation is related to depth of cut, width of
cut, diameter of tool, workpiece material, feed rate, spindle speed and number of flutes.

The instantaneous tangential force can be integrated as in Equation 2.12.

Fp = fd‘f’i:“t Kr-a,-L-singdg 2.12)

f
Fr =Ky~ ay E (cos $in — cos ¢out)

Based on equation 2.12, when the tool is fully engaged in the material such that ¢;,, = 0,

the tangential force of milling can be represented in Equation 2.13.

d-2a,
Fr=Kr-a,-L-(1-22%) (2.13)
_2Kr-ay-f-ae
T nzd

Equation 2.13 can be further simplified and represented in Equation 2.15 (Tlusty, 2000).

MRR =a,-a,"f (2.14)
_ 2K - MRR 2.15)
T nzd '

where, K is cutting force coefficient, N/mm?2. Based on the cutting force Equation
2.15, the tangential force is in proportion to depth of cut, width of cut and feed rate, and

in reverse proportion to spindle speed and number of teeth.

In addition to conventional cutting force models, there are also a lot of research
contributions used numerical modelling methods to predict cutting force for machining
operations (Ozel and Althan, 2000, Saffar et al., 2008, Jin and Altintas, 2012). One of
most common methods is Finite Element Modelling method. The goal of finite element
method is to analyse and simulate machining process by considering the deformations,

stress and strains in the workpiece and the load on the cutting tool under the specific
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machining process parameters. Usually, 2D/3D models of machining operation will be
created by using existing commercial FEA software (e.g. DEForm and Abaqus), and the
cutting force will be automatically simulated after defined the criterions in material
mechanical properties, frictions on chip-tool interface and so on. Three approaches are
used for meshing the finite element model which are Lagrangian, Eulerian and Arbitrary

Lagrangian Eulerian (Arrozola et al., 2013, Mackerle, 1999).

The accuracy of the finite element analysis is related to the accuracy of the material
mechanical properties, such as flow stress. The mostly accepted material constitutive

model was introduced by Johnson and Cook (1983) and shown in Equation 2.16.

o=(+Bem (1+CIn)[1-(Z2)"] (2.16)

&0 Tm_Tr

where, o is the equivalent flow stress, MPa or N/mm?, ¢ is the equivalent plastic strain,

& is equivalent plastic strain rate, s~ 1

, £ 1s the reference equivalent plastic strain, T is
the workpiece temperature, °C, T, is the room temperature, °C, T,, is the material
melting temperature, °C, A is yield strength of the material, MPa, B is strain hardening
modulus, MPa, C is strain rate sensitivity, m is thermal softening coefficient, and n is

hardening coefficient.
The friction on the chip-tool interface can be represented by Equation 2.17.

m = (2.17)

T
k
where, m is shear friction factor, 7 is friction shear stress, k is workpiece material flow

stress.

However, the problem for implementing finite element modelling is that there are too
many variables, such as temperatures, need to be considered. In addition, the
implementation of FEA modelling method also requires operators to have a very good
knowledge in metal cutting theory. Compared to conventional modelling method, it
requires more complex validation process and time, and is not easy to be implemented
in practice. Meanwhile, the accuracy of the model and simulation depends on the
algorithms of the software. In this case, in this thesis conventional cutting force
modelling method will be selected to predict cutting force and build energy prediction

models.
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2.2.2 Investigation of Cutting Force Coefficient

The cutting force coefficient is one of the key components of the cutting force model.
Early researchers considered the value of the coefficient to be approximately a constant
for different materials, as was explained in section 2.1.1. The unit of cutting force co-
efficient is N/mm? or W - sec/cm3. Tlusty (2000) provided constant values of cutting

force coefficients for different workpiece materials which are shown in Table 2.1.

Table 2.1: Cutting Coefficients of Common Workpiece Materials (Tlusy, 2000)

Material K
Grey cast iron HBN 200 1500
Carbon steel 1020 N 2100
Carbon Steel 1035 2300
Carbon Steel 1045 2600
Stainless steel 302 2700
Alloy steel 4140/5140 2800
Al 7075-T6 850

However, the accuracy of this model has always been questioned in that the cutting
coefficient is not a constant even for the same workpiece material. Based on Equation
2.8, some researchers (Wan et al., 2010, Dang et al., 2010) have conducted experiments

to determine the values of cutting force coefficients for the end milling operation (see

Figure 2.6).
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Figure 2.6 Cutting Force Coefficients (Wan et al., 2010)
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From Figure 2.6, it can be found that the cutting force coefficient Kz for axial force is
close to zero which means the axial force in end milling operation is also close to zero.
The coefficient of tangential and radial directions can change significantly (e.g. Ky is
from 3000 to 400). However, when the uncut chip thickness is changed from 0.03mm to
0.21mm, the trend of tangential and radial coefficient flattens (e.g. Ky is from 1000 to
500). It means the cutting force co-efficient can be considered as a constant in particular
range of the uncut chip thickness or can be chosen by building up co-efficient data
based on uncut chip thickness. However, the value of cutting force coefficient may also
be affected by other factors like different machine tools, different cutting tools (e.g. type
and material), temperature, cutting fluid and lubrication strategies, and still need to be

further investigated.

To accurately predict cutting force, the cutting force coefficient Kr can be considered as
a function of process parameters and generated by using a regression method based on
experimental measurement. The mathematical expressions of the cutting force and the

cutting force coefficient are shown in Equations 2.18 and 2.19.
Kr = f(ap @, d, 2, f,n) = Co - @yt - ag? - d% - 2% - £, - nCs (2.18)
Fr=2Cy-agt-ag?-d% -z £, -n-a,-f, a,/(nzd) (2.19)

where, Co to Cs are cutting force constants which are determined by the experimental

values of force or power.
2.2.4 Summary of Cutting Force Modelling

This section introduced the modelling method for predicting the tangential cutting force
for end milling operation. The modelling method in this section has been developed
based on machining theory which is related to the workpiece material and the
machining process parameters. However, this model still has some limitations. As a
very complex process, there are too many variables involved during the machining
process and some of them are still not quantitatively determined by the current
machining science research. So the modelling methods of cutting force have different
complexities. Ideally, the more complex the model is and the more variables are
considered, the more accurate the model will be. However, as a consequence, the
increasing complexity will bring the problems of flexibility and validity which means

the proposed model can only be used under particular conditions (e.g. specific

28



machining tools, machining cutters and workpiece materials) and mean that it is very
difficult to verify. Also the improvement of accuracy may be very small and not

necessary in the practical machining processes.
2.3 Measurement of Energy Consumption and Energy Efficiency

In the early stages of machining research, energy consumption was not considered as a
unique objective and always represented as power consumption. However, the power
consumption is not able to directly reflect the energy consumption of the machining
process. With the increasing demand for environmental awareness, quantitatively
predicting energy consumed during machining operation has become necessary for

academic researchers and practitioners.
2.3.1 Measurement of Energy Consumption for Machining Process

One of the earliest pieces of research which reported the issues of energy efficiency in
numerically controlled machine tools was carried out by Filippi et al. (1981). They
conducted experiments to collect the data on the power consumption of ten different
machine tools in various operations. Based on their experimental results, the energy
efficiencies (mean power over installed power) of tested machine tools were almost all
less than 50% and the productive time only accounted for 60% of the available time.
This finding identified the potential to improve the energy efficiency of machine tool by
designing advanced multi-functional machine tools. They also suggested that it is
necessary to set up a power/energy measurement device on the machine tool in order to

help to avoid the high power usage.

The earliest research which clearly identified issues of environmental impact at
machining process level was conducted by the researchers from the Consortium on
Green Design and Manufacturing (CGDM), University of California at Berkeley in
1990s. Munoz and Sheng (1995) proposed a mathematical model with the consideration
of material, energy and time consumption. Two main loss streams were introduced:
primary mass loss which consisted of chip generation in the machining process, and
catalytic mass losses which consisted of the waste stream of cutting fluid and the
expended tools. It is one of the earliest contributions to provide a systematic tool to

measure the energy consumption and environmental impact of the machining process.

Researchers from MIT firstly conducted research to systematically measure energy

efficiency of machine tool system. Kordonowy (2001) conducted a series of
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experiments for different types of milling machine under Gutowski’s supervision and
the results were shown in energy break charts in his thesis. Figure 2.7 shows the energy
consumption for a milling process. The energy consumed for machining operation just
accounted for 48% of total energy consumption. Idling energy consumption which was
presented as constant set-up time accounted for 27% of total energy consumption. This
finding further accurately showed the energy usage performance of the machine tool

system.
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Figure 2.7 Energy Consumption Chart for a Milling Process: 1988 Cincinnati
Milacron Automated Milling Machine with a 6.0 kW Spindle Motor (Kordonowy,
2001)

Based on the results of energy usage of machine tool, Dahmus and Gutowski (2004)
analysed the machining operation at machine tool system level from the view of

environmental impact. Figure 2.8 shows the specific material flow, energy consumption
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and waste generation during machining system. Since machining is a material removal
process, most of the environmental impact and energy consumption stem from the
material removal process. The specific energy consumption (energy used over material
removed) was proposed to evaluate the performance of machine tools. Four different
milling machines were measured and compared. The comparison result shows that
specific energy consumption is different for different machine tools and workpiece
materials. The environmental impact of machining operation can be possibly reduced by
minimising the energy consumption during material removal process and associated

processes, such as material production and cutting fluid preparation.
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parts clean 1
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Figure 2.8 Energy Consumption in Machining System (Dahmus and Gutowski,
2004)

Gutowski et al. (2005) identified the energy use for current manufacturing industry was
not very effective. Toyota Motor Corporation was taken as an example. Based on the
energy use breakdown for machining (shown in Figure 2.9), the energy use for
machining operation just accounted for 14.8% of total energy use, and 85.2% of the
energy consumed as constant energy required for non-value added operations (e.g.
centrifuge, coolant, oil pump). This finding shows that even for a modern, highly
automated, mass production environment, there are potentials to reduce the energy
consumption by improving the efficiency of both machining technology and auxiliary

equipment.
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Figure 2.9 Energy Breakdowns for Machining in Toyota (Gutowski et al., 2005)

To better support the research of Environmentally Benign Manufacturing and measure
the environmental impact of manufacturing process, Gutowski et al. (2006) proposed an
energy prediction model to calculate the electrical energy for manufacturing processes.
The total power consumption of the manufacturing process can be divided into two
parts: idle power and power for machining operation. Idle power comes from auxiliary
equipments. Power for machining operation can be calculated by material removal rate
multiplying the specific energy consumption constant (energy use/material removed,

shown in Equation 2.20).
P =Py+ MRR x K (2.20)

where, Po is idle power, K is specific energy consumption, MRR is material removal

rate.

In addition, they also proposed a metric to measure the energy loss of the machine tool

system.
Elost = Ein — Eout (2.21)

where, Elost 1s energy lost which can show the potential for improvement of the system,

Ein and Eout are the input and output energy.

The current research which investigated the energy consumption for machining usually

used simplified equation (Kara & Li, 2011, Anderberg et al., 2012):
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Cy
MRR

SEC = Cy + (2.22)

Or
P =SEC-MRR
where, SEC is specific energy consumption

For end milling operation, material removal rate is related to depth of cut (mm), width
of cut (mm) and feed rate (mm/min). However, the problem of this model has some

limitations:

e Material removal rate is a dependent variable which consists of other dependent
variable. These independent variables are considered as equally important,
which is doubtful. Energy consumption should be different from “light” or
“heavy” machining (identified by Newman et al., 2012).

e MRR does not consider all the process parameters and cause prediction models
cannot respond to other process parameters.

e The concept of specific energy consumption is determined by experiments

which is lack of physical theory and sometimes is dimensionless.

In this case, to further investigate the characteristics of energy consumption during the
machining process, more complex energy prediction model needs to be developed based

on machining theory.

Many research contributions have been conducted to develop more informative models
to calculate energy consumption for turning operation based on Gutowski's result.
Manchester researcher Rajemi and Mativenga (Rajemi et al, 2010, Mativenga et al,
2011) proposed a comprehensive model to predict energy consumption for dry turning
operations by considering depth of cut, feed rate and cutting speed. Guo et al. (2012)
further extend the Gutowski's energy prediction model in details for turning operation

(shown in Equation 2.23).

Cy

TSE =SPE+SCE=C,-v*-ff-a7-D® + ————
o v f ap Uc'f'ap

(2.23)
Where, TSE is total specific energy, SPE is specific process energy, SCE is specific
constant energy, D is final workpiece diameter mm, Vc is cutting speed m/min, f is feed

rate mm/r, a, B, v, ¢, Co and C is are coefficients.
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The energy prediction models in specific energy consumption from existing research
publications are shown in Table 2.2 for various type of workpiece materials (such as

mild steel 1020 and AISI 1018) and machining operations (turning and milling).

Table 2.2 Energy Prediction Models from Existing Publications

Researchers | Operation | Workpiece Models
Material
Kara and Li Turning Mild Steel SEC=2.378+2.273/MRR
(2011) 1020
Milling SEC=2.830+1.344/MRR
Diaz et al. Milling AISI 1018 E/V=1.475+1556/MRR
(2012)
Guo et al. Turning Steel TSE
(2012) = 1.920510:4486 £ ~6851,-0.8214 ) ~0.8040
. A o
85.4442
Vefap

2.3.2 Measurement of Energy Efficiency for Manufacturing Process

Since energy label has already been applied to choose the more efficient products and
cut the cost for household appliances in Europe (e.g. refrigerator, washing machine, air
conditioners etc.), Herrmann et al. (2007) proposed a concept about the initiation of
energy labels for production machine which can facilitate the energy efficiency of
machine tool through transparency and performance of different machines. The
implication of energy labels for machine tools can stimulate the enforcement of energy
efficiency. Herrmann and Thiede (2009) investigated the energy efficiency at
manufacturing process level. They discussed the energy consumption in three different
layers (production process and machine, production system and technical building
services) in terms of what objectives should be achieved and how to achieve the

objectives. The energy efficiency was defined as:

productive output of production system

Energy Ef ficiency = (2.24)

total energy input of production system
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A 5-step simulation approach was developed to foster the energy efficiency of
manufacturing, improve the energy efficiency and help to reduce energy cost (electricity)

which is especially suitable for small and medium sized enterprises (SME).

Kara and Li (2011) developed an empirical model to describe the relationship between
energy consumption and process variables for material processes (e.g. tool conditions,
workpiece material, cutting parameter and cutting environment) based on Gutowski’s
energy consumption framework. They selected specific energy consumption (SEC,
energy consumption of machine tool for removing 1 cm® material, which is related to
two machine coefficients and material removal rate) to evaluate different machining
process. The value of SEC can be generated based on the experimental results. When
material removal rate is over 1 cm3 /s, the SEC value is almost a constant. The model
was tested by comparing the predicted energy and experimental measurement of four
different machine tools (turning and milling) and different cut environment (wet and
dry). The accuracy of proposed model is between 91.95% - 97.63%. Li et al. (2012)
further carried out a case study to evaluate the resource efficiency of CNC grinding
process at unit process level. An integrated approach was proposed to evaluate the eco-

efficiency of unit manufacturing process which is defined as:

product or service value

Eco — Efficiency = (2.25)

environmental impact

The result shows that higher material removal rate can lead to less energy consumption,
but will degrade the surface roughness. In addition, the use of CBN grinding wheel can
further improve both surface roughness and environmental impact compared to Al2O3

grinding wheel.

Behrendt et al. (2012) proposed a method to measure and analyse the energy
consumption for machine tools. A standardised test procedure was developed to assess
the energy performance of machine tools. The procedure includes three steps which are
standby power (idle mode), component power (spindle, axis movement) and machining
power. A series of experiments were conducted under various cutting conditions and
machine tools to compare and characterise the energy consumption for the machine
tools. The results of this research can identify the potential for energy usage to optimise

and help to establish standard rules (e.g. energy labelling system) for the machine tools.
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A modelling framework was proposed by Dietmair and Verl (2009) which can
accurately predict the total energy consumption for machining tools based on the
specifically investigations of elements of efficiency in manufacturing processes and
existing models for calculating energy efficiency. The elements of energy were
introduced to calculate the energy efficiency. The power consumptions for 9 states
during milling operation were observed. Figure 2.10 shows the framework map of nine
states and the specific energy consumption for each state. Acceleration and deceleration
were contributed to the peak power requirement during end milling chipping and
machining head chipping states. Based on the application of the model, the energy
efficiency for machine operation is very low (just account for 20% of the entire
operation). This efficiency can be improved by optimising the cutting parameters,
reducing the acceleration and deceleration effects and reducing the auxiliary power (e.g.
coolant, idling). This result can enable manufacturers and operators of machines to
include energy consumption into their considerations in an objective way to accurately

forecast cost, formulate strategies and set up working plan.
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Figure 2.10 Energy Consumption for Each State (Dietmair and Verl, 2009)

Rahimifard et al. (2010) proposed a model for calculating the embodied product energy
used at manufacturing process level. The embodied product energy can be defined as
the sum of direct energy (DE) and indirect energy (IE). Indirect energy is energy
consumed by the environment in which production takes place (e.g. lighting and heating,
shown as Equation 2.26). The direct energy is defined as the sum of theoretical energy
(TE) and Auxiliary Energy (AE).TE is the minimum energy required to achieve the
manufacturing process and AE is that required to achieve supporting functions (e.g.

coolant usage). Efficiency ratios (ER) were defined at the process level (shown as
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Equation 2.26), product level (shown as Equation 2.27) and at the production system
level (shown as Equation 2.28). The proposed energy efficiency metrics provided great
transparency on energy inefficiencies and identified that the energy efficiency of
manufacturing can be improved by minimising the auxiliary energy. The example
showed that 20-50% reduction of energy consumption can be achieved through

combined improvements in production and product design.

Embodied Product Energy = DE + IE = TE + AE + IE (2.26)
ERyrocess = TE/(TE + AE) (2.27)

ERyroauct = TE/(TE + AE + IE) (2.28)

ERyroquction = DE/(TE + AE + IE) (2.29)

2.3.3 Issues of Energy Consumption and Energy Efficiency Measurement

Though the academic research has proposed some energy audit models and energy
efficiency metric to help measure and evaluate the energy usage, these models and
metrics have some limitations which can cause confusion. The following issues can be

identified:

o Firstly, most of the models proposed are empirical models which lack scientific
explanations. Some of the models are too simple and not informative enough
which are just related to material removal rate (MRR). So these models cannot
be generally applied in the machining processes which contain more process
parameters.

e Secondly, the definition of energy efficiency has problems. According to the
existing proposed energy efficiency definition, the energy efficiency of some
advanced machine tools may be worse than manual machines because of
auxiliary functions require more energy. In addition, from Equation 2.26, if the
auxiliary energy can be reduced to zero (TE=DE), the energy efficiency of
machining process will be 100%. These conclusions disagree with the general
principle that using 100% energy for machining operation does not mean the

energy efficiency is 100% too.
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2.4 Introduction of the Nature of Machining Optimisation

The reason for conducting the optimisation procedure in machining operations is to
improve the performance in sustainable manufacturing through optimisation of existing
processes. One of benefits is the optimisation operation can achieve improvement
without adding extra resource and materials or changing the current techniques. In this
case, it is an easy, efficient and cheap method to improve the existing manufacturing

Process.

Before the determination of optimal process parameters, it is necessary to specifically
introduce the nature of machining optimisation which can provide a clear and solid
theory foundation for the following analysis and discussion. Also it can help the users to
have a comprehensive understanding about how the optimisation procedures conduct
and how the optimal result can be achieved. According to the definition of optimisation,
machining optimisation problem is a multivariable optimisation with
no/equality/inequality constraints (Rao, 2009). The following sections will specifically

introduce the basic concepts of machining optimisation.
2.4.1 Nature of Search Space

Search space, which is also called design space or objective function space in
mathematical optimisation, is the most fundamental concept for an optimisation
problem. It can be explained as a domain which is consisted with all the possible
solutions. According to modelling method of machining operation, the objectives are

represented as a function in terms of independent variables.

Without regarding to the impact of constraints, the original search space of machining
optimisation is a multi-dimensional space located in a positive interval of the coordinate.
The level of dimensions will be determined by the number of independent variables.
Figure 2.11a to 2.11c show the original searching space for 3/4/5 variables situations.

Each point in search space represents a combination of independent variables.
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In addition, the size of the search space is not only determined by number of
independent variables but also related to the accuracies based on technical conditions.
The search space of end milling operation, when four process variables (depth of cut,
width of cut, feed rate per tooth and spindle speed) are considered, is the same as Figure
2.11b. The original search space is a 4D search space (see Figure 2.11b), which is a
linear array of a 3D cube. However, because of the accuracy of variables should be
reasonable and meaningful in practice and limited by technical conditions (e.g. the
accuracy of depth and width of cut should be 0.0lmm, spindle speed should be 1rpm),

the total number of the results in search space is finite and countable.

From Figure 2.11a to Figure 2.11c, it can also identify that the search space will be
expanded when more variables are added. Each additional parameter will increase one
dimension of the search space. The consequence of additional dimension is that the
number of total points will be geometrically increased. The more parameters are
considered, the larger the search space will be, and the more complex the machining

optimisation will be.
2.4.2 Nature of Variables

Variable is another important factor for machining optimisation. It will be used to
mathematically represent the quantity of the physical phenomenon. Statistically,
variables can be divided into two groups: dependent variable and independent variable.
Independent variables are the basic elements of the mathematical model. It can be also
called input variable or design variable. The values of independent variables exist
independently and are not directly affected by each other. The dependent variable is
also called "response variable" or "output variable" which is the response of the

independent variable.

Table 2.2 shows the independent variables and dependent variables for end milling
operation. Usually independent variables have physical range/constraints, for example
width of cut ae is not possible to exceed the cutting tool diameter d, depth of cut ap
should not be chosen large than the length of cutting edge, spindle speed n is not

possible to exceed the machine spindle design maximum speed.

The independent variables can also be separated into two groups. The first group comes
from the machining process plan including depth of cut, width of cut, feed rate and

spindle speed. This type of independent variable usually can be observed from NC code
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and determined by practitioners or process planners. The value ranges of these variables
are contributed to the machine tools and machining tools. This range is comparably
wide, e.g. the range of spindle speed is from 0 to thousands (conventional machining) or
tens of thousands (high speed machining). The second group variable is the variable
determined from the dimension of machining tools including diameter of the cutter and
number of cutting flutes. The value ranges of these parameters are much narrow than
the first group, because dimension of machining tool are usually standard for all
machining tool manufacturers. For example, the diameter of end milling cutter for
conventional machining is from 1 to 30 mm, and number of flutes is from two to four

(Hanita, 2005, WNT, 2012).

Dependent variables are the machining performances that people can observe from the
machining operation. The values of dependent variables are corresponding to
independent variables (design vector) which can be presented as objective

function/mathematical models.

Table 2.3 Independent Variables and Dependent Variables for End Milling

Operation.
Independent Variables Dependent Variables
Depth of cut: ap (mm) Energy
Width of cut: ae (mm) Cost
Feed rate: fz (mm/tooth) Time

Spindle speed: n (rev/min)
Diameter of tool: d (mm)

Number of flutes: z (mm)

Material Removal Rate
Tool Life

Torque

Cutting Force

Power

Surface Finishing
Cutting Speed

Feed Rate

2.4.3 Nature of Objectives and Constraints

Based on the functions, variables can be further separated into two groups as well:
objectives and constraints. A good objective should be a dependent variable consists of

all the independent variables. The conventional objectives for machining operation are
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cost, time, surface roughness, and tool life. From the environmental aspect, energy

consumption is a new objective for the machining operation.

Apart from the objective functions, to accurately determine the optimal results,
constraints should be considered to satisfy for a meaningful optimisation of the
machining process. The function of constraints is to refine the results by reducing the
searching space. Jha et al. (1994) and Tandon et al. (2002) claimed that there are two
types of constraints. The first type constraints are obvious from the machine tool
capabilities. The other type constraints are derived from product requirements such as
surface finish, force-bearing capacity of the tool and so on. For cutting force, it is
directly related to several constraints including maximum loading on feeding
mechanism constraint, bending stress constraint and fatigue constraint. So they can be
simplified as a cutting force constraint in this research. Tandon et al. (2002) also
mentioned some constraints can be redundant and neglected in some situation, and
different constraints may not be all active at the same time. Practically, horsepower
limitation may be the active constraint for rough milling, and, surface finish may be the
active constraint for finish milling. In addition, because of the nature of the machining
optimisation itself, the value of all the variables should not be less than zero which

gives a natural limitation of the search space.

Based on the classification of variables in section 2.4.2, the constraints of machining

optimisation can be divided into three levels:

e Level 1: Boundary/side constraints (physical constraints of independent
variables). This type of constraint is the physical limitation of the independent
variables. They are usually determined by the machine tools and cutting tools.

The first level constraints will confine the search space as a close scope.

e Level 2: Behaviour constraints from capability of machine tool/cutting tool
(physical constraints of dependent variables). This type of constraints is the
physical limitations of dependent variables which contribute to the design of the
machine tool, for example, the power of the machine tool and torque of spindle.
However, this type of constraint can be redundant by the other constraints. It

may/may not affect level 1.

e Level 3: Behaviour constraints from manufacturing requirements (constraints

determined by decision makers). This type of constraint is usually determined by
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operators' requirements, e.g. quality, cutting speed, tool life and so on. This type
of variable is the dominated constraints which can further refine the search space
to find the optimal solution. Although level 3 and level 2 are all behaviour

constraints, most of the time level 3 is possible to overlap level 2.
2.5 Introduction of the General Machining Optimisation Methods

A lot of optimisation methods have been applied to optimise machining process. Roy et
al. (2008) comprehensively classified the existing optimisation methods applied in

engineering design optimisation (shown in Figure 2.12).
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Figure 2.12 Classification of Existing Optimisation Methods (Roy et al., 2008)

Research contributions of machining optimisation have been reviewed and concluded
by many. From machining optimisation perspective, two stages of optimisation method
were described for general machining operation (Mukherjee and Ray, 2006, Aggarwal
and Singh, 2005, Ganesan et al., 2011, Dhavaman and Alwarsamy, 2011, Mahesh et al.,
2012):

1. Modelling of input-output and in-process parameter relationship.
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2. Determination of optimal or near-optimal cutting condition or cutting parameters.
Typical Mathematical Optimisation Procedures:

1) Build up mathematical objective function (or functions).

2) Define constrains

3) Implement mathematical algorithms

4) Get the optimal or near optimal results

They classified the input-output and in-process parameter relationship modelling

methods and listed as below.

e Statistical Regression Technique is an easy modelling method which is
commonly used for describing the functional relationship of input and output
variables. But this method has some shortcomings. It is usually dimensionless
and cannot show the non-linear complex relationship between the variables.

e Artificial neural network (ANN) is multi-variable, dynamic, non-linear
modelling method. It can handle complex cases, but is only used when
regression techniques failed to provide an adequate model. The problem of ANN
is that the modelling parameters cannot describe non-linear relationships
between them, and the accuracy is depended on volume of data set.

e Fuzzy set theory is suitable for the situation that subjective knowledge or
options is expected as a key role in defining the objective function. But it is

depended on the users or experts' knowledge.
2.5.1 Expert-based Optimisation Methods

In the early stage of manufacturing operation, the modern concept of "Optimise
optimisation, optimal, optimum" was not applied by practitioners. However, good
experienced technicians could manufacture the products for different requirements
based on their experiences. For example: quality (e.g. for different price, good quality
for high price, bad quality for cheap price), energy (e.g. according to the physical state),
resources (e.g. workpiece and fuel), productivity (e.g. quantity of products, deadline for
the work) and cost (e.g. cutting tool wear). This method can be summarised as "Expert-
based Optimisation" which is still being widely used in practical manufacturing and

design process (Roy et al, 2008). The principle of this type of optimisation method is it
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usually determines the optimal plan based on expert judgement and experiences
(knowledge-based), or simulation results (simulation-based). These experiences and
simulation results of machining performance can be considered as qualitative models
for describing the relationship between independent variables (process parameters) and

objectives.

The advantage of this method is that the decision makers do not require additional skills
and can quickly have an optimal result. Expert-based method can allow the practitioners
to control the process based on their knowledge or simulation result, so that they will be
confident about the optimal result. Although this type of method can always achieve a
better result compared to original process, it may not be able to achieve the best solution.
The optimal results will be different if the operators are different. In addition, the

influences of process parameters and are also not able to be quantitatively represented.
2.5.2 Experiment-based Optimisation Methods

To address the problem of "Expert-based optimisation", "Experiment-based
optimisation" was developed. Experiment-based optimisation is also called Design of
Experiment (DOE) method. As the name, DOE method is a structured and organised
method mainly based on experimental measurement to determine the relationship
between the process parameters and find out the best combination. The fundamental
concepts for designing experiment were proposed by Fisher (1926 and 1935) to deal
with the applications of statistical methods. The typical DOE methods are Full Factorial
Design method, Taguchi method and Response Surface method. To implement DOE
methods, large amount of test data will be firstly collected by conducting experiments
and "failure models" will be built based on collected data to show the boundaries of
search space. Then the optimal process parameters can be selected within the refined

search space.

Taguchi method is one of the typical DOE methods which was firstly brought by
Genichi Taguchi in 1950s and systematically introduced by Ross (1988) to improve
product and process design. As a fractional factor design method, Taguchi method can
significantly reduce the time and resource needed compared to conventional DOE
methods. In addition, because it can be easily implemented and has a good applicability,
the Taguchi method has been widely used in machining optimisation research to
determine important process parameters. Taguchi's Orthogonal Arrays (OA) provide a

set of well-balanced experiments by reasonably reducing experiment numbers, and
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Taguchi signal-to-noise ratio (S/N) is used to evaluate the impacts of the variables by
considering the average value and standard deviation. The S/N ratio in this research is to
represent energy which is required to be minimised. So Lower-the-better (LB) criteria
should be chosen. The equation for calculating Taguchi S/N for LB is shown in

Equation 2.30.
1
ns = —10log (> XL, ¥?) (2.30)

where, 1, is S/N ratio, n is number of experiments and Y; is value of energy

consumption for the machining operation.

In addition, DOE methods are not only used to build regression models, but also
allowed to use mathematical models to generate prediction results. The advantages of

DOE method are:
e [tis a direct optimisation method that is easy to be understood and implemented.

e (Compared with expert-based optimisation, it can quantitatively show the
relationship between the objective (e.g. cost, time, energy...) and the process

parameters (e.g. depth of cut, width of cut, spindle speed and feed rate).
e The optimal result is the real optimal result.
However, the problems of DOE method are:

e [t is an expensive method (which is the same as expert-based method), because
it will consume energy and resource. This consumption could be significant

when the number of experiments is large.
e The experiments could take a long time.

e The accuracy of the optimal result is depended on the number and level of
variables. If there are too many variables or too many levels, the number of

experiments will be a lot which is not acceptable (because of the cost and time).
e Usually, it is difficult to put constraints to control the results.
2.5.3 Algorithm-based Optimisation Methods

To achieve more accurate optimal result, mathematical optimisation theory started to be

applied in machining optimisation. With the development of algebra, especially after
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Newton and Leibniz created the theory of calculus which can be used to determine the
extreme points of functions by conducting differentiation, optimisation theory was
further developed and had a new form. By implementing algorithm-based optimisation
methods, mathematical optimisation models need to be firstly built to describe the
relationships between input process parameters (independent variables) and output
objectives (dependent variables). The general mathematical optimisation models are

shown as below:
Objective function:
min/max f (x)
Constraints:
gix)<0 i=12,---,m
hj(x) =0j=12,,n
where, g;(x) are inequality constraints and h;(x) are equality constraints

Based on the algorithm operation functions, algorithm-based method can be further

divided into conventional and non-conventional methods.

The conventional methods are usually developed based on the ground principle of
mathematical optimisation theory. This type of method is similar as simulating common
sense knowledge of optimisation and DOE methods in mathematical form. For example,
feasible direction/gradient method is similar as providing an artificial searching
direction. Direct search is similar as full factorial design method that creates grids to
represent all the individuals in the search space. However, conventional methods also
have some limitation. The search space of the machining operation is a complex and
multi-dimensional space when multiple process parameters need to be considered. It
still requires a lot of work and computations to implement conventional methods for

achieving an overall optimal result.

In this case, new non-conventional optimisations (e.g. Evolution Computing or Meta-
Heuristic search algorithms) have become popular in machining optimisation. This type
of algorithm is usually inspired by some improvement behaviour in nature or physical

phenomenon.

47



The general steps of meta-heuristic algorithms are: (1) Randomisation: randomly select
initial individual or population to generate the starting point or starting set of points. (2)
Reproduction: based on selected individuals to generate representative points by using
algorithms which can rapidly explore the search space or Pareto set. (3) Evolution:
Select and keep the best individual. According to these characteristics, heuristic
algorithms are widely used to solve parameter optimisation problem, especially when
the search space is very large and complex. The advantage of non-conventional methods
is they can locate the optimal results faster than the conventional method. Two typical

algorithms are introduced as below:

Genetic algorithm (GA) was firstly introduced by American researcher, Holland from
the University of Michigan, in early 1970s (Holland, 1975). GA is a stochastic search
combinatorial optimisation method. A population of candidate solutions is maintained.
At first, the initial population is generated randomly or with heuristic rules to generate
good solutions to the problem. With a fitness function, the individuals are evaluated to
determine how well they solve the problem. The individuals with higher fitness values
are selected as parents of the next generation. Then, the crossover and mutation
operators are used to generate new individuals. The function of crossover is to rapidly
explore a search space and mutation is to provide a small amount of random search.
Then new individuals are evaluated with the fitness function. GA iterates over many
cycles of selection, crossover and mutation until the termination criterion is satisfied. In
general, as the algorithm executes, solutions in the population become fitter and fitter

until they finally converge to the optimal solution.

Ant colony optimisation (ACO) is another meta-heuristic algorithm which is
developed by Dorigo and his associates in early 1990s based on the cooperative
behaviour of real ant colonies to determine the shortest path from their nest to a food
source (Colorni et al., 1992, Dorigo et al., 1996). The basic principle of ACO is that if
the design variables of the optimisation problem are independent with each other, the
multivariate machining optimisation can be represented as several one variable
optimisations. The structure of ACO can be presented as a multi-layered graph in
Figure 2.13. For implementing ACO, the number of layers is equal to the number of
design variables and number of nodes in each layer is equal to the number of discrete

value of the design variable.
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Figure 2.13 Graphical representation of ant colony algorithm (Rao, 2009)
However, the problems of meta-heuristic algorithms are:

e Characteristics of machining operation are not able to be clearly displayed.

e The basic principle of optimisation theory is embedded into the algorithms
which cannot be easily discovered.

e The technical terms applied in the optimisation algorithms are too abstract to be
understood by practitioners. They are not able to link these terms to machining

terms.

So the consequence of above problems is these optimisation methods are more like
"black box" tools. In practice, most of academic optimisation results have not been used
by industry because practitioners do not understand how the results are obtained from
optimisation methods and trust the optimal results. They still prefer to select optimal

process parameters based on expert experience.
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2.6 Improvement through the Optimisation of Existing Machining Processes

Research of improving machining performance by selecting optimal process parameters
has been conducted for over 100 years since Taylor published his tool life equations in
the early 1900s (Taylor, 1907). He developed a series of equations to predict tool life by
considering process parameters. The results showed that the optimal cutting speed exists
to decide the optimal material removal rate to maximise the cutting tool life and
minimise the cost. Since then, a great number of research have been carried out to
improve the performance of machining from different aspects (e.g. objectives,
optimisation methods). This section introduces research contributions in this area, and

discusses their advantages and limitations.
2.6.1 General Machining Optimisation

Early researchers (1950s to 1970s) proposed optimal suggestion based on analysis of
machining variables. The optimisation process usually followed procedures of (1) data
collection through conducting physical experiments, (2) mathematical modelling (3)

analysing the mathematical equation, and (4) proposing optimal solutions.

One of the earliest traceable research was conducted by Brewer and Rueda (1963)
which proposed a monograph technique to optimise cutting force and tool life with the
consideration of a group of independent variables (cutting speed, feed rate, depth of cut
etc.) for variety types of materials. The results showed that for non-ferrous materials
which have good machining ability, the best cutting conditions are regarded as the high
material removal rate which machine will permit. For difficult-to-machine material the

range of feasible parameter is more restricted than non-ferrous material.

Crookall (1969) proposed a concept of performance-envelope to represent the
permissible and desirable operation regions of machining based on the characteristics of
machining cost and time with the constraints of machining tool capability (power),
cutting tool failure, and surface roughness. Koren (1978) optimised the flank wear for
steel turning operation based on Taylor's tool life equation. The theoretical and
experimental results are graphically compared and represented how cutting speed
affects flank wear when the machining time and cutting distance is increasing. It

showed higher cutting speed will reduce the tool life.

Lau (1987) and Enparatza (1991) from University of Manchester conducted the research
for the optimisation of cutting parameters and tool selections for end milling operation.
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The research involved the investigations of the factors which could affect the cutting
performance such as tool life and cutting force. Enparantza (1991) developed a tool
selection module for end milling operation and conducted an optimisation procedure of
cutting conditions by considering economic criteria. The optimisation procedure was
based on a general search method and the result showed that the machining cost can be
minimised by selecting optimal cutting speed. The optimisation procedure also showed
how constraints (tool life, cutting force, machining power and tool deflection) reduce
the search space. He also identified that the optimum point should line on the
constraints (boundary between feasible and unfeasible region). However, his result has
some shortcoming because other machining parameters were considered as constant
(e.g. diameter of tool, number of flutes). In real machining operation, the interaction of

these parameters is very important and cannot be ignored.

Tolouei-Rad and Bidhendi (1997) investigated optimisation of machining parameters
for general milling operation. They identified that the optimisation of end milling is a
non-convex, non-linear, multi-variable and multi-constrained problem according to the
developed optimisation models. In addition, they used "profit rate" as a new objective to
combine the previous two objectives machining cost and process time which actually
convert the problem from multi-objective to single-objective. A feasible direction
method was selected and graphically demonstrated how to achieve the optimal results.
A case study of machining a multiple-feature component showed that up to 350%
improvement in profit rate can be achieved from machining data handbook

recommendations.

Khan et al. (1997) described the problem of using traditional optimisation methods (e.g.
expert-based, Calculus method and Gradient method) to select optimal machining
conditions which have limited ability to solve non-convex problem. Optimisation
models for machining operation are usually non-linear. In this case, new non-
conventional algorithms which can solve global optimisation for non-linear and non-
convex solution space are required (e.g. genetic algorithm and simulated annealing).
Optimisation procedures were conducted by using genetic algorithm (GA), simulated
annealing (SA) and continuous simulated annealing (CSA) to optimise cost for turning
operation based on different prediction models. Comparison results between traditional
algorithms (sequential unconstrained minimisation technique and generalised reduced
gradient) and non-conventional algorithms showed that non-conventional algorithms

were more reliable and easy to be implemented. SA can give high precision and easy to
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be programmed (few hundred lines of code), but it requires more computing time. For
GA, the precision depends on the number of bits to represent each variable, but the
computing time is much shorter than SA. Another inspiration from this paper is the
dimension of the machined feature (e.g. depth of feature) should be considered as size

constraints for optimisation model.

Meng et al. (2000) used direct search methods to optimise cutting conditions for turning
operation. A mathematical model of specific cost (cost per unit volume) was built by
using a variable flow stress machining theory. Both mathematical prediction and
experimental test results showed that the specific cost continuously decreased with the
increase of width of cut. The equations of constraints including plastic deformation,
machine tool torque and power, tool life values and build up edge formation were also
modelled based on machining theory to avoid the problem that empirical models always
contain lots of constants and coefficients which are not readily available. The author
also claimed that when applying direct search methods (grid search) to carry out
optimisation process, there is no need to check all the points in the search region (d-f
plane) but just check the points next to the constraints curve. This finding can be
applied to reduce the experiment works in data collecting. In addition, the result also
showed that the optimal specific cost is on the boundary of feasible searching region.
They also claimed that the tool manufacturer recommendations do not consider the

process constraints.

Owodunni et al. (2007) investigated optimum cutting conditions for STEP-NC turned
features by using direct search algorithm. 10 X 10 grids were created on ap-f (depth of
cut and feed rate plane) to represent the cost of operation. The optimal value was
selected within the feasible direction by considering the constraints of maximum tool
force, machine power/torque workpiece deflection. The results proved that the
constraints will control the value of optimum parameters for turning operation. For the
feature which does not have a deflection constraint, the optimum depth of cut is only

determined by machine tool power.

Onwubolu (2005) used term "Tribes" which is the same as Particle Swarm Optimisation
(PSO) to select optimal cutting conditions for face milling and end milling operations.
The comparison result with GA by considering comprehensive criteria (cutting force,

material removal rate, surface roughness and time) showed that the optimal results
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achieved by using both algorithms are similar. It means the proposed Tribe algorithm is

an efficient, effective, and competitive method compared to GA.

Baskar et al. (2005, 2006) conducted optimisation of machining parameters for milling
operation based on maximum profit rate. Four non-conventional methods (ACO, GA,
PSO and Tabu Search) were introduced and compared with handbook recommendations
and method of feasible direction. The results showed that significant improvements can
be achieved in profit rate from handbook recommendations (283% to 440%) and
method of feasible direction (0.92% to 54%). Among the four methods, the optimal
results achieved from PSO were better than the other algorithms. However, the
difference between GA and PSO was less than 5%. These comparison results proved
that there was a significant potential improvement for using optimal cutting conditions.
In addition, the optimal results for different algorithms are not different a lot. Further
research was carried out by Bharathi Raja and Baskar (2010) to find out which non-
conventional algorithm (SA, GA and PSO) is the robust and versatile for optimising
machining cost, surface finishing and production time of turning operation. The
comparison result of SA, GA and PSO showed that the performance of PSO was also
better than GA and SA, but was not very significant.

Researchers from University of Maribor (Cus et al., 2006), also implemented PSO to
optimise machining time of high speed end milling. The simulated result showed that
PSO was faster than GA and SA. Up to 30% reduction of machining time was observed.
The following research of Cus and Zuperl (2009) mentioned that evolution algorithm
(GA, SPO) was more convenient for solving multi-objective optimisation problem. The
example of optimising material removal rate and machining time showed that by using
PSO, up to 20% of machining time can be reduced and 28% of MRR can be improved.
However, there was no evidence showed that PSO had significant advantages than other

algorithms.

Wang et al. (2005) proposed an approach to select the optimal processing parameters
for minimising production time for multi-pass milling. The optimisation was conducted
by using GA, SA, hybrid of GA and SA (GSA) and proposed parallel genetic simulated
annealing (PGSA). The results of comparison between geometric programming (GP),
parallel genetic algorithm (PGA) and PGSA showed that although the optimisation
result of PGSA was almost the same as PGA, the calculation time can be significantly

reduced.
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Pan et al. (2009) used DOE method to investigate the tool life for milling Aluminium
7050. The coefficients of Taylor's basic tool life equation were determined by using
multi-linear regression method based on the experimental result. The optimisation
procedure was also conducted based on the verified equation to select the optimal depth
of cut and feed rate by maximising tool life. The result shows that the machining
performance can be possibly improved by selecting the optimal combination of cutting

parameters.
2.6.2 Machining Optimisation with Energy Considerations

One of the earliest contributions to optimise machining process parameters with
consideration of environmental impacts is by Sheng et al. in mid of 1990s. They
conducted a series of research which considered environmental factors as one of the key
issues in machining operations. Munoz and Sheng (1995) developed a model by
considering material, energy and time consumption. Two main loss streams were
introduced: primary mass loss which consisted of chip generation in the machining
process, and catalytic mass losses which consisted of the waste stream of cutting fluid

and the expended tools.

Sheng et al. (1995) developed an environmentally conscious, feature-based, multi-
objective process planning method, which was beyond the traditional methods that just
considered economic criteria. This new process planning method estimated the process
mechanics, tool life and fluid flow, process energy, machining time and the mass flow
of component waste streams (shown in Figure 2.14). These waste streams can be
weighted by environmental factors such as toxicity, carcinogenicity, irritation, reactivity
and flammability. A prioritisation equation was built with the consideration of cutting
parameters and the waste weight model to evaluate the performance of new process
plans by considering process energy, machining time, quality and waste stream mass.

Thus the specific values of energy and waste can be calculated.
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Figure 2.14 The Map of Decision Making System (Sheng et al., 1995)
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Srinivasan et al. (1995) developed a scoring system called Health Hazard Score (HHS)
which can quantitatively show the environmental impact based on the chemical effect
on human health and safety (e.g. toxicity, carcinogenicity, dermal and eye irritation,
flammability etc). Later on, Gune and Peng (1995) complemented the model by adding
two additional factors: the effect of waste stream on exposure route, and the effect of

site-specific conditions on waste containment and handling.

Srinivasan and Sheng (1995, 1999a, 1999b) applied the environmental process planning
method to machine parts with hierarchical features. They proposed a process planning
system in which environmental criteria such as process energy and mass flow of waste
streams are considered in addition to traditional criteria such as production rate and
quality. The multi-objective optimisation process proposed uses an overall utility which
is a weighted sum of the different criteria. The system developed allows optimal
selection of a process path sequencing the machining operations of interacting feature
volumes. The other contribution of this research is that they developed a feature-based
micro and macro planning methods. For the different dimensions of the feature,
different machining operation or different operation sequences can be selected based on
the energy and waste values. The micro-planning method was used to machine intra-
feature (e.g. step hole), and the macro-planning method was used to machine the part
which has interactive features. In this research, they further developed the process
planning model, and more details were given. Figure 2.15 shows the task sequence for

environmentally-conscious process planning.
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The micro-planning section integrated the different dimensions at the feature level to
optimise the process plan in process, parameters, cutting fluid and tool selection.
Srinivasan and Sheng (1999a) specifically built up the calculation models of these
factors. The process energy model of machining operation is related to cutting force,
cutting velocity and process time. The process time can be generated by material
removal volume and material removal rate. The quality referred to surface roughness
which is related to feed and diameter of cutting tool. The waste stream mass is related to
tool wear, chip generation and usage of cutting fluid. The models and process planning
method were also implemented into 3D solid modelling software Pro/Engineer, and a
case study of machining a part was given to theoretically verify the function of the new

computer aided micro-planning system.

Srinivasan and Sheng (1999b) introduced a macro-planning method which focused
more on the "global" context. The macro-planning method started with the aggregation
of features (micro-planning), and then generated the feature clusters or sub-clusters by
considering the feature interaction situations (geometric interactions and process based
interactions). For geometric interactions situation, energy consumption was calculated
based on the removal volume for different sequences to achieve the feature. Then the
system prioritisations of each sequence can be calculated and compared to choose the
optimal region. The process based interactions can be divided into tool interactions,
cutting fluid interactions and set up interactions. Thus, the optimisation of process
interaction is based on minimising the tool change time, cutting fluid use and setup time.
The arrangement of clusters or sub-clusters was evaluated by micro-planning method.
Then the machining sequences of all the clusters or sub-clusters would be re-ordered

based on the optimised prioritisation.

By combining unit process models, hazard evaluation and system simulation, Sheng et
al. (1997) developed a model which can predict capability of energy consumption,
waste flows and exposure risks over a planning horizon. The case studies were
conducted in process parameters sensitivity, cutting fluid selection and process changes
to demonstrate the application of the methodology in machining system. The final
decision can be showed in a spider chart to compare the environmental burden of
different strategies based on the calculation result by using this multi-objective model. It
further improved the new process planning system. Sheng et al. (1998) developed a
multi-criteria hazard (MCH) method to evaluate environmental impact manufacturing

process. Different manufacturing process plans could be compared based on MCH
56



weigh in terms of energy consumption, waste flow, processing time and health issues.
This is one of the earliest research work contributed to improve the sustainability of

machining process.

Krishnan and Sheng (2000) integrated this environmentally conscious process planning
as an agent into a Java based CAD tool called WebCAD and can be applied for CNC
machining. A case study was conducted to show that the environmental macro-planning
which was generated by using WebCAD can reduce 4.5% of total energy consumption
and 47.2% of fluid coated on a chip than conventional macro-planning system. This
result further verified the effectiveness of environmentally conscious process planning
system. However, research of Sheng et al. also has some shortcomings. First of all, the
process planning method is based on the improvement of energy consumption and
environment affect, but none of the research investigated the energy efficiency for
specific machining. Secondly, the improved process plan with sustainability
consideration did not consider optimisation of process parameters. So the optimised
result might not be the best solution. Thirdly, energy consumption in these researches
just considered for the machining operation which just accounts for small part of total

energy consumption for manufacturing process.

Researcher from University of Manchester Rajemi et al. (2010) conducted research on
the minimisation of energy consumption by optimising cutting parameters for dry
turning operations. A prediction model was developed to calculate energy consumed in
dry turning operations. The proposed model also included explicit expressions for
components of the Auxiliary Energy (AE) such as machine set up energy, energy for
tool change and energy embodied in the tool and made explicit the machining
parameters such as feed rate, cutting velocity and tool life. This informative
mathematical model made it possible to carry out an optimisation procedure which
minimises the turning energy with respect to the cutting conditions (e.g. tool life). They
also identified that optimising energy footprint in machining was a trade-off between
the use of rapid machining to reduce cycle times and the use of the cutting tool at

conservative speeds to maintain longer machining activity.

Further experimental verification of Rajemi et al.'s model was conducted by Mativenga
and Rajemi (2011) to test the tool breakage constraints, power constraint and optimise
the cutting variables. The experiment compared the energy and cost between optimal

result and the suggested values from cutting tool catalogue. The experimental results
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proved that, based on minimum energy criterion, the optimum tool life can be used to
constrain and optimise other cutting variables. The total energy consumption and cost
based on machining parameters from a tool supplier catalogue is not efficient and
economic. By optimising feed rate, cutting velocity and depth of cut with minimum
energy and cost criteria, the energy consumption and cost can be significantly reduced
(up to 64% can be saved). Both criteria can get the same trend of optimisation, and the
results are same. This research proved that energy footprint can be used as the criteria to

optimise cutting parameters for machining operation.

Mori Seiki Co. Ltd in Japan conducted a study to improve the energy efficiency for
machine tool (Mori et al. 2011). The study focused on the energy consumption during
the machining operation (e.g. drilling, end milling and face milling), which can be
further divided into three states: non cutting state, cutting state and positioning state. A
variable which is equal to energy consumption divided by material removal volume was
defined to evaluate the improvement. The result proved that the energy consumption
can be reduced by choosing suitable cutting parameters, toolpath and machining
strategies, and shortening the process time. The results also showed that cutting
performance can be improved by adjusting cutting speed, feed rate, depth and width of
cut. Up to 66% power consumption for milling operation can be reduced by selecting
high level of cutting conditions within a value range which does not compromise tool
life and surface finish. The machining time also can be shortened with a significant
increase in material removal rate (up to 333% material removal rate can be increased by
selecting optimum cutting parameters). Oda et al. (2012) further carried out experiments
for energy efficiency improvement in ball end milling on a 5-axis machine tool. They
reported that up to 50% improvement of power consumption can be achieved by
applying optimised cutting conditions (higher cutting speed, higher feed rate and

smaller tool-workpiece inclined angle).

Newman et al. (2012) investigated energy-efficient process planning for end milling.
Experiments were conducted to compare the power consumption for different loading
cutting conditions. The results showed that when keeping material removal rate as a
constant, light cutting condition (small depth of cut, large feed rate) consumed less
power than high cutting condition (large depth of cut, small feed rate). However, up to
6% total power can be saved for slotting aluminium. It means increase of cutting force
from increasing feed rate is less than increasing depth of cut. This conclusion can be

also drawn from empirical cutting force equation that the cutting force coefficient of
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feed rate is smaller than the cutting force coefficient of depth of cut. This result also
proved that the specific energy consumption models (e.g. Kara et al., 2011 and Diaz et
al., 2012) which were just related to MRR were not informative enough. However, the
experimental comparison and multi-feature test showed that the improvements of power
consumption are only 6% and 1.7%. This result needs to be further extended by
considering other energy minimisation methods to draw decision makers' attention to

the energy consumption.
2.6.3 Multiple Objectives Machining Optimisation

The consideration of the improvement of machining operation in term of sustainability
is actually a multiple objective optimisation or multiple criteria selection problem. In
practical machining process, these criteria or objectives could be either conflicting or
non-conflicting. However, when the multiple objectives considered are conflicting, it
usually require decision makers to have clear preferences. The challenge of current
research is how preference of decision makers can be accurately and effectively

represented.

Chong and Zak (2007) gave a description of multi-objective engineering optimisation
problems. Compared to the single objective optimisation problems which only have one
objective function, most engineering problems require designers to consider more than
one objective which may be in conflict with each other. It means the improvement in
one objective may lead to deterioration in other objectives. Multi-objective problems in

which the objectives are conflicting may have no unique optimal solution.

The purpose of multi-objective optimisation (MOO) is to assist decision makers select
the optimal plan or make a better decision. Marler and Arora (2004) conducted a survey
of current nonlinear multi-objective optimisation methods for engineering use. They
reported that the current methods can be divided into three major categories based on
the preference type of decision maker, which is priori articulation, posteriori articulation
and no articulation. They also claimed that no single approach is superior. The selection
of optimisation method must depend on the type of information provided, the decision

maker's preferences, the solution requirements and the availability of software.

Multi-objective optimisation problems are also referred to as multi-criteria or vector

optimisation problems. A multi-objective optimisation problem can be as follows:
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Find a decision variable that satisfies the given constraints and optimises a vector
function whose components are objective functions. In general, there are three different

types of multi-objective optimisation problems:
e Minimise all the objectives functions.
e Maximise all the objective functions.
¢ Minimise some and maximise others.

For the implementation in machining optimisation, the MOO methods can be divided
into two categories based on the techniques applied which are Priori techniques and
Posterior techniques (because the optimisation methods applied for solving no
articulation of preferences problems are just simplification of Priori techniques). The
basic principle of priori techniques is to convert MOO problems to single-objective
optimisation by combining different objectives functions as a single objective function.
The optimal result will be displayed as a unique solution. On the other hand, posterior
techniques (e.g. evolutionary computation techniques) will present a set of feasible
solutions for the decision makers to choose. This set of feasible solutions is called

Pareto optimal set and can be represented as a Pareto front.

For using priori techniques, Malakooti et al. (1990) proposed a method for assessing the
weights of the importance of different criteria on machinability including production
rate, operation cost, product quality, tool life, surface roughness, accuracy, temperature,
power/force/torque, vibration and noise. A machinability function was developed which
can combine different process outputs together. The weights of the importance of these
objectives can be calculated and evaluated according to decision maker's preference.
Based on this method, Cus and Balic (2003) optimised cutting speed and feed rate by
using genetic algorithm. A unique optimal plan was achieved for end milling operation
with the consideration of production rate, operation cost and surface roughness. The
work was extended in Cus and Zuper’s further publications (Zuper and Cus, 2003, Cus
and Zuper, 2006 and 2009) by using different optimisation methods for turning and end
milling operation. Tolouei-Rad and Bidhendi (1996) investigated optimisation of
machining parameters for conventional milling operation. Profit rate was utilised to
combine machining cost and process time. A case study of machining a multiple-feature
component showed that up to 350% improvement can be achieved compared to

recommendations from Machining Data Handbook.
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On using posteriori techniques, Sardinas et al. (2006) used genetic algorithm to optimise
production rate and cost for turning operation. Pareto front was used to represent the
feasible optimal results. Kapat and Ozel (2007) used neural network and particle swarm
algorithm to optimise three conflicting cases: surface roughness and productivity,
material removal rate and tool life, and surface roughness and surface residual stress.
Three sets of Pareto fronts were plotted to show the optimal results for each case. Pareto
fronts were also used to show the optimal results of two conflicting objectives such as
surface roughness and tool wear by Roy and Mehnen (2008), and material removal rate

and tool wear by Yang and Natarajan (2010) for turning operation.

For optimising machining operation with energy considerations, Sheng and Srinivasan
(1995a, 1995b) developed an environmentally conscious multi-objective process
planning method. This new process planning method estimated the process mechanics,
tool life, fluid flow, process energy, machining time and the mass flow of component
waste streams. These waste streams can be weighted by environmental factors such as
toxicity, carcinogenicity, irritation, reactivity and flammability. Thus the process and
parameter can be selected based on objectives including process energy, process time,
surface finish and weighted mass flow. Mativenga and Rajemi (2011) carried out a
research to optimise energy consumption for turning operation. They also reported that
the optimal cost can be achieved with optimal energy by using identical optimal process

parameters.

Avram et al. (2011) developed a multi-criteria decision method for assessing the
sustainability of machine tool systems. The proposed method seeks to find one or
several satisfactory solutions among a set of possible solutions by considering different
criteria. An interpretation table (Table 2.3) of the weighting methods of different criteria
was built to capture preference information of the decision makers. Then the overall
performance of different process plans/cutting strategies can be calculated and selected
with the corresponding requirements. So the decision makers can easily select the
optimal alternative based on the overall rate in both machining process level and

machine tool system level.
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Table 2.4 Weighting of Different Criteria (Avram et al., 2011)

Scale value Interpretation

1 Equally preferred

3 Moderately preferred

5 Strongly preferred

7 Very strongly preferred

9 Extremely preferred

2,4,6,8 Halfway between the integers on either side

Reciprocals of above In comparing criteria  and j, if 7 is 3 compared to j, then j is 1/3 compared to i

2.6.4 Summary: Issues of Machining Optimisation Research

Machining optimisation has been considered for over 100 years. However, there are still

some issues existing in current machining optimisation research.

Firstly, although characterisations of machining operation for energy consumption (e.g.
Kara et al., 2011 and Diaz et al., 2012) and conventional objectives (e.g. cost, time,
quality, tool life and surface roughness, Meng, 2000) have been presented in early
research, there still lacks of understandings of the relationship between different criteria
(e.g. conflicting or non-conflicting). It will cause problems (e.g. how to get the optimal
results and why the optimal results look like in such form) when multiple objectives

need to be considered during machining optimisation.

Secondly, the link between modern optimisation methods and optimisation theory is
missing or embedded into algorithms functions. As identified by Roy et al (2008), most
of academic optimisation results have not been used by industry because practitioners
mostly prefer to select optimal parameters based on expert experience. To solve this
problem, the optimisation process needs to be uncovered or transparent to make the
practitioners to understand and accept the optimal results, and implement optimal

results in practice. The following requirements need to be addressed to achieve this goal:

e The optimisation procedure must be based on a comprehensive understanding of
the nature of problem (e.g. search space, variables, constraints).

e The primary objective (energy) must be related to the conventional objectives
such as cost, time and quality which the practitioners are familiar with and
interested in.

e The optimisation method adopted must be suitable for the machining problem

and conform to practitioners’ knowledge or obvious general principle.
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e The optimisation results must be easily visualised, so that decision makers can
rapidly find the optimal result and have confidence in the obtained optimal

results.

Thirdly, too many different optimisation methods have been applied in machining
optimisation. These methods are developed based on different background and now
have been widely used in machining operation. The comparison between these methods
showed that in some circumstance, there is no significant difference in the performance
(e.g. accuracy) of these methods. So it is difficult to tell which one is the "best". Also
there is lack of understanding about how these methods function to achieve the optimal

results.

Fourthly, the process of understanding machining operation in terms of the nature of
machining operation and optimisation takes a long time. There is no comprehensive
framework or guideline to help the users (both academic and industry) who do not have
good knowledge about machining optimisation to scientifically determine the optimal

machining parameters.

Finally, sustainability awareness brings new requirements for existing multi-objective
machining optimisation research. In carrying out the review of current research

contributions, the following problems can be identified:

e For priori techniques, decision maker's preferences are required to determine the
weight for each objective or directly combine the objectives together. However,
priori techniques are not suitable for the cases that the decision makers’
preferences are not clear, or optimising objectives are not able to be reasonably
combined.

e For posteriori techniques, Pareto front is usually employed to present the
optimal results for the problems when two conflicting objectives need to be
considered. However, when there are more than 2 objectives, multiple Pareto
fronts are required to present the optimal results for every two objectives. These
multiple Pareto fronts are difficult to understand, and analysis process is
complex and inefficient.

e Most multi-objective machining optimisation research with energy
considerations reviewed only used priori techniques. The optimal results
achieved by using these methods are a unique optimal plan, but not a set of

feasible solutions. So, it is necessary to investigate the optimal solutions of
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multi-objective machining optimisation with energy considerations by using

posteriori techniques.
2.7 Improvement through the Development of New Processes and Technologies

Beyond optimisation of existing machining process, further reduction of energy
consumption can be achieved through the development of energy efficient industrial
processes and technology. This need is being addressed through ongoing energy

efficient manufacturing research as part of a wider field of sustainable manufacturing.

Dahmus and Gutowski (2004) identified factors (e.g. such as material production,
cutting fluid usage and material removal) which affect energy consumption during
machining operation. Energy consumption from cutting fluid usage is reduced by
minimising (i.e. Minimal Quantity Lubrication, MQL) or eliminating (i.e. dry
machining) the quantity of coolant used during machining, hence reducing the energy
used during machining as well as pollution and harmful health effects from additives in

coolants (Yalcin et al, 2009).

The minimisation or complete reduction of the usage of cutting fluid and lubrication
(CLF) in machining process has been investigated to reduce the energy consumption
and environmental impact to achieve the goal of sustainable manufacturing. By
abandoning conventional cooling lubricants and coolant strategies, and applying the
advanced strategies of dry machining or minimum quantity lubrication (MQL), the cost
of the machining process can be significantly reduced. Dry machining and MQL are the
key technologies to reduce the cost and improve the overall performance of cutting
operation through cooling lubrication. Implementing dry machining cannot be simply
accomplished by switching off the coolant supply pump. The cooling lubricant has

some important functions that include:

e Cooling lubricants can reduce the friction, thus reduce the generation of heat and

dissipate the generated heat.

e Cooling lubricants can remove the chips to clean the tools, work pieces and

fixtures.

e The tool life can be increased and the cutting force can be reduced.
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Research of CLF for different strategies and application conditions can reduce the
environmental impact by reducing energy consumption and waste generation, and

improving the economics and efficiency performance (Hands et al., 1996, Weinert et al.,

2004).

Minimal Quantity Lubrication (MQL) is a new method between dry and wet machining.
An experiment conducted by Rahman et al (2002) to evaluate the effect of MQL in
milling showed that MQL (8.5 ml/h) could drastically save more coolant than the
traditional flood cooling method (42000 ml/h). Braga et al (2002) applied MQL during
an experiment of drilling of aluminium-silicon alloys. The result showed that both
machining precision of hole (37.5% of roughness was reduced for diamond coated tools,
and 66.7% for uncoated tools) and tool life (25% of the feed force was reduced) are
improved. Kishawy et al (2005) applied MQL during the high-speed machining of A356
aluminium alloy, further proving that MQL can replace the flood method and improve

dry machining (30% of cutting force was reduced).

Dry machining eliminates the use of cutting fluid during machining, thus completely
avoiding the energy consumption and environmental damage from coolant use. Without
the use of coolant, the cutting force and heat generated will be considerably high and
lead to rapid wear/failure of cutting tools. Kustas et al (1997) used nanocoatings on
cutting tools, and tested the machining result by comparing with traditional tools,
reaching the conclusion that the nanocoated cutting tools can greatly reduce the cutting
force (33%) and wear during machining however, dry machining is not suitable for all
conditions. It is difficult to use for grinding operation or machining specific materials

(aluminium and aluminium alloy).

Campatelli conducted an experiment for three different lubrication strategies: flooded,
MQL and dry for turning operation of AISI 1040 steel based on Gutowski's work
(Campatelli, 2009). The energy consumption was evaluated from the analysis of the
cutting force along the cutting and feed direction (tangential and radius) for using
different lubrication strategies. According to the experiment result of energy, tool life
and emission, the overall performance of MQL is better than dry and flooded strategies

(15% energy saved, 25% tool life increased).

New CLF technologies (e.g. cryogenic machining and high pressure jet assisted

machining, HPJAM) were investigated to alternate conventional CLF methods by the
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researchers from Kentucky. The new technologies can increase the productivity
(improve material removal rate), tool life (lower abrasion, chemical wear), surface
quality, and reduce the cutting force, thus achieve the goal of sustainability (lower
energy consumption, environment impact and machining cost) (Jawahir et al., 2007,

Pusavec et al., 2010a, 2010b, Kopac 2009, Jayal, 2010).

New type of lubricant supplies were introduced at 12" Global Conference on
Sustainable Manufacturing by Klocke et al. (2014) and Blau et al. (2014) by considering
high pressure lubricant supply and Cryogenic cooling method. These additional coolant
supplied may cause the increase of total power consumption, but lower temperatures
can reduce flank wear and break the limits of conventional machining/coolant strategies
by massively increasing cutting speed without harming the tool life. Thus it will
significantly reduce the machining time, and the total energy consumption will be

reduced too.

Apart from coolant strategies, optimising toolpath or cutting tool utilisation is another
way to achieve an energy-efficient machining process. Researchers from Laboratory of
Manufacturing and Sustainability (LMAS) conducted the research in minimising the
energy consumption in machining operation based on improving the machine tool
performance, optimising cutting parameters and toolpath strategies. Vijayarahavan and
Dornfeld (2010) presented a software-based approach to monitor the energy
consumption for machine tools and help to make decision based on multi-level/scale
temporal analysis. Diaz et al. (2010) researched on energy minimisation of end milling
operation. The research was conducted based on an understanding of the direction of
table travel where more energy is used on machine tools. The effects of the orientation
of toolpath were investigated for various toolpath strategies on energy consumption.
The energy consumption per unit was determined and optimised based on cutting
parameters (e.g. feed rate). Then the kinetic energy recovery system (KERS) was used
to improve the production efficiency. 5% to 25% of power consumption can be saved.
A unified monitoring scheme was used to capture the energy flow which can easily and
effectively integrate various disparate elements and analyzed the sampled data. Through
the three approaches, the energy efficiency for precision manufacturing can be easily

improved.

Further research was conducted to verify Diaz's research. Life-cycle Assessment (LCA)

of two types of end milling machines (Bridgeport Manual Mill, low automation and the
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Mori Seiki Dura Vertical 5060, high automation) was carried out based on energy
demand and CO, emissions. The results showed that the energy requirement to
manufacture high automation machine is much higher (100,000MJ) than Ilow
automation machine (18,000MJ). In this case, the different design of machining tool
will consume different amount of energy (Diaz et al, 2010a). In addition to
implementing machine tool design changes, energy consumption for using a machine
tool could also be reduced through selecting process parameter. A total energy
consumption model for the machine tool operation was proposed based on power
demand (Diaz et al., 2010b). The energy consumption for machine tool can be classified
into three categories: constant, variable and cutting energy. Constant energy (CE) comes
from auxiliary equipment (e.g. computer panel, light fixture and coolant pump). Cutting
energy is the energy consumed during machining operation, and depends on cutting
parameters (e.g. feed rate, spindle speed, width of cut, depth of cut, and number of
flutes of the cutter). Variable energy comes from the spindle motor, which also has two
states: steady state (spindle drives under a specified value) and transient state (spindle
accelerating or decelerating). Figure 2.16 shows the processing time and energy
consumption for different toolpath strategies to produce a pocket feature based on this
proposed model. It shows that the energy consumption and processing time for different

toolpath are different, and where more energy is used in machine tools.
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Figure 2.16 Processing Time and Energy Consumption of Various Tool Paths

(Daiz et al. 2010a)
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Schultheiss et al. (2013) proposed an approach to increase cutting tool utilisation for
milling and turning operation which can significantly increase cutting tool utilisation
thus increase the sustainability of the machining process. By swapping the major and
minor cutting edge (for milling operation) or reversing feed direction (for turning
operation), the tool life can be possibly increased 50%-100% without harming surface
roughness. This increase of tool life cannot only reduce the cost of cutting tool purchase,

but also reduce the energy consumption for changing the cutting tool.

Advanced Manufacturing Research Group of TechSolve, US conducted the research to
assess the energy consumption efficiency for discrete part manufacturing at machining
level (Deshoande et al. 2011a, 2011b). An energy monitoring system called “Smart
Energy Monitor” was built up based on National Instruments LabView. The energy
consumption of a discrete part can be specifically represented at feature level. Potential
energy savings can be achieved by improving the machine tool system, thus achieve the
goal of energy-efficient machining and sustainability. However, this research did not
provide the sustainable suggestions by considering the optimisation of process
parameters and the improvement of machine tools. In addition, the implication of this
system requires using specific hardware like power sensors to collect the data, which

will increase the operating cost and cannot be widely implemented.

In summary, instead of the improvement of current manufacturing strategy, the aim of
developing new energy-efficient machining strategies is to implement new concepts and
machining strategies to minimise energy consumption for the machining operation.
However, these strategies also have limitations and currently are still not able to replace
conventional strategies. For example, most of these research contributions are related to
the coolant strategies or using different cutting tools. Although these research
contributions can reduce the energy consumptions, the inherent inefficiency of existing
machining process which is caused by the cutting technology is still not solved. In this
case, it is really important to develop a new energy-efficient toolpath strategy from the
knowledge of machining science which can further minimise the energy consumption
and improve the energy efficiency of the existing cutting process. The new proposed
energy-efficient strategy should be able to identify the potential improvement to the
theoretical limitation, and give the direction to the new research of technology for tool

design, toolpath strategy and machining technology.
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2.8 Industrial Survey

The survey of industrial practice was also conducted in this research through factory
visit, industrial exhibitions visit, informal interview and secondary findings from other
literature survey conducted. The aim of industrial survey is to observe how the
manufacturing process operates in practice and the current situation of practical

manufacturing process. The tasks of the industrial survey focus on the following area:

e Awareness of energy issues in machining operation
e Energy usage and energy efficiency measurement

e Determination of selection of process parameters

e Machining improvement

e Existing tools applied in practice

e Capability of CAM software
The specific interview questions are listed as below:

e What methods are used to determine process parameters in the machining
operations?

e What criteria do the practitioners concern in practice?

e Do you think energy should be considered as an important criterion? If yes, do
you know the relationship between energy and other criteria?

e Are there any methods used to improve the machining process? If yes, what are
they?

e What tools have been used to decide the machining process?

The scale of the visited industry companies covered a broad range including
large/medium/small machining workshops, industrial/academic machining laboratories,
and machine/machining tool manufacturers. Over 40 people have been interviewed
including experienced/young shop floor practitioners, apprentices, sales managers, line
managers, facility managers, designers and technical engineers and machining science

students and researchers.
The results of industry survey showed that:

e Most of practitioners consider cost (total cost and tool cost) and quality (surface

roughness) issues, but do not have awareness of the energy issue. One of the

69



possible reasons is that it is difficult to directly feel the energy consumption
during the machining operation.

It is difficult to measure energy consumption in practical manufacturing
environment. One reason is laboratory measurement system is difficult to setup
because of the power supply wires and cables in the workshop are integrated and
set up together. The second reason is practitioners do not like to be disrupted
when they have started machining jobs.

The process parameters applied in practical machining process are not optimal.
Usually, the process parameters are determined based on practitioners'
experiences or selected from machining handbook/cutting tool catalogue. Once
the process parameters are determined, they are seldom changed.

Most of the interviewed practitioners lacked the knowledge of machining
optimisation. It is one of the reasons they do not trust and accept academic
optimisation results. Compared to academic optimal results, they prefer to trust
traditional sources (such as machining handbook, cutting tool catalogue,
experiences and experiment results. Some companies even buy NC code from
third part process planning company).

The most common improvement method used by practitioners is to improve the
productivity via increasing more shifts. One of the reasons is that they do not
want to change the process plan. Compared to changing process plan, they
prefer to keep a stable process which is easy to predict the outputs and control
the inventory/orders.

The process planning capability of existing CAM software is very limited which
is more like an integrated machining library (machining handbook, cutting tool
catalogue). Separate from CAM software, some big cutting tool manufacturers
(such as Sandvic) developed feed/speed calculator (online version or mobile
applications) to determine process parameters. However, most of the calculators
are just simple software based on machining science equations. The function is
very simple usually related to cutting tool dimensions and cutting speed, and
request to manually input the cutting process parameters.

Finally, there are lots of barriers existing which cause the academic
achievements are very difficult to implement in practice. For example, even
potential improvements exists in current manufacturing process, almost all of the

industries do not want to take a risk to implement new methods/techniques and
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prefer to use conservative methods. Another major problem is most of the
companies do not have extra budget (small and medium enterprises) or will
(larger/national enterprises) to purchase an energy-efficient process planning

system.

From the result of Anderberg's research (2012) in Figure 2.17, the cost of energy only
accounts for a very small portion of total cost (less than 1%). This result will cause the
negative influence that industry may ignore the importance of energy issues. In this
context, it is necessary to explore other research directions in energy consumption to

emphasise the importance of energy minimisation, such as:

e What the energy efficiency is in machining operation?

e How energy affects the other considerations (e.g. cost and quality)?

Energy costs

B Cm = Direct machining cost (machine tool + labor cost)
OCi = Idle cost

BCs = Set-up cost

OCit = Tool changing cost

BCt=Tool cost

B CDE = Direct energy cost

OCIDE = Indirect energy cost

Figure 2.17 Proportion between Cost Components for Machining Process
(Anderberg, 2012)

In summary, the issues raised from industry survey are also related to two categories

which are similar as the issues identified from literature survey:

e Energy/energy efficiency measurement method needs to be developed for

practitioners to better understand the importance of energy consumption. It can
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provide a reason why it is important to pay attention to energy consumption, and
provide tools to evaluate their current processes.

e Improvement methods need to be developed for practitioners to improve their
machining process. Apart from the human factors, it also needs to consider the
factors including: preferences, habits and capability of different users, and form
of implementation. So the optimal results can be understood, trusted and

accepted by practitioners.
2.9 Summary of Literature Review

In the chapter of literature review, the research contributions of the related area have
been investigated in order to identify the issues/gaps of current research and
development. Issues of current practical machining process have also been identified
based on industry survey which is the same as the issues identified from literature
survey. The research questions can be formulated to address the issues raised from
literature and industrial survey. According to the investigation of current research in
sustainable manufacturing, energy measures for manufacturing process, machining
optimisation and energy-efficient machining strategies, the following tasks have been

completed and summarised:

Firstly, general concepts of sustainable manufacturing have been introduced to define
the research area and describe the current trends in research area. Research of energy
consumption/efficiency in manufacturing mainly focuses on how to reduce energy
consumption. Reducing energy consumption can be achieved through the development
of energy efficient industrial processes and technologies. This need is being addressed
through ongoing energy efficient manufacturing research as part of a wider field of

sustainable manufacturing.

Secondly, the review of how to measure the energy consumption and energy efficiency
for the manufacturing process has been continuously carried out. The major
shortcoming of these contributions is that the energy efficiency metrics do not uncover
the inherent inefficiencies in the machining process and suggest the direction to achieve
better energy efficiency. Though the academic research has proposed some energy audit
models and energy efficiency metric to help measure and evaluate the energy usage,
these models and metrics have some limitations (e.g. not informative enough) and

problems (e.g. against the common sense).
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Thirdly, the review of machining optimisation have been carried out to introduce the
existing machining optimisation methods and commonly accepted optimisation
procedure which will be used to guide the optimisation based on energy considerations
to reduce the energy consumption and improve energy efficiency. However, too many
different optimisation methods have been applied in machining optimisation. The
optimal results obtained from these research contributions are not transparent enough
and most of academic optimisation results have not been used in industry. Although the
environmental challenge provides a new opportunity to apply the results of decades of
optimisation and process planning research, under this circumstance introducing energy

as an additional criterion will bring more complexity of existing machining problems.

Fourthly, sustainability awareness brings new requirements for existing multi-objective
machining optimisation research. Most multi-objective machining optimisation research
with energy considerations reviewed only used priori techniques to convert multi-
objective optimisation to single-objective optimisation problem. The optimal results
achieved by using these methods are a unique optimal plan, but not a set of feasible
solutions. So, it is necessary to investigate the optimal solutions of multi-objective

machining optimisation with energy considerations by using posteriori techniques.

Finally, new energy-efficient machining strategies have been reviewed to introduce the
important technologies and significant contributions in the area which can improve the
energy efficiency. Energy consumption during machining was grouped as that due to
material production, cutting fluid usage and material removal. Reduction of energy from
material production aims at utilising materials requiring less energy at the primary
production stage, producing less negative effects on the environment and having good
recycling properties. Energy consumption from cutting fluid usage is reduced by
minimising or eliminating the quantity of coolant used during machining, hence
reducing the energy used during machining as well as pollution and harmful health
effects from additives in coolants. However, the inherent inefficiency of existing
machining process which is caused by the cutting technology is still not properly solved.
The new proposed energy-efficient strategy should show direction to the research of

new technologies for tool design, toolpath strategy and machining technology.
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CHAPTER 3: DEVELOPMENT OF PREDICTIVE MODELS AND ENERGY
EFFICIENCY METRICS FOR MACHINING OPERATION AND THE
EXPERIMENTAL VALIDATION

The aim of this chapter is to introduce the mathematical models for machining operation
such as cutting force, power, time, energy, cost, tool life and surface roughness.
Mathematical expressions have been modelled based on machining theories and
common empirical methods. An energy prediction model has been built based on
cutting force model. Experiments are conducted to determine the coefficients and verify
the energy prediction model. These mathematical expressions will be used to analyse

the characteristics of machining operations for the following chapters.
3.1 Modelling of Prediction Model for End Milling Operation

In this section, a theoretical energy prediction model for end milling operation will be
built based on machining science theories and other researchers’ publications in

regarding to power, time and tool life.
3.1.1 Power Consumption Model for Machining Operation

The power consumption to remove a volume of material depends on the force needed to
carry out the operation and the cutting velocity at which the operation is being
conducted. In this context, theoretically the cutting velocity component in the axial
direction is zero, and the component in the radial direction is insignificant compared to
the component in the tangential direction (similar conclusion can be drawn from Wan et
al., 2010, see Figure 2.6). Therefore, the power consumption for machining operations
can be represented in Equation 3.1 with the tangential cutting force based on Equation
2.15 multiplied by cutting velocity.

Fr-V;
Pmachining = T 3.1)

where, V. is cutting velocity m/min, where, K7 is cutting force coefficient, N/mm?2.

wdn

Ve = 1000 (3.2)

As the cutting force model shown in Chapter 2, the cutting force is related to the
instantaneous cut thickness, depth of cut and feed rate, the power consumption for

machining operation can be generated as following steps:
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P machining —

nz 6 x 10
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Prachining = 6 % 1%72 (cos pin — €OS Pout) (3.4)

When the tool is completely engaged, the power consumption model for machining

operation can be represented in Equation 3.5.

zn-.KT.ap.ae-f-d T['KT'MRR
Prachining = 6% 10%z-d - 3 X 10%z

T['MRR-CO-agl-agz - dCs .ZC4.fZC5 - nCe
Pmachining == 3% 1077 (3.5)

where, Pm is the power consumption for end milling operation W, MRR is material

removal rate mm3/min.

However, the total power consumed during machining process also need consider the
component of auxiliary functions including spindle driven servo motor, NC control pad,
computer and fans, lighting, coolant pumper motor etc. The investigation of power
consumptions of each component will be shown in the following sections of

experimental results.
Ptotal = Pmachining + Pauxiliary (3-6)

Pauxiliary = Pconstant + Pvariable

The auxiliary power consumption can be further divided into two parts which are
constant power consumption and variable power consumption. Constant power
consumption contributes to the functions which consume constant power such as NC
control pad, coolant pump driven motor and lighting. The variable power consumption
contributes to the functions that the power consumption changes with the
increase/decrease with the process parameters (e.g. feed rate and spindle speed), such as

spindle driven servo motor and workbench driven motor.
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3.1.2 Time Consumption for Machining Operation

Total time consumption for machining process can be expressed:

trotal = tm T+ Csetup T Lrool (3.7)

Where t;,, is machining time min, gty 1S setup time min, t;4; 1S tool changing time,

and can be represented as:

ty = i
™ MRR
lsetup = Ns " L5 (3.8)
tt -t
ttool = Ntoot " ttc = CTl = (3'9)

Where, ng is number of setup times, n;,,; is number of tool changing times, t;. is tool
changing time min/change, t, is setup time min/setup, T; is tool life min. So the total

time consumption can be represented as:
tm
trotal = tm T Csetup T ttch (3.10)

3.1.3 Modelling of Tool Life

Tool life depends on a lot of cutting variables. The most significant variables affecting
tool life are work piece material, tool material, tool shape, cutting speed, feed rate and
depth of cut. Taylor’s equation was widely used to calculate tool life in machining
operation. Taylor (1907) is the early pioneer of the research of tool life. The basic

Taylor’s equation is shown in Equation 3.11.
VT =C (3.11)

where, V' is cutting speed, T is tool life, C is a tool life coefficient, # depends on

different tool materials.

This basic equation is easy to use and only has one variable (cutting speed). But it is not
very accurate. In this case, based on the basic equation, the extended Taylor’s equation
was developed. Extended Taylor equation can be represented by considering cutting

speed, feed rate and depth of cut (Enparantza, 1991):
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C

= — 3.12
ym .fp . ag ( )

where, f'is feed rate, a,, is depth of cut, m, p and g are constants.

Among these three factors, cutting speed is the most important factor, then the second
one is feed rate and the impact of depth of cut is the least. In Enparantza's research, feed

rate is fixed, a, is related to diameter of tool and very small, the basic equation will be

suitable for end milling operation. The specific application can be represented as a

simple Taylor equation as below:
VC ) TEL = VCR - TZIR (313)

where, V- is reference cutting speed, Ty is reference tool life. Then,

Ve (TLR>u

Ver T,
V -u
T, =Tig (ﬂ) (3.14)
Ve
Where,

u = 0.25~0.3 Carbide

{u =05~0.7 Ceramics

u = 0.125 High Speed Steel

Pan et al. (2009) developed a tool life prediction model for milling Aluminium 7075-T6
series aeronautical aluminium by using multi-linear regression. The model considered

the impact of cutting speed and feed per tooth which is:

B 41078687
n= Vcl-546 - [,0473

3.1.4 Energy Consumption Model for Machining Operation

The energy consumption model for end milling operation can be represented as

Equation 3.15:

Emachining = Dmachining tm (3-15)
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Where, tm is time consumption for machining process in seconds. Time consumption
can be approximately calculated by material removal volume divided by material

removal rate.

60V,

tm = ——— 3.16

Based on the equation 3.4, 3.7 and 3.8, the energy consumption model can be concluded

as equation 3.17.

7Ky MRR 60V,
Emacnining = 35703, " MRR

E _ 2nKV,, 317
machining — W ( . )

where, Emachining 1S the energy consumption for machining operation J, V,,, is material
removal volume mm3 . Based on equation 3.17, the energy consumption for a
machining operation is in proportion to material removal volume and reverse proportion

to the number of flutes.

The total energy consumption for machining process can be expressed as in Equation

3.18:

Etotal = Emachining + Eauxiliary + Esetup + Etoolchange (3-18)

The expressions of each component are shown as below:
Eauxiliary = tm ' (Pconstant + Pspindle)

Esetup = ts " Peonstant

_ tm
Etoolchange = T T_l ' Pconstant (3-19)

where, P.onstant 18 the power consumed by the functional component which requires
constant power such as control pad, coolant pump, lighting etc. Pgyinqi0is the power

consumed by the spindle. It depends on the spindle speed applied during machining.

So the total process energy consumption is:
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Etotal = +tn (Pconstant + Pspindle) + s Pconstant +

tm
Lec T_l * Peonstant (3'20)

3.2 Cost, Surface Roughness and Chatter

Additional models such as cost and surface will also be introduced in this section for
carrying out the following research of sustainability improvement with the
consideration of energy consumption. In addition, chatter as an important factor in

machining operation will also be discussed.
3.2.1 Modelling of Cost with Energy Considerations

The cost of end milling operation is determined by three main factors, which are labour,
energy and tool. As expressed in Equation 3.21, the cost, C of end milling operation
can be determined as the sum of labour cost C;, energy cost Cg, and cost of cutting tool

Cr..
where, C; - labour cost, C;, - Energy cost, Cr- tool cost

The most important variable to affect the tool cost is tool life. Tool life is the standard to
evaluate the performance of the cutting tool. It can be defined as “cutting time required
to each tool-life criteria” (Lamond and Sodhi, 1997). It is directly related to the

efficiency and cost of machining operation. The relationship is shown as Equation 3.22.

t
Cr = Rp— (3.22)
ty
where, Ry — tool rate, equals to tool price or tool resharpening cost divided by tool life,
t; - tool life.

_ Tool Price Tool Resharpening Cost

R, = 3.23
T T, or T, ( )

Labour cost in machining process, is related to total time consumed and labour rate.
Total time can be determined as the sum of machining time, setup time and tool change

time. The expression of labour cost is shown as Equation 3.24.
CL =Ry " tootar (3.24)
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where, R is labour rate.

Energy consumption in the machining process is basically equal to electricity
consumption for machine. The energy consumption is related to electricity rate, energy
consumption for the machining operation and machining efficiency. Thus, the energy

cost can be represented in Equation 3.25.

Cr =Rg-Ep (3.25)
where, Ry is electricity rate, E; is total energy consumption
3.2.2 Modelling of Surface Roughness for End Milling Operation

Surface finish is one of the common criteria to evaluate the quality of the machining
operation. Early researchers used simplified geometric model to predict the average

surface roughness. For example, Enparantza (1991) used:

R
“ 32R
where, fn is feed per revolution.
Tolouei-Rad and Bidhendi (1997) used:
_ 318 [
© 4d

To accurately predict surface finish, empirical equation has been widely used in current
machining research. A statistical model has been generated by carrying out multiple
regression analysis based on the experimental data. Equation 3.26 shows a typical
empirical equation with the consideration of depth of cut, width of cut, feed per tooth
and cutting speed. The reason why this model selected is because of it considered more
process parameters than the previous models and has a better accuracy because of the
surface roughness constants will be determined based on experiment data by using

statistic techniques (Pan et al., 2008).

Ry = GV f 2 agiast (3.26)
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According to the validated data from Pan et al. (2008) to investigate surface roughness
for milling Aluminium 7075-T6, a statistical model can be generated as below (R-

square is 96%):
Ra — 2384.4887VC—1.45061fZO.491583a2.907896
3.2.3 Chatter in Machining Operation

Chatter is another important factor in machining operation which can affect the
accuracy of product (such as surface roughness), force variation, and reduce tool life
and machine life. The same as other factors, chatter will also be affected by process
parameters including depth of cut, width of cut, spindle speed and feed rate. The

increase of process parameters will increase the chatter of machine.

One of methods can effectively reduce chatter is to reduce the cutting force by adjusting
process parameters such as spindle speed, depth and width of cut, or improving the
stability of cutting tools. Enparantz (1991) claimed that at low cutting velocities, the end
milling operation actually stabilises cutting. The shorter the wave length
(velocity/frequency), the greater the likelihood of damping will be produced. The

limiting cutting velocity can be calculated as the following equation:

2w X 60

Vehat = [W X fo X Amin (3.27)

where, fn is machine tool nature frequency, and 4,,,;;, is minimal wave length.
3.3 Experimental Verification of Energy Prediction Model

To verify and improve the proposed energy prediction models and get accurate data,
primary experiment was conducted to measure the power consumptions and cutting
forces. Experiments were carried out on a HAAS TM-1CE 3-axis vertical milling
machine. The capability of the machine tool is shown in Table 3.1. The power

consumptions are measured by a FLUKE 435 Power Quality Analyser (see Figure 3.1).

The aims of the experiment are to measure the power consumption of each machine tool
section, and compare the power consumption by using different cutting parameters. To
control the errors in measures and make sure the measures are reproducible and
repeatable, the validation process will be conducted twice. The data collected from

primary measure will be used to generate the energy prediction model.
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Table 3.1 HAAS TM-1CE Basic Specification

Manufacturer Haas
Type TM 1CE (Vertical)
Number of Axes 3
Tool Station 0
Spindle 1
Motor Power 5.6 KW
Spindle Speed 4,000 RPM

Figure 3.1 Laboratory Power Measurement System

Further experiments were conducted based on the measurement of tangential cutting
force to verify the developed model. The cutting forces were captured by a force
measurement system consisting of a Kistler 9367C, force measurement unit, charge
amplifier, an NI 9205 Analog input/Digital output module and DAQs software system
(see Figure 3.2). The results of experimental measures and theoretical predictions
(based on the data collected from primary experiments) were compared to validate and

check the accuracies of the prediction models.
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Figure 3.2 Cutting Force Measurement System

Then the extended power measurements were conducted by using different dimensions
of cutters and range of process parameters as a Reproducibility and Repeatability (R&R)
study to further analyse and evaluate the errors and accuracy of the measurement system,

and make sure the measurement system and methods are acceptable for the intended use.
3.3.1 Power Measurement for Auxiliary Functions

Based on the measurement of power consumption, the power consumption via auxiliary
functions can be determined. For the tested machine tool, the idle power consumption
(power on) is 237.1W, the power consumption for the coolant pump is 60.48W, the
power consumption of computer and fan is 74.54W. The power consumption for spindle
speed has a linear relationship with spindle speed. The detailed results are shown in
Table 3.2 and Figure 3.3 that the active power for spindle driver is 11.62W and the

power consumption will increase in proportion to the increase in spindle speed.
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Table 3.2 Power Consumption for Different Spindle speed

Spindle Speed (RPM) Power Consumption (W)
500 61.64
1000 83.53
1500 144.02
2000 174.58
2500 223.00
3000 261.14
3500 299.70
4000 352.52
400
350 y=0.0837x+11.617 4
R*=0.9954
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Figure 3.3 Plot of Power Consumption with the Increase in Spindle Speed

3.3.2 Primary Power Measurement for Machining Operation

Three different cutting tools were used which are 10mm 2 flutes end mill, 10mm 3
flutes end mill and 16mm 3 flutes end mill. The work piece material is Aluminium
7075-T6. Different process parameters were applied to capture primary data of power
consumption by using power measurement system in Figure 3.1. The results were used
to determine the coefficient of the developed model. The detailed experimental plan and

measurement data is shown in Table 3.3.

The theoretical power consumption of the above process parameters can be calculated
based on the constant value in Table 2.1. The comparison results between the theoretical
calculation and experimental measurement are shown in Table 3.4. The theoretical
value and experimental value of power consumption for different parameters are

compared with the accuracy which is equal to the ratio between experimental value and
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theoretical value. According to the modelling process of power consumption in section

3.1, it is really important to determine the cutting force coefficient Kr. Based on

Equation 3.5, the experimental values of tangential cutting force co-efficient and uncut

chip thickness were calculated and shown as well in Figure 3.4 and Figure 3.5. The

accuracies between theoretical and experimental values in power can be calculated by

using the following Equation 3.28. The range of accuracy is between 67.44% and

85.38%.
A =1-% =1 O % 100% 3.28
ccuracy = 0error = Aetural Valie 0 (3.28)
Table 3.3: Primary Experiment Parameters for Power Measurement
No. d z| a, a, feed n Total | Auxiliary | Machining
(mm) (mm) | (mm) | (mm/tooth) | (rpm) | Power Power (W)
(W) (W)
1 10 3 1 10 100 1000 | 481.925 447.040 34.885
2 10 2 1 10 100 1000 | 489.436 | 447.300 42.137
3 10 3 1 10 200 1000 | 495.700 | 443.967 51.733
4 16 3 1 10 100 1000 | 502.571 447.700 54.871
5 10 |3 1 5 100 1000 | 469.641 | 445.125 24.516
6 10 |3 1 5 200 1000 | 479.754 | 443.967 35.780
7 10 |3 1 5 100 2000 | 552.125 | 525.700 26.425
Table 3.4: Comparison of Theoretical and Experimental Result
No. Theoretical | Experiment | Accuracy Ky h,
W) W) (mm)
1 26.167 34.885 75% 999.89 0.067
2 32.708 42.1367 77.62% 805.16 0.1
3 34.889 51.7333 67.44% 741.40 0.133
4 41.867 54.8714 76.3% 982.97 0.067
5 20.933 24.5159 85.38% 1405.37 0.033
6 26.167 35.78 73.13% 1025.54 0.067
7 314 26.425 81.17% 1514.81 0.017

85




Power W
[1a]

B Theoretical Power Comumplion = Experimental Power Comumption

548714
35.78
na
24,5158 26.16 6425
h
5 & 7

Figure 3.4 Comparison of Power Consumption for Theoretical and Experimental

5173

50

42.136

40

34,855

30

0

10

1 2 3 4

Experiments

Ki Tangeniial Fore Co-effickent

400

o4+—— 1 1 L I [ [ ' P 0 J 1 ) R b3 J P F 0 ' 2 3} QP I

Q ooz oos 0.0 008 01 012 o014

Uncut Chip Thinckness

Figure 3.5 Tangential Cutting Force Co-efficient of Experimental Results for
Machining Aluminium 7075-T6

The cutting coefficients for different operations are totally different (e.g. the co-efficient
of operation 3 is less than half of that for operation 7) and prove that the cutting force
coefficient is not constant. According to the experiment results presented in Figure 3.5,
when the uncut chip thickness is over 0.03mm, the trend of K curve flattens (from
1045 to 741 N/mm?). This result is very similar to the experimental data from literatures
(Wan et al., 2009, Dang et al., 2010) and the values are also similar. Two keys

observations can be made from this result.
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Firstly,

the values of Ky are similar by using same cutting strategies on different

machine tools with the uncut chip thickness. The differences could be caused by the

accuracy of the measuring system or circumstances (e.g. temperature).

Secondly, the curve of K can be divided into two linear stages. One is the rapidly

decreasing stage where the uncut chip thickness is from 0 to 0.03mm. The other one is

the flattening stage where the uncut chip thickness is over 0.03mm.

According to these two observations, following suggestions can be proposed to

commonly apply the developed cutting force model.

K can be considered as a constant between small range of uncut chip thickness.
This method can be applied to the situation that, the uncut chip thickness will
not hugely change for the different cutting parameters.
The value of K can be considered as in a range. When using K to calculate, the
force and energy are also shown as a range. The sensitivity or accuracy will be
given to verify the value.
The value of K7 can be generated as two functions which are related to uncut
chip thickness. Since chip thickness is related to feed rate, spindle speed,
number of flute and rotated angle, the K; can be represented as Ky =
f(ay,n,z ). The function can be generated by conducting experiments and
using multi-regression method.

Kr = f(ap ae d, 2, f,,n) = Co - ag' - ag? - d - 26 - £, - e
where, Cy~Cg are coefficient
Manual of coefficients can be developed by conducting more experiments to

generate more values in different conditions.

By using regression analysis, the coefficients for flat end milling operation of

Aluminium 7075-T6 were determined (presented in Table 3.5).

Table 3.5 Cutting Force Coefficients for Flat End Milling Operation
(Workpiece material: Aluminium 7075-T6)

Co

G C; Cs Ca Cs Ce

1611.2282 0.01249 -0.0778 | -0.59213 1.45596 -0.20856 | -0.20856
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3.3.3 Verification Experiments

The aim of conducting validation expeirments is to validate the developed energy model.
Two measurement systems (force and power) were used to capture the experimental
data of cutting force and power consumption for the machining process. Comparison of
the tangiental cutting force and the energy consumption of the experimental
measurement and the theorical prediction is shown in the following paragragh in this

section.

Figure 3.6 shows the comparing results between the experimental measurement and the
theoretical prediction by using 2 flutes 10mm end mills in conventional milling. From
the figure, the experimental measurement fits very well with the calculation results. The
accuracy of selected range is up to 91.5%. This result proves that the theoretical
tangential cutting force model is fairly accurate and can be used to predict the energy

consumption for end milling operation.
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Figure 3.6 Comparison of Tangential Cutting Force between Theoretical

Calculation and Experimental Measurement

Extended power measurement tests were conducted to further validate the developed
model. 3 different cutting tools were selected which are 8 mm/4 flutes, 10 mm/3 flutes

and 12 mm/ 2 flutes. Each tool was used 9 times by using different process parameters
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based on Taguchi design of experiment method. Totally 27 results were captured and
shown in detail in Table 3.6. Figure 3.7 shows the comparison of the tangetial cutting
force of the experimental measurement and the theoritical prediciton. From the figure,
the experimental measurement also fits very well with the theoretical prediction. The
average accuracy of total 27 tests is up to 95%. This result further proves that the

accuracy of the developed energy prediction model is very good.

Table 3.6: Experimental Verification based on Power Measurement

No. d z| ap Qe feed n Prediction | Measurement | Accuracy
(mm) (mm) | (mm) | (mm/tooth) | (rpm) (W) (W)
1 8 |4 1 4 0.01 1000 | 463.552 436.7 94.207%
2 8 |4 1 6 0.02 2000 | 574.873 560.3 97.465%
3 g8 |4 1 8 0.03 3000 | 711.537 697.8 98.069%
4 8 4] 2 4 0.03 2000 | 607.617 570.3 93.858%
5 8 |4 2 6 0.01 3000 | 680.323 629.6 92.544%
6 8 |4 2 8 0.02 1000 | 509.808 450.1 88.288%
7 8 4] 3 4 0.02 3000 | 726.14 701.4 96.593%
8 8 4] 3 6 0.03 1000 | 542.165 470.4 86.763%
9 8 4] 3 8 0.01 2000 | 621.168 536.7 86.402%
10 10 |3 1 5 0.01 1000 | 461.148 450.7 97.734%
11 10 |3 1 7.5 0.02 2000 | 564.406 560.7 99.343%
12 10 |3 1 10 0.03 3000 | 685.609 680.3 99.226%
13 10 (3] 2 5 0.03 2000 | 587.591 565.4 96.223%
14 10 |3 2 7.5 0.01 3000 | 663.507 620.3 93.488%
15 10 |3 2 10 0.02 1000 | 493.901 448.6 90.828%
16 10 |3 3 5 0.02 3000 | 695.949 632.7 90.912%
17 10 |3 3 7.5 0.03 1000 | 516.812 450.0 87.072%
18 10 |3 3 10 0.01 2000 | 597.186 520.4 87.142%
19 12 |2 1 6 0.01 1000 | 458.749 450 98.093%
20 12 |2 1 9 0.02 2000 | 553.959 550.5 99.376%
21 12 |2 1 12 0.03 3000 | 659.729 674.5 97.810%
22 12 (2] 2 6 0.03 2000 | 567.604 565.1 99.559%
23 12 (2] 2 9 0.01 3000 | 646.722 620.5 95.945%
24 12 (2] 2 12 0.02 1000 | 478.024 447.5 93.615%
25 12 2] 3 6 0.02 3000 | 665.814 657.6 98.766%
26 12 (2] 3 9 0.03 1000 | 491.508 456.8 92.939%
27 12 2] 3 12 0.01 2000 | 573.250 547.6 95.525%

The average accuracy of 27 tests is 94.362%
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Comparison of predictive result by using developed model, suggested results from
textbook and predictive results achieved by using existing models from literature in
specific energy consumption for various materials are presented in Figure 3.8. The
results firstly showed that, with the increase of material removal rate, predictive specific
energy consumption of Aluminium 7075-T6 is close to the constant value of same
material published in machining science textbook (Tlusty, 2000, 850 N/mm?). The
predictive results achieved by using Kara and Li's model (2011, mild steel 1020) are a
little higher than Tlusty's suggested value (approximately 25%). But the predictive
results by using Diaz et al.'s model are much smaller than Tlusty's suggested value.
Finally, the characterisation of different conventional materials, such as Aluminium and
Mild/low carbon Steel are almost same which is monotonously decreases with the

increase of material removal rate (MRR).

In addition, the comparison results with other predictive models in different materials
can also show general character of specific energy consumption. The specific energy
can be reduced by increasing MRR. This finding can further prove that the results
achieved by proposed predictive model can be generally implemented for different

materials and machine tools.
3.4 Development of New Energy Efficiency Metrics for Machining Operation

According to the issues identified from literature, the major shortcoming of energy
efficiency measures for the machining operation is that the inherent inefficiencies of
energy consumption in the machining operation have not been considered. The existing
energy efficiency metrics do not uncover the inherent inefficiencies in the machining
process. To address this shortcoming, new metrics are required to uncover this inherent

inefficiency.

The radical difference in Equation 2.26 and the definition of energy efficiency ratio at
the manufacturing process level in the work of other researchers (e.g. Rahimifard et al,
2010) is that in these other works Energy Ratio (ER) is defined as ratio of theoretical
energy consumption (TE) and direct energy consumption (DE). DE is a sum of TE and
auxiliary energy, AE (energy consumption for functions such as coolants, control panel).

Hence in existing work, ER for the process can be expressed as in Equation 3.29.

ER = TE/(TE + AE) (3.29)
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where, ER is energy efficiency for machining process, AE is auxiliary energy

consumption.

The implication of Equation 3.28 is that it is possible to realise an efficiency ratio close
to 1 (i.e. 100%) if improved technology makes most of the auxiliary functions
unnecessary (e.g. through dry machining) without making any radical improvement in
the efficiency of the machining operation itself. However, using 100% energy for
machining operation does not mean the energy efficiency of machining operation can
reach 100% too. Thus, the measurement of energy efficiency in current work as
depicted by Equation 2.26 can only measure the energy efficiency within an existing

technology and cannot uncover the inherent inefficiency in the process.

Cullen and Allwood (2010) identified an issue of energy efficiency that to accurately
uncover the global improvement potential from energy efficiency measures, it is
necessary to identify the theoretical limits of the existing process. In this case, to
accurately evaluate the energy usage performance and uncover the inefficiency of
machining process, a new definition of energy efficiency for machining has been

proposed in the following section.

3.4.1 Proposed New Definition of Energy Efficiency for Machining Operation

A demonstration of the metal cutting process is shown in Figure 3.9. For a single cut
(feed per tooth), the area of theoretical shear plane is smaller than the area of actual
shear plane. This inefficiency is caused by the limitation of conventional cutting
strategy. It means the tangential cutting force generated by using conventional cutting

strategy will be always higher than pure shear force.

:

Motion of chip | Cutting tool

Motion of tool
Rake face (relative to work
Original surface

Flank New surface

Practical Shear Plane / Workpart S

Fd
Theoretical Shear Plane

Figure 3.9 Theoretical and Practical Shear Planes of Metal Cutting Process
(Lantrip et al., 2003)

92



dFTM =T- dATM =T- ap - f‘Z (330)

where, dFru is theoretical minimal shearing force for one feed/tooth, d4rwv is theoretical
shear area for one feed/tooth, 7 is shear strength of the workpiece. Table 3.6 shows the

value of shear yield strength for cutting typical materials.

Based on equation 3.30, the theoretical minimal cutting force for shearing a plane can

be shown in equation 3.31.
FTM=T'ATM=T'L'W (331)

where, Frv is theoretical minimal shearing force, A7y is shear area of the shear plane, L

and W are length and width of the shear plane.

So the theoretical minimal energy consumption (TME), which is the theoretical minimal
energy requirement to shear a plane, can be represented by the expression in equation

3.32.
TME - FTM X DS =T ATM X DS (332)

where, TME is theoretical minimal energy consumption for shearing a plane, Ds is

cutting tool travelling distance.

The theoretical minimum energy term (TME) is not known to have been used in energy
efficiency calculations and its introduction is one of the investigations presented in this
research. However, because of the limitation of current machining technology, TME is

not possible to be achieved.

Table 3.7 Value of Shear Yield Strength in Cutting (N/mm?) (Trent, 1984)

Material Shear Yield Strength
Iron 370
0.13% C Steel 480
Ni-Cr-V Steel 690
Austenitic stainless steel 630
Nickel 420
Copper (annealed) 250
Copper (cold worked) 270
Brass (70/30) 370
Aluminium 97
Magnesium 125
Lead 36
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Table 3.7 showed the values of shear yield stress in cutting for varies of materials.
Based on the expression in Equation 3.32, a metric for the energy efficiency (Energy
efficiency ratio, ER) in machining operation can be expressed as a ratio of the
theoretical minimum energy (TME, as equation 3.32) to the actually machining energy
(referred to as theoretical energy, TE, in work of Rahimifard et al, 2010, as equation

3.29) employed during the machining operation. This is expressed as in Equation 3.33.

TME TME
ERmachining: TE = (3.33)

Emachining

where, ERmachining 1S energy efficiency for machining operation (cutting), TE is

theoretical energy consumption for the machining operation.

So the energy efficiency can be represented in Equation 3.34

ER _ TME _ TME _ TME
process = nE " (TE + AE)  Total Energy

(3.34)

where, ERprocess 18 energy efficiency for machining process, DE is direct energy
consumption for the machining process, AE is the energy consumption for auxiliary
functions. Based on Equations 3.33 and 3.34, the inherent inefficiencies in the
machining process can be uncovered by comparing energy efficiencies of current
definition and proposed energy efficiency metrics. Further investigation of the energy
usage performance for the machining process will be carried out in the following

section.

3.4.2 Investigation of Energy Efficiency of Machining Operation

In this section, the investigation of energy efficiency of machining operation will be
carried on for milling a step feature (30mm X 30mm X 30mm). Figure 3.10 shows the
shear area of a 22D step feature. Based on Equation 3.30, the theoretical energy

consumption (TME) can be calculated as below:

TME = 1+ Apy X Dg = 97 X 30 X (30 + 30) X = 5238] = 5.238 kJ

1000
The value of TME for these 27 tests is constant (5.238kJ) and play a role as a theoretical

limitation of energy consumption for this step feature. The practical energy
consumption and energy efficiency has been calculated based on the data captured in

Table 3.8 in section 3.3.3. The calculated results are shown in Table 3.7.
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Shear Area

Figure 3.10 Shear Area of a 2}2D Step Feature

Table 3.8: Energy Efficiency for the Selected Process Parameters

No.| d|z|a, | a, |feed| n TE DE ER ERn ER,
(kJ) (kJ) (TE/DE) | (TME/TE) | (TME/DE)
I [ 8 (4| 1| 4 |0.01]1000 | 83.3818 |4223.38 | 1.974% | 6.282% 0.124%
2 |84 1| 6 |0.02]2000 |60.5069 | 825.508 | 7.330% | 8.657% 0.635%
3 | 8|41 | 8 |0.03]3000]|499613 |364.962 | 13.69% | 10.484% 1.435%
4 | 84| 2] 4 ]0.03]2000 |57.8815 |485.382 | 11.92% | 9.050% 1.079%
5 18 (42| 6 |0.01|3000| 64.807 | 604.808 | 10.72% | 8.082% 0.866%
6 | 8 4| 2| 8 |0.02] 1000 | 689647 | 665215 | 10.37% | 7.595% 0.787%
7 |8 |4| 3] 4 |0.02]3000 | 581754 |373.176 | 15.58% | 9.004% 1.403%
8 | 8 (4] 3 | 6 |0.03]|1000 | 65.1361 | 455.136 | 14.313% | 8.042% 1.151%
9 | 8 (4] 3 | 8 |0.01|2000]|69.3149 | 496.815 | 13.952% | 7.557% 1.054%
10 |10 3] 1 | 5 |0.01 | 1000 | 659769 | 4472.98 | 1.408% | 8.317% 0.117%
11 |10 3] 1 |7.5]0.02]|2000 |45.6999 | 855.701 | 5.341% | 11.462% 0.612%
12 |10 3] 1 | 10 | 0.03 | 3000 | 37.7349 | 367.736 | 10.261% | 13.881% 1.424%
13 110|3] 2 | 5 |0.03 2000 | 43.717 | 493.718 | 8.855% | 11.982% 1.061%
14 103 ] 2 [7.5]0.01 | 3000 | 48.9477 | 618.949 | 7.908% | 10.701% 0.846%
15 |10 3] 2 | 10| 0.02| 1000 | 52.088 | 682.008 | 7.637% | 10.056% 0.768%
16 |10 3] 3 | 5 |0.02 3000 |43.9389 | 373.94 | 11.750% | 11.921% 1.401%
17 |10 |3 ] 3 [7.5]0.03 | 1000 | 49.1962 | 459.196 | 10.714% | 10.647% 1.141%
18 |10 |3 ] 3 | 10 | 0.01 | 2000 | 52.3524 | 502.353 | 10.421% | 10.005% 1.043%
19 1212 1 | 6 |0.01]| 1000 |46.3282 | 5536.33 | 0.836% | 11.306% 0.095%
20 11212 1 | 9 |0.02 2000 |33.6186 | 1023.62 | 3.284% | 15.581% 0.512%
21 |12 (2| 1 | 12 | 0.03 | 3000 | 27.7592 | 417.761 | 6.645% | 18.869% 1.254%
22 |12 (2] 2| 6 |0.03|2000|32.1598 | 572.161 | 5.621% | 16.287% 0.915%
23 11212 2 | 9 |0.01 | 3000 | 36.0078 | 726.010 | 4.960% | 14.547% 0.721%
24 |12 (2| 2 | 12 | 0.02 | 1000 | 38.3178 | 803.318 | 4.770% | 13.670% 0.652%
25 |12 (2| 3 | 6 |0.02|3000 | 32.3231 | 422.324 | 7.653% | 16.205% 1.240%
26 11212 3 | 9 |0.03 | 1000 |36.1906 | 526.191 | 6.878% | 14.473% 0.995%
27 1212 | 3 | 12 | 0.01 | 2000 | 38.5124 | 578.513 | 6.657% | 13.601% 0.905%
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From Table 3.8, the energy efficiency based on existing definition is between 1% to
15%. These efficiencies approximately fit the range of energy efficiency measured from
the previous research contributions for machining operation (Kordonowy, 2001,
Gutowski et al., 2005). Energy efficiency based on proposed definition is approximately
between 6% to 19% in ERm (TME/TE) and 0.1% to 1.5% ERp (TME/DE). Based on the
new proposed definition, the energy efficiency is much smaller than the efficiency
measured by using the existing definition. It means, though the energy efficiency for
machining based on the existing definition is very low, the actual energy usage
performance may be even worse. The proposed energy efficiency metrics can help to
uncover the inefficiency of the machining process by identifying the theoretical minimal
energy consumption for the machining operation. Further evidences to support the

conclusion above will be discussed by analysing Figure 3.11a and 3.11b as below.

— 10.482%

Figure 3.11a Energy Efficiency Chart for No.3 Test

— 10.698%

TME
0.846%

Figure 3.11b Energy Efficiency Chart for No.14 Test
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Figure 3.11a and 3.11b show the energy efficiencies of two selected tests No.3 and
No.14. From the figures, it can be found that the theoretical energy consumptions (TE)
of test No.3 and test No.14 are similar (49.96k] and 48.95kJ). However, the energy
efficiency of test No.3 is much better than the efficiency of test No.14 (TE/DE, 13.689%
to 7.908%, up to 40% improvement). The same conclusion can be drawn by comparing
the proposed energy efficiency for machining process which also shows that test No.3
has better energy efficiency than test No.14 (TME/DE, which is 1.435% for test No.3
and 0.846% for test No.14). This conclusion can be verified from the measurement
results which showed that test No.3 consumed less energy than test No.14 for achieving
the same feature (DE, 364.962kJ for test No.3 and 618.949k]J for test No.14). The
reason for this reduction in direct energy consumption is that test No.3 used higher
MRR than the MRR used in test No.14, which reduced the machining time, thus

reduced the specific energy consumption.

However, the improvement achieved above in energy consumption is almost from the
reduction of auxiliary energy consumption. The energy consumptions for machining
operation (TE) of two tests are similar (49.961kJ for test No.3 and 48.95kJ for test
No.14, test 3 even has higher energy consumption). This similarity can be identified by
comparing the new proposed energy efficiency (TME/TE) for machining operation
which is 10.482% for test No.3 and 10.698% for test No.14. The function of TME is
that it can play an important role in energy efficiency metrics as a boundary line of
energy consumption. By comparing the new proposed energy efficiency of machining
operation, the potential of energy reduction in TE can be clearly identified. According
to selected examples in Figure 3.11a and 3.11b, there is still a huge potential (up to 90%,
TE minus TME) for improvement in energy savings in machining. It is necessary to
further reduce the theoretical energy consumption and improve the energy efficiency by

implementing energy-efficient methods.

3.5 Summary of the Chapter

In this chapter, predictive models for measuring the performance of end milling
operation include cutting force, power, time, energy, cost, tool life and surface
roughness have been introduced based on machining science theories and common
empirical methods. These mathematical expressions will be used to characterise the

energy consumption of machining operations in the following chapters.
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Two measurement systems were set up which can measure the cutting force and power
consumption for machining operations. Three experiments were conducted to determine

the coefficients and verify the energy prediction model.

e Firstly, primary power measurement experiment was conducted to determine the
coefficients in the energy prediction model.

e Secondly, cutting force measurement experiment was conducted. Up to 91.5% in
accuracy can be achieved based on the comparison between the experimental
measurement and theoretical calculation.

e Thirdly, extended power measurement experiment was conducted which showed
that up to 95% in overall accuracy of 27 measures can be achieved.

e Finally, comparison of experimental result and results from existing publication
and research contributions further showed that the proposed model is accurate

and can be generally implemented for different conditions.

According to the above results, it can be determined that the developed energy
prediction model is fairly accurate and can be implemented into the following research

activities.

In addition, new metrics for measuring energy efficiency of machining operation have
been proposed which provided the answers of the research question in the follow

aspects:

e A prediction model has been developed to measure the energy consumption of
machining operation.
e Energy efficiency metrics have been proposed to uncover the inefficiency of the

machining operation.

A case study was carried out to investigate the energy efficiency for machining a small
amount of a 22D milled feature. The results showed that the new proposed energy
efficiency metrics cannot only make the same conclusion with the existing energy
efficiency metrics. It can also identify the inefficiencies of machining operation which
are considerably large (89.5% for test No.3 and 89.3% for test No.14). This conclusion
uncovered a huge potential for improvement in energy savings in machining and leads

the research to the next stage.

98



In addition, although the scope of this thesis only covers 272 D milled features, the
principles and methods of energy consumption and energy efficiency modelling process

can be generically applied in other milled features and operations.

First of all, although the cutting force models for different operations are different
(different process parameters need to be considered), the basic principle for modelling
power (cutting force multiples cutting speed) and energy consumptions (power

multiples time) are same.

Secondly, although the machine tools and cutters applied for different operations are
different, the components of energy consumption of other milled features and
operations are the same as 2’2 D milled features. This conclusion can be generated from
other researchers publications such as Gutwoski et al. (2006), Diaz et al. (2012), Rajemi
et al. (2010), Mativenga et al. (2011), Kare and Li (2011) and Guo et al. (2012).

Finally, proposed theoretical minimal energy consumption is defined based on the
energy consumption for shearing a specific area of material which can be generally
applied for all machining operations and features as a theoretical limitation for

achieving a feature.
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CHAPTER 4: CHARACTERISATION OF ENERGY CONSUMPTION AND
ENERGY MINIMISATION BY SELECTING OPTIMAL PROCESS
PARAMETERS

The aim of this chapter is to answer the research questions that:

e What are the effects of energy as a new factor to characterise machining
operation in addition to conventional factor such as cost, time, cutting force,
surface roughness, tool life and power?

¢ What method can be used to systematically optimise energy consumption?

e What is the reasoning behind algorithms for solving the energy-minimising

machining problem?

The characterisations of machining operation with the consideration of conventional
criteria have been done by other researchers (Enparatza, 1991, Wan et al., 2010).
Energy consumption as an additional criterion is firstly characterised by using graphical
multivariate data analysis in this chapter. Then, based on the characterisation of energy
consumption, a direct search optimisation method is used as a numerical
experimentation rig to investigate the reasoning behind the results obtained in applying
Taguchi method, Genetic Algorithm (GA) and Ant colony optimisation (ACO). Finally,
a constrained single-objective optimisation procedure is conducted based on energy

considerations.
4.1 Characterisation of Energy Consumption in Machining Operation

According to the review of literature, although some degrees of characterisation of
machining optimisation problems have been introduced, the nature of the optimisation
problem when energy is considered as an additional factor still needs comprehensive
investigations. In this section, the characterisation of the energy consumption and other
conventional criteria for end milling operation will be introduced by using graphical

multivariate data analysis tools.
4.1.1 Design of Numerical Experiment

The data for analysing the characteristics for end milling operation are collected by
conducting numerical experiment. Four process parameters depth of cut, width of cut,
spindle speed and feed rate are considered as independent variables. The data of energy

consumption and other conventional criteria (e.g. cost, time, power, cutting force, tool

100



life and surface roughness) will be generated by using the validated machining science
equations from Chapter 2 and Chapter 3. The design of numerical experiment is shown

in Table 4.1.

Table 4.1: DOE for numerical experiment

Process Parameter Value Range
Depth of cut ap (mm) 1-5 mm

Width of cut ae (mm) 1-10 mm

Spindle Speed n (rpm) 500-4000 rpm
Feed rate fz (mm/z) 0.01-0.1 mm/tooth

Cutting Tool: 3 flutes carbide flat end mill

Workpiece material: Aluminium 7075-T6

4.1.2 Characterisation of Energy Consumption for End Milling Operation

A plot matrix is used to show the energy consumption for the end milling operation with
respect to four machining process parameters (see Figure 4.1, the clear presentation of
each plot are shown in Appendix V). All four process parameters changed
monotonically. The energy consumption of machining operation is characterised by
using numerical experiments based on validated prediction model. The independent
variables in the expanded figure (ap =Imm, ae=5mm) are feed rate per tooth and spindle
speed. The black arrow in the expanded figure points out that with the decrease of
spindle speed, the energy consumption curve shifts up (more energy consumed). The
result showed that the energy consumption decreases monotonically with the increase of

spindle speed and feed rate.

Based on the observation of this characteristic, it can be found that the energy
consumptions for end milling specific volume material also decreases constantly with
the increase of depth of cut and width of cut. The green arrows point out the direction of
energy reduction. It means that the energy consumption decreases monotonically with
the increase of process parameters in terms of depth of cut, width of cut, feed rate and
spindle speed parameters. It can be concluded that using large machining parameters
(e.g. faster spindle speed, larger feed rate and lager cutting volume) within the practical
limitations of machining process (e.g. maximal spindle speed, maximal feed rate and

diameter of cutting tools) consumes less energy than using small machining parameters.
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For example, up to 70% the specific energy consumption can be reduced (17.17kJ/cc to
5.08kJ/cc) when increasing depth of cut from 3mm to 5Smm, width of cut from 5mm to

10mm, feed rate from 0.05mm to 0.1mm and spindle speed from 1,000rpm to 4,000rpm.

%10
25 T T T T
=500 ap=lmm
ae=5min
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2L z=3mm i
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Energy K.

Spindle speed decreasing

0 A

1 1 1 1
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Feed mmitooth

Energy Consumption Decreasing
10 S :

Figure 4.1 Plot Matrix of Energy Consumption based on Process Parameters
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Concluded characteristics of Specific Energy Consumption (SEC, kJ/cc) for end milling

operation are shown in Figure 4.2.
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Figure 4.2 Characterisation of Energy Consumption for End Milling Operation

Another observation from Figures 4.1 and 4.2 is that the energy consumption curves are
getting flat. It means energy improvement efficiency becomes smaller with continuing
increase of process parameters. One of reasons for this observation is that the increase
of process parameters can reduce the energy consumption by reducing cutting force and
machining time, but it will also increase the power consumption. Another reason is that
with the increase of process parameters, tool life will decrease which cause the extra
energy consumptions. The results achieved in this section are based on common
materials (such as Aluminium and Steel) and conventional machine tools. No turning
point was found on the energy plots. However, as mentioned by Professor Wertheim,
difficult-to-machine materials may have turning point which is caused by frequent tool
change. When applying large process parameters, the minimisation of energy
consumption for machining operation will sacrifice the tool life. According to Equations
3.18 and 3.19, the turning point will occur if the energy consumption for tool change is

more than the energy consumption for machining operation.
4.1.3 Characterisation of Conventional Criteria for End Milling Operation

Repeating the numerical experiment procedure in section 4.1.2 for other criteria, the

characteristics of these criteria (cost, time, surface roughness, cutting force, power, and
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tool life) can be also displayed as a plot matrix in Figure 4.3. The arrows in the figure

show the reducing directions of each criterion as process parameters increase.
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Figure 4.3 can be summarised and sorted with the independent variables in Figure 4.4.
Each single plot in Figure 4.4 shows how the criteria changed with the increase of the
corresponding independent variable. The values of X axis are independent variables
with constant index. The range of each independent variable is based on the design of
experiment in Table 4.1. The values of Y axis are ratios between the all generate results
and the first result. So the values of Y axis are all between 0 and 1. For each figure, only
one independent variable is selected as the corresponding independent variable and the

other parameters are set as constant values.
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Cut, Width of Cut, Spindle Speed and Feed Rate per Tooth
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Figure 4.4 can clearly identify the characteristics of all the criteria of end milling
operation. The same as energy, the other conventional criteria also monotonically
changes with the increase of process parameters. The comparison between energy
consumption and other criteria showed that energy was non-conflicting with the cost
and time for all four independent variables. It was conflicting with cutting force for
depth of cut and width of cut, surface roughness for the width of cut and feed rate per
tooth, tool life for spindle speed and feed rate per tooth, and power for all four

independent variables.

The interacting relationships of these criteria are summarised in Table 4.2. “+” means
the machining performance will be improved with the increase of selected process

¢ 9

parameters. means the machining performance will be decreased with the increase
of selected process parameters. "N/A" in the table means the mathematical models

adopted in the analysis are not sensitive with the corresponding independent variable.

Table 4.2 Characterisation of End Milling Operation with the Increase of

Process Parameters

Energy Cost Time Cutting Surface Tool Power
Force | Roughness Life
ap + + + - N/A N/A -
ac + + + - - N/A -
n + + + - - - -
fz + + + - - - -

4.1.4 Classification of the Optimisation Objectives based on the Characterisation

According to interaction of criteria (dependent variable) and the changing trend in Table
4.2, the dependent variables can be classified into three groups shown in Table 4.3 as

below.

Table 4.3 Three Groups Objectives of Machining Optimisation

Group A Group B Group C

The objective will be | The objective will be | The value of the objective
deteriorated ~ with  the | improved with the | will be improved with the
increase in independent | increase in independent | increase in some independent

variables. variables. variables but be deteriorated
with the others.
Power, Tool Life Energy, Cost, Time Cutting Force

Surface Roughness
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Group A has two objectives: power and tool life. The objectives in this group will be

deteriorated with the increase in process parameters.

Group B has three objectives: energy, cost and time. The objectives in this group will be

improved with the increase in process parameters.

Group C has two objectives: cutting force and surface roughness. The objectives in this
group will be improved with the increase in some process parameters (e.g. width of cut),
but will be deteriorated with the increase of in other independent variables (e.g. spindle

speed).

This finding has important influences for the following research about machining

optimisation because based on this classification and the interaction of each objective:

e When only one objective is considered, the remaining criteria will be the
constraints to refine the search space. The optimal points will be located on the
curves of constraints (boundary of refined search space).

e When multiple objectives are considered, it is easy to classify them in two
categories: conflicting and non-conflicting category, and select the suitable

techniques to solve the problem.
The specific research for this conclusion will be reported in the following chapters.
4.1.4 Analysis of Constraints

Figure 4.5 shows a contour plot of specific energy consumption with the constraint of

cutting force (), cutting speed (Ve, m/min) and surface roughness (Ra, um).

The coloured arrows in the figure show the directions of reduction of each constraint.
From the figure, it is easy to identify that if the constraint of cutting speed is no less
than 85 m/min, the constraint of surface roughness will not affect the final optimal
result of specific energy consumption. In addition, if the constraint of cutting force is no

more than 500N, the upper boundary constraint of spindle speed will be overlapped.

This finding can prove Tandon et al. (2002)'s conclusion that different constraints may
not be all active at the same time, and some constraints can be redundant and neglected
in some situation. Compared to surface roughness and power, cutting speed and cutting
force were the dominant constraints when cutting speed is no more than 85m/min and

cutting force is no more than S00N. During rough milling operations, cutting speed and
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cutting force will be the active constraint. While during finish milling operations,

surface roughness will be the active constraint. The behaviour constraints, such as

power consumption, will never be reached. So these constraints are redundant and can

be neglected in this situation.
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Figure 4.5 Contour Plot of Constraints for End Milling Operation with the

Constraints of Cutting Force, Cutting Speed and Surface Roughness

4.1.5 Summary of Characterisation of Machining Operation with Energy

Considerations

In this section, the characterisation of machining operation with energy considerations

has been investigated by using graphical multivariate data analysis techniques. The

results showed that energy consumption decreases monotonically with the increase of

process parameters. It is non-conflicting with the cost and time, but conflicting with

surface roughness, power requirement, tool life and cutting force. Based on this finding,

the criteria of machining optimisation can be divided into two major categories:

conflicting and non-conflicting.
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4.2 Explanatory Models for Optimisation Results

The aim of this section is to develop a numerical experimentation test rig based on
direct search methods to discover the reasoning behind other typical machining
optimisation methods. The reason for choosing direct search method is that it is similar
to full factorial design method/Enumeration method within the finite number solutions.
The direct search method applied in this research is a grid search method which creates
grids based on numbers and levels of independent variables which can represent all the
possible solutions. In addition, by graphically presenting the results it is easy to
visualise where the optimal point is. In this case, the users can easily understand and
accept the optimal result obtained. The developed experimentation rig will be used to
explain the reasoning obtained in applying Taguchi methods, Genetic algorithm (GA)
and Ant colony algorithm (ACO).

4.2.1 Design of Numerical Experimentation Rig based on Direct Search Method

Table 4.4 shows a 3-level four variables DOE plan. 81 grids (3*) have been created to
represent 81 combinations of process parameters in the search space. The
experimentation rig is graphically displayed in Figure 4.6. The label of horizontal axis
was removed since it represents the order of samples. The original data after initial
multivariate data analysis showed the energy consumption is changing with some
pattern which can be displayed as dash squared areas to represent the original searching
space of three levels four variables full factor design. Each vertical line of small dash
square contains three grids which are corresponding to every three points (increase of
spindle speed) in the original energy plot curve. Each horizontal line of small dash line
represents the samples with the increase of feed per tooth. Each small dash squared area
contains nine grids which are corresponding to every nine points. Nine dash squares can

represent the original search space based on the DOE plan.

Table 4.4: 3-Level Design of Experiment

Process Parameter Level 1 Level 2 Level 3
Depth of cut ap (mm) 1 3 5
Width of cut ae (mm) 5 7.5 10
Spindle Speed n (rpm) 500 2250 4000
Feed rate f, (mm/z) 0.01 0.055 0.1
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Specific Energy Consumption (KIfcC)

Figure 4.6 Characteristics of Specific Energy Consumption

The highlighted green area in Figure 4.7 shows the data after being sorted with the
increase of material removal rate per tooth (MRRz). The green band further represents
the characteristics of energy consumption discussed in the previous section. The band is
getting narrow which means the range of improvement is getting smaller with the
increase of MRRz. The red curve shows the samples after being organised with the

continuing decrease of specific energy consumption.
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Figure 4.7 Characterisation of Specific Energy Consumption with the Increase of

Specific Energy Consumption KJ/CC

Material Removal Rate per Tooth (MMRz)

Figure 4.8 shows the contour plot matrix which consists of 9 contour plots to represent
the designed experimentation rig (4 dimensional search space). Each contour plot is
corresponding to a dash block in Figure 4.7. It can also clearly show the characteristics

of energy consumption described in Figure 4.7. In addition, 81 points can be found in
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Figure 4.6 and the value of each point can also be also evaluated. This contour plot will
be used as the examination rig to investigate the other machining optimisation methods

in the following sections.
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Figure 4.8 Contour Plot Matrix for Experimentation Rig

4.2.2 Investigation of Taguchi Method

Based on the DOE plan in Table 4.4, specific energy consumption of eight Taguchi
DOE samples can be shown in Table 4.5 and graphically displayed in the developed

contour plot matrix of experimentation rig in Figure 4.9.

Table 4.5: DOE of Taguchi L9 3-level 4 factors

Number Depth of cut |  Width of Spindle Feed per Specific
(mm) cut speed tooth Energy
(mm) (rpm) (mm/tooth) | Consumption

(kJd/cc)

1 1 5 500 0.01 336.802

2 1 5 4000 0.1 11.4782

3 1 10 4000 0.01 40.3094

4 1 10 500 0.1 21.4519
5 5 5 4000 0.01 19.244
6 5 5 500 0.1 11.6501
7 5 10 500 0.01 39.0163
8 5 10 4000 0.1 5.084
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S/N ratios of energy consumption can be calculated by using Equation 2.24 in Chapter 2.
Based on these values, the S/N ratio plot can be created in Figure 4.10 to show the
characteristics of process parameters. The first observation obtained from the S/N plot
from Figure 4.10 is that depth of cut, width of cut, spindle speed and feed rate all have
significant influence on specific energy consumption. In addition, in using the Taguchi
method to optimise energy, high level process parameters can achieve better result than

the lower level process parameters.
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Figure 4.9 Graphical Display of Eight Taguchi Samples in Experimentation Rig
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Figure 4.11 graphically shows how the optimal result was obtained by using Taguchi

method. For each design variable, the samples can be classified according to the design

levels (shown as the areas framed by dashed lines). The comparison between different

levels is actually comparing the average value and standard deviation of different level,

then the optimal level will be suggested. The implementation of Taguchi method

actually shows the directions of energy minimisation for each process parameter.

To further prove and generalise the results achieved above, a further investigation was

conducted with the consideration of increasing levels. An L9 DOE plan has been

presented according to Taguchi orthogonal experimental design. Nine out of 81 samples

were selected to carry out the analysis. The specific energy consumption values of nine

samples are shown in Table 4.6.

Table 4.6: Specific Energy Consumption for Taguchi L9 3 Levels 4 Factors

Number Depth of cut | Width of cut Spindle Feed per Specific
(mm) (mm) speed tooth Energy
(rpm) (mm/tooth) | Consumption
1 1 5 500 0.01 336.802
2 1 7.5 2250 0.055 16.7368
3 1 10 4000 0.1 7.8894
4 3 5 2250 0.1 7.8868
5 3 7.5 4000 0.01 20.7475
6 3 10 500 0.055 15.1712
7 5 5 4000 0.055 7.1512
8 5 7.5 500 0.1 9.3921
9 5 10 2250 0.01 15.1919
0
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Figure 4.12 S/N Ratio Plots of Process Parameters
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The S/N ratios of energy consumption are shown in Figure 4.12 to show the
characteristics of the variables for three levels case. From the figure, it can be found
that the characterisation of energy consumption for three levels case is the same as two
levels case. The additional level does not affect the optimal result. The result of three
levels case further proved that the energy consumption when high level values are
selected is less than when lower level values are selected. Meanwhile, the additional
level can also show the characteristic of energy consumption for the end milling
operation identified in section 4.1. The energy improvement efficiency becomes smaller
with continued increase in process parameters. Another finding of Taguchi method with
respect to the increasing degree of the variables is that for improving the energy
consumption it is more efficient to increase the process parameters in the order feed rate,

depth of cut, spindle speed and lastly width.

However, as pointed out in the literature, this implementation of the Taguchi method for
optimisation is only a first level approximation as it could miss the real optimal value if
the optimal point is outside the design search space. For the situations that the selected
DOE does not cover the whole search space, the use of Taguchi method will require an
iterative approach, in which the experiment is repeated in the vicinity of optimum

obtained in a previous step.

4.2.3 Investigation of Genetic Algorithm

The comparison of the basic concepts between GA and machining operation is shown in
Table 4.7. Each variable will be considered as a “Chromosome” and the value of the
variable will play a role as “Gene”. Energy consumption is the fitness value to evaluate
the individuals. Process parameters will be randomly selected within the feasible range.
The crossover and mutation operators are used to generate new individuals. The
function of crossover is to rapidly explore a search space within the initial data range
which is the same as changing the combination of process parameters. The function of
mutation is to provide a small amount of random search which can expand the search
space by extending data range. It is the same as to replace a process parameter with a
new value. The function of selection is to compare the results of different combination
of process parameters and keep a record of the best combination for further operation.
The optimal combination of process parameters can be determined by repeating above

operations.
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Table 4.7: Concept Comparison between GA and Machining

GA Machining
Population Feasible sets of machining process parameters
Individual A set of machining process parameters
Chromosome Combination of parameters
Gene Parameter
Fitness Optimum value of objective
Selection Record improved results
Reproduction
Crossover Change the combination of machining
Mutation parameters
Evolution Generate new optimal results

The following steps presented an example of implementing GA to optimise specific
energy consumption. The optimal result can be determined after repeating the algorithm

4 times. The specific optimal procedure can be shown as below:

Step 1: Random selection of starting points (initial population/process parameters).
The first step for implementing GA is to select the initial population set. It is difficult to
find a completely random selection of starting process parameters in practical
machining operation. Even for a novice practitioner who is working on new machining
operations (e.g. new material, tool and machine tool) where the best process parameters
are not known yet, the selection of the process parameters would be guided by
suggestions from machining handbook, tool catalogue or the experience of senior
practitioners. A possible explanation of this random selection cannot also be justified by
a case of an intelligent machine tool designed to adaptively determine the cutting

parameters since database values would usually provide initial values.

The example here shows that the initial population set is located at the beginning of
search space. The population size is six. The values of process parameter and objective
are shown in Table 4.8a. Current best three optimal results are highlighted and selected

to carry out the following steps.

116




Table 4.8a: Individuals of Initial Population

Number Depth of Width of Spindle Feed per Specific

cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption

(kd/cc)

1 1 5 500 0.01 336.8022

2 1 5 500 0.055 65.3628
3 1 5 500 0.1 38.0781

4 1 5 2250 0.01 104.8482

5 1 5 2250 0.055 22.8128

6 1 5 4000 0.01 42.9969

Step 2: Generate new individuals by conducting crossover and mutation operation.
Based on the initial population, the first generation offspring can be generated by
conducting crossover and mutation operations (in Table 4.8b). The mutation factor is
value of depth of cut (level 2 replaced level 1). The current best three optimal results are
also highlighted and selected to carry out the following steps. In addition, it can be
found that the values of spindle speed and feed per tooth at level 1 are eliminated. This
process reflects the principle of evolutionary function for implementing GA is "survival
of the fittest". The value highlighted in red means the new generated result is worse than

the previous generation.

Table 4.8b: Individuals of First Generation

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
Crossover
7 1 5 4000 0.055 17.4015
8 1 5 2250 0.1 14.5063
9 1 5 4000 0.1 11.4782
Mutation
10 3 5 2250 0.055 10.7657
11 3 5 500 0.1 16.0496
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Step 3: Generate second generation offspring, and select and keep the best
individual.

The second generation offspring can be generated by repeating the crossover and
mutation operation (in Table 4.8c). The mutation factor is width of cut (level 2 replaced
levell). After mutation, it can be found that the new generation offspring may not be
better than the last generation (as highlighted in red). To keep the new mutation factor,
result No.18 was selected to replace No.15 to carry out the further operation.

Table 4.8c: Individuals of Second Generation

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
Crossover
13 3 5 2250 0.1 7.8868
14 3 5 4000 0.1 6.7837
15 3 5 4000 0.055 8.8558
Mutation
w6 | v | 75 | 20 01 | 11IS03
17 1 7.5 4000 0.1 9.0899
18 3 7.5 2250 0.055 8.7112

Step 4: Generate following generation offspring

The third and fourth generation offspring can be generated by repeating crossover,
mutation and selection operation. For the third generation, the mutation factor is depth
of cut (level 3 replaced level 2). The highlighted green results in Table 4.8d are selected

to carry out the following operation. The highlighted red results are worse than the last

generation.
Table 4.8d: Individuals of Third Generation
Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
Crossover
19 3 7.5 4000 0.1 5.9647
21 3 7.5 2250 0.1 6.7424
Mutation
22 5 5 4000 0.1 5.8488
23 5 5 2250 0.1 6.5674
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The fourth generation offspring can be generated by repeating the crossover and
mutation operation (in Table 4.8¢). The mutation factor is width of cut (level 3 replaced
level2). The optimal result can be determined which is highlighted. The determined
optimal result is the same as the results obtained by using enumeration method and
Taguchi method which shows that the energy consumption can be minimised by
selecting high level process parameters. In addition, 29 out of 81 samples in total were

involved during the optimisation procedure.

Table 4.8e: Individuals of Fourth Generation

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
Crossover
25 5 7.5 4000 0.1 5.3436
Mutation
27 3 10 4000 0.1 5.5488
28 5 10 2250 0.1 5.5067
29 5 10 4000 0.1 5.0845

Step S: Determine the optimal result.

The optimal result can be determined after repeating the algorithm four times
(graphically shown in Figure 4.13). The green dashed arrow shows the overall search
path of implementing GA. However, the results obtained from crossover and mutation
operations are not always positive. Defective offspring which are worse than the
original generation may occur during the optimisation process. However, the repeated
mutation operation can help jump out of previous local search space and eventually find

the real optimal specific energy consumption.
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The Final Optimal Result

Figure 4.13 Graphical Display of GA in 3-level Experimentation Rig (Manually
Generated)

The result above shows a progress for optimising machining process parameters by
using GA. However, in practical implementation, the optimisation process is more
complex in terms of uncertainty and randomisation. Usually the optimal results will be
affected by other factors, such as the size of samples and the position of initial

population.

Figure 4.14 shows a typical GA implementation by using binary coding method with
MATLAB. Additional level was considered to fit the programming requirement. 256
samples were created to represent the search space. The initial population which
contains eight individuals was selected at the same position (left corner) as the ideal
example shown in Figure 4.13. The green arrow points out how the optimal result was
achieved after three generations which is similar to the optimal path shown in Figure

4.13.
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Figure 4.14 Graphical Display of GA in 4-levels Experimentation Rig (Generated
by Using Matlab, Initial Population Located at Left Conner of Search Space,
Optimal Results Achieved at 3rd Generation)

However, the optimal path of GA is not always positive. Some redundant or negative
moves may randomly occur. Although the same optimal results can be achieved by
using same settings of process parameters, the optimal path may not be same every time.
Figure 4.15 shows a result of repeating the same settings of Figure 4.14. The result
shows that the optimal result was achieved after twelve generations. The green arrow
points out the overall optimal path after twelve generations which is similar to the
optimal path shown in Figure 4.13 and 4.14. However, the black arrow points out the
actual optimal path generation by generation which contains many random changes and

is different from the optimal path in Figure 4.14.
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Figure 4.15 Graphical Display of GA in 4-levels Experimentation Rig (Generated
by Using Matlab, Initial Population Located at Left Conner of Search Space,
Optimal Results Achieved at 12th Generation)

Figure 4.16 shows an example when initial population was selected at different position
of search space. The green and black arrows in the figure point out the optimal path that
the optimal result was achieved after three generations. Both paths can show the similar
characters as the example when the initial population is located at left conner of search
space. The result in Figure 4.16 can also identify that even the position of initial
population is close to the final optimal point, it cannot guarantee to get the optimal
result faster than the further position. In addition, the optimal results of different

positions will be same.
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Figure 4.16 Graphical Display of GA in 4-levels Experimentation Rig (Generated
by Using Matlab, Initial Population Located at Middle of Search Space, Optimal
Results Achieved at 3rd Generation)

Figure 4.17 shows the optimal results of all three examples above and three pure
random cases. The comparison result identified that the optimal results of presented
examples with different settings are all same, but the optimisation paths are different.
This finding can further prove that different settings, such as postition of initial

population, will not affect the optimal result but only affect the computation time.

In summary, GA can effectively solve machining optimisation problem according to
examples shown above. However, compared to systematic direct search method, GA
may not be always effective because of its randomisation. For the example presented of
four levels four parameters case, 256 samples were calculated and compared. When
using GA, eight individuals were calculated and compared for each generation. After 33
generations (8 X 33 = 264), GA will require more calculations and consume more
computing time than systematic direct search method.
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Figure 4.17 Comparison of Optimisation Paths and Results of GA by Running
Matlab Program Multiple Times

4.2.4 Investigation of Ant Colony Optimisation (ACO) Method
The specific optimal procedure can be shown as following steps:

Step 1: Determine the Layers and nodes

The first step for implementing ACO is to determine the layers and nodes. According to
the characterisation of machining, each process parameter represents a design variable
and the number of levels represents the discrete values for each design variable (see
Figure 4.18). Four layers have been created based on the design of experiment rig and

each layer has three nodes.

Step 2: Determine the optimal node for Layer 1 (spindle speed)
The process parameters and specific energy consumptions of Layer 1 (spindle speed)
are shown in Table 4.9a. The result shows that when other process parameters are same,
large spindle speed will lead to the optimal energy consumption. So the third level
(n=4000rpm) is the optimal value for spindle speed and the corresponding node will be
the start node for Layer 2.
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Table 4.9a: Layer 1 Spindle Speed

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
1.1 1 5 500 0.01 336.8022
1.2 1 5 2250 0.01 104.8482
1.3 1 5 4000 0.01 75.7220

Step 3: Determine the optimal node for Layer 2 (feed per tooth)

The process for Layer 2 is the same as Layer 1. The process parameters and specific
energy consumptions of Layer 2 (feed per tooth) are shown in Table 4.9b. The result
shows that when other process parameters are same, large feed rate will lead to the
optimal energy consumption. So the third level (n=4000rpm, fz=0.1mm/tooth) is the
optimal value for the feed rate and the corresponding node will be the start node for

Layer 3.

In addition, before the optimisation started at Layer 2, the spindle speed has already
been optimised at Layer 1. So, the result achieved at Layer 2 is the optimal result for

both spindle speed and feed rate.

Table 4.9b: Layer 2 Feed per Tooth

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy

(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
2.1 (1.3) 1 5 4000 0.01 75.7220
2.2 1 5 4000 0.055 17.4015
2.3 1 5 4000 0.1 11.4782

Step 4: Determine the optimal node for Layer 3 (width of cut)

The same as step 2 and step 3, the process parameters and specific energy consumptions
of Layer 3 (width of cut) are shown in Table 4.9c. The result shows that large width of
cut will lead to the optimal energy consumption. So the third level (n=4000rpm,
fz=0.1mm/tooth, ae=10mm) is the optimal value for spindle speed, feed rate, and width

of cut, and the corresponding node will be the start node for Layer 4.
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Table 4.9c: Layer 3 Width of Cut

Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy

(mm) (mm) (rpm) (mm/tooth) | Consumption
(kd/cc)
3.12.3) 1 5 4000 0.1 11.4782
3.2 1 7.5 4000 0.1 9.0899
33 1 10 4000 0.1 7.8894

Step 5: Determine the optimal node for Layer 4 (depth of cut, final optimal result)

Finally, the process parameters and specific energy consumptions of Layer 4 (depth of
cut) are shown in Table 4.9d. The result shows that large depth of cut will lead to the
optimal energy consumption. So the third level (n=4000rpm, fz=0.lmm/tooth,

ae=10mm, ap=5mm) is the optimal value for spindle speed, feed rate, width of cut and

depth of cut.
Table 4.9d: Layer 4 Depth of Cut
Number Depth of Width of Spindle Feed per Specific
cut cut speed tooth Energy
(mm) (mm) (rpm) (mm/tooth) | Consumption

(kd/cc)

4.1 3.3) 1 10 4000 0.1 7.8894
4.2 3 10 4000 0.1 5.5488

4.3 5 10 4000 0.1 5.0848

The optimal result can be determined after five steps and graphically shown in Figure
4.18. The green dashed arrow shows the search path of implementing ACO which can
also clearly show an optimisation path. The optimal result achieved is the same as the
results achieved by using other optimisation methods, such as Taguchi method, GA and
direct search method (grid search). The optimal result can be gradually achieved layer

by layer at the highest value/ level of each designed process parameter.
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Figure 4.18 Graphical Displays of ACO in Experimentation Rig
4.2.5 Summary of Explanatory Models for Machining Optimisation Methods

In this section, an experimentation rig was built by using direct search method to
explain how optimal results are obtained by using Taguchi method, GA and ACO. The
basic principles of Taguchi method, GA and ACO have been demonstrated by
graphically displaying the procedures of how these optimisation methods operate to
achieve the optimal results and explaining the reason why they are faster than the
traditional method. The uncovered reasons can provide explicit understanding in
machining terms which can also provide confidence to practitioners to trust and

implement optimisation results.

The comparison results of an unconstrained single-objective optimisation problem
showed that the optimal results obtained by using different methods are same and all of
the methods can identify optimising directions. However, the result obtained by using
direct search method can easy point out the improvement directions and is much clearer

and more convincible.
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4.3 Constrained Optimisation Procedure based on Direct Search Method

Based on characterisation of energy consumption machining operation in section 4.1
and unconstrained optimisation procedure in section 4.2, a constrained optimisation
procedure has been conducted by using direct search method in this section. 3D contour
plots of specific energy consumption (SEC) are shown in Figure 4.19 with the respect of
process parameters (depth of cut, width of cut, spindle speed and feed rate per tooth).
3D contour plots of specific energy consumption can clearly show the characteristic of
energy consumption. Vertically changed coloured bands represent the distribution of

specific energy consumption.
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Figure 4.19 3D Contour Plot of Specific Energy Consumption Corresponds to

Design of Experimentation Rig
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According to the characterisation of machining optimisation, the optimal result will be
located on the boundary of the search space. So the case when depth and width of cut
reach the maximal value of the range is shown to demonstrate the optimisation

procedure.
4.3.1 Determination of Optimal Specific Energy Consumption

Figure 4.20 shows search space with the constraints of cutting force and surface
roughness factor displayed. The green area represents the feasible region of search
space when cutting force is no more than 400N and surface roughness is smaller than
0.05mm. So the optimal cutting condition based on energy considerations is the optimal
points highlighted in the figure. The comparison result between cutting tool
manufacturer's recommendation and optimal result in Table 4.10 shows that up to 75%
of improvements in energy consumption (20.695kJ/cc to 5.126kJ/cc), cost (0.142£/cc to
0.036£/cc) and time consumption (50.912sec/cc to 12.778sec/cc) can be achieved by
using optimal process parameters under the constraints of spindle speed (4,000 rpm),

cutting force (400N) and surface roughness (0.05mm).
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Figure 4.20 Constrained Search Space with Constraints and Optimal Result
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From the figure, it can also be found that the optimal result achieved is actually only
affected by cutting force constraints. It means cutting force is the dominant constraint
compared to surface roughness in this case study (cutting force 400N, surface roughness
0.05mm). It further proves the conclusion in section 4.1.4 that some constraints can be
redundant and neglected in some situation. However, for some particular situations,

dominant constraints may be different.

According to the results achieved, the problem of machining optimisation is not a
complex problem as reported in the literature (Tolouei-Rad and Bidhendi, 1997). The
demonstration above shows that for solving two- variable single-objective optimisation
problem, optimal result can be achieved quickly by using MATLAB on a common
computer (Sony, Processor - 17 2.00GHz, RAM - 8GB, Hard Drive - 750GB, Operating

System - Win 7 Home Premium).

Although it may be argued that the problem will become more complex when more
factors are considered (e.g. objectives, constraints, and numbers and levels of
independent variable), the extra dimensionality will not change the characteristics of
machining optimisation problems. The only issue of complexity of machining
optimisation caused by adding levels and accuracy is how the achieved result can be

effectively presented and how decision makers can handle large amount of data.

Table 4.10: Comparison of Recommendation and Optimal Process

Parameters
Variables Cutting Tool Optimal Results Improvement
Manufacturer's
Recommendation
ap (mm) 1 5
ae (mm) 5 10
n (rpm) 1500 4000
fz (mm/tooth) 0.067 0.06
Energy (kl/cc) 20.695 5.162 75.06%
Cost (£/cc) 0.142 0.036 74.64%
Time (sec/cc) 50.912 12.778 74.90%
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4.3.2 Improvement of Energy Efficiency based on OptimalProcess Parameters

Based on the new energy efficiency metrics proposed in Chapter 3, the energy
efficiency of cutting tool manufacturer's recommendation and optimal results can be
calculated and shown in Table 4.11, Figures 4.21a and 4.21b. The energy efficiency for
implementing recommended values and optimal process parameters are presented in

Table 4.11 based on the process parameters in Table 4.10.

Table 4.11: Energy Consumption and Energy Efficiency for Cutting Tool

Manufacturer's Recommendation and Optimal Process Parameters

TME | TE DE AE IE ER ERn ER,
&) | (k) (kJ) (kJ) (kJ) | (TE/DE) | (TME/TE) | (TME/DE)

x100% | x100% x100%

Recommended | 5.238 | 38.920 | 558.771 | 519.852 | 33.682 | 6.965% | 13.459% | 0.937%
Optimum | 5.238 | 31.379 | 139.379 | 108 | 26.141 | 22.513% | 16.693% | 3.758%

From the figures, it can be found that the energy efficiency of existing definition for
implementing optimal process parameters is much better than the result of using the
parameters from cutting tool manufacturer's recommendation (22.513% to 6.965%,
improvement over 220%). The same conclusion can be determined by comparing the
proposed energy efficiency for machining process which also shows that a significant
improvement can be achieved (3.758% for optimal process parameters to 0.937% for

recommendation).

The additional benefit for implementing optimal result is that it can further reduce the
inefficiency of the machining operation. By comparing the energy efficiency of
machining operation (theoretical minimal energy consumption/energy consumption for
machining operation), the energy efficiencies for implementing optimal result and
cutting tool manufacturer's recommendation are 16.693% and 13.459%. Up to 22%

reduction of inefficient energy consumption (33.682kJ to 26.141kJ) can be achieved.

According to the analysis of energy efficiency, it can be concluded that the
implementation of optimal process parameters cannot only reduce the energy
consumption, but also improve the energy efficiency for manufacturing process and
machining operation. The improvement of the energy consumption and energy
efficiency of the machining process (ER and ERp) are significant. However, the

improvement of the energy efficiency for the machining operation is comparatively
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small. It means though the optimisation of process parameters can improve the energy
use of the existing process, the reduction of inefficient energy consumption of operation
is insignificant because of limitation of current machining strategy. It is necessary to
develop new process and technologies to further reduce the inefficient energy

consumption of machining operation to improve the energy efficiency.
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Figure 4.21b Energy Efficiency for Optimal Process Parameters

4.4 Summary of the Chapter

In this chapter, firstly, the characterisation of machining operation with energy
considerations has been investigated by using graphical multivariate data analysis
techniques. The results showed that energy consumption decreases monotonically with

the increase of process parameters.
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Then, a systematic method was proposed for uncovering the reasons behind results
obtained when energy is considered in machining optimisation. An experimentation rig
was built by using Direct Search method to explain how optimal results are obtained by
using Taguchi method, GA and ACO. The uncovered reasons can provide explicit
understanding in machining terms. It can also provide confidence to practitioners to
trust and implement optimisation results. The comparison results of an unconstrained
single-objective optimisation problem showed that the optimal results obtained by using
different methods are same and all of the methods can identify optimising directions.
However, the result by using direct search method can easy point out the improvement

directions and is much clearer and more convincible.

The optimisation result with the constraints of spindle speed (4,000 rpm), cutting force
(400N) and surface roughness (0.05mm) for milling Aluminium 7075-T6 (by using
Haas TM 1CE Vertical milling machine, maximum spindle speed 4,000rpm and 10mm
3 flutes carbide end mill) showed that up to 75% of improvement of energy, cost and
time can be achieved by using optimal process parameters compared to cutting tool
manufacturer's recommendation. The implementation of optimal process parameters for
the case study shows that over 220% of improvement of energy efficiency (6.965% to
22.513%) for the process, and up to 22% reduction in inefficient energy consumption

can be achieved for machining operation.

However, the improvement of the energy efficiency for the machining operation is
comparatively small. Reduction of inefficient energy consumption of operation is still
not signification because of limitation of current machining strategy. It is necessary to
develop new process and technologies to further reduce the inefficient energy

consumption to improve the energy efficiency.
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CHAPTER 5: MULTIPLE OBJECTIVES OPTIMISATION FOR
SUSTAINABLE MACHINING

Chapter 4 has introduced the nature of machining optimisation and the reasoning behind
the obtained optimal results in applying typical optimisation methods. The sustainable
machining process needs to consider multiple objectives to fulfil environmental and
economic requirements. The problem of solving multi-objective optimisation is that the
current implemented optimising tool (Pareto front) is inefficient and difficult to solve
machining optimisation problem when the optimisation objectives are more than two.
To address this problem, scenarios are introduced in this thesis as part of the
optimisation framework for machining optimisation. According to the relationships
between objectives, solution scenarios have been developed which contain the problems

that fit the descriptions of each scenario and the corresponding solutions.
5.1 Design of the Problem Scenarios

To accurately describe the problems of machining optimisation, the design of a problem
scenario will be introduced in this section. The concept of a problem scenario is
developed based on the characterisation of the machining operation. Each case
represents a combination of considered objectives. These scenarios can be considered as
the problem domain which allows decision makers to select the corresponding scenario

based on their requirements.

For n objectives, the total number of problem scenarios Ns can be identified by using

equation 5.1. The total number of cases is
Ns=Cl+Cr+C2+-Ct+--C1+ch=2" (5.1)

Where Ns is the number of case studies, n is the number of objectives, and i is the

number of objectives considered.

The example shown in this chapter is to investigate an end milling operation with the
consideration of the seven objectives: energy, cost, time, power, cutting force, tool life
and surface finish. By enumerating the combination of objectives, 128 scenarios in
sustainable machining optimisation can be generated and classified in three major
scenarios in Figure 5.1. The explanation of each scenario will be introduced in the

following section.
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Figure 5.1 Classification of Machining Optimisation Problem Scenarios

The optimisation in practice can be divided into three main scenarios which are zero-
objective scenario, single-objective scenario and general multi-objective scenario. The

design of each scenario are introduced in the following sections.
5.1.1 Zero-objective Scenario

The definition of a zero-objective scenario is that there is no fixed optimisation
objective within the problems in this scenario. Based on the decision makers'

understanding of the problem, there are two situations in this scenario:

e The first situation is that decision makers have no idea about how to improve
their machining process.

e The second situation is that instead of objectives, decision makers only have
some constraints, such as: reduce cost/time/energy by 20%, increase tool life by

10% or improve surface roughness by 30%.

So the main task for this scenario is to describe the problem of machining optimisation
(e.g. characteristics of optimisation objectives) and uncover the potential improvement
of the current machining process to decision makers. The total number of cases in zero-

objective scenario is:
Nyero = CT(l) =1 (5.2)

If the number of optimisation objectives is seven, there is only one (Cy = 1) scenario in
the zero-objective scenario. The solution of zero-objective scenario is to describe the

problem of machining optimisation and uncover the potential possibility of the current
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process. The result can be demonstrated by using a non-constrained contour plot to
show the states of optimal criteria. Figure 5.2 indicates the solution of a zero-objective
scenario with energy, cutting force and surface roughness considerations. It clearly
describes the optimisation problem and presents the characterisation of each criterion.
So the decision makers can continue to refine their requirements, determine the optimal
objectives and select the satisfactory machining plan according to the presented contour
plot. In addition, the plotted coloured arrows show the directions of how to minimise
the energy consumption. Figures 5.3a to 5.3c clearly shows how the search space is
reduced by (a) improving surface roughness by 50% (20um to 10 um), (b) reducing
cutting force by 30% (450N to 300N), and (c) reducing specific energy consumption by
30% (7.5kJ/cc to SklJ/cc). The red shadow area represents the original search space and

the green shadow area represents the search space after refined.
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Figure 5.2 Solution of zero-objective scenario
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5.1.2 Single-objective Scenario

The definition of a single-objective scenario is that only one objective function is
considered for an optimisation problem. It refers to the practical situation when decision
makers have a very clear objective to improve their process based on one specific
criterion. The main task in this scenario is to correctly define the constraints to reduce

the search space and locate the optimum value.
The total number of cases in a single-objective scenario is:
Nsingte = Ch=n (5.3)

If the number of optimisation objectives is seven, there are seven (C; = 7) cases in the
single-objective scenario. The result can be also demonstrated by a contour plot of the
optimal objective. A feasible search space can be indicated with the consideration of
constraints. Figure 5.4 indicates the solution of energy minimisation with constraints of
cutting force (< 400N ), surface roughness (< 0.05mm) and spindle speed (<
4000rpm). The green area represents the constrained feasible region of search space,

and the unique optimal result can be determined.
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Figure 5.4 Solution of single-objective scenario

The example of energy is specifically shown in section 4.3. The seven objectives are
energy, cost, cutting force, surface finishing, tool life, cost and power. A unique optimal
solution will be determined in this scenario. The optimal value will be located on the
boundary of the constraints. In addition, based on the characteristics of these objectives
with the changing of process parameters, they can be divided into three groups as shown

in Table 4.3.
5.1.3 Multi-objective Scenario

Generally, a multi-objective scenario consists of a scenario which involves more than
one objective function to be optimised simultaneously. According to the number of
objectives, a general multi-objective scenario can be further divided into two sub-

scenarios:

e Bi-objective scenario

e Special multi-objective scenario
The total number of cases in a multi-objective scenario is:

Nppuei = C2+ - CL+ - CP14+Cr=2"-n—-1 (5.4)
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21 (n—2)!

2

Np; = Gy (5.5)

Nonuiei = G+ Co 4 G + G (56)

The definition of a bi-objective scenario is that two objectives will be considered in
machining optimisation simultaneously. If the number of optimisation objectives is
seven, there are 21 (C? = 21) cases in a bi-objective scenario. The solutions of bi-

objective scenario can be represented as a single Pareto front.

The definition of a special multi-objective scenario is that more than two objectives will
be considered in machining optimisation simultaneously. There are 99 (C3 + C + C +
CS + C7 =99) cases in this sub-scenario. The solutions of a special multi-objective
scenario are usually complex and require multiple Pareto fronts. The more objectives
that need to be considered, the more complex the solution will be. The specific analysis

will be carried out in the following section.
5.2 Result Analysis for Multi-objective Scenario

Figure 5.5(a) to 5.5(f) show the Pareto fronts of energy consumption with cost, surface
roughness, tool life, cutting force, time and power requirement. From the Pareto fronts
presented, the optimal result for a bi-objective scenario can be classified into two
categories: non-conflicting and conflicting. Figure 5.6 shows a combined Pareto front of
all six objectives, the value of the X-axis represents specific energy consumption (SEC)

which is selected as a reference objective.

For the scenarios, such as energy and cost/time, the optimal solution will be a unique
optimal point (see in Figure 5.6 as a red point). These bi-objective cases with unique
optimal points indicate that that the objectives are non-conflicting. Similar findings
were also reported by Mativenga and Rajemi (2011) to optimise energy and cost for
turning operation. This conclusion can also be drawn from the characterisation of single
objective in Chapter 4. This means that the multi-objective analysis in these scenarios
can be converted to a single-objective optimisation problem and becomes the earlier
results obtained in single objective analysis. These scenarios can be put together as a
non-conflicting bi-objective category. The example of a non-conflicting bi-objective
category can be found in section 4.3 where the optimal energy consumption was

achieved along with the optimal cost and time.
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For the scenarios, such as energy to surface roughness, tool life, cutting force and power,

the optimal solutions will be a Pareto front which contains a set of feasible solutions

without additional preferences. These scenarios can be put together as a conflicting bi-

objective category. According to the plotted Pareto front, decision makers can evaluate

their current machining plans and make suitable adjustments based on their preferences.
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5.2.1 Optimal Solution for Special Multi-objective Scenario

Normally, a Pareto front is utilised to solve two conflicting objectives optimisation
problems. However, Pareto fronts are difficult to understand and inefficient when there
are more than two objectives being considered. For example, if five objectives are being
considered, there are ten (CZ = 10) Pareto fronts which should be plotted to show the
relationship between each pair of objectives. The analysis process will be very complex
and requires a lot of explanation, and the optimal solution is very difficult to be clearly

presented.

However, according to the characterisation of machining optimisation, the objectives
are increases or decreases constantly with the increase of process parameters. Every pair
of non-conflicting objectives can be considered as a single-objective problem, it can be
easily inferred that all the non-conflicting special multi-objective scenarios can be

converted to a single objective optimisation.
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Based on the above conclusion, the optimal solution for a special multi-objective
scenario can be simplified by carrying out an analysis and combining process with the

steps below:

e Characterise the optimising objectives. Identify the relationship between each
pair of objectives: Are they conflicting or not conflicting?

e (Combine the non-conflicting objectives. The multiple non-conflicting objectives
can be combined by using one representative objective (could be any one of
them).

e [Evaluate the remaining representative objectives. If only one objective remains,
then the problem can be classified in a non-conflicting category. Otherwise it
can be classified in a conflicting category. The classification and solutions for a
special multi-objective scenario are the same as for a bi-objective scenario. So

the multi-objective scenario can be generally classified into two categories.

Figure 5.7 shows the analysis process of a general multi-objective machining
optimisation. It is clear that the optimal result will be a unique optimal solution if all the
objectives are not conflicting with each other. It means the optimal solution of a non-
conflicting category is the same as the solution of a single-objective scenario. The
optimal result of a conflicting category will be a unique Pareto front which is the same

as bi-objective conflicting cases shown in Figure 5.5.
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5.2.2 Classification of Solution Scenario

According to the analysis of optimal results for each problem scenario, the optimal

solutions for machining optimisation can be classified into 3 scenarios, which are:

Descriptive scenario. The solutions in this scenario are to address the problems in a
zero-objective scenario. The functions of these solutions are to comprehensively
describe the problems of machining optimisation for decision makers who do not have
explicit optimising objectives, and help them to uncover the potential improvement of
their current machining processes. Usually, the solutions in this scenario will be

presented as a non-constrained contour plot.

Unique solution scenario. The solutions in this scenario are to address the problems in
the single-objective scenario and the non-conflicting category of a multi-objective
scenario. The optimising process for this solution scenario can be conducted by using
any existing single-objective optimisation algorithms. The solutions in this scenario are
a unique optimal solution/result for the problems and can be presented as a constrained

contour plot.

Pareto front scenario. The solutions in this scenario are to address the problems in the
conflicting category of a multi-objective scenario. The optimal results in this scenario
are not a unique optimal result but a set of feasible solutions. The optimal solutions in

this scenario can be presented as a single Pareto front.

The proposed solution scenarios in this section can be fused together as a solution
domain which will provide the corresponding optimal solution for the scenarios in the
problem domain. Figure 5.8 shows the structure of the proposed scenario-based
framework for machining optimisation. This framework clearly shows how to solve the
machining optimisation problem. It is especially suitable for multi-objective problems,
and provides a generic method to address the issues for achieving a sustainable

machining process.
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Figure 5.8 Scenario-based Framework for Machining Optimisation

5.2.3 Case Study of Multiple Objectives Optimisation for Implementing Proposed
Scenario-based Framework

An example has been produced to demonstrate the process of how to use the proposed
method to optimise four conflicting objectives energy, cost, cutting force and surface
roughness. By analysing the Pareto fronts of each pair of objectives, energy and cost are
not conflicting, and cutting force and surface roughness are not conflicting, so they can
be respectively combined and represented by energy and cutting force. Then the optimal
result can be plotted as a unique Pareto front as shown in Figure 5.9 where the X axis
represents specific energy consumption and Y axis represented cutting force (set as a
representative objective). From the figure, decision makers can evaluate their current
machining plans and make suitable adjustments based on their preferences, such as
minimal cost, minimal surface roughness, and minimum change of process parameters

or balance objectives.
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and Surface Roughness

5.3 Summary and Discussion

In this chapter, a scenario-based systematic methodology was developed to provide a
comprehensive solution for decision makers to solve machining optimisation problems

with sustainability considerations.

The problem scenarios have been developed to describe the actual problems of
machining optimisation. By enumerating and characterising the problems in sustainable
machining operation involving seven objectives including energy, cost, time, power,
cutting force, tool life and surface finish, 128 scenarios can be identified and classified
into three major problem scenarios: zero-objective, single-objective and general multi-
objective scenarios based on the number of objectives considered. Based on the
complexity of optimal results (number of Pareto fronts required), the general multi-
objective scenarios can be further separated into two sub-scenarios: bi-objective and

special objective scenario (optimal objectives more than two).

The solutions for multi-objective scenarios have been investigated by characterising of

Pareto fronts of bi-objective sub-scenarios. Based on the analysis, the multiple
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objectives can be divided into two categories: non-conflicting and conflicting category.
Non-conflicting multi-objective problems can be converted to a single-objective
situation which has a unique solution, and conflicting multi-objective problems can be
converted to a set of conflicting bi-objective cases which can be presented as a single

Pareto front.

According to the analysis of optimal results, the solutions for machining optimisation
can be classified into three solution scenarios which are descriptive scenario (for zero-
objective scenario), unique solution scenario (for single-objective scenario and non-
conflicting category of multi-objective scenario) and Pareto front scenario (for
conflicting category of multi-objective scenario). The proposed solution scenarios can
be fused together as a solution domain to provide an optimal solution for the

corresponding problem scenarios.

Based on the above results, a scenario-based framework has been proposed for solving
general machining optimisation problems. It can provide a generic and systematic
methodology for decision makers to better understand their machining processes and

address recent challenges from sustainable requirements.
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CHAPTER 6: ENERGY-EFFICIENT CUTTING STRATEGY - A PROFILING
TOOLPATH STRATEGY FOR END MILLING OPERATION

The issues of how to improve the sustainability by optimising process parameters have
been addressed in Chapter 4 and Chapter 5. The aim of this chapter is to address the
issues of how to further reduce the energy consumption for machining operations by
developing new machining technologies and strategies. The following research question

will be answered in this chapter, which is:

In addition to the optimisation of process parameters, is it possible to further reduce the
energy consumption by changing/designing new technologies and processes? If it is

possible, what is the maximal improvement can be achieved?

The result presented in this chapter will follow the optimal result obtained in Chapter 4.
A profiling toolpath strategy is introduced in this chapter which is energy efficient and
cost effective for forming some 22D features compared to the conventional cutting
strategy. The application range for each feature will also be introduced based on the

results of the previous chapters on the measurement of energy consumption and cost.
6.1 Introduction: Conventional and Proposed Profiling Toolpath Strategy

The energy efficiency metric developed in Chapter 3 represented a measure that
uncovers the inherent inefficiency of existing technology and suggests the direction to
improve energy efficiency. Equation 3.17 shows that the energy consumption for
machining operations (TE) is related to process parameters and material removal
volume. The first aspect has been addressed by conducting the optimisation of process
parameters in Chapter 4 which reduced the energy consumption and improved the
energy efficiency. The result shows that even when the energy consumption from
auxiliary functions can be reduced to zero, the inefficiency still exists. The operation
itself is not efficient enough and contains lots of redundant motions. It requires
developing new technologies and machining methods to further improve the energy
efficiency. There are already many research contributions concerning the development
of new energy-efficient methods/technology. However, most of the literature only tends
to focus on coolant strategies and tool design, and did not address the inefficiency of the

machining process.

Ideally, the absolutely perfect situation in machining should not generate any material

waste. However, because of the limitation of technology, waste generation cannot be
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avoided during the machining process. With the inspiration from the second aspect of
Equation 3.17, it is possible to reduce waste and energy consumption by reducing the
material removal volume (De Vries, 1992). To address this issue, the research presented
in this chapter is an attempt in this direction to further reduce the energy consumption
by developing new machining techniques. A new profiling toolpath strategy for the end
milling operation that operates outside the boundary of the feature was developed in this
chapter to reduce the energy consumption and the inherent inefficiency. The proposed
strategy can give a direction to the new research of technology for tool design and

toolpath strategy.

6.1.1 Conventional Cutting Strategy for End Milling Operation

In the end milling operation, conventional machining strategies (or conventional
toolpath strategies, CTS) will remove the whole feature volume to achieve the shape.
Figure 6.1 shows the material removal volume and machining method for conventional
machining strategy. The advantages of this method include: low cutting force, low
power requirement, less set-up time. In addition, conventional machining strategy can
be implemented in machining all types of feature. However, the material removal rate of
this method is low. Thus, it will use more time for machining the feature and generate

more waste.

Material Removal Volume

Figure 6.1 Conventional Toolpath Strategy (CTS)
6.1.2 Profiling Toolpath Strategy for End Milling Operation

The proposed energy-efficient machining strategy (profiling toolpath strategy, PTS)
uses slotting method (as for conventional toolpath strategy) to conduct machining
around the boundary of the feature. Compared to conventional strategy, PTS uses full
diameter to cut which can increase the material removal rate. The energy consumption

for machining operations can be reduced by shortening the machining time. Figure 6.2
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shows the material removal volume and type of energy machining strategy. However,

PTS also has some limitations which are:

e The cutting force will be increased by using full diameter cutting. It will cause
spindle vibration, reduce tool life and increase power consumption.

e It may take more set up time than conventional strategy, because of using
slotting operation.

e [t cannot be implemented for all the features, only specific types of feature are
suitable (e.g. deep narrow hole, wide shallow hole, wide deep hole, long shallow

slot, long and deep slot, short and shallow slot, short deep slot)

Material Removal Volume Material Left *
‘ \. / =
A N
I /ﬁ
ez o

Figure 6.2 Profiling Toolpath Strategy (PTS)

6.2 Investigation of Profiling Toolpath Strategy

Since the proposed profiling toolpath strategy has a limitation of implementation, four
typical features, for which profiling toolpath strategy can be implemented, were selected
and investigated from a taxonomy of basic features (Owodunni et al., 2002).
Comparison of energy consumption between conventional machining strategy and
energy-efficient machining strategy was carried out by conducting numerical
simulations. Four features are shown in Figure 6.3, which are step, slot, prismatic hole
and round hole. The 3D demonstrations for implementing PTS to machine these four
features are shown in Figure 6.4(a) to 6.4(d). The directions of cutting tool movements

(rough toolpath) are shown as the red arrows in each figure.

il

(a) Step (b) Slot (c) Prismatic Hole (d) Round Hole

Figure 6.3 Typical 2’2 D Milled Features Suitable for PTS
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(b) Slot

&

(c) Prismatic Hole (d) Round Hole

Figure 6.4 3D Demonstrations of PTS for Machining 2'2 D Milled Features
6.2.1 Material Removal Volume for Conventional End Milling Operation

According to Equation 3.17, the energy consumption for the end milling operation is
related to workpiece material, material removal volume and the number of flutes of the
cutting tool. For conventional machining strategy, V,, is fixed which is determined by
machining feature dimensions. It is not related to the type of feature. In this case, the
energy consumption for specific features can be calculated. Material removal volumes

of these features are concluded in Equation 6.1.

Vers = L-H-W (Prismatic Feature)

nH - d 6.1
i (Round Hole) e

Vers =
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where, Vi rs1s material removal volume for conventional machining strategy, L is length
of feature, H is height of feature, W is width of feature, dy is diameter of feature. For
Step, Slot and Prismatic Hole, the feature shapes are rectangular solids. For Round Hole,

the feature shape is a cylinder.
6.2.2 Energy Consumption for Profiling Toolpath Strategy

Compared to conventional machining strategy, the material removal volume of energy-
efficient machining strategy is not only related to feature dimensions but to also the
diameter of the tool. In this case, even when the volume of the feature is the same (e.g.
step, slot and prismatic hole), different types of feature have different toolpaths and
hence the toolpath volume, V,,. Material removal volumes of PTS are shown as the

following equations.

For Step feature:

Vers=L-d-(H+W —d) (6.2)
For Slot feature:
Vpors =L-d-(2H+ W — 2d) (6.3)
For Prismatic hole:
Vprs =2d-H-(L+ W —2d) (6.4)
For Round hole:
Vprs =mH -d - (dy — d) (6.5)

where, d is diameter of tool, mm.

Based on Equation 6.2 to Equation 6.5, if both strategies use the same cutting tool and
the same process parameters, the ratio between CTS and PTS can be represented as

equation 6.6.

_ Eprs  Kiprs X Vprs

= PIS (6.6)
Ecrs  Kiers X Vers

where, Eprs is energy consumption for energy-efficient machining, Eqrs is energy
consumption for conventional machining strategy, Q is the ratio between the proposed
energy-efficient strategy and conventional strategy. When Q < 1 PTS is more efficient,

when Q > 1 conventional machining is more efficient.
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Because the work in this section follows the optimal result obtained in Chapter 4, the
process parameters applied to compare conventional strategy and proposed toolpath
strategy are the same. In this case, the values of cutting force coefficient K¢ for two

strategies are the same too. So equation 6.6 can be simplified as:

0= Vprs

Vers
In addition, according to the value of the coefficient in Table 3.5, the coefficient for
width of cut is very close to zero. It means that even when the width of cut for two
strategies is different, the cutting force coefficient Kt for both strategies is

approximately equal.

So the implementation conditions for different features can be theoretically represented

as below:
For Step:
Q=VPTS=d><(H+W—d)
Vers HxW
When Q < 1,

AdXH+W—-d)<HXW
dX(W-d)<Hx(W —-d)

So when H > d and W > d, use energy-efficient machining, when H < d or W <d,

use conventional machining.
For Slot:

_ Vers _dX(H+W —2d)
" Veps HxW

Q

When Q < 1,
dX2H+W —2d) <HXW
dX (W —-2d)<Hx W —2d)

So when H > d and W > 2d, use energy-efficient machining, when H < d or W < 2d,

use conventional machining
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For Prismatic hole:

_ Vers _ 2d X (L+W —2d)
C Vers LxW

When Q < 1,
2dXL+2dXx(W—-2d) <LxW
2d X (W —2d) < L x (W —2d)

So when D > 2d and W > 2d, use energy-efficient machining, when D < 2d or W <

2d, use conventional machining.
For Round hole:

Vers df,

When Q < 1,
4d X dy — 4d? < d
dy > 2d

So when dy > 2d use energy-efficient machining, when dy < 2d use conventional

machining. Specific conditions for applying PTS are shown in Table 6.1.

Table 6.1: Material Removal Volume and Applying Conditions for PTS

& il &

V.=d-L-(W+H-d) | V,,=d-L-(W+2H-2d) | V,,=d-2H-(W+L-2d) | V,=rd H-(d,~d)

H>dWwW>d H >2d,W >2d H>d,W>2d d, >2d

6.3 Comparison of Energy Consumption for Conventional Toolpath Strategy and

Profiling Toolpath Strategy

According to the developed energy consumption and energy efficiency metrics, the
comparison of energy consumption of conventional (CTS) and energy-efficient machine
strategy (PTS) can be carried out. There are three groups of parameters, which will be
applied for different types of feature. The first group is for step and slot, as shown in

Table 6.2a. The length of the feature is a constant value (30mm), and the height and
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width of the feature will change from 0 to 5S0mm. The second group is for prismatic
hole, as shown in Table 6.2b. The height of the feature is a constant value (30mm), and
the length and width of the feature will change from 0 to 50mm. The third group is for
round hole, as shown in Table 6.2c. The height of the feature is a constant value (30mm)
and the diameter of the hole will change from 0 to S0mm. The process parameters will

be the same as the optimal result obtained in Chapter 4 and the workpiece material is Al

7075-Té6.

Table 6.2a: Process Parameters for Step and Slot

Parameters

Value

Depth of cut
Width of cut

Tool diameter
Number of flutes
Feed rate per tooth
Spindle speed
Height of feature
Length of feature
Width of feature
Materials

5 mm

10 mm

10 mm

3

0.06 mm/z

4000 rpm

0-50 mm

30 mm

0-50 mm
Aluminium 7075-T6

Table 6.2b: Process Parameters for Prismatic Hole

Parameters

Value

Depth of cut
Width of cut

Tool diameter
Number of flutes
Feed rate per tooth
Spindle speed
Height of feature
Length of feature
Width of feature
Materials

5 mm

10 mm

10 mm

3

0.06 mm/z

4000 rpm

30 mm

0-50 mm

0-50 mm
Aluminium 7075-T6

Table 6.2¢c: Process Parameters for Round Hole

Parameters

Value

Depth of cut

Width of cut

Tool diameter
Number of flutes
Feed rate

Spindle speed
Height of feature
Diameter of feature
Materials

Smm

10mm

10mm

3

0.06 mm/z

4000 rpm

30 mm

10-50 mm
Aluminium 7075-T6
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The comparison result will be shown in graphical form in two steps. The first step will
compare the energy consumptions of CTS and PTS for achieving different dimensions
of features. The result will be used to determine which strategy is more energy efficient.

The comparison in this step will use the following equation.
ECD = Ecrs — Eprs (6.7)

where, ECD is the energy consumption difference between CTS and PTS. If ECD > 0,
using PTS is more energy efficient. If ECD < 0, using CTS is more energy efficient. If

ECD = 0, the energy consumption of both strategies are the same.

6.3.1 Energy Consumption for Step

Figure 6.5 shows the contour plot of energy consumption difference between
implementing CTS and PTS for different dimensions of step features. The X and Y axes
represent the ratio between the width/height of the feature and diameter of the cutting
tool. The red shadow area shows the result when ECD < 0. The dashed lines (W/d =1,
H/d = 1) represent the judging criteria that when the width and height of the feature is
greater than the diameter of the tool (W/d >1 and H/d > 1), PTS is more energy efficient
than CTS. Otherwise, CTS is more energy efficient. However, according to the process
parameters applied, the red shadow area is not feasible if the width and the height of
feature is smaller than the diameter of the tool (W/d <1 or H/d <I1). It means PTS is not

suitable under such conditions.

Figure 6.6a and 6.6b show the comparison of impact of feature type for implementing
CTS and PTS. Shadow areas in Figure 6.6a and 6.6b represent three different feature
shapes which have the same area. The blue shadow areas show the situation when width
or height of feature is equal to diameter of the tool. It means the machining operation is
the same as slotting. The green shadow area shows the case where the width and the
height of feature are equal to each other which means the shape of the shadow area is a

square.
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Figure 6.5 Energy Comparison of CTS and PTS for Step Feature

From Figure 6.6a, it can be found that the energy consumption for three shapes are the

same (on the same contour). It means when implementing CTS, if the volume of the

step features are the same, the energy consumption for achieving the same volume of

the features is same. However, for implementing PTS (in Figure 6.6b), the energy

consumption for the square is smaller than the rectangle. This is because the material

removal volume for the square area is smaller than rectangle area. The red shadow area

in Figure 6.6b shows the differences of material removal volume between the square

shape and the rectangle shape. The conclusion of findings is that when the cross section

area of the features are the same, the closer to 1 for the ratio of the width and the height

of the feature (W/H), the less energy will be consumed by using proposed toolpath

strategy.
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6.3.2 Energy Consumption for Slot

Figure 6.7 shows the contour plot of energy consumption difference between
implementing CTS and PTS for different dimensions of the slot feature. The X and Y
axes also represent the ratio between the width/height of the feature and the diameter of
the cutting tool. The red shadow area shows the result when ECD < 0. The dashed lines
(W/d =2, H/d = 1) represent the break-even curves which show that when the width of
the feature is twice greater than the diameter of the tool, and the height of the feature is
greater than the diameter of the tool (W/d >2 and H/d > 1), PTS is more energy efficient
than CTS. Otherwise, CTS is more energy efficient. However, according to the process
parameters applied, the red shadow area is not feasible if W/d <2 or H/d <I) which

means PTS is not suitable under such conditions.
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Figure 6.7 Energy Comparison of CTS and PTS for Slot Feature

Figure 6.8a and 6.8b show the comparison of impact of feature type for implementing
CTS and PTS. Shadow areas in Figure 6.8a and 6.8b represent three different feature
shapes which have the same area. The blue shadow area shows the case where the width

of the feature is equal to twice the diameter of the tool. The green shadow area shows
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the case where the width and height of the feature is equal to each other. The purple area

shows the case where the height of the feature is smaller than the width of the feature.

From Figure 6.8a, it can be found that the energy consumption for three shapes are the
same. It means when implementing CTS, if the volume of the slot features are the same,
the energy consumption for achieving the same volume of the features is the same too.
However, for implementing PTS (in Figure 6.8b), the energy consumption is decreasing
with the increase in width of feature. It is because the material removal volume for
using PTS is reducing with the increase in width of the feature. The conclusion of this
finding is that when the feature volume is constant, the greater the width of the feature,

the less energy will be consumed by using PTS.
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Figure 6.8b Energy Comparison of PTS for Different Slot Features

6.3.3 Energy Consumption for Prismatic Hole

Figure 6.9 shows the contour plot of energy consumption difference between
implementing CTS and PTS for different dimensions of prismatic hole. The X and Y
axes represent the ratio between the width/length of the feature and the diameter of the
cutting tool. The red shadow area shows the result when ECD < 0. The dashed lines
(W/d = 2, L/d = 2) represent the judging criteria that when the width and height of the
feature is greater than twice the diameter of tool (W/d >2 and L/d > 2), PTS is more
energy efficient than CTS. Otherwise, CTS is more energy efficient. However,
according to the process parameters applied, the red shadow area is not feasible if the
width and height of the feature is smaller than twice the diameter of tool (W/d <2 or L/d

<2). It means PTS is not suitable under such conditions.
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Figure 6.9 Energy Comparison of CTS and PTS for Prismatic Hole

The result of the comparison for different shapes of prismatic hole is almost the same as
the result for the step feature. From Figure 6.10a, it can be found that the energy
consumption for three shapes are the same. It means when implementing CTS, if the
volumes of the prismatic holes are same, the energy consumption for achieving the

same volume of the features is the same too.

However, for implementing PTS (in Figure 6.10b), the energy consumption for the
square is smaller than the rectangle. This is because the material removal volume for the
square area is smaller than for rectangle area. The conclusion of findings is that when
the cross section area of the features are same, the closer to 1 for the ratio of width and

length of feature (L/H), the less energy will be consumed by using PTS.
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6.3.4 Energy Consumption for Round Hole

Figure 6.11 shows the plot of energy consumption difference between implementing
CTS and PTS for different dimensions of round hole. The X axis represents the
diameter of the hole and the Y axis represents the difference in energy consumption
between CTS and PTS. The result from Figure 6.11 and Figure 6.12 shows the break-
even point occurred on the energy comparison curve when the diameter of the feature
was equal to twice of diameter of tool (du = 2d). When the height of the feature is
constant and the diameter of the feature is greater than twice the diameter of tool (du >

2d), PTS is more energy efficient than CTS. Otherwise, CTS is more energy efficient.

The red shadow area shows that it is not feasible when the diameter of the feature is
smaller than twice the diameter of the cutting tool (du < 2d). It means implementing the
proposed profiling tool path strategy is always more energy efficient than conventional

toolpath strategy. The larger the feature, the more energy can be saved.
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Figure 6.11 Energy Comparison of CTS and PTS for Round Hole
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Figure 6.12 Energy Comparison of CTS for Different Shapes of Round Hole

6.3.5 Summary of Energy Comparison Result
The results of energy consumption for both strategies are shown as Figure 6.5 to 6.12.

According to the energy consumption comparison curves of these four features, the

following conclusions can be drawn:

e For the features of step, slot and prismatic hole, the judging criteria of the CTS
and PTS can be identified in energy consumption curves. It means that when the
dimensions of the feature are greater than the judging criteria, PTS is feasible
and more energy efficient than CTS. Otherwise, when the dimensions of the
feature are smaller than the judging criteria, PTS is not feasible to be
implemented.

e For round hole, the results showed that when the diameter of the hole is greater
than twice of diameter of the cutting tool, PTS is energy efficient than CTS. The
larger the feature is, the more energy efficient it is to implement PTS. Otherwise,

PTS is not feasible to be implemented.
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In addition, energy consumption for implementing PTS is also affected by the shape of

the feature. The following observation can be identified:

e For features of step and prismatic hole, the energy consumption for the square is
smaller than for the rectangle when the cross section area is constant. When the
cross section area of the features are same, the closer to 1 for the ratio of the
width and length of the feature (L/H), the less energy will be consumed by using
PTS.

e For features of the slot feature, the energy consumption is decreasing with the
increase in the width of the feature when the cross section area is constant.
When the feature volume is constant, the greater the width of the feature, the
less energy will be consumed by using PTS.

e For features of round hole, the larger the diameter of the feature, the more

energy can be saved.

The results in development of new energy-efficient machining strategy showed the
energy consumption of machining can be possibly reduced on the basis of optimal
process parameters. It can further reduce the gap between theoretical minimal energy

consumption and practical energy consumption.
6.4 Comparison of Cost and Energy Efficiency for Implementing CTS and PTS

According to the comparison of energy consumption in the previous section 6.3, the
comparison of cost and energy efficiency of CTS and PTS has been discussed in this

section.
6.4.1 Comparison of Cost between CTS and PTS

The cost of implementing CTS and PTS for step and slot feature is shown in Figures
6.13a to 6.13c, for prismatic hole in Figures 6.14a to 6.14b and for round hole in Figure
6.14. From the figures of comparison of cost for implementing CTS and PTS, it can be
found that the cost has the same variation trend as energy consumption for all four
features. It means when the PTS is more energy efficient than CTS, it is also more cost
effective. This finding further confirms the conclusion in section 4.1.3 that energy
consumption and cost are not conflicting with each other (not only for optimal process

parameters but also for energy-efficient strategy).
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Figure 6.14a Cost of Implementing CTS for Prismatic Hole
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6.4.2 Comparison of Energy Efficiency for Implementing CTS and PTS

Based on the new energy efficiency metrics proposed in Chapter 3, the energy
efficiency of PTS and CTS for step, slot, prismatic hole and round hole can be
calculated, and are shown in Table 6.3. The process parameters applied in the

calculation are based on the optimal result obtained in Chapter 5.

Table 6.3: Energy Consumption and Energy Efficiency for Implementing CTS
and PTS for Different Features

TME | TE DE AE IE ER ERp ER,
&) | (&) (kJ) (kJ) (kJ) | (TE/DE) | (TME/TE) | (TME/DE)

Step CTS | 5.238 | 31.379 | 139.379 108 26.141 | 22.513% | 16.693% 3.758%

PTS | 5.238 | 17.433 | 117.433 100 12.195 | 14.845% | 30.047% 4.460%

Slot CTS | 7.857 | 31.379 | 139.379 108 23.522 | 22.513% | 25.039% 5.637%

PTS | 7.857 | 24.406 | 128.406 104 16.549 | 19.001% | 32.194% 6.119%

Prismatic 10.476 | 31.379 | 139.379 108 20.903 | 22.513% | 33.386% 7.516%
Hole CTS

PTS | 10.476 | 27.892 | 133.892 106 17.416 | 20.832% | 37.559% 7.824%

Round | CTS | 9.284 | 31.379 | 139.379 108 22.095 | 22.513% | 29.587% 6.661%

Hole PTS | 9.284 | 26.123 | 131.109 | 104.986 | 16.839 | 19.925% | 35.539% 7.081%

Figure 6.16a and 6.16b show the energy efficiency feature for implementing CTS and
PTS for step. From the figures, it can be found that the energy efficiency of existing
definition (TE/DE) for implementing PTS for step feature is smaller than the result by
using CTS (14.875% for PTS and 22.513% for CTS). However, by comparing the
proposed energy efficiency for the machining process (TME/DE), PTS has better
energy efficiency (4.460% for PTS and 3.758% for CTS).

Another benefit for implementing PTS is that it can further reduce the inefficiency of
the machining operation. By comparing the ratio between TME and TE (energy
consumption for machining operation, TME/TE), energy efficiencies for implementing
PTS is 30.047% which is higher than the energy efficiency of CTS 16.693%. Up to 54%

of inefficient energy consumption can be further reduced.

In addition, implementing PTS can further reduce the energy consumption for the
machining operation and auxiliary function. Compared to energy consumption for
implementing CTS, up to 16% of direct energy (44.44% of energy consumption for
machining operation and 7.41% auxiliary energy consumption) can be reduced by using

PTS.
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Figure 6.16b Energy Efficiency of PTS for Step Feature

Similar results can be found for the other feature types. Figures 6.17a and 6.17b show
the energy efficiency for implementing CTS and PTS for slot feature. Although the
energy efficiency of existing definition for implementing PTS for slot feature is smaller
than the CTS (19.001% for PTS and 22.513% for CTS), the proposed energy efficiency
of the machining process for PTS has better energy efficiency than CTS (6.119% for
PTS and 5.637% for CTS). Implementing PTS can further reduce the inefficiency of the
machining operation. The energy efficiencies of the machining process for
implementing PTS is 32.194% which is higher than CTS 25.039%. Up to 30% of
inefficient energy consumption can be further reduced. In addition, implementing PTS
can further reduce the energy consumption for the machining operation and auxiliary
function. Up to 8% of direct energy (22.22% of energy consumption for the machining

operation and 3.70% auxiliary energy consumption) can be reduced by using PTS.
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Figure 6.17a Energy Efficiency of CTS for Slot Feature
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Figure 6.17b Energy Efficiency of PTS for Slot Feature

Figures 6.18a and 6.18b show the energy efficiency for implementing CTS and PTS for
prismatic hole. Although the energy efficiency of existing definition for implementing
PTS for prismatic hole is smaller than the CTS (20.832% for PTS and 22.513% for
CTS), the proposed energy efficiency of the machining process for PTS has better
energy efficiency than CTS (7.824% for PTS and 7.516% for CTS). Implementing PTS
can further reduce the inefficiency of the machining operation. The energy efficiencies
of the machining process for implementing PTS is 37.559% which is higher than CTS
33.386%. Up to 17% of inefficient energy consumption can be further reduced. In
addition, implementing PTS can further reduce the energy consumption for the

machining operation and auxiliary function. Up to 4% of direct energy (11.11% of
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energy consumption for the machining operation and 1.85% auxiliary energy

consumption) can be reduced by using PTS.

—33.386%

~ 37.559%

Figure 6.18b Energy Efficiency of PTS for Prismatic Hole

Figure 6.19a and 6.19b show the energy efficiency for implementing CTS and PTS for
round hole. Although the energy efficiency of existing definition for implementing PTS
for round hole is smaller than for CTS (19.925% for PTS and 22.513% for PTS), the
proposed energy efficiency of the machining process for PTS has better energy
efficiency than CTS (7.081% for PTS and 6.661% for CTS). Implementing PTS can
further reduce the inefficiency of the machining operation. The energy efficiencies of
the machining process for implementing PTS is 35.539% which is higher than CTS
29.587%. Up to 24% of inefficient energy consumption can be further reduced. In
addition, implementing PTS can further reduce the energy consumption for the
machining operation and auxiliary function. Up to 6% of direct energy (16.75% of
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energy consumption for the machining operation and 2.79% auxiliary energy

consumption) can be reduced by using PTS.

~ 29.587%

Figure 6.19a Energy Efficiency of CTS for Round Hole

~35.539 %

Figure 6.19b Energy Efficiency of PTS for Round Hole

The above results of comparison of energy efficiency showed that implementing PTS
cannot only further improve the energy efficiency and reduce the inherent inefficiency
of the machining process, but can also reduce the energy consumption for the
machining operations (inefficient energy consumption) and auxiliary function. The
improvement is related to the area of the machined surface. For the same dimension of
material removal volume, the smaller the area of the machined surface, the more energy

efficient it is.
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6.5 Summary of the Chapter

In this chapter, an energy efficient profiling toolpath strategy (PTS) has been proposed
which can further reduce the energy consumption and improve the energy efficiency for

the machining process.

The implementation conditions of PTS for four typical features (step, slot, prismatic
hole, and round hole) were specifically analysed. The comparison result between
conventional toolpath strategy (CTS) and proposed profiling toolpath strategy (PTS)
showed that:

e For the features of step, slot and prismatic hole, break-even curves of the CTS
and PTS occurred in energy consumption curves. When the dimensions of the
feature are greater than the curves, PTS is feasible and more energy efficient
than CTS. Otherwise, PTS is not feasible to be implemented.

e For round hole, when the diameter of the hole is greater than twice the diameter
of the cutting tool, PTS is more energy efficient than CTS. The larger the feature,
the more energy efficient it is to implement PTS. Otherwise, PTS is not feasible
to be implemented.

e For step and prismatic hole, the energy consumption for the square is smaller
than for the rectangle when the cross section area is constant. When the cross
section areas of the features are same, the closer to 1 for the ratio of width and
length of the feature (L/H), the less energy will be consumed by using PTS.

e For slot feature, the energy consumption is decreasing with the increase in width
of the feature when the cross section area is constant. When the feature volume
is constant, the greater the width of the feature, the less energy will be consumed
by using PTS.

e For round hole, the larger the diameter of the hole, the more energy can be saved.

Examples of energy efficiency for implementing PTS and CTS to machine Aluminium
7075-T6 were produced by using the optimal process parameters obtained in Chapter 4.
The result showed that although the energy efficiency of existing definition for
implementing PTS is smaller than for CTS, the proposed energy efficiency of the
machining process for PTS has better energy efficiency than CTS. In addition,
implementing PTS can further reduce the inefficiency of the machining operation. For
the same dimension of material removal volume, the smaller the area of the machined

surface, the more energy efficient it is.
175



CHAPTER 7: DEVELOPMENT OF A FRAMEWORK FOR MACHINING
OPTIMISATION WITH SUSTAINABILITY CONSIDERATIONS

The previous chapters (Chapter 3 to Chapter 6) have developed mathematical models to
measure the sustainability, introduce a systematic process to optimise the process
parameters for machining operations, and proposed a new energy-efficient cutting
strategy. However, existing research contributions of sustainability improvement are too
difficult for decision makers to implement in practical manufacturing processes. This

issue raises a research question that:

"What is the best way to implement the developed sustainability improvement
methods in practical machining operation to fulfil the requirements from different

users?"

To answer the above research question, a framework which integrates the research
findings in the previous chapters has been developed in this chapter to provide a tool for

decision makers to improve sustainability performance of their manufacturing process.

Demonstrations of how to implement the proposed framework will also be conducted

by dealing with practical cases.
7.1 General Methods for Machining Performance Improvement

The determination of product manufacturing plan usually needs to concern multiple
objectives. In practice, decision makers may have to improve their manufacturing
process to address the prospective challenges of sustainability performance of customer
requirements, government/council regulations, national/international standards, and
demands for lower energy consumption. For example, to achieve a real sustainable
manufacturing process, it must concern the objectives from environmental, economic
and social aspects. Unfortunately, without a good understanding of the problem,
decision makers are not able to adjust the process parameters quickly to solve

emergency requirements (e.g. rush order) from above drivers.

From a practical standpoint, the optimisation task is defined as follows: given a system
or process, find the best solution to this process within constraints. This task requires

the following elements:
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e An objective function is needed that provides a scalar quantitative performance
measure that needs to be minimised or maximised (e.g. system’s cost, product
quality).

e A predictive model is required that describes the behaviour of the system. For
the optimisation problem, this translates into a set of equations and inequalities
constraints. These constraints comprise a feasible region that defines limits of
performance for the system.

e Variables that appear in the predictive model must be adjusted to satisfy the
constraints. This can usually be accomplished with multiple instances of variable
values, leading to a feasible region that is determined by a subspace of these
variables. In many engineering problems, this subspace can be characterised by
a set of decision variables that can be interpreted as degrees of freedom in the

process.

The existing methods of selecting optimal process parameters are not transparent and
difficult to be implemented. These frameworks have lots of embedded information and
require very good knowledge in mathematical modelling and optimisation. It takes a
long time to understand what the problem is even for academic researchers. So it is not
easy for practical decision makers to understand and use. In addition, the structures of
these frameworks are usually very general which only concerns major elements/activity.
The details of each element are not clearly identified. It is difficult to directly implement
these frameworks to solve a specific machining optimisation problem. Finally, these

frameworks are not developed for sustainability improvement purpose.

The framework proposed in this chapter is aiming to provide a comprehensive, step-by-
step method to help users from different levels (practitioners, process planning
engineers, degree students, and academic researchers) to scientifically and confidently

select the optimal results with sustainability consideration.
7.2 General Methods of Machining Optimisation

The method of selecting optimal process parameters is designed based on the four steps
introduced in section 7.1. Each step will have several functional elements to answer the
corresponding questions from the user. Table 7.1 showed the name of the element and
what questions it will answer. The process of how the elements function and connect is

shown in Figure 7.1.
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Step 1: Problem Defining

Element 1: Problem Domain

Based on the requirements, the nature of the problem will be defined by determining
what variables need to be considered for the problem, classifying what type the problem
is (such as is it single or multiple objective? If it is a multi-objective case, are the

objectives conflicting or not conflicting with each other?)
Element 2: Criteria Definition

Determine what criteria need to be optimised (e.g. energy, cost, time and quality). The

criteria determination process is actually to determine the objectives of optimisation.

Step 2: Problem Formulation

Element 3: Mathematical Model

Determine what variables should be considered in the optimisation. Which variables are
input parameters (independent variables) and which ones are objectives and constraints
(dependent variables). The objective functions should be represented in terms of input

parameters.
Element 4: Define Constraints
Determine what constraints should be considered to refine the search space.

Step 3: Problem Solution

Element 5: Problem Scenarios

The concept of Problem Scenarios is one of the main contributions of Chapter 5. The
function of the test rig is to build a solution set. The solutions in Test Rig are
corresponding with the problems in Problem domain. Each solution can link to a unique
problem in the problem domain. The solutions in Test Rig will be divided into different

scenarios based on the characteristics of objectives.
Element 6: Solution Scenarios

The optimal result can be achieved from Solution Scenarios. For single objective or

non-conflicting multi-objective optimisation the optimal result will be a unique solution.
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For conflicting multi-objective optimisation the optimal result will be an optimal

solution set.

Step 4: Problem Evaluation

Element 7: Satisfaction Detection

Evaluate the corresponding result or solution set with the decision makers to determine
whether or not the optimal result or solution set is accurate or sufficient. Usually for
single-objective optimisation and non-conflicting multi-objective optimisation, the
optimal result is unique. So they can directly go to the next element. However, for
conflicting multi-objective optimisation cases the optimal result is a solution set which
has all the feasible results. Unsatisfactory problems here are usually caused by the large
number of feasible results. Decision makers should return to Step 2 to refine the

problem with more specific requirements.
Element 8: Proposed Result

If the problem is a single-objective or non-conflicting multi-objective optimisation, the
unique optimal result will be the proposed result. Otherwise for multi-objective

optimisation the proposed result/results will be selected based on users’ preferences.
Element 9: Result Validation

This process is to validate the result in practice or based on users’ experiences. The
process is very similar as Element 7. If the proposed result can pass validation, then it
can be applied in practice. If the proposed result fails, it means mathematical models
applied in step 2 are not correct. It requires the users to return to step 2 to make the

correction of objective functions and constraints.
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Figure 7.1 General Methods for Machining Optimisation
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Table 7.1 Element of General Optimisation Method and the Corresponding

Questions
Step Name of the Element Questions
Problem Problem Domain What type the problem is?
Defining Criteria Definition What is the objective of optimisation?
Problems Mathematical Model | What variables are involved in the
Formulation problem?

How can the objectives be represented?
What are the dominated variables to
influence the objective?

Define Constraints What are the technical limitations of the
operation?
What are the users’ requirements?
Optimal result Problem Scenarios What are the corresponding results to the
determination problems?
Solution Scenarios How can we select the optimal process
parameters?
Result Satisfaction Detection | Is the solution or solution set good
Evaluation enough?
Proposed Result What are the final optimal results?
Result Validation Is the optimal result valid?

7.3 Development of Framework for Sustainability Improvement

To address the issue of general machining optimisation framework, a sustainability
improvement framework has been proposed in this section which can provide a
systematic tool for decision makers to improve sustainability performance of their
manufacturing process. The proposed framework is developed based on the research

results achieved in the previous chapters and presented in Figure 7.2.

The structure of the proposed framework can be mainly divided into three parts:
sustainability performance measures module, improvement of sustainability
performance by optimising parameters of existing manufacturing process module and
improvement of sustainability performance by implementing energy-efficient
machining strategies module, which corresponds to the issues identified of energy-
efficient manufacturing in chapter one. The following sub-sections will explain the

functions of the elements for each module.
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7.3.1 Module of Sustainability Performance Measures
There are two functional elements in this module (see Figure 7.3), which are:

e Energy audit/prediction

e Energy efficiency measures

Sustainability
performance
measures

Energy audit models:

»  (ualitative model

= Equation;
Texthook cquations
Simple linear model
Empirical model
Comprehensive predictive model
Finite element model

* Experiment data

Energy
audit!/prediction

v

Energy Energy efficient metrics;
o efficiency — » For machining operation
measures « For mechining process

Figure 7.3 Module of Sustainability Performance Measures

The main function of energy audit/prediction is to provide a method for users to
measure the energy consumption of their machining processes. For different users,

multiple types of models can be selected based on their knowledge level.

e Qualitative model. The models in this type are the experiences or qualitative
feelings of practitioners. In practice, practitioners may not be able to
quantitatively measure the machining performance. However, they can improve
the performance by increasing or decreasing process parameters based on their
feelings or experiences. For example, the increase of feed rate can minimise
machining time but reduce tool life.

e Equations. The models in this type are equations which are mathematically
represented by process parameters and can be implemented to quantitatively
predict the machining performance. The accuracy of this type of model is related
to the complexity of equations. The more complex the model, the more accurate
it will be. However, high accuracy will also cause the difficulty of verification.

Typical models in this type are listed as below:
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» Textbook equations (e.g. constant cutting force coefficient/specific energy
consumption).
» Simple linear equations (e.g. material removal rate models proposed by
Kara, 2011).
» Empirical equations (e.g. the model proposed in Chapter 4).
» Comprehensive predictive model (models consider more independent
variables).
» Finite element model
e Experiment/Machining data. The models in this type are the raw data
collected/captured during the machining process. The data can be represented

into different forms, such as curves, points and tables.

The function of energy efficiency measures at the unit process level is to provide a
method to evaluate and represent the efficiency of energy consumption during the

machining process. There are two types of energy efficiency metrics (introduced in

Chapter 3).

e Energy efficiency for the machining operation.

e Energy efficiency for manufacturing process.

7.3.2 Module of Sustainability Performance Improvement by Optimising

Parameters of Existing Manufacturing Process
There are five functional elements in this module (see Figure 7.4), which are:

e Input design variables

e Select optimisation objectives
e Select optimisation constraints
e Select optimisation methods

e Optimal results representing

The main function of design variables is to determine and input the process parameters

based on the selected prediction model. There are two types of process parameters:

e Parameters from machining process, including: depth of cut, width of cut, feed
rate and spindle speed.
e Parameters from cutting tool, including: diameter of cutter and number of

cutting flutes.
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Figure 7.4 Module of Optimisation of Existing Manufacturing Process
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The main function of selecting optimisation constraints is to define what problem is

going to be solved. The following three steps need to be addressed in this module:

e Determine the type of optimisation problem: Is it a single-objective or multi-
objective problem?

e Determine the optimal objective or objectives. The typical objectives include:
energy, cost, time, surface roughness, power, tool life and cutting force.

e Determine action of optimisation: minimisation or maximisation.

The main function of selecting optimisation constraints is to refine cutting conditions
thus reduce search pace. Optimisation constraints can be selected from the following

categories:

e Boundary/side constraints of process parameters. This type of constraint can be
selected from:
» Machine tool capability, e.g. as spindle speed.
» Cutting tool geometry, e.g. number of cutting flutes and diameter of tool.
» Machining process, e.g. depth of cut and width of cut.
e Behaviour constraints of dependent variables. This type of constraint can be
selected from:
» Machine tool capability, e.g. as maximal power allowance.
» Cutting tool capability, e.g. maximal cutting force allowance.
e Behaviour constraints from decision makers' preference, e.g. maximal surface

roughness, minimal tool life.

The main function of selecting optimisation method is to select an optimisation method
to conduct the optimisation procedure. As reported in Chapter 4, the optimal results
achieved by using different methods are almost same or showing the same character of
the problem. So the decision makers can select any method according to their

knowledge and preferences.

The main function of optimisation result representation is to select the best method to
represent the optimal results for decision makers to evaluate their current machining
plan, and guide them to achieve the optimal results. For different requirements and

purpose, the achieved optimal results can be represented as the following types:
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o Tables. Tables are suitable for practitioners to quickly evaluate and select
optimal values during practical machining work. Typically, tables should show
the following results:

» Values (for single objective).
» Feasible value ranges.
» Multiple values/value range (suitable for multiple objectives scenario).

e Charts. Charts can help decision makers to visualise the characteristics of
optimal objective/objectives and determine the optimal results. The typical
charts include:

» Curve. It is suitable for the situation that only one design variable (process
parameters) needs to be considered.

» Contour plot. It is best for the situation that two design variables need to
be considered.

» Plot matrix. It is suitable for the situation that multiple design variables
need to be considered.

» Pareto plot. It is suitable for multi-objectives optimisation situation.

e Excel data. Excel data are similar to tables. But it is suitable for representing
large amount of data.

e Optimal value. It is suitable for the situation that decision makers prefer a single

direct optimal result.

7.3.3 Module of Sustainability Performance Improvement by Implementing

Energy-efficient Machining Strategies

There are four functional elements in this module (see Figure 7.5), which are related to
the corresponding energy-efficient cutting strategies. The specific types of these energy-

efficient strategies are listed as below:

e Workpiece

e (Cutting Tools

e Toolpath

e Cutting fluid and lubricant

The function of this module is just to introduce some energy-efficient technologies
published in existing research contributions. Each functional element in this module is

independent of each other. Decision makers can select any energy-efficient strategies or
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continue using the conventional strategy based on their preferences and practical

manufacturing situations. In addition, in some circumstances multiple strategies can be

also applied at the same time.
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Dy machining
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Figure 7.5 Module of Re-engineering Existing Manufacturing Process

Strategies of workpiece shape are mainly focussed on chipless strategies, including:

new rapid prototyping strategy and net shape manufacturing.

Strategies of cutting tool capability can be divided into two categories:

e Energy-efficient machine tool. This type of strategy is to use energy-efficient

components to replace conventional component on machine tools. The current

possible solutions include energy-efficient motor, energy-efficient spindle and

energy-efficient workpiece handling system.
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e Energy-efficient cutting tool. This type of strategy is to use energy-efficient
cutting tools. Current possible solutions include new design of cutter (shape,

material and coating) and cutter holder.
Strategies of toolpath also have two categories:

e Energy-efficient toolpath type. This type of strategies is to select energy-
efficient toolpath type based on the shape of workpiece, dimensions of feature
and cutting tools and type of machining operation.

e Reduction of redundant movement. This type of strategies is to reduce
unnecessary and non-value-added movement. It can be achieved by redesigning

the toolpath and reducing the offset.
Strategies of cutting fluid and lubrication can be also divided into two categories:

e Environmentally benign coolant. This type of strategy is to use the
environmentally friendly coolant method to replace conventional cutting fluid,
such as new type of lubricants and compress air.

e Reduction of the usage of cutting fluid. This type of strategies is to reduce the
usage of cutting fluid by implementing new coolant strategies, such as
Minimum Quantity Lubrication (MQL), dry machining and Cryogenic

machining,
7.4 Implementation of the Framework

The proposed framework can be used on its own as an independent methodology in
different formats. Also it can be implemented as part of existing processes in industry.

The following sections will introduce the implementation of the proposed framework.

7.4.1 Computer Implementation of the Framework

The framework has been implemented in MATLAB GUI and Microsoft Excel. This
type of implementation does not require decision makers to have solid knowledge in

machining or machining optimisation.

The user interface (UI) of the MATLAB implementation is shown in Figure 7.6.
Decision makers can input the process parameters (value or range) according to their

requirements. Contour plots of selected objectives can be graphically displayed at plot

189



area. Then the optimal plan can be selected by using existing optimisation methods

based on decision makers' preference.

Input Frocess Parameters
Machimng Process Cutting Tool Feature
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Figure 7.6 User Interface of MATLAB Implementation

Figure 7.7(a) shows an implementation by using Microsoft Excel spreadsheet. Decision
makers can manually input the process parameters according to their manufacturing
process. Then the corresponding values of each objective and constraint will be
automatically generated. The constraints value can be set based on the requirements to
reduce search space and displayed in different colours (e.g. use red region to represent
non-feasible results, green region to represent feasible results, yellow region to
represent target objective), and the optimal plan can be selected within the refined range.
The Excel spreadsheet can be also implemented as separated tables for practitioners to

use as shown in Figure 7.7(b) (more tabular charts are shown in Appendix III).
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Figure 7.7a Excel Spreadsheet Implementation of Proposed Framework
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Figure 7.7b Tabular Chart Obtained from Excel Spreadsheet: Specific Energy

Consumption (kJ/cc) for Constraints of Cutting Force (Ft <400N), Cutting Speed

(75m/min < V¢ < 120m/min) and Surface Roughness (Ra < 12.5pm)

7.4.2 Implementation of the Framework in CAD/CAM/CAPP Software

The research contributions in this thesis can also be implemented in CAD/CAM/CAPP
software tools. For CAD/CAM/CAPP implementation:

The proposed methodology in energy consumption and energy efficiency
measures can be integrated into existing CAD/CAM/CAPP software tools as a
function module to calculate the energy consumption and energy efficiency for
exiting machining process based on the input process parameters and selected
toolpath strategy.

The proposed methodology in machining optimisation can be integrated into
existing CAD/CAM/CAPP software tools as a function module to optimise the
existing machining process parameters, uncover the potential improvements and
suggest the improvement methods/directions.

The proposed methodology in developing new energy-efficient strategies can be
integrated into existing CAD/CAM/CAPP software tools as a function module
to compare the energy consumptions and energy efficiencies for all the available
machining plans such as coolant type and toolpath generations.

The developed algorithm can be embedded into exiting program for calculating
machining performance. The analysis can be presented in different forms such
as figures, tables or list of recommended process parameters based on the

selected criteria/criterions (e.g. energy minimisation).
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7.4.3 Implementation of the Framework for Existing Process Improvement

Methods

The proposed framework can also be implemented in some functional elements of

existing international standard and process improvement methods.

For PDCA cycle (proposed in ISO 9001/140001/50001)

Plan: the proposed energy efficiency definition can be used to review the energy
performance and develop the new regulation/policy/standard.

Do: the analysis of energy performance/efficiency can increase the awareness of
energy issues in the industry. In addition, the proposed framework itself can be
used to  train/educate n new  practitioners/manufacturing  process
planners/engineering students.

Check: the proposed measurement and optimisation methods can be used to
monitor the energy performance, analyse the factors which will affect the energy
consumption and audit the energy consumption for machining operation.

Act: the proposed improvement method can be used to review the existing
manufacturing process by identifying the potential savings and suggest the

improvement directions.

For five phases of six sigma tool DMAIC (Define, Measure, Analyse, Improve and
Control) or DMADYV (Define, Measure, Analyse, Design and Verify):

Define: general introduction of the proposed framework will clearly state and
specify the problem, and identify the solution process.

Measure: proposed energy performance measures methods can decide what
parameters/objectives need to be considered, what is the best way to measure the
objectives, what data need to be collected and how to carry out the
measurements (physical and numerical experiments).

Analyse: the introduced characterisation process can identify objective
performance (energy, cost, time, etc.) and determine how process parameters
affect objectives.

Improve/design: proposed optimisation method and energy-efficient strategies
can be used to reduce the energy consumption of existing manufacturing process

or develop a new energy-efficient process.

192



e Control/verify: the proposed framework can be wused as a tool to

control/assess/guide the manufacturing process.

7.4.4 Examples for Demonstrating the Framework

In this section, a test part has been presented to demonstrate the framework proposed
(see Figures 7.8). Energy consumptions for each feature can be firstly calculated by
using the tools (MATLAB or Excel file) introduced in section 7.4.1. The detailed
features of the test component, process parameters and energy consumptions are shown

in Tables 7.2.

J O
P
O O

Figure 7.8 Test Component

Table 7.2 Features, Process Parameters and Energy Consumption of Test

Component
Feature Material | Cutting | Spindle | Feed rate | ae | ap Energy | TME ER
removal tool speed | mm/tooth | mm | mm kJ kJ
mm3 rpm
Step: length | 128,000 | 16mm 2,000 0.02 8 1 4565.35 | 1.086 | 0.024%
100mm, end mill
width 20mm, 3 flutes
depth 20mm
Round holes: | 6,283.2 10mm 1,000 0.03 10 1 385.264 | 0.274 | 0.071%
4x¢$p10mm, end mill
depth 20m 2 flutes
Total Energy 4,950.614 | 1.36 | 0.027%
Consumption
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Then the improved results will be carried out by optimising process parameters based

on the

methods

introduced

conditions/constraints are:

in

e Feed rate per tooth: 0.01-0.1 mm/tooth

e Maximum spindle speed 4,000rpm

e Cutting speed no more than 400m/min

e Cutting force no more than 400N

Chapter 4.

The

specific

optimisation

The optimal process parameters and energy consumption are shown in Table 7.3.

Table 7.3 Optimal Process Parameters and Energy Consumption of Test

Component
Optimal Spindle | Feed rate | ae | ap | Optimal | Original | Energy New
Results speed mm/tooth | mm | mm | Energy | Energy | Reduction ER
rpm kJ kJ
Step 4,000 0.1 10 5 | 281.661 | 4,56535 | 93.830% | 0.385%
Holes ¢10 4,000 0.1 10 | 2.5 | 108.725 | 385.264 | 71.779% | 0.252%
Total 390.386 | 4,950.614 | 92.114% | 0.348%
energy

The result shows that up to 93.830% and 71.779% of reduction in energy for machining

step feature and ¢10 holes, and 92.114% of reduction in total energy consumption can

be achieved by implementing optimal process parameters. The energy efficiency can be

improved from 0.027% to 0.348%.

Further reduction in energy consumption can be achieved by implementing energy-

efficient cutting strategies. The comparison between conventional toolpath strategy

(CTS) and proposed energy-efficient toolpath strategy (PTS) has been shown in Table

7.4 for machining a step feature. The result shows that 15.955% of further reduction in

energy consumption can be achieved by implementing PTS. The energy efficiency can

be improved from 0.385% to 0.459%.

Table 7.4 Energy Reduction by using Energy-efficient Cutting Strategy

Strategy Feature Material Energy TME ER
removal kJ KkJ (TME/E)
mm’®
CTS Step: length 100mm, | 128,000 281.661 1.086 0.385%
PTS width 20mm, depth 151 56 236.720 0.459%
20mm
Energy reduction 15.955%
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In conclusion, the examples shown in this section explained how to implement the
proposed framework. Decision makers or shop floor practitioners can easily get the
optimal/energy-efficient solutions for real components even without a good knowledge
in machining or optimisation. The improved machining process can be achieved by

following the step below which is suggested in the proposed framework:

e Define/measure/predict the performance of machining process.
e Improve the performance measure through optimisation of process parameters.

¢ Further improvement by using new processes/operations/technologies.

However, according to the theoretical limits of machine tool capabilities, characteristics
of materials and dimension of features, the improvement for different
features/operations/materials will be different. These issues will bring new challenges
for the implementation of the proposed framework and need to be further investigated in

the future.
7.5 Summary and Discussion

In this chapter, a systematic framework for improving sustainability performance of
machining process has been proposed. The idea of such framework can be simply
modified by the users based on the understanding of the problem from previous sections.
The function of the developed framework is to enable people to set up the measures of
machining performance, and improve the performance by optimising process

parameters and implementing energy-efficient cutting strategies.

The elements of the framework were determined in section 7.3 according to the research
output in Chapter 3 to Chapter 6. The proposed framework can be used on its own as an
independent methodology in different formats to fulfil different requirement based on
the users' skills and habits such as checklist, manual, guideline and possible computer
implementation. Also it can be implemented as part of existing processes in industry,

such as PCDA cycle and six sigma.

The results of the framework can be applied in a number of examples as listed below:

e Applying the framework to academic education or professional training. The
developed scenarios can be applied to determine what parameters should be used
for machining and what problems should be solved. It can be achieved by
studying a machining/manufacturing course for undergraduate students and

practical apprentices. This is not only a sustainable application/improvements, it
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also has a social impact of educating next generation machining researchers,
practitioners and process planers.

e Applying the framework to existing workshop. The benefits can influence many
different fields. For example: for the suppliers to make quick decisions when
urgent orders come, for apprentices to learn how to choose process parameters,
for tool manufacturers to design the tool handbook, for process programmers to
decide optimal NC code, for practitioners to improve the performance by
developing manuals/application tables.

e Applying the framework to industrial manufacturing. Even if for proprietary
reasons, parts details cannot be shared, simple information (e.g. the volume
removed, material, the parameters used currently) can be used to determine more
optimum parameters or rather present a search space for the practitioners to
select from. However, the search space is not unstructured. It looks like a road
network that they can personally choose from with their decisions. It is also
possible to use the results as a push button at the machine level if the machine
tool operators can understand how to achieve the optimal results and take

responsibility for their decisions.

Finally, a test part was presented as examples to demonstrate the proposed framework.
The process clearly showed how to systematically implement the proposed framework
to reduce energy consumptions and improve energy efficiency via optimisation of

process parameters and implementation of energy-efficient machining strategy.
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CHAPTER 8: CONCLUSIONS AND FURTHER WORK

This chapter presents the main conclusions of the PhD project and recommendations for

future research and development.
8.1 Conclusions of the Project

This research presents a systematic method to measure and evaluate the energy usage
performance and reduction in energy consumption, for the manufacturing processes at

the unit process level and thus achieves a sustainable machining process.

A literature review was conducted in the scoping phase relating to the environmental
impact (energy consumption) of manufacturing operations and improvement methods in
the machining performance. Through this review of literature and industrial practices,

the requirements of current research contributions are identified in the following:

e Sustainability performance measures, which can be used to effectively identify
potential inefficiencies, recommend ways of improvement, and act as a bench-
mark against similar external operations.

e Improvement of sustainability by optimising existing processes, which takes
energy as an additional factor in the optimisation of machining processes and
technologies and overcome the multiplicity of the problems in current
optimisation methods.

e Improvement of sustainability by developing energy-efficient processes and

technologies that moves closer to the theoretical boundaries of energy efficiency.

According to the above requirements, the research questions of this project can be

defined as:

What methods can be applied to attain a sustainable manufacturing process by

improving the energy efficiency in the machining operation?

This research question can be further divided into several sub-questions which
correspond with the identified requirements of performance measures, optimisation of

process parameters and the development of energy-efficient strategies.

The research question of performance measures is:
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e What method can be used to measure and evaluate the performance of energy

consumed for the machining process?
The research questions of machining optimisation are:

e What methods can be used to optimise the energy consumption of machining
operations, based on a comprehensive understanding of how energy affects
machining optimisation as a factor in addition to the traditional factors of
cost, time and quality?

e Which method is the most suitable of the optimisation methods from the

available varieties of options?
The research question of development of energy-efficient machining strategy is:

e What methods can be used to reduce energy consumption for existing

machining methods by applying the energy-efficient strategies?

To answer the research question of performance measures, a set of energy prediction
models were developed to measure the energy usage during machining processes. New
energy efficiency metrics have been proposed which can accurately evaluate the energy
performance of machining operation and point out directions of improvement. The
results show that energy consumption in machining operations can be improved by
optimising the use of existing processes and by designing new processes and

technologies.
To answer the research questions of machining optimisation:

e Characteristics of machining operations along with energy considerations were
investigated by using graphical multivariate data analysis techniques.

e A direct search method was used as an experimental rig to investigate the
reasoning behind the results obtained in applying Taguchi methods, Genetic
algorithm (GA) and Ant Colony Optimisation method (ACO), and to conduct
the optimisation procedure. The results have shown that energy consumption
decreases constantly as process parameters increase, and up to 75% in energy
consumption can be reduced without conflicting with cost and time with the
constraints of cutting force, spindle speed and surface roughness. The
optimisation process enables practitioners to have more confidence in the
optimal results.
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e A scientific framework for solving machining optimisation problems has been
proposed based on the characterisation of the machining operation. The
proposed framework can be modified by users, based on the understanding of
the machining optimisation problems, to solve both single-objective and multi-
objective cases. The function of the developed framework is to enable people to
set right the machining optimisation problem, identify possible optimisation
algorithms and achieve an optimal manufacturing process based on their

requirements.

To answer the research question of energy-efficient strategies: an energy-efficient
profiling toolpath strategy was developed to improve energy efficiency for 2'/2D milled
features. It was found that further reduction in energy consumption could be achieved
compared to conventional cutting strategies. Implementing conditions for different

feature type and dimensions was discussed.

Finally, a systematic optimisation framework has been proposed, which can be
implemented as an independent methodology in different formats to fulfil differing
requirements (e.g. computer implementation) or as part of existing process
improvement methods in industry. Decision makers or shop floor practitioners can
obtain sustainable solutions for real components even without good knowledge or

experience in machining optimisation.

The main achievements of this research are concluded below together with their relation

to the initial objectives; this provides the answers for the research questions:

(1) Objective 1: To identify the gap in current research contributions by conducting a
comprehensive literature review on the topic of energy-efficient design and

manufacturing to investigate the current research achievements and problems.
Corresponding achievements:

e A comprehensive literature review of current research contributions in the field
of sustainable manufacturing, energy efficient design and manufacturing and
machining optimisation. The gaps of current research have been clearly
identified.

e Research questions formulated based on the issues identified from the literature

review.
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(2) Objective 2: The development of energy prediction models and energy efficient
metrics which can be used to measure and evaluate energy consumption of machining

process.
Corresponding achievements:

e A set of energy prediction models have been developed based on the accepted
machining science to measure the energy usage during machining processes.
Experimental verifications of developed models showed that up to 95% of
accuracy can be achieved by using developed prediction models.

e New energy efficiency metrics have been proposed to uncover the inherent
inefficiency of machining process and identify the gap between theoretical

limitation and existing machining process.

(3) Objective 3: The characterisation of machining operation with energy considerations
will be investigated to provide a comprehensive understanding of the machining
operation and uncover the interaction of different variables. Corresponding

achievements:

e The nature of machining optimisation was investigated by introducing the basic
concept of search space, variables, objectives and constraints.

e The characterisation of energy consumption showed that energy consumption of
machining operations decreases monotonically with the increase of process
parameters. In addition, energy is non-conflicting with the cost and time, but
conflicting with surface roughness, power requirement, tool life and cutting
force.

e Based on the characteristics, the criteria of machining optimisation can be

divided into two major categories: conflicting and non-conflicting.

(4) Objective 4: The development of a numerical experimentation rig to investigate the
reasoning behind the results obtained in applying typical optimisation methods.
Optimisation procedures will be carried out to determine the optimal process parameters

with energy considerations.

Corresponding achievements:

e A direct search method was used as an experimentation rig to investigate the

reasoning behind the results obtained in applying typical optimisation methods.
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The basic principles of Taguchi method, GA and ACO have been demonstrated
by graphically displaying the procedures of how these optimisation methods
operate to achieve the optimal results.

The optimisation was conducted for milling Aluminium 7075-T6 (by using Haas
TM 1CE Vertical milling machine, maximum spindle speed 4,000rpm and
10mm 3 flutes carbide end mill)and the optimisation result with the constraints
of spindle speed (4,000 rpm), cutting force (400N) and surface roughness
(0.05mm) showed that up to 75% of improvement of energy, cost and time can
be achieved by using optimal process parameters (depth of cut, width of cut,
spindle speed and feed rate) compared to cutting tool manufacturer's
recommendation. The optimisation process enables practitioners to have more
confidence in their results.

The implementation of achieved optimal process parameters for the case study
shows that over 220% of improvement of energy efficiency (6.965% to 22.513%)
for the process, and up to 22% reduction in inefficient energy consumption can

be achieved for machining operation.

Objective 5: Development of a scenario-based framework to solve machining

optimisation problems especially when multiple objectives need to be considered.

Corresponding achievements:

A scientific framework for solving machining optimisation problems has been
proposed based on the characterisation of machining operation. The proposed
framework provides a generic and systematic methodology for decision makers
to better understand machining processes and address recent challenges from
sustainable requirements.

The problem scenarios were built based on the characteristics of optimisation
objectives and differing user requirements. These multiple objectives can be
divided into two categories: non-conflicting and conflicting category. Non-
conflicting multi-objective problems can be converted to a single-objective
situation which has a unique solution, and conflicting multi-objective problems
can be converted to a set of conflicting bi-objective cases which can be
presented as a single Pareto front.

According to the analysis of optimal results, the solutions for machining

optimisation were also built. The optimal solutions can be classified into three
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solution scenarios which are descriptive scenario (for zero-objective scenario),
unique solution scenario (for single-objective scenario and non-conflicting
category of multi-objective scenario) and Pareto front scenario (for conflicting

category of multi-objective scenario).

Objective 6: An energy efficient machining strategy, which is beyond optimisation of

process parameters, will be proposed to further improve energy efficiency for 2!/2D

milled features.

Corresponding achievements:

An energy efficient profiling toolpath strategy has been proposed which can
further reduce the energy consumption and improve energy efficiency for
machining process. Compared to the optimisation of existing process, new
energy-efficient strategies can further reduce the gap between theoretical
limitation and practical consumptions.

Implementing conditions for different feature types and dimensions have also

been discussed.

Objective 7: A comprehensive framework which integrates the above research findings

will be developed for decision makers to improve sustainability performance of their

manufacturing process.

Corresponding achievements:

A systematic framework for improving sustainability performance of machining
process has been proposed based on the research output in pervious chapters.
The function of the developed framework is to enable people to set up the
measures of machining performance, and improve the performance by
optimising process parameters and implementing energy-efficient cutting
strategies.

Different forms (e.g. MATLAB GUI and Excel) have been introduced to
implement the developed methodology. Decision makers can select the most
suitable form (e.g. checklist, manual, guideline and possible computer
implementation) based on their skills and habits. Also it can be implemented as

part of existing processes in industry, such as PCDA cycle and six sigma.
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e A test part was presented as examples to demonstrate the proposed framework.
The process clearly showed how to systematically implement the proposed

framework to reduce energy consumptions and improve energy efficiency.
8.2 Limitations and Further Work

Although the proposed methodology provides a reliable tool to measure and evaluate
energy usage performance and minimise energy consumption and improve energy
efficiency for machining operation, there are still some identifiable limitations existing

which need to be improved in further work.

8.2.1 Scope and Limitations of the Thesis

The scope and limitations of this thesis are listed as below:

Firstly, the mathematical models applied in this research originated from commonly
accepted machining science text books (e.g. Tlusty, 2000). Due to the complexity of
experiment and verification, not all of the process parameters were considered in the
modelling process. In this case, the accuracy of the models may not be as high as shown
in detailed machining science metrics. In addition, because of the limitations of
measuring instruments and equipment, some models (e.g. tool life and surface
roughness) have come from existing research publications. Therefore, the results
obtained from these models may not be as accurate as verified primary models.
Meanwhile, not all of the objectives during machining operation are considered, such as

chatter, temperature and noise.

Secondly, the profiling toolpath strategy proposed is more like a cutting strategy than a
toolpath strategy. This research did not consider the impact of different toolpath
strategies (e.g. the orientation of toolpath). The current toolpath generated by CAM
software contains a lot of redundant motions which causes lots of unnecessary energy

consumptions.

Thirdly, only 2'/2D milled feature were considered in this thesis. Other milled features

and operations are not considered in this research.

Fourthly, current research only focuses on the unit process level. However, to
successfully implement the concepts of sustainability and developed technology in
sustainable manufacturing, it is necessary to extend research to other high level

perspectives, such as workstation level, factory level, enterprise level and global level.
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Finally, the research contributions in this thesis only considered machining operations
which is only one phase of manufacturing process. It is also necessary to consider other

phases of product life cycle, such as product design and development.

8.2.2 Suggestions for Further Work

To address the limitations of this research mentioned in section 8.2.1, the suggestions

for further work are listed as below:

Firstly, more investigations and experiments need to be carried out to measure and
characterise the sustainability performance of different materials, machine tools and
machining operations. More advanced models will be developed to improve the

accuracy and generality of the prediction models.

Secondly, the energy efficiency for different type of toolpath needs to be investigated to
further reduce the energy consumption and improve energy efficiency. Thus provide a

theoretical foundation to improve the toolpath generation functions for CAM software.

Thirdly, to implement the result in common machining process, different feature
type/machining operation types need to be investigated, such as 3D freeform features,
and turning and drilling operation. In addition, multiple feature cases which combine
multiple machining operations also need to be considered, such as turning, drilling,
rough machining and finishing, to fulfil the requirements of practical manufacturing.
The investigation of energy efficiency can be further extended to investigate the energy
requirements and energy efficiency for different manufacturing technologies (e.g.
casting, rolling and 3D printing). It can provide a more comprehensive comparison of
the energy efficiency for achieving a feature/product by using different manufacturing

technologies methods (e.g. conventional techniques or advanced methods).

Fourthly, to better improve the sustainability for manufacturing process, the research
area should be extended to the higher levels, such as manufacturing system level, or
factory/enterprise level. More aspects of sustainability should be considered (e.g. safety

issues, profit issues) to achieve a comprehensive sustainable manufacturing process.

Fifthly, the research contributions of this project should be delivered into proper form
which can be easily implemented in the academic and practical area for different levels

of users. The possible delivery forms include:
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e Embed result into a module and integrate into new generation energy-efficient
machining tools.

e Integrate the result as a mobile/tablet/computer application which can be easily
used by practitioners.

e Paper printed tabular catalogue/handbook/guidance.

e Formulate result as a systematic energy labelling system for machining

operation/manufacturing process.

Finally, the current research contributions can be extended to other stages in the product
life cycle (e.g. product design and development stage). The typical area includes

product design and material selection.

¢ In design stage, the research contributions in sustainability performance (such as
energy consumption and energy efficiency) based on different dimensions and
types of feature can be used by product designers to analyse and evaluate the
sustainability of the current design of product. The research contributions in
manufacturing process improvement (including: process parameters
optimisation and sustainable manufacturing strategies) can also provide a
direction of improvement for product designers to improve their designs.

e In material selection stage, the research contributions in characterisation of
workpiece materials can provide a reference for designers to understand the
sustainability properties of materials, such as specific energy consumption,
specific cost, specific time, power, and quality (surface roughness). So the

designers can choose the suitable materials for their designs.
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APPENDIX I: Additional Data of Energy Consumption

Electricity consumption, 1980 to 2012
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1980 1990 2000 2010 2011 2012
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Energy industries 85 100 9.7 8.3 7.7 7.4
Total 261.6 2844 340.3 3375 325.9 3254

Figure Al.1 UK Electricity Consumption, 1980 to 2012 (UK Department of Energy
& Climate Change, 2013)

Electricity supplied by fuel type, 2011 and 2012
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Figure AL.2 UK Electricity Supplied by Fuel Type, 2011 and 2012 (UK Department
of Energy & Climate Change, 2013)
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Fuel price indices for the domestic sector, 1980 to 2012
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Figure AlL.3 UK Fuel Prices, 1980 to 2012 (UK Department of Energy & Climate
Change, 2013)

Table AL.1: Energy Consumption of Industry and Manufacturing in China
(2002-2011)

Year Industry Manufacturing
2002 102181.18 79532.95
2003 119626.63 93163.87
2004 143244.02 115261.44
2005 158058.37 127683.89
2006 175136.64 143051.47
2007 190167.29 156218.8
2008 209302.15 172106.52
2009 219197.16 180595.97
2010 231101.82 188497.25
2011 246440.96 200403.37

Unit: 10,000 tons of SCE (standard coal equivalent 1kg sce=30,000kJ)
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Figure Al.4 Electricity Supplied by Fuel Type in China 2010, (National Bureau of
Statistics of China, 2010)
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APPENDIX II: Research Groups in Sustainable Manufacturing

Laboratory for Manufacturing and Sustainability (LMAS), http://Ima.berkeley.edu/

Centre for Sustainable Manufacturing and Recycling Technologies, SMART,
http://www.centreforsmart.co.uk/

Joint German-Australian Research Group, http://www.sustainable-manufacturing.com/

The Institute for Sustainable Manufacturing, http://www.ism.uky.edu/
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APPENDIX III: Tabular Implementation of Proposed Framework

The example below shows a tabular implementation of proposed sustainability
improvement framework. The tables can be generated from the Excel spreadsheet

presented in section 7.4.1.

Table AIIL.1 shows feasible results of specific energy consumption with the constraints
of cutting force (Ft < 400N, shown in Table AIIL.2), cutting speed (75m/min < V¢ <
120m/min, shown in Table AIIl.3) and surface roughness (Ra < 12.5um, shown in
Table Alll.4). The red region in the tables shows the result of the objective and
constraints are not feasible. The green region in the tables shows the feasible results
after constrained. Then, practitioners can select the optimal results from the feasible

results.

Table AIII.1 Feasible Results of Specific Energy Consumption with

Constraints of Cutting Force, Cutting Speed and Surface Roughness

n(rpm)/
fz(mm/tooth)

Table AIIL.2: Constraint of Cutting Force (Ft < 400N)

n(rpm)/
fz(mm/tooth)
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Table AIIL.3 Constraint of Cutting Speed (75Sm/min < Vc < 120m/min)

n(rpm)/
fz(mm/tooth)

Table AIIL.4 Constant of Surface Roughness (Ra < 12.5pm)

n(rpm)/
fz(mm/tooth)
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APPENDIX IV: Characterisation of Energy Consumption for
Different Cutting Tools

The results below show the characterisation of energy consumption for different cutting

tools.

Table AIV.1 shows the energy consumption with the constant cutting process
parameters ap, ae, fz and n. The result can also been graphically presented in Figure
AIV.1. The result shows that the energy consumption of machining operation
monotonically reduces with the increase of the diameters of the cutting tools and
number of flutes. This characteristic of energy consumption is the same as the
characteristic identified in Chapter 3 with the consideration of other process parameters
(such as, depth of cut, width of cut, spindle speed and feed rate per tooth). It means for
machining a same amount of material, using larger, more flutes cutting tools is more

energy efficient.

Table AIV.1: Specific Energy Consumption for Different Cutting Tools

(Constant Process Parameters)

8 7.5822 6.0261 5.3175
10 7.4542 5.8722 5.1419
16 7.2341 5.6074 4.8400
20 7.1493 5.5053 4.7236
d/z 2 3 4

8
e = §
7.5 = =d=10
d=18
7 N d=20

I\ N
A\

SpecificEnergy Consumption, klfcc

4.5

Number of Cutting Flutes
Figure AIV.1 Specific Energy Consumption for Different Cutting Tools (Constant

Process Parameters)
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The result is Table AIV.2 and Figure AIV.2 shows the energy consumption of the
slotting operation by using different tools with the constant ap, fz and n. The result can
further identify more reduction in energy consumption for using larger diameter and

more flutes cutting tools.

Table AIV.2: Specific Energy Consumption for Different Cutting Tools
(Slotting Operation with Constant ap, fz and n)

8 5.5583 4.6569 4.2731
10 4.7576 4.0489 3.7521
16 3.5323 3.1076 2.9374
20 3.1142 2.7822 2.6524
d/z 2 3 4

6
ot |=3

N :
LN .
\ ‘\.

o—a

Specific Energy Consumption, klfcc
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—
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2 T T 1
2 3 4

Number of Cutting Flutes

Figure AIV.2 Specific Energy Consumption for Different Cutting Tools (Slotting
Operation with the Constant ap, fz and n)
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APPENDIX V: Additional Figures of Plot Matrix (Figure 4.1)
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