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Sustainability of manufacturing  

Sustainability issues related to manufacturing process, including: economic, 
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Sustainability performance 

Overall sustainability performance for manufacturing process, including: economic 

performance such as cost, time and quality, environmental performance such as energy 

consumption, impact of cutting fluid and material waste, and social performance such as 
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Sustainability considerations 

In this thesis, sustainability considerations means the manufacturing processes that 
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Sustainable manufacturing process 

In this thesis, sustainable manufacturing process refers to the manufacturing process 

with sustainability considerations.  

Sustainable machining 

In this thesis, sustainable machining means the machining process with the 
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consumption, cutting force, power and tool life. 

Sustainability improvement 
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ABSTRACT 

At present, sustainable manufacturing process has been widely demanded by 

manufacturing industry to address the financial pressure from increasing energy price 

and the political pressure from legislation on reduction of environmental impact. The 

motivation of this research is to reduce the environmental impact caused by high energy 

demand and consumption on the manufacturing process. 

This research addresses important issues related to the environmental impact of 

manufacturing operations. Through a review of literature and industrial practices, the 

following requirements have been identified: (i) Sustainability performance measures 

which can be used to effectively identify potential inefficiency, and recommend ways of 

improvement; (ii) Optimisation of existing manufacturing process which take energy as 

an additional factor in the optimisation of machining processes; and (iii) Development 

of new machining processes and technologies that move closer to the theoretical 

boundaries of energy efficiency.  

To address the above requirements, this project developed a set of energy prediction 

models and energy efficiency metrics to measure the energy usage during machining 

processes. The results show that energy consumption in machining 21/2D milled features 

can be improved by optimising the use of existing machining processes and by 

designing new machining processes and technologies.  

The characteristics of machining operations with energy considerations have been 

investigated using graphical multivariate data analysis techniques. A direct search 

method was used to conduct the optimisation procedure. This study showed that energy 

consumption decreases monotonically as process parameters (depth of cut, width of cut, 

spindle speed and feed rate) increase, and can be minimised up to 75% for machining 

Aluminium 7075-T6 by using Haas TM 1CE Vertical milling machine (maximum 

spindle speed 4,000rpm) without conflicting with cost and time under the constraints of 

spindle speed, cutting force and surface roughness.  

Typical optimisation methods have been found which can give similar results, and 

methods of opening up the reasoning process have been identified which enable 

practitioners to have more confidence in their results. An optimisation method has been 

proposed and tested for selecting optimal process parameters for a typical CNC milling 
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operation resulting in the reduction of energy consumption. A scenario-based method 

has been developed to provide a comprehensive solution for decision makers to solve 

machining optimisation problems with sustainability considerations.  

An energy-efficient profiling toolpath strategy has also been developed to improve 

energy efficiency for 21/2D milled features. It was found that further reduction in energy 

consumption could be achieved compared to conventional cutting strategies.  

Finally, the developed methodologies can be integrated as a comprehensive framework 

into existing machining process improvement procedures to help process planners and 

manufacturing practitioners to improve the sustainability of manufacturing processes.
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CHAPTER 1: INTRODUCTION 

This chapter aims to introduce the research field of this thesis. It will firstly describe the 

background and motivation that prompted this research, including the challenges and 

requirements of environmental impact to be faced in the manufacturing domain. A 

summarised review of current sustainable manufacturing research will be analysed to 

define the research questions. Based on the research questions, the research aim and 

objectives will be set to further explain the tasks of this thesis and to identify the scope 

and potential contributions which could be made by this research. The research 

methodology will then be discussed to explain the plan on how to answer the research 

questions. Finally, the structure of this thesis will be outlined. 

1.1 Motivation: Energy Issues in Manufacturing Industry 

The motivation of this research is to reduce the environmental impact caused by high 

energy demand and consumption on the manufacturing process. 

Manufacturing is playing an extremely important role in national economic 

development. The rapid development of manufacturing demands a large amount of 

energy and resources which placed huge environmental and economic burden. Energy 

consumption was selected to be the investigation objective because of the increasing 

demand of energy and the greenhouse gas emissions. From manufacturing enterprises' 

point of view, large energy consumption will also cause extra economic burden. 

The earliest research relating to the limitations of natural resources can be traced back to 

the 1970s, when Meadows et al. (1972) published a report named "The Limits to 

Growth". In this report, the Club of Rome predicted that natural resources are going to 

run low due to the exponential increase of the world's population. According to the 

research of the International Energy Agency (2009), the total energy demand in 2030 

will increase to 19,000 million tonnes of oil equivalent (Mtoe), which is 270% more 

than the energy demand in 1980 (7,000 Mtoe), and 80% of energy will be generated 

from non-renewable fossil fuels (see Figure 1.1). The impact of this high energy 

demand is not sustainable due to environmental reasons (such as climate change, carbon 

dioxide emission), economic reasons (such as increasing energy prices) and social 

awareness. The increase in energy consumption and energy prices has become a global 

problem for both developed and developing countries which is still not being properly 

solved.  
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Figure 1.1 World Primary Energy Demand by Fuel (IEA, 2009) 

For developed countries, such as the United Kingdom (UK), although the total amount 

of electricity consumption has not significantly changed in the last decade, energy 

prices have risen rapidly. Compared to 2002, industrial coal and gas, which are the 

major electricity generation fuels, increased prices in 2012 by 54% and 122% 

respectively. In 2012, electricity prices were 94% higher than in 2002. Since 2001, the 

UK government started to charge Climate Change Levy (CCL) and the rate started to 

rise annually in line with inflation from 2007 (UK Department of Energy & Climate 

Change, 2013). This rise in industrial electricity prices also happened in other EU15 and 

G7 countries, such as Japan and Germany (shown in Figure 1.2, additional data can be 

found in the Appendix). 

 

Figure 1.2 Industrial Energy Price for Developed Countries (UK Department of 

Energy & Climate Change, 2013) 
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For developing countries, such as China, who are playing the role of the  “Workshop of 

the world”, the energy consumption for industry and manufacturing accounts for over 

70% of total energy consumption and has increased rapidly and continuously in the past 

decade. The energy consumption of industry increased 140% in 2011 compared to 2002 

(see Figure 1.3). 

Meanwhile, the increase in energy consumption is not the only problem experienced in 

developing countries, the electricity supplied in developing countries is much worse in 

fuel type and energy use efficiency than those in developed countries, so more damage 

will be created in the global environment. The composition of energy production in 

China in 2010 showed that over 90% of energy was generated from non-renewable 

natural sources. In addition, electricity generation efficiency was only 42.43%. This 

inevitably will cause the problem that the carbon intensity of electricity production in 

China is much higher than developed countries (see Figure 1.4). 

 

 

Figure 1.3 Energy consumption of industry and manufacturing in China, 2002 to 

2011 (National Bureau of Statistics of China, 2011) 
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Unit: gCO2/kWh of electricity or 0.001 MTon/MWh 

Figure 1.4 Carbon intensity of electricity production (Dornfeld, 2010) 

These issues, focussed on energy consumption in manufacturing industry, provide 

motivations for conducting this research, specifically looking at developing 

methodologies, technologies, knowledge and tools to evaluate and improve the 

sustainability performance of manufacturing processes. 

1.2 Activities and Issues in Energy-efficient Manufacturing 

Traditionally, manufacturing organisations have attempted to produce products of 

higher quality at lower cost in shorter time scales. The increasing pressures from 

environmental considerations and cost of energy bring the new requirements and 

challenges for companies seeking new operating strategies to remain competitive and 

create more profit. 

As part of the field of environmentally-friendly management, the minimisation of 

energy consumption in manufacturing applications is a complex research subject 

covering a wide range of manufacturing activities. In terms of the product life cycle, 

environmental impact can be reduced across the whole product life cycle at the stages of 

product design, manufacturing, distribution/logistics, product use and product end of 

life. In addition, from the perspective of the organisation of the system, environmental 

impact can be considered at multiple levels, such as factory, department, production 

line, work cell, machine tool, discrete part, manufacturing feature and unit 

operation/process level (Duflou et al., 2012, Deshpande et al. 2011a, 2011b). 
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A lot of research has already been conducted to address the problem of energy 

consumption at different levels of an organisation by many research groups such as the 

Laboratory for Manufacturing and Sustainability (UC Berkeley, US), the Centre for 

Sustainable Manufacturing and Recycling Technologies (Loughborough University, 

UK), the Joint German-Australian Research Group (TU Braunschweig, Germany, 

University of New South Wales, Australia) and the Institute for Sustainable 

Manufacturing (University of Kentucky, US). From their work, three issues have been 

identified as part of a grand challenge for energy-efficient manufacturing: 

 The development of performance measures for sustainable manufacturing; 

 The improvement of performance in sustainable manufacturing through the 

optimisation of existing processes and technologies; and  

 The improvement of performance in sustainable manufacturing through the 

development of new processes and technologies. 

1.2.1 Research Activities and Issues Relating to Performance Measures for 

Sustainable Manufacturing 

The aim of the research described in section 1.2.1 is to develop prediction models to 

evaluate the energy performance of manufacturing processes. Although some energy 

audit models and energy-efficient metric have been proposed to help measure and 

evaluate the energy usage, these models and metrics still have some identifiable 

limitations. 

Firstly, most of the models proposed are empirical models which lack scientific 

explanations. Some are too simple and not informative enough and relate only to the 

material removal rate (e.g. Gutowski et al., 2006), these models cannot be widely 

applied in other machining systems. 

Secondly, most of the proposed informative models are for turning operations only (e.g. 

Rajemi et al, 2010). It is difficult to find a reliable model to calculate the energy 

consumption for milled or freeform features. 

Thirdly, the definition of energy efficiency has problems and can cause bias. According 

to the existing energy efficiency definition, some advanced machine tools have worse 

energy efficiency than manual machines because auxiliary functions cost more energy 

(Kordonowy, 2001). In addition, even if auxiliary energy consumption can be reduced 
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to zero and all of the energy is consumed by machining operations. This does not mean 

that the efficiency is 100%. 

1.2.2 Research Activities and Issues Relating to the Improvement of Performance 

in Sustainable Manufacturing through Optimisation of Existing Machining 

Processes and Technology 

Environmental challenges, such as energy considerations, provide new challenges in 

applying the results of optimisation and process planning research. However, as 

identified by Roy et al. (2008), most academic optimisation results have not been used 

by industry because practitioners mostly prefer to select optimal parameters based on 

expert experience. The reasoning behind practices on optimisation is not clear and needs 

to be uncovered.  

In addition, there are also some issues in the multi-objective optimisation results. Most 

of the multi-objective machining optimisation research into energy considerations 

reviewed only used priori techniques which will combine the objectives together based 

on decision makers' preferences (e.g. Sheng and Srinivasan, 1995). The optimal results 

achieved by using these methods are a unique optimal plan, but not a set of feasible 

solutions. It is, therefore, necessary to investigate the optimal solutions of multi-

objective machining optimisation with energy considerations by using posteriori 

techniques.     

In this context, it is important to develop a comprehensive method to achieve a 

sustainable manufacturing process by selecting optimal process parameters. 

1.2.3 Research Activities and Issues relating to the Improvement of Performance in 

Sustainable Manufacturing through Development of New Machining Processes 

and Technologies 

Instead of the improvement of current manufacturing processes, the aim of develop new 

energy-efficient machining strategies is to develop new concepts and machining 

strategies to minimise energy consumption for the machining operation. However, these 

strategies also have limitations and currently are still not able to replace conventional 

strategies. For example, most of these research contributions are related to the coolant 

strategies or using different cutting tools (e.g. Campatelli, 2009, Klocke et al., 2014 and 

Blau et al., 2014). Although these research contributions can reduce the energy 

consumptions, the inherent inefficiency of existing machining processes which is 
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caused by the cutting technology, is still not properly solved. In this case, it is really 

important to develop a new energy-efficient strategy to further minimise the energy 

consumption and improve the energy efficiency of the existing cutting process. A new 

proposed energy-efficient strategy should also give direction to the research of new 

technologies for tool design, toolpath strategy and machining technology. 

1.2.4 Summary of Research Activities in Sustainable Manufacturing 

The summary of major researchers, and their research activities and contributions in 

sustainable manufacturing are listed in Table 1.1, and the details will be explained in the 

Chapter 2 Literature Review.  

Table 1.1 Research Contributions in Sustainable Manufacturing 

Major 
Researchers 

Research Activities in Sustainable 
Manufacturing 

Key Research 
Contributions 

Sustainability 
Measures 

Machining 
Optimisation 

New 
Strategies 

Dornfeld et al.    Energy prediction and 
energy-efficient toolpath 
strategy 

Rahimifard et 
al. 

   Measures of energy 
consumption and energy 
efficiency 

Jawahir et al.    Machining optimisation 
and sustainable machining 
strategies 

Rajemi and 
Mativenga 

   Energy prediction and 
minimisation by selecting 
optimal process parameters

Gutowski et 
al. 

   Measures of energy 
consumption 

Sheng et al.    Measures of overall 
sustainability performance 
and development of new 
process planning methods 

Kara et al.    Energy prediction 

Herrmann et 
al. 

   Measures of energy 
consumption and energy 
efficiency 

Newman et al.    Measures of energy 
consumptions and process 
improvement 

Avram et al.    Multi-criteria decision 
making method for 
sustainability improvement 

Pusavec et al.    New lubricant system 

Mori et al.    Energy minimisation  

Blau et al.    New lubricant system 

Klocke et al.    New coolant strategy 

This Project     
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1.3 Research Questions 

This research is an attempt to answer the following main research questions:   

What methods can be applied to obtain a sustainable manufacturing process by 

improving the energy efficiency in the machining operation? 

The main research questions can be further divided into three aspects which correspond 

with the identified issues in section 1.2.  

The research question of section 1.2.1 is: 

 What method should be used to measure and evaluate the performance of 

energy use for the machining process? 

The research questions of section 1.2.2 are:  

 What method should be used to optimise the energy consumption of 

machining operations based on a comprehensive understanding of how energy 

affects machining optimisation as an additional factor to traditional factors of 

cost, time and quality? 

 Which method is the most suitable optimisation method from varieties of 

options? 

The research question of section 1.2.3 is: 

 What method should be used to reduce energy consumption for existing 

machining methods through applying energy-efficient strategies? 

 

 

1.4 Aim and Objectives 

Based on the formulated research questions, the aim and objectives of this research can 

be clearly set as below. 

The aim of this research is to provide systematic methods and tools to measure and 

evaluate the energy use performance, and reduce the energy consumption for 

machining operations thus to achieve sustainable manufacturing processes. 



` 

9 
 

The objectives of this research include: 

 To identify the gap in current research contributions by conducting a 

comprehensive literature review on the topic of energy-efficient design and 

manufacturing to investigate the current research achievements and problems. 

 The development of energy prediction models and energy efficient metrics 

which can be used to measure and evaluate energy consumption of machining 

process. 

 The characterisation of machining operation with energy considerations will be 

investigated to provide a comprehensive understanding of the machining 

operation and uncover the interaction of different variables.  

 The development of a numerical experimentation rig to investigate the reasoning 

behind the results obtained in applying typical optimisation methods. 

Optimisation procedures will be carried out to determine the optimal process 

parameters with energy considerations. 

 Development of a scenario-based framework to solve machining optimisation 

problems especially when multiple objectives need to be considered.  

 An energy efficient machining strategy, which is carried out based on 

optimisation of process parameters, will be proposed to further improve energy 

efficiency for 21/2D milled features.  

 A comprehensive framework which integrates the above research findings will 

be developed for decision makers to improve sustainability performance of their 

manufacturing process.  

1.5 Research Scope 

The research scope of this thesis can be determined and presented in Figure 1.5. The 

detail of research scope is explained as below: 

 Firstly, only unit process level energy which is the energy consumed during the 

machining process was considered in this thesis. The machining type only refers 

to conventional machining process. Other shape/feature forming methods like 

net shape manufacturing and 3D printing were not considered.  
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 Secondly, only 21/2D milled features were considered in this research. But 

principles and developed research methodology can be extended to other 

features, workpiece material and machining operations. 

 Thirdly, only optimisation is considered not multi-criteria decision making. The 

output of this research such as the characterisation of the machining operation 

and analysis of objectives will not directly give any decisions when multiple 

objectives need to be considered. But the output can be used as the suggestion 

and basis of understanding to help users to make the decision. 
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Figure 1.5 Research Scope of this Thesis 

1.6 Research Methodology 

The aim of this section is to design a scientific research methodology for carrying out 

the research based on the characteristic of the project. According to the nature of this 

research, which is exploratory and explanatory research including quantitative and 

qualitative analysis, a three-phase research methodology has been developed. Figure 1.6 

shows the model used for the research methodology. 
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Figure 1.6 Developed Process of Research Methodology 

Based on the developed steps in Figure 1.6, the methods of how the research questions 

will be answered can be presented. According to issues identified from literature review, 

the research can be divided into three stages. The following output will be delivered for 

each stage:  

 Stage 1 Performance measures: new metrics for measuring energy consumption 

and energy efficiency. 

 Stage 2 Optimisation of existing processes and technology: a comprehensive 

framework for selecting optimal process parameters with energy considerations. 
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 Stage 3 development of new processes and technology: new energy-efficient 

machining strategy (a profiling toolpath strategy) was proposed based on end 

milling operation 

The result of Stage 1 will be implemented to carry out the result in Stage 2, and the 

result achieved in Stage 2 will be the foundation of stage 3. The design of the thesis is 

listed as below: 

Stage 1: Performance measures  

The aim of this stage is to develop a reliable method to measure and predict the energy 

consumption performance of the machining operation system. The specific tasks include: 

mathematical modelling, design of energy efficiency metrics and experimental 

verification. 

The metrics for measuring energy consumption and efficiency will be built based on 

existing machining science theories.  

Physical experiments will be conducted to collect data (power consumption and cutting 

force) by using developed force and power measurement system on a CNC milling 

machine. The collected data will be used to determine cutting force coefficient, and then 

validate mathematical models. The developed prediction model and energy efficiency 

metrics will be used to conduct the following stages. 

Stage 2: Improvement of performance in sustainable manufacturing through 

optimisation of existing processes and technology 

The aim of this stage is to develop a comprehensive framework for selecting optimal 

process parameters with energy considerations. The specific tasks include: 

characterisation of machining operation by considering energy as an additional factor to 

the conventional criteria, investigate optimisation algorithms and provide an optimal 

solution for minimising energy consumption, develop solution scenarios for solving 

multiple-objective cases and design the optimisation framework. 

Numerical experiments will be conducted by using MATLAB simulation based on the 

verified mathematical models to collect more data for carrying out the analysis. 

Multivariate data analysis techniques such as contour plot, plot matrix and tabular 

method will be used to analyse the data. 
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Typical machining optimisation methods (such as Taguchi method, Genetic Algorithm, 

Direct Search method and Ant Colony method) will be investigated and applied to 

conduct the optimisation procedures. 

Stage 3: Improvement of performance in sustainable manufacturing through 

development of new processes and technology 

The aim of this stage is to develop an energy-efficient machining strategy which can 

further reduce the energy consumption for machining operation. The specific tasks 

include: propose the new strategy, discuss implementing conditions (feature type and 

dimension) and carry out case study to show the improvement. 

A profiling toolpath strategy will be proposed to get close to the theoretical limitation in 

energy consumption for achieving a feature.  

1.7 Structure of Thesis 

Chapter 2 - Literature Review: This chapter describes the relevant existing published 

research works in the research area of sustainable development, sustainable 

manufacturing and energy-efficient machining technologies and strategies. 

Chapter 3 - Development of Predictive Models and Energy Efficiency Metrics for 

Machining Operation and the Experimental Verification: In this chapter, an energy 

prediction model will be built based on cutting force model. Experiments will be 

conducted to determine the coefficients and verify the energy prediction model. New 

energy efficiency metrics will be proposed to measure the energy use performance and 

identify the inefficiency of machining operation. Case studies for machining a particular 

feature will be carried out to discuss the results obtained by using the new proposed 

metrics.  

Chapter 4 - Energy Characterisation and Minimisation by Selecting Optimal Process 

Parameters: In this chapter, energy consumption of machining operation will be 

characterised and investigated. A systematic research methodology will be proposed for 

uncovering the reasons behind results obtained when energy is considered in machining 

optimisation. An optimisation procedure will be conducted to show the improvement of 

energy consumption and energy efficiency by implementing optimal process parameters. 

Chapter 5 - Multiple Objectives Optimisation for Sustainable Machining: In this chapter, 

a multiple objective optimisation method will be introduced as part of optimisation 



` 

15 
 

framework for machining optimisation by developing a problem-solution scenarios 

system.  

Chapter 6 - Energy-efficient Cutting Strategy - A Profiling Toolpath Strategy for End 

Milling Operation: In this chapter, an energy-efficient profiling toolpath strategy will be 

proposed for forming 21/2D milled feature which can further reduce the energy 

consumption and improve the energy efficiency for machining process. Implementing 

conditions of different feature shapes will also be discussed. 

Chapter 7 - Development of Framework for Machining Optimisation with Sustainability 

Consideration: In this chapter, a comprehensive framework which integrates the 

research findings in the previous chapters will be introduced to provide a systematic 

tool for decision makers to improve sustainability performance of their manufacturing 

process. Case studies will also be carried out to demonstrate how the proposed 

framework can be implemented.  

Chapter 8 - Conclusion and Further Work: This chapter states the conclusion of current 

research achievements, limitations and problems. Further work plan is also outlined to 

address the current problems.  
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CHAPTER 2: LITERATURE REVIEW 

The aim of this chapter is to review currently published literature based on the identified 

issues in Chapter 1. This chapter will describe the key elements of the research 

including theoretical foundations, current research status and contributions. After a 

systematic review, the research gaps will be identified in order to lead the research 

directions, formulate research questions and define the research scope. 

The aim of this research is to provide a systematic methodology for achieving a 

sustainable manufacturing process by minimising the energy consumption and 

improving the energy efficiency. Therefore, this review of literature seeks to identify 

gaps in the methods currently employed for measuring and minimising energy 

consumption. The scope of the literature review can be divided into four stages. Firstly, 

the literature review begins with the investigation of the general concepts relating to 

sustainable manufacturing and the identification of important energy consumption 

issues. The second stage focuses on the research output relating to how to measure 

energy consumption and efficiency at unit process level. The third stage focuses on the 

research on optimisation of process parameters with energy considerations including: 

optimisation methods, optimisation frameworks and energy related optimisation. The 

final stage will investigate the energy minimisation methods through development of 

new processes and technology. Gaps in above areas will be identified after the review.  

Various sources and materials were used during this literature review, including 

academic reference books, published journals, conference papers, PhD theses and other 

research materials. The sources for searching literature include the University of 

Greenwich library electronic catalogue and e-library on-line databases, including 

Elsevier Science Direct, Compendex and Springer Link. Other Internet resources (e.g. 

Google Scholar) and library catalogue (British Library) were also used. The key areas 

for this literature review in this thesis include:   

 Sustainable manufacturing 

 Energy efficient machining and manufacturing 

 Machining optimisation 

2.1 Concepts of Sustainable Manufacturing 

Sustainable development has become an important approach to address the challenges 

from economic development, environmental protection and social development. The 
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concerns of environmental development have emerged since early 1980’s in response to 

the increased awareness and concern over the environmental impact of economic 

growth and global expansion of business and trade.  

The term sustainability was first defined in the Brundtland report, which stated: 

"Sustainable development meets the needs of the present without compromising the 

abilities of future generations to meet their own needs" (Alting and Jorgensen, 1993). 

The meaning of Sustainable Life Cycle Management (LCM)/ Life Cycle Assessment 

(LCA) is to reduce the environmental impact throughout the product life cycle. Current 

industrial production and consumption have undergone experienced changes, such as: 

an increase in manufacturer responsibility, pollution and waste problems and non-

renewable resource issues. Based on this general concept, the research for achieving 

sustainability can be conducted from different points of view (Alting and Legarth, 1995, 

Alting, 1996, Westkämper et al., 2001).  

The development of assessment methods for the impact on the environment has been a 

concern of sustainability. Researchers have developed different methods based on their 

investigations which are mainly using two procedures: Environment Impact Assessment 

(EIA) to evaluate planned projects (e.g. technological process) and Life Cycle 

Assessment (LCA). Five profiles were considered to assess the environmental impact 

including: raw material, energy, waste, product, and packaging (Fijal, 2007). The effect 

on the resource and energy efficiency of production was considered by both academic 

and industrial researchers to minimise the cost and environmental impact (Dimitroff-

Regatschnig and Schnitzer, 1998). 

The research area of sustainable manufacturing, which aims to address environmental 

problems, has become a necessary and important part of the manufacturing process. 

Sustainable manufacturing calls for the design and manufacture of the product life cycle 

for minimum environmental impact and maximum resource utilisation. Sustainable 

manufacturing is part of sustainable development (Leahu-Aluas, 2010). At the 1992 

U.N. Conference on Environment and Development (UNCED, 1992) held in Rio de 

Janeiro, sustainable production was introduced and adopted for the transition towards 

and achieving sustainable development. As sustainability is becoming an expected 

business practice by both large and small companies, sustainable manufacturing is 

defined as developed and implemented by manufacturing companies and their networks 

of suppliers and customers. The US Department of Commerce (DOC) adapted the 
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definition of sustainable manufacturing as "the creation of manufacturing products that 

use materials and processes that minimise negative environmental impacts, conserve 

energy and natural resources, are safe for employees, communities, and consumers and 

are economically sound" (Trade,  2010). 

Researchers at the University of Kentucky described sustainable manufacturing as the 

6R approach at product-level. 6R is short for remanufacturing, redesign, recover, 

recycle, reuse and reduce, which is shown in Figure 2.1. In view of sustainable 

production technologies, there are some methods which improve sustainability 

performance, including: reduce machining processes energy consumption, minimise 

waste generation (e.g. generate less waste, increase the reusage or recycling waste), 

effectively use resources, use recyclable materials or reuse machine-tool components at 

the end of life-cycle, improve the cooling lubrication fluids (CLF) strategy, and adopt 

LCA methods. The main natural resources of concern in production technologies are 

material, coolant/lubrication, water and energy (Jawahir, 2007, Pusavec et al., 2010a & 

2010b, Kopac, 2009, Jayal et al., 2010). 

 

Figure 2.1 Sustainable Directed Production (Jawahir, 2007) 

World Technology (WTEC) Division organised a study panel and have started to 

conduct research relating to Environmentally Benign Manufacturing (EBM) since 2000. 

The aim of their research is to investigate and develop new methods and technologies to 

reduce the environmental impact and maximise the benefits to industry. Manufacturing 

can be considered as an open system which is consisted with the flows of various 
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resources, products, waste and pollution. By taking the system view of manufacturing 

and the track of Product Life Cycle (PLC), the manufacturing system can be divided 

into four stages: raw materials production, manufacturing, use phase and end-of-life 

phase; this is shown as a closed system in Figure 2.2 (Gutowski et al., 2001, Krishnan et 

al., 2009). 

 

Figure 2.2 Manufacturing and Product Life Cycle (Gutowski, 2001) 

The machining process is a major manufacturing process which involves a number of 

sustainable factors and has significant potential for reducing environmental impact. 

Three elements are involved in the machining process, including material, cutting or 

machining tool, and cutting fluid.  

Research contributions in energy consumption for machining operations can be mainly 

divided into two scenarios. One scenario is at the machine tool system level where 

research mainly focuses on the energy measurement and energy efficiency for the 

machining tool. The second scenario is the machining process and operation level which 

focuses on the impact of process planning on energy consumption. The concept of the 

Machine Tool System (MTS) is considered as traditional machines endowed with 

numerical control part and able to conduct different types of mechanical work on 

different faces of the same work-piece. The MTS must have two basic functions which 

are machining function (material removal function) and the auxiliary function 

(support/control function). Many research contributions have been conducted to 

investigate the energy consumption of each section, and develop new methods and 

strategies based on different sections (e.g. machining operation, process parameter, 

cutting tool and tool-path strategy etc.) to reduce the energy consumption. 
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Duflou et al. (2012) summarised the potential energy improvement aspects at unit 

process level. One aspect is to develop methodologies for determination/measurement 

of energy usage performance. The specific tasks include develop equations or prediction 

models to determine the theoretical minimal energy requirement and calculate the 

energy consumption, and develop metrics for identifying potential inefficiency, 

suggesting the improvement direction and comparing the performances of external 

benchmarking. The other aspect is to develop new machining strategies to reduce 

energy consumption during machining activities. From machine tool manufacturers’ 

points of view, implementation of energy-efficient machine tool components (e.g. 

drivers, pump, spindle etc.) can effectively reduce the energy usage. However, it does 

not mean the real energy efficiency for the process can be improved. The other direction 

for reducing energy consumption for machining process is the optimisation of process 

control. It can be realised by optimising the planning of existing process (e.g. optimise 

process parameters) and by designing new processes/technologies (e.g. change coolant 

type, change cutting strategies, select efficient machine tool and cutters). 

2.1.1 International Standards of Environmental and Energy Management 

Cascio et al. (1996) developed an overall framework of the environmental management 

as the ISO 14000 family of standards (see Figure 2.3). It specifies the requirements for 

the establishment of an energy management system from organisation and product 

aspects. 

 

Figure 2.3 ISO 14000 Family of Standards for Environmental Management 

(Cascio et al., 1996) 
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ISO 14000 series standards are designed to provide management tools for 

company/organisations to manage, improve and assess environmental performance. For 

environmental and economic benefits, it can be implemented by following a PLAN-

DO-CHECK-ACT (PDCA) cycle (ISO, 2009).  

A new environmental standard ISO 14955 was introduced by Newman et al. (2012) 

(Environmental evaluation of machine tools) is currently being developed by ISO/TC 

39/WG 12 to improve energy efficiency by implementing unified methods for 

measuring, evaluating and reducing energy consumption. Upcoming standard ISO 

14955 consists of four major parts which are: 

 ISO 14955-1: 2014 Eco-design methodology for machine tools (has already 

been published). 

 ISO 14955-2: Methods of testing of energy consumption of machine tools and 

functional modules. 

 ISO 14955-3: Test pieces/test procedures and parameters for energy 

consumption on metal cutting machine tools. 

 ISO 14955-4: Test pieces/test procedures and parameters for energy 

consumption on metal forming machine tools. 

Specific to general energy management, new ISO standard, ISO 50001:2011 (Energy 

management systems - Requirements with guidance for use) was released by ISO in 

June 2011 after the ISO 9001 (Quality Management System) and ISO 14001 

(Environmental Management System). The aim of ISO 50001 is to provide management 

strategies to public and private sector organisations to improve energy performance 

(including energy efficiency, use, and consumption) and reduce costs (ISO, 2011). 

Implementation of ISO 50001 also followed a PDCA approach (see Figure 2.4). 

The steps of the PDCA cycle of ISO 50001 can be briefly described as follows: 

Plan: establishing targets and action plans. 

Do: implementing established plans and undertaking improvement measures. 

Check: monitoring and reviewing the established targets (e.g. energy performance), and 

collecting new suggestions via energy audits. 

Act: evaluating the current energy performance, and then establishing new strategies 

and optimisation process to further improve the energy performance. 
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Figure 2.4 The Four Phases of the PDCA Circle for Implementing ISO 50001 (ISO, 

2011)  

Nowadays, ISO 50001 has been applied to guide the manufacturing process in some EU 

countries (e.g. Germany). Apart from the direct saving though the reduction of energy 

consumption, companies who have ISO 50001 certificate can also have reduction in 

Renewable Energies Act (Erneuerbare-Energien-Gesetz, EEG) (Kahlenborn et al., 

2012). 

2.2 Cutting Force Models 

To mathematically build the energy or power consumption model for machining 

operation, cutting force models were investigated. The cutting force is considered as 

one of the main performance estimators during the machining process. Research into the 

cutting force is a typical topic in machining which has been conducted over ten decades. 

The effects of the cutting force include: extreme conditions in the machining process, 

determining the spindle power requirements and bearings loads, causing the deflection 

of the part, tool or machining structure, and the energy transfer in the machining system.  

Figure 2.5 shows the process parameters of the end milling operation. Where, ap is 

depth of cut, ae is width of cut, n is spindle speed, fz is feed rate per tooth, Vf  is feed 

rate and Vc is cutting speed. 
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Figure 2.5 Process Parameters of End Milling Operation (SECO Tools, 2012) 

2.2.1 Investigation of Cutting Force Models 

Many different cutting force models have been suggested by a number of authors 

throughout the 20th century. At the beginning of the century, a model was proposed as a 

direct relation between cutting forces and the chip cross sectional area (Kronenberg 

1966, Ehmann et al. 1997, Waldorf et al. 1998) such that: 

ܨ ൌ ௦ܭ ∙  (2.1)                            ܣ

Where, ܭ௦  is specific cutting pressure, A is the area cross sectional area of the 

undeformed chip, ܨ is the force acting at the cutting speed direction (tangential force). 

This model considered that the relationship between force and area is linear.  

However, it was found that ܭ௦ is not a constant, but a function of process parameters 

(e.g. chip thickness and tool rake angle). Kronenberg (1966) introduced a more accurate 

method to calculate ܭ௦. 

௦ܭ ൌ ′௦ܭ ∙ ݄ି                   (2.2) 

where ܭ௦′  and c are coefficients and h is chip thickness. 

The milling operation has its characteristics such as variation on the undeformed chip 

thickness and interrupted cut. The cutting force model of milling is different from 

cutting force models of the other machining operations. A model considering the chip 

thickness and depth of cut is accepted and widely used by current researchers to predict 

cutting force (Martelotti, 1941, Altintas and Yellowley, 1989, Tlusty, 2000, Lai, 2000, 

Coelho et al. 2003).  
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்ܨ ൌ ௌܭ ∙ ܽ ∙ ݄ሺ߶ሻ																																																												(2.3) 

݄ሺ߶ሻ ൌ ௭݂ ݊݅ݏ ߶                                                        (2.4) 

ோܨ ൌ ݎ ∙  (2.5)                                                              ்ܨ

where ்ܨ  is tangential force, ܨோ  is radial force, ܽ  is axial depth of cut, ݄ሺ߶ሻ  is 

instantaneous value of chip thickness, ௭݂  is feed per tooth, and ߶ is rotational angle 

which is related to diameter of tool and width of cut. According to the total force 

Equation 2.6 

௫ଶܨ  ௬ଶܨ ൌ ்ܨ
ଶ  ோܨ

ଶ                                                     (2.6) 

The force for conventional up-milling in the X and Y directions can be given as 

Equation 2.7. 

൜
௫ሺ߶ሻܨ ൌ ்ܨ ݏܿ ߶  ோܨ ݊݅ݏ ߶
௬ሺ߶ሻܨ ൌ ோܨ ݏܿ ߶ െ ்ܨ ݊݅ݏ ߶

                                             (2.7) 

The rotational force model can be further developed in three dimension spaces, which 

consider the Z direction and is shown in Equation 2.8 (Zaman et al., 2006). 

ቐ

்ܨ ൌ ்ܭ ∙ ܽ ∙ ݄ሺ߶ሻ
ோܨ ൌ ோܭ ∙ ܽ ∙ ݄ሺ߶ሻ
ܨ ൌ ܭ ∙ ܽ ∙ ݄ሺ߶ሻ

                                                   (2.8) 

where ܨ is the axial force. 

Among these cutting forces components, the tangential force which is also called the 

main cutting force is considered to contribute most of the power consumption. In this 

case, the value of the tangential force is used in the theoretical calculation of machining 

operation energy consumption. The instantaneous tangential force can be generated as 

in Equation 2.9. 

்ܨ݀ ൌ ்ܭ ∙ ܽ ∙ ௭݂ ∙ sin ݀߶     (2.9) 

where ்ܨ is tangential force N, ்ܭ is cutting force coefficient N/mmଶ,  ܽ is depth of 

cut, ௭݂  is feed per tooth mm/tooth, ߶ is tool rotated angle (after the width of cut is 

completely engaged to the material), and ௭݂ is related to feed rate, number of teeth and 

spindle speed. ߶	is rotational angle which is related to the width of cut and diameter of 

the tool. The relationships are shown as equation 2.10 and 2.11. 
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௭݂ ൌ


∙௭
                                                            (2.10) 

߶ ൌ ߶௨௧ െ ߶ ൌ cosିଵ ൬
݀ െ 2ܽ

݀
൰																																																ሺ2.11ሻ 

where f is feed rate ݉݉/݉݅݊, n is spindle speed ݉ݎ, d is diameter of tool ݉݉, ܽ is 

width of cut ݉݉, and z is number of cutting flutes for milling cutters. Based on these 

equations, tangential force in end milling operation is related to depth of cut, width of 

cut, diameter of tool, workpiece material, feed rate, spindle speed and number of flutes. 

The instantaneous tangential force can be integrated as in Equation 2.12. 

்ܨ ൌ  ்ܭ
థೠ
థ

∙ ܽ ∙


௭
∙ sin߶ ݀߶                                 (2.12) 

்ܨ ൌ ்ܭ ∙ ܽ ∙
݂
ݖ݊

∙ ሺcos ߶ െ cos߶௨௧ሻ 

Based on equation 2.12, when the tool is fully engaged in the material such that ߶ ൌ 0, 

the tangential force of milling can be represented in Equation 2.13. 

்ܨ ൌ ்ܭ ∙ ܽ ∙


௭
∙ ቀ1 െ ௗିଶ

ௗ
ቁ                                        (2.13) 

்ܨ ൌ
்ܭ2 ∙ ܽ ∙ ݂ ∙ ܽ

݀ݖ݊
 

 Equation 2.13 can be further simplified and represented in Equation 2.15 (Tlusty, 2000). 

ܴܴܯ ൌ ܽ ∙ ܽ ∙ ݂                                                (2.14) 

்ܨ ൌ
்ܭ2 ∙ ܴܴܯ

݀ݖ݊
																																																							ሺ2.15ሻ 

where, ்ܭ  is cutting force coefficient, ܰ/݉݉ଶ . Based on the cutting force Equation 

2.15, the tangential force is in proportion to depth of cut, width of cut and feed rate, and 

in reverse proportion to spindle speed and number of teeth.  

In addition to conventional cutting force models, there are also a lot of research 

contributions used numerical modelling methods to predict cutting force for machining 

operations (Ozel and Althan, 2000, Saffar et al., 2008, Jin and Altintas, 2012). One of 

most common methods is Finite Element Modelling method. The goal of finite element 

method is to analyse and simulate machining process by considering the deformations, 

stress and strains in the workpiece and the load on the cutting tool under the specific 
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machining process parameters. Usually, 2D/3D models of machining operation will be 

created by using existing commercial FEA software (e.g. DEForm and Abaqus), and the 

cutting force will be automatically simulated after defined the criterions in material 

mechanical properties, frictions on chip-tool interface and so on. Three approaches are 

used for meshing the finite element model which are Lagrangian, Eulerian and Arbitrary 

Lagrangian Eulerian (Arrozola et al., 2013, Mackerle, 1999).  

The accuracy of the finite element analysis is related to the accuracy of the material 

mechanical properties, such as flow stress. The mostly accepted material constitutive 

model was introduced by Johnson and Cook (1983) and shown in Equation 2.16. 

σ ൌ ሺܣ  ሻߝܤ ቀ1  ܥ ln ఌሶ

ఌబሶ
ቁ ቂ1 െ ቀ ்ି ೝ்

்ି ೝ்
ቁ

ቃ																							ሺ2.16ሻ      

where,	σ is the equivalent flow stress, MPa or N/mm2, ε is the equivalent plastic strain, 

ሶߝ ,ଵିݏ ,ሶ is equivalent plastic strain rateߝ  is the reference equivalent plastic strain, T is 

the workpiece temperature, Ԩ , ܶ  is the room temperature, Ԩ , ܶ  is the material 

melting temperature, Ԩ, A is yield strength of the material, MPa, B is strain hardening 

modulus, MPa, C is strain rate sensitivity, m is thermal softening coefficient, and n is 

hardening coefficient. 

The friction on the chip-tool interface can be represented by Equation 2.17. 

m ൌ
߬
݇
																																																																ሺ2.17ሻ 

where, m is shear friction factor, ߬ is friction shear stress, k is workpiece material flow 

stress. 

However, the problem for implementing finite element modelling is that there are too 

many variables, such as temperatures, need to be considered. In addition, the 

implementation of FEA modelling method also requires operators to have a very good 

knowledge in metal cutting theory. Compared to conventional modelling method, it 

requires more complex validation process and time, and is not easy to be implemented 

in practice. Meanwhile, the accuracy of the model and simulation depends on the 

algorithms of the software. In this case, in this thesis conventional cutting force 

modelling method will be selected to predict cutting force and build energy prediction 

models. 
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2.2.2 Investigation of Cutting Force Coefficient 

The cutting force coefficient is one of the key components of the cutting force model. 

Early researchers considered the value of the coefficient to be approximately a constant 

for different materials, as was explained in section 2.1.1. The unit of cutting force co-

efficient is ܰ/݉݉ଶ or ܹ ∙  ଷ. Tlusty (2000) provided constant values of cutting݉ܿ/ܿ݁ݏ

force coefficients for different workpiece materials which are shown in Table 2.1. 

Table 2.1: Cutting Coefficients of Common Workpiece Materials (Tlusy, 2000) 

Material ࡿࡷ 
Grey cast iron HBN 200 1500 

Carbon steel 1020 N 2100 
Carbon Steel 1035 2300 
Carbon Steel 1045 2600 
Stainless steel 302 2700 

Alloy steel 4140/5140 2800 
Al 7075-T6 850 

 

However, the accuracy of this model has always been questioned in that the cutting 

coefficient is not a constant even for the same workpiece material. Based on Equation 

2.8, some researchers (Wan et al., 2010, Dang et al., 2010) have conducted experiments 

to determine the values of cutting force coefficients for the end milling operation (see 

Figure 2.6). 

 

Figure 2.6 Cutting Force Coefficients (Wan et al., 2010) 
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From Figure 2.6, it can be found that the cutting force coefficient Kz for axial force is 

close to zero which means the axial force in end milling operation is also close to zero. 

The coefficient of tangential and radial directions can change significantly (e.g. ்ܭ is 

from 3000 to 400). However, when the uncut chip thickness is changed from 0.03mm to 

0.21mm, the trend of tangential and radial coefficient flattens (e.g.  ்ܭ is from 1000 to 

500). It means the cutting force co-efficient can be considered as a constant in particular 

range of the uncut chip thickness or can be chosen by building up co-efficient data 

based on uncut chip thickness. However, the value of cutting force coefficient may also 

be affected by other factors like different machine tools, different cutting tools (e.g. type 

and material), temperature, cutting fluid and lubrication strategies, and still need to be 

further investigated.  

To accurately predict cutting force, the cutting force coefficient KT can be considered as 

a function of process parameters and generated by using a regression method based on 

experimental measurement. The mathematical expressions of the cutting force and the 

cutting force coefficient are shown in Equations 2.18 and 2.19. 

்ܭ ൌ ݂൫ܽ, ܽ, ݀, ,ݖ ௭݂, ݊൯ ൌ ܥ ∙ ܽ
భ ∙ ܽ

మ ∙ ݀య ∙ రݖ ∙ ௭݂
ఱ ∙ ݊ల                 (2.18) 

்ܨ ൌ ܥ2 ∙ ܽ
భ ∙ ܽ

మ ∙ ݀య ∙ రݖ ∙ ௭݂
ఱ ∙ ݊ల ∙ ܽ ∙ ௭݂ ∙ ܽ/ሺ݊݀ݖሻ                  (2.19) 

where, C0 to C6 are cutting force constants which are determined by the experimental 

values of force or power.  

2.2.4 Summary of Cutting Force Modelling 

This section introduced the modelling method for predicting the tangential cutting force 

for end milling operation. The modelling method in this section has been developed 

based on machining theory which is related to the workpiece material and the 

machining process parameters. However, this model still has some limitations. As a 

very complex process, there are too many variables involved during the machining 

process and some of them are still not quantitatively determined by the current 

machining science research. So the modelling methods of cutting force have different 

complexities. Ideally, the more complex the model is and the more variables are 

considered, the more accurate the model will be. However, as a consequence, the 

increasing complexity will bring the problems of flexibility and validity which means 

the proposed model can only be used under particular conditions (e.g. specific 
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machining tools, machining cutters and workpiece materials) and mean that it is very 

difficult to verify. Also the improvement of accuracy may be very small and not 

necessary in the practical machining processes. 

2.3 Measurement of Energy Consumption and Energy Efficiency 

In the early stages of machining research, energy consumption was not considered as a 

unique objective and always represented as power consumption. However, the power 

consumption is not able to directly reflect the energy consumption of the machining 

process. With the increasing demand for environmental awareness, quantitatively 

predicting energy consumed during machining operation has become necessary for 

academic researchers and practitioners. 

2.3.1 Measurement of Energy Consumption for Machining Process 

One of the earliest pieces of research which reported the issues of energy efficiency in 

numerically controlled machine tools was carried out by Filippi et al. (1981). They 

conducted experiments to collect the data on the power consumption of ten different 

machine tools in various operations. Based on their experimental results, the energy 

efficiencies (mean power over installed power) of tested machine tools were almost all 

less than 50% and the productive time only accounted for 60% of the available time.  

This finding identified the potential to improve the energy efficiency of machine tool by 

designing advanced multi-functional machine tools. They also suggested that it is 

necessary to set up a power/energy measurement device on the machine tool in order to 

help to avoid the high power usage.  

The earliest research which clearly identified issues of environmental impact at 

machining process level was conducted by the researchers from the Consortium on 

Green Design and Manufacturing (CGDM), University of California at Berkeley in 

1990s. Munoz and Sheng (1995) proposed a mathematical model with the consideration 

of material, energy and time consumption. Two main loss streams were introduced: 

primary mass loss which consisted of chip generation in the machining process, and 

catalytic mass losses which consisted of the waste stream of cutting fluid and the 

expended tools. It is one of the earliest contributions to provide a systematic tool to 

measure the energy consumption and environmental impact of the machining process.  

Researchers from MIT firstly conducted research to systematically measure energy 

efficiency of machine tool system. Kordonowy (2001) conducted a series of 
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experiments for different types of milling machine under Gutowski’s supervision and 

the results were shown in energy break charts in his thesis. Figure 2.7 shows the energy 

consumption for a milling process. The energy consumed for machining operation just 

accounted for 48% of total energy consumption. Idling energy consumption which was 

presented as constant set-up time accounted for 27% of total energy consumption. This 

finding further accurately showed the energy usage performance of the machine tool 

system. 

 

Figure 2.7 Energy Consumption Chart for a Milling Process: 1988 Cincinnati 

Milacron Automated Milling Machine with a 6.0 kW Spindle Motor (Kordonowy, 

2001) 

Based on the results of energy usage of machine tool, Dahmus and Gutowski (2004) 

analysed the machining operation at machine tool system level from the view of 

environmental impact. Figure 2.8 shows the specific material flow, energy consumption 
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and waste generation during machining system. Since machining is a material removal 

process, most of the environmental impact and energy consumption stem from the 

material removal process. The specific energy consumption (energy used over material 

removed) was proposed to evaluate the performance of machine tools. Four different 

milling machines were measured and compared. The comparison result shows that 

specific energy consumption is different for different machine tools and workpiece 

materials. The environmental impact of machining operation can be possibly reduced by 

minimising the energy consumption during material removal process and associated 

processes, such as material production and cutting fluid preparation. 

 

Figure 2.8 Energy Consumption in Machining System (Dahmus and Gutowski, 

2004) 

Gutowski et al. (2005) identified the energy use for current manufacturing industry was 

not very effective. Toyota Motor Corporation was taken as an example. Based on the 

energy use breakdown for machining (shown in Figure 2.9), the energy use for 

machining operation just accounted for 14.8% of total energy use, and 85.2% of the 

energy consumed as constant energy required for non-value added operations (e.g. 

centrifuge, coolant, oil pump). This finding shows that even for a modern, highly 

automated, mass production environment, there are potentials to reduce the energy 

consumption by improving the efficiency of both machining technology and auxiliary 

equipment. 
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Figure 2.9 Energy Breakdowns for Machining in Toyota (Gutowski et al., 2005) 

To better support the research of Environmentally Benign Manufacturing and measure 

the environmental impact of manufacturing process, Gutowski et al. (2006) proposed an 

energy prediction model to calculate the electrical energy for manufacturing processes. 

The total power consumption of the manufacturing process can be divided into two 

parts: idle power and power for machining operation. Idle power comes from auxiliary 

equipments. Power for machining operation can be calculated by material removal rate 

multiplying the specific energy consumption constant (energy use/material removed, 

shown in Equation 2.20). 

ܲ ൌ ܲ  ܴܴܯ ൈ  ሺ2.20ሻ																																																												ܭ

where, P0 is idle power, K is specific energy consumption, MRR is material removal 

rate. 

In addition, they also proposed a metric to measure the energy loss of the machine tool 

system. 

௦௧ܧ ൌ ܧ െ  ሺ2.21ሻ																																																													௨௧ܧ

where, Elost is energy lost which can show the potential for improvement of the system, 

Ein and Eout are the input and output energy.  

The current research which investigated the energy consumption for machining usually 

used simplified equation (Kara & Li, 2011, Anderberg et al., 2012): 
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ܥܧܵ ൌ ܥ 
ଵܥ
ܴܴܯ

																																																			ሺ2.22ሻ 

Or 

ܲ ൌ ܥܧܵ ∙  	ܴܴܯ

where, SEC is specific energy consumption 

For end milling operation, material removal rate is related to depth of cut (mm), width 

of cut (mm) and feed rate (mm/min). However, the problem of this model has some 

limitations: 

 Material removal rate is a dependent variable which consists of other dependent 

variable. These independent variables are considered as equally important, 

which is doubtful. Energy consumption should be different from “light” or 

“heavy” machining (identified by Newman et al., 2012). 

 MRR does not consider all the process parameters and cause prediction models 

cannot respond to other process parameters. 

 The concept of specific energy consumption is determined by experiments 

which is lack of physical theory and sometimes is dimensionless. 

In this case, to further investigate the characteristics of energy consumption during the 

machining process, more complex energy prediction model needs to be developed based 

on machining theory. 

Many research contributions have been conducted to develop more informative models 

to calculate energy consumption for turning operation based on Gutowski's result. 

Manchester researcher Rajemi and Mativenga (Rajemi et al, 2010, Mativenga et al, 

2011) proposed a comprehensive model to predict energy consumption for dry turning 

operations by considering depth of cut, feed rate and cutting speed. Guo et al. (2012) 

further extend the Gutowski's energy prediction model in details for turning operation 

(shown in Equation 2.23). 

ܧܵܶ ൌ ܧܲܵ  ܧܥܵ ൌ ܥ ∙ ఈݒ ∙ ݂ఉ ∙ ܽ ∙ ఝܦ 
ଵܥ

ݒ ∙ ݂ ∙ ܽ
																							ሺ2.23ሻ 

Where, TSE is total specific energy, SPE is specific process energy, SCE is specific 

constant energy, D is final workpiece diameter mm, Vc is cutting speed m/min, f is feed 

rate mm/r, α, β, γ, φ, C0 and C1 is are coefficients.  
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The energy prediction models in specific energy consumption from existing research 

publications are shown in Table 2.2 for various type of workpiece materials (such as 

mild steel 1020 and AISI 1018) and machining operations (turning and milling).  

Table 2.2 Energy Prediction Models from Existing Publications 

Researchers Operation Workpiece 

Material 

Models 

Kara and Li 

(2011) 

Turning Mild Steel 

1020 

SEC=2.378+2.273/MRR 

Milling SEC=2.830+1.344/MRR 

Diaz et al. 

(2012) 

Milling AISI 1018 E/V=1.475+1556/MRR 

Guo et al. 

(2012) 

Turning Steel ܶܵܧ

ൌ 1.9205 ܸ
.ସସ଼݂ି଼ହଵܽି.଼ଶଵସିܦ.଼ସ


85.4442

ܸ݂ܽ
 

 

2.3.2 Measurement of Energy Efficiency for Manufacturing Process 

Since energy label has already been applied to choose the more efficient products and 

cut the cost for household appliances in Europe (e.g. refrigerator, washing machine, air 

conditioners etc.), Herrmann et al. (2007) proposed a concept about the initiation of 

energy labels for production machine which can facilitate the energy efficiency of 

machine tool through transparency and performance of different machines. The 

implication of energy labels for machine tools can stimulate the enforcement of energy 

efficiency. Herrmann and Thiede (2009) investigated the energy efficiency at 

manufacturing process level. They discussed the energy consumption in three different 

layers (production process and machine, production system and technical building 

services) in terms of what objectives should be achieved and how to achieve the 

objectives. The energy efficiency was defined as: 

ݕ݂݂ܿ݊݁݅ܿ݅ܧ	ݕ݃ݎ݁݊ܧ ൌ
݉݁ݐݏݕݏ	݊݅ݐܿݑ݀ݎ	݂	ݐݑݐݑ	݁ݒ݅ݐܿݑ݀ݎ
݉݁ݐݏݕݏ	݊݅ݐܿݑ݀ݎ	݂	ݐݑ݊݅	ݕ݃ݎ݁݊݁	݈ܽݐݐ

														ሺ2.24ሻ 
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A 5-step simulation approach was developed to foster the energy efficiency of 

manufacturing, improve the energy efficiency and help to reduce energy cost (electricity) 

which is especially suitable for small and medium sized enterprises (SME). 

Kara and Li (2011) developed an empirical model to describe the relationship between 

energy consumption and process variables for material processes (e.g. tool conditions, 

workpiece material, cutting parameter and cutting environment) based on Gutowski’s 

energy consumption framework. They selected specific energy consumption (SEC, 

energy consumption of machine tool for removing 1	cmଷ material, which is related to 

two machine coefficients and material removal rate) to evaluate different machining 

process. The value of SEC can be generated based on the experimental results. When 

material removal rate is over 1	cmଷ/s, the SEC value is almost a constant. The model 

was tested by comparing the predicted energy and experimental measurement of four 

different machine tools (turning and milling) and different cut environment (wet and 

dry). The accuracy of proposed model is between 91.95% - 97.63%. Li et al. (2012) 

further carried out a case study to evaluate the resource efficiency of CNC grinding 

process at unit process level. An integrated approach was proposed to evaluate the eco-

efficiency of unit manufacturing process which is defined as: 

ܿܧ െ ݕ݂݂ܿ݊݁݅ܿ݅ܧ ൌ
݁ݑ݈ܽݒ	݁ܿ݅ݒݎ݁ݏ	ݎ	ݐܿݑ݀ݎ
ݐܿܽ݉݅	݈ܽݐ݊݁݉݊ݎ݅ݒ݊݁

																																ሺ2.25ሻ 

The result shows that higher material removal rate can lead to less energy consumption, 

but will degrade the surface roughness. In addition, the use of CBN grinding wheel can 

further improve both surface roughness and environmental impact compared to Al2O3 

grinding wheel. 

Behrendt et al. (2012) proposed a method to measure and analyse the energy 

consumption for machine tools. A standardised test procedure was developed to assess 

the energy performance of machine tools. The procedure includes three steps which are 

standby power (idle mode), component power (spindle, axis movement) and machining 

power. A series of experiments were conducted under various cutting conditions and 

machine tools to compare and characterise the energy consumption for the machine 

tools. The results of this research can identify the potential for energy usage to optimise 

and help to establish standard rules (e.g. energy labelling system) for the machine tools. 
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A modelling framework was proposed by Dietmair and Verl (2009) which can 

accurately predict the total energy consumption for machining tools based on the 

specifically investigations of elements of efficiency in manufacturing processes and 

existing models for calculating energy efficiency. The elements of energy were 

introduced to calculate the energy efficiency. The power consumptions for 9 states 

during milling operation were observed. Figure 2.10 shows the framework map of nine 

states and the specific energy consumption for each state. Acceleration and deceleration 

were contributed to the peak power requirement during end milling chipping and 

machining head chipping states. Based on the application of the model, the energy 

efficiency for machine operation is very low (just account for 20% of the entire 

operation). This efficiency can be improved by optimising the cutting parameters, 

reducing the acceleration and deceleration effects and reducing the auxiliary power (e.g. 

coolant, idling). This result can enable manufacturers and operators of machines to 

include energy consumption into their considerations in an objective way to accurately 

forecast cost, formulate strategies and set up working plan.   

 

                                    (a)                                                                    (b) 

Figure 2.10 Energy Consumption for Each State (Dietmair and Verl, 2009) 

Rahimifard et al. (2010) proposed a model for calculating the embodied product energy 

used at manufacturing process level. The embodied product energy can be defined as 

the sum of direct energy (DE) and indirect energy (IE). Indirect energy is energy 

consumed by the environment in which production takes place (e.g. lighting and heating, 

shown as Equation 2.26). The direct energy is defined as the sum of theoretical energy 

(TE) and Auxiliary Energy (AE).TE is the minimum energy required to achieve the 

manufacturing process and AE is that required to achieve supporting functions (e.g. 

coolant usage). Efficiency ratios (ER) were defined at the process level (shown as 
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Equation 2.26), product level (shown as Equation 2.27) and at the production system 

level (shown as Equation 2.28).  The proposed energy efficiency metrics provided great 

transparency on energy inefficiencies and identified that the energy efficiency of 

manufacturing can be improved by minimising the auxiliary energy. The example 

showed that 20–50% reduction of energy consumption can be achieved through 

combined improvements in production and product design. 

ݕ݃ݎ݁݊ܧ	ݐܿݑ݀ݎܲ	ܾ݀݁݅݀݉ܧ ൌ ܧܦ  ܧܫ ൌ ܧܶ  ܧܣ   ሺ2.26ሻ																												ܧܫ

௦௦ܴܧ ൌ ܧሺܶ/ܧܶ   ሺ2.27ሻ																																																		ሻܧܣ

ௗ௨௧ܴܧ ൌ ܧሺܶ/ܧܶ  ܧܣ   ሺ2.28ሻ																																											ሻܧܫ

ௗ௨௧ܴܧ ൌ ܧሺܶ/ܧܦ  ܧܣ   ሺ2.29ሻ																																								ሻܧܫ

2.3.3 Issues of Energy Consumption and Energy Efficiency Measurement 

Though the academic research has proposed some energy audit models and energy 

efficiency metric to help measure and evaluate the energy usage, these models and 

metrics have some limitations which can cause confusion. The following issues can be 

identified: 

 Firstly, most of the models proposed are empirical models which lack scientific 

explanations. Some of the models are too simple and not informative enough 

which are just related to material removal rate (MRR). So these models cannot 

be generally applied in the machining processes which contain more process 

parameters. 

 Secondly, the definition of energy efficiency has problems. According to the 

existing proposed energy efficiency definition, the energy efficiency of some 

advanced machine tools may be worse than manual machines because of 

auxiliary functions require more energy. In addition, from Equation 2.26, if the 

auxiliary energy can be reduced to zero (TE=DE), the energy efficiency of 

machining process will be 100%. These conclusions disagree with the general 

principle that using 100% energy for machining operation does not mean the 

energy efficiency is 100% too. 
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2.4 Introduction of the Nature of Machining Optimisation 

The reason for conducting the optimisation procedure in machining operations is to 

improve the performance in sustainable manufacturing through optimisation of existing 

processes. One of benefits is the optimisation operation can achieve improvement 

without adding extra resource and materials or changing the current techniques. In this 

case, it is an easy, efficient and cheap method to improve the existing manufacturing 

process.  

Before the determination of optimal process parameters, it is necessary to specifically 

introduce the nature of machining optimisation which can provide a clear and solid 

theory foundation for the following analysis and discussion. Also it can help the users to 

have a comprehensive understanding about how the optimisation procedures conduct 

and how the optimal result can be achieved. According to the definition of optimisation, 

machining optimisation problem is a multivariable optimisation with 

no/equality/inequality constraints (Rao, 2009). The following sections will specifically 

introduce the basic concepts of machining optimisation. 

2.4.1 Nature of Search Space 

Search space, which is also called design space or objective function space in 

mathematical optimisation, is the most fundamental concept for an optimisation 

problem. It can be explained as a domain which is consisted with all the possible 

solutions. According to modelling method of machining operation, the objectives are 

represented as a function in terms of independent variables.  

Without regarding to the impact of constraints, the original search space of machining 

optimisation is a multi-dimensional space located in a positive interval of the coordinate. 

The level of dimensions will be determined by the number of independent variables. 

Figure 2.11a to 2.11c show the original searching space for 3/4/5 variables situations. 

Each point in search space represents a combination of independent variables. 
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Figure 2.11a 3D Searching Space 

 

 

Figure 2.11b 4D Search Space 

 

 

Figure 2.11c 5D Searching Space 
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In addition, the size of the search space is not only determined by number of 

independent variables but also related to the accuracies based on technical conditions. 

The search space of end milling operation, when four process variables (depth of cut, 

width of cut, feed rate per tooth and spindle speed) are considered, is the same as Figure 

2.11b. The original search space is a 4D search space (see Figure 2.11b), which is a 

linear array of a 3D cube. However, because of the accuracy of variables should be 

reasonable and meaningful in practice and limited by technical conditions (e.g. the 

accuracy of depth and width of cut should be 0.01mm, spindle speed should be 1rpm), 

the total number of the results in search space is finite and countable.  

From Figure 2.11a to Figure 2.11c, it can also identify that the search space will be 

expanded when more variables are added. Each additional parameter will increase one 

dimension of the search space. The consequence of additional dimension is that the 

number of total points will be geometrically increased. The more parameters are 

considered, the larger the search space will be, and the more complex the machining 

optimisation will be. 

2.4.2 Nature of Variables 

Variable is another important factor for machining optimisation. It will be used to 

mathematically represent the quantity of the physical phenomenon. Statistically, 

variables can be divided into two groups: dependent variable and independent variable. 

Independent variables are the basic elements of the mathematical model. It can be also 

called input variable or design variable. The values of independent variables exist 

independently and are not directly affected by each other. The dependent variable is 

also called "response variable" or "output variable" which is the response of the 

independent variable.  

Table 2.2 shows the independent variables and dependent variables for end milling 

operation. Usually independent variables have physical range/constraints, for example 

width of cut ae is not possible to exceed the cutting tool diameter d, depth of cut ap 

should not be chosen large than the length of cutting edge, spindle speed n is not 

possible to exceed the machine spindle design maximum speed. 

The independent variables can also be separated into two groups. The first group comes 

from the machining process plan including depth of cut, width of cut, feed rate and 

spindle speed. This type of independent variable usually can be observed from NC code 
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and determined by practitioners or process planners. The value ranges of these variables 

are contributed to the machine tools and machining tools. This range is comparably 

wide, e.g. the range of spindle speed is from 0 to thousands (conventional machining) or 

tens of thousands (high speed machining). The second group variable is the variable 

determined from the dimension of machining tools including diameter of the cutter and 

number of cutting flutes. The value ranges of these parameters are much narrow than 

the first group, because dimension of machining tool are usually standard for all 

machining tool manufacturers. For example, the diameter of end milling cutter for 

conventional machining is from 1 to 30 mm, and number of flutes is from two to four 

(Hanita, 2005, WNT, 2012).  

Dependent variables are the machining performances that people can observe from the 

machining operation. The values of dependent variables are corresponding to 

independent variables (design vector) which can be presented as objective 

function/mathematical models.    

Table 2.3 Independent Variables and Dependent Variables for End Milling 

Operation. 

Independent Variables Dependent Variables 

Depth of cut: ap (mm) 

Width of cut: ae (mm) 

Feed rate: fz (mm/tooth) 

Spindle speed: n (rev/min) 

Diameter of tool: d (mm) 

Number of flutes: z (mm) 

 

 

Energy 

Cost 

Time 

Material Removal Rate 

Tool Life 

Torque 

Cutting Force 

Power 

Surface Finishing 

Cutting Speed 

Feed Rate 

2.4.3 Nature of Objectives and Constraints 

Based on the functions, variables can be further separated into two groups as well: 

objectives and constraints. A good objective should be a dependent variable consists of 

all the independent variables. The conventional objectives for machining operation are 
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cost, time, surface roughness, and tool life. From the environmental aspect, energy 

consumption is a new objective for the machining operation. 

Apart from the objective functions, to accurately determine the optimal results, 

constraints should be considered to satisfy for a meaningful optimisation of the 

machining process. The function of constraints is to refine the results by reducing the 

searching space. Jha et al. (1994) and Tandon et al. (2002) claimed that there are two 

types of constraints. The first type constraints are obvious from the machine tool 

capabilities. The other type constraints are derived from product requirements such as 

surface finish, force-bearing capacity of the tool and so on. For cutting force, it is 

directly related to several constraints including maximum loading on feeding 

mechanism constraint, bending stress constraint and fatigue constraint. So they can be 

simplified as a cutting force constraint in this research. Tandon et al. (2002) also 

mentioned some constraints can be redundant and neglected in some situation, and 

different constraints may not be all active at the same time. Practically, horsepower 

limitation may be the active constraint for rough milling, and, surface finish may be the 

active constraint for finish milling. In addition, because of the nature of the machining 

optimisation itself, the value of all the variables should not be less than zero which 

gives a natural limitation of the search space.  

Based on the classification of variables in section 2.4.2, the constraints of machining 

optimisation can be divided into three levels: 

 Level 1: Boundary/side constraints (physical constraints of independent 

variables). This type of constraint is the physical limitation of the independent 

variables. They are usually determined by the machine tools and cutting tools. 

The first level constraints will confine the search space as a close scope.  

 Level 2: Behaviour constraints from capability of machine tool/cutting tool 

(physical constraints of dependent variables). This type of constraints is the 

physical limitations of dependent variables which contribute to the design of the 

machine tool, for example, the power of the machine tool and torque of spindle. 

However, this type of constraint can be redundant by the other constraints. It 

may/may not affect level 1. 

 Level 3: Behaviour constraints from manufacturing requirements (constraints 

determined by decision makers). This type of constraint is usually determined by 
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operators' requirements, e.g. quality, cutting speed, tool life and so on. This type 

of variable is the dominated constraints which can further refine the search space 

to find the optimal solution. Although level 3 and level 2 are all behaviour 

constraints, most of the time level 3 is possible to overlap level 2. 

2.5 Introduction of the General Machining Optimisation Methods 

A lot of optimisation methods have been applied to optimise machining process. Roy et 

al. (2008) comprehensively classified the existing optimisation methods applied in 

engineering design optimisation (shown in Figure 2.12).  

 

Figure 2.12 Classification of Existing Optimisation Methods (Roy et al., 2008) 

Research contributions of machining optimisation have been reviewed and concluded 

by many. From machining optimisation perspective, two stages of optimisation method 

were described for general machining operation (Mukherjee and Ray, 2006, Aggarwal 

and Singh, 2005, Ganesan et al., 2011, Dhavaman and Alwarsamy, 2011, Mahesh et al., 

2012):  

1. Modelling of input-output and in-process parameter relationship.  
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2. Determination of optimal or near-optimal cutting condition or cutting parameters. 

Typical Mathematical Optimisation Procedures: 

1) Build up mathematical objective function (or functions). 

2) Define constrains 

3) Implement mathematical algorithms 

4) Get the optimal or near optimal results 

They classified the input-output and in-process parameter relationship modelling 

methods and listed as below. 

 Statistical Regression Technique is an easy modelling method which is 

commonly used for describing the functional relationship of input and output 

variables. But this method has some shortcomings. It is usually dimensionless 

and cannot show the non-linear complex relationship between the variables. 

 Artificial neural network (ANN) is multi-variable, dynamic, non-linear 

modelling method. It can handle complex cases, but is only used when 

regression techniques failed to provide an adequate model. The problem of ANN 

is that the modelling parameters cannot describe non-linear relationships 

between them, and the accuracy is depended on volume of data set. 

 Fuzzy set theory is suitable for the situation that subjective knowledge or 

options is expected as a key role in defining the objective function. But it is 

depended on the users or experts' knowledge. 

2.5.1 Expert-based Optimisation Methods 

In the early stage of manufacturing operation, the modern concept of "Optimise 

optimisation, optimal, optimum" was not applied by practitioners. However, good 

experienced technicians could manufacture the products for different requirements 

based on their experiences. For example: quality (e.g. for different price, good quality 

for high price, bad quality for cheap price), energy (e.g. according to the physical state), 

resources (e.g. workpiece and fuel), productivity (e.g. quantity of products, deadline for 

the work) and cost (e.g. cutting tool wear). This method can be summarised as "Expert-

based Optimisation" which is still being widely used in practical manufacturing and 

design process (Roy et al, 2008). The principle of this type of optimisation method is it 
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usually determines the optimal plan based on expert judgement and experiences 

(knowledge-based), or simulation results (simulation-based). These experiences and 

simulation results of machining performance can be considered as qualitative models 

for describing the relationship between independent variables (process parameters) and 

objectives. 

The advantage of this method is that the decision makers do not require additional skills 

and can quickly have an optimal result. Expert-based method can allow the practitioners 

to control the process based on their knowledge or simulation result, so that they will be 

confident about the optimal result. Although this type of method can always achieve a 

better result compared to original process, it may not be able to achieve the best solution. 

The optimal results will be different if the operators are different. In addition, the 

influences of process parameters and are also not able to be quantitatively represented. 

2.5.2 Experiment-based Optimisation Methods 

To address the problem of "Expert-based optimisation", "Experiment-based 

optimisation" was developed. Experiment-based optimisation is also called Design of 

Experiment (DOE) method. As the name, DOE method is a structured and organised 

method mainly based on experimental measurement to determine the relationship 

between the process parameters and find out the best combination. The fundamental 

concepts for designing experiment were proposed by Fisher (1926 and 1935) to deal 

with the applications of statistical methods. The typical DOE methods are Full Factorial 

Design method, Taguchi method and Response Surface method. To implement DOE 

methods, large amount of test data will be firstly collected by conducting experiments 

and "failure models" will be built based on collected data to show the boundaries of 

search space. Then the optimal process parameters can be selected within the refined 

search space.  

Taguchi method is one of the typical DOE methods which was firstly brought by 

Genichi Taguchi in 1950s and systematically introduced by Ross (1988) to improve 

product and process design. As a fractional factor design method, Taguchi method can 

significantly reduce the time and resource needed compared to conventional DOE 

methods. In addition, because it can be easily implemented and has a good applicability, 

the Taguchi method has been widely used in machining optimisation research to 

determine important process parameters. Taguchi's Orthogonal Arrays (OA) provide a 

set of well-balanced experiments by reasonably reducing experiment numbers, and 
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Taguchi signal-to-noise ratio (S/N) is used to evaluate the impacts of the variables by 

considering the average value and standard deviation. The S/N ratio in this research is to 

represent energy which is required to be minimised. So Lower-the-better (LB) criteria 

should be chosen. The equation for calculating Taguchi S/N for LB is shown in 

Equation 2.30. 

௦ߟ ൌ െ10݈݃ ቀଵ

∑ ܻ

ଶ
ୀଵ ቁ                                              (2.30) 

where, ߟ௦  is S/N ratio, n is number of experiments and ܻ  is value of energy 

consumption for the machining operation. 

In addition, DOE methods are not only used to build regression models, but also 

allowed to use mathematical models to generate prediction results. The advantages of 

DOE method are: 

 It is a direct optimisation method that is easy to be understood and implemented. 

 Compared with expert-based optimisation, it can quantitatively show the 

relationship between the objective (e.g. cost, time, energy...) and the process 

parameters (e.g. depth of cut, width of cut, spindle speed and feed rate). 

 The optimal result is the real optimal result. 

However, the problems of DOE method are: 

 It is an expensive method (which is the same as expert-based method), because 

it will consume energy and resource. This consumption could be significant 

when the number of experiments is large. 

 The experiments could take a long time. 

 The accuracy of the optimal result is depended on the number and level of 

variables. If there are too many variables or too many levels, the number of 

experiments will be a lot which is not acceptable (because of the cost and time). 

 Usually, it is difficult to put constraints to control the results. 

2.5.3 Algorithm-based Optimisation Methods 

To achieve more accurate optimal result, mathematical optimisation theory started to be 

applied in machining optimisation. With the development of algebra, especially after 
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Newton and Leibniz created the theory of calculus which can be used to determine the 

extreme points of functions by conducting differentiation, optimisation theory was 

further developed and had a new form. By implementing algorithm-based optimisation 

methods, mathematical optimisation models need to be firstly built to describe the 

relationships between input process parameters (independent variables) and output 

objectives (dependent variables). The general mathematical optimisation models are 

shown as below: 

Objective function: 

min/max ݂ሺݔሻ 

Constraints:  

݃ሺݔሻ  0			݅ ൌ 1,2,⋯ ,݉	

݄ሺݔሻ ൌ 0		݆ ൌ 1,2,⋯ , ݊	

where, ݃ሺݔሻ are inequality constraints and ݄ሺݔሻ are equality constraints  

Based on the algorithm operation functions, algorithm-based method can be further 

divided into conventional and non-conventional methods.  

The conventional methods are usually developed based on the ground principle of 

mathematical optimisation theory. This type of method is similar as simulating common 

sense knowledge of optimisation and DOE methods in mathematical form. For example, 

feasible direction/gradient method is similar as providing an artificial searching 

direction. Direct search is similar as full factorial design method that creates grids to 

represent all the individuals in the search space.  However, conventional methods also 

have some limitation. The search space of the machining operation is a complex and 

multi-dimensional space when multiple process parameters need to be considered. It 

still requires a lot of work and computations to implement conventional methods for 

achieving an overall optimal result. 

In this case, new non-conventional optimisations (e.g. Evolution Computing or Meta-

Heuristic search algorithms) have become popular in machining optimisation. This type 

of algorithm is usually inspired by some improvement behaviour in nature or physical 

phenomenon.  
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The general steps of meta-heuristic algorithms are: (1) Randomisation: randomly select 

initial individual or population to generate the starting point or starting set of points. (2) 

Reproduction: based on selected individuals to generate representative points by using 

algorithms which can rapidly explore the search space or Pareto set. (3) Evolution: 

Select and keep the best individual. According to these characteristics, heuristic 

algorithms are widely used to solve parameter optimisation problem, especially when 

the search space is very large and complex. The advantage of non-conventional methods 

is they can locate the optimal results faster than the conventional method. Two typical 

algorithms are introduced as below: 

Genetic algorithm (GA) was firstly introduced by American researcher, Holland from 

the University of Michigan, in early 1970s (Holland, 1975). GA is a stochastic search 

combinatorial optimisation method. A population of candidate solutions is maintained. 

At first, the initial population is generated randomly or with heuristic rules to generate 

good solutions to the problem. With a fitness function, the individuals are evaluated to 

determine how well they solve the problem. The individuals with higher fitness values 

are selected as parents of the next generation. Then, the crossover and mutation 

operators are used to generate new individuals. The function of crossover is to rapidly 

explore a search space and mutation is to provide a small amount of random search. 

Then new individuals are evaluated with the fitness function. GA iterates over many 

cycles of selection, crossover and mutation until the termination criterion is satisfied. In 

general, as the algorithm executes, solutions in the population become fitter and fitter 

until they finally converge to the optimal solution.  

Ant colony optimisation (ACO) is another meta-heuristic algorithm which is 

developed by Dorigo and his associates in early 1990s based on the cooperative 

behaviour of real ant colonies to determine the shortest path from their nest to a food 

source (Colorni et al., 1992, Dorigo et al., 1996). The basic principle of ACO is that if 

the design variables of the optimisation problem are independent with each other, the 

multivariate machining optimisation can be represented as several one variable 

optimisations.  The structure of ACO can be presented as a multi-layered graph in 

Figure 2.13. For implementing ACO, the number of layers is equal to the number of 

design variables and number of nodes in each layer is equal to the number of discrete 

value of the design variable.  
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Figure 2.13 Graphical representation of ant colony algorithm (Rao, 2009) 

However, the problems of meta-heuristic algorithms are:  

 Characteristics of machining operation are not able to be clearly displayed. 

 The basic principle of optimisation theory is embedded into the algorithms 

which cannot be easily discovered. 

 The technical terms applied in the optimisation algorithms are too abstract to be 

understood by practitioners. They are not able to link these terms to machining 

terms. 

So the consequence of above problems is these optimisation methods are more like 

"black box" tools. In practice, most of academic optimisation results have not been used 

by industry because practitioners do not understand how the results are obtained from 

optimisation methods and trust the optimal results. They still prefer to select optimal 

process parameters based on expert experience.   
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2.6 Improvement through the Optimisation of Existing Machining Processes 

Research of improving machining performance by selecting optimal process parameters 

has been conducted for over 100 years since Taylor published his tool life equations in 

the early 1900s (Taylor, 1907). He developed a series of equations to predict tool life by 

considering process parameters. The results showed that the optimal cutting speed exists 

to decide the optimal material removal rate to maximise the cutting tool life and 

minimise the cost. Since then, a great number of research have been carried out to 

improve the performance of machining from different aspects (e.g. objectives, 

optimisation methods). This section introduces research contributions in this area, and 

discusses their advantages and limitations.  

2.6.1 General Machining Optimisation 

Early researchers (1950s to 1970s) proposed optimal suggestion based on analysis of 

machining variables. The optimisation process usually followed procedures of (1) data 

collection through conducting physical experiments, (2) mathematical modelling (3) 

analysing the mathematical equation, and (4) proposing optimal solutions.  

One of the earliest traceable research was conducted by Brewer and Rueda (1963) 

which proposed a monograph technique to optimise cutting force and tool life with the 

consideration of a group of independent variables (cutting speed, feed rate, depth of cut 

etc.) for variety types of materials. The results showed that for non-ferrous materials 

which have good machining ability, the best cutting conditions are regarded as the high 

material removal rate which machine will permit. For difficult-to-machine material the 

range of feasible parameter is more restricted than non-ferrous material. 

Crookall (1969) proposed a concept of performance-envelope to represent the 

permissible and desirable operation regions of machining based on the characteristics of 

machining cost and time with the constraints of machining tool capability (power), 

cutting tool failure, and surface roughness. Koren (1978) optimised the flank wear for 

steel turning operation based on Taylor's tool life equation. The theoretical and 

experimental results are graphically compared and represented how cutting speed 

affects flank wear when the machining time and cutting distance is increasing. It 

showed higher cutting speed will reduce the tool life.  

Lau (1987) and Enparatza (1991) from University of Manchester conducted the research 

for the optimisation of cutting parameters and tool selections for end milling operation. 
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The research involved the investigations of the factors which could affect the cutting 

performance such as tool life and cutting force. Enparantza (1991) developed a tool 

selection module for end milling operation and conducted an optimisation procedure of 

cutting conditions by considering economic criteria. The optimisation procedure was 

based on a general search method and the result showed that the machining cost can be 

minimised by selecting optimal cutting speed. The optimisation procedure also showed 

how constraints (tool life, cutting force, machining power and tool deflection) reduce 

the search space. He also identified that the optimum point should line on the 

constraints (boundary between feasible and unfeasible region). However, his result has 

some shortcoming because other machining parameters were considered as constant 

(e.g. diameter of tool, number of flutes). In real machining operation, the interaction of 

these parameters is very important and cannot be ignored. 

Tolouei-Rad and Bidhendi (1997) investigated optimisation of machining parameters 

for general milling operation. They identified that the optimisation of end milling is a 

non-convex, non-linear, multi-variable and multi-constrained problem according to the 

developed optimisation models. In addition, they used "profit rate" as a new objective to 

combine the previous two objectives machining cost and process time which actually 

convert the problem from multi-objective to single-objective. A feasible direction 

method was selected and graphically demonstrated how to achieve the optimal results. 

A case study of machining a multiple-feature component showed that up to 350% 

improvement in profit rate can be achieved from machining data handbook 

recommendations. 

Khan et al. (1997) described the problem of using traditional optimisation methods (e.g. 

expert-based, Calculus method and Gradient method) to select optimal machining 

conditions which have limited ability to solve non-convex problem. Optimisation 

models for machining operation are usually non-linear. In this case, new non-

conventional algorithms which can solve global optimisation for non-linear and non-

convex solution space are required (e.g. genetic algorithm and simulated annealing). 

Optimisation procedures were conducted by using genetic algorithm (GA), simulated 

annealing (SA) and continuous simulated annealing (CSA) to optimise cost for turning 

operation based on different prediction models. Comparison results between traditional 

algorithms (sequential unconstrained minimisation technique and generalised reduced 

gradient) and non-conventional algorithms showed that non-conventional algorithms 

were more reliable and easy to be implemented. SA can give high precision and easy to 
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be programmed (few hundred lines of code), but it requires more computing time. For 

GA, the precision depends on the number of bits to represent each variable, but the 

computing time is much shorter than SA. Another inspiration from this paper is the 

dimension of the machined feature (e.g. depth of feature) should be considered as size 

constraints for optimisation model. 

Meng et al. (2000) used direct search methods to optimise cutting conditions for turning 

operation. A mathematical model of specific cost (cost per unit volume) was built by 

using a variable flow stress machining theory. Both mathematical prediction and 

experimental test results showed that the specific cost continuously decreased with the 

increase of width of cut. The equations of constraints including plastic deformation, 

machine tool torque and power, tool life values and build up edge formation were also 

modelled based on machining theory to avoid the problem that empirical models always 

contain lots of constants and coefficients which are not readily available. The author 

also claimed that when applying direct search methods (grid search) to carry out 

optimisation process, there is no need to check all the points in the search region (d-f 

plane) but just check the points next to the constraints curve. This finding can be 

applied to reduce the experiment works in data collecting. In addition, the result also 

showed that the optimal specific cost is on the boundary of feasible searching region. 

They also claimed that the tool manufacturer recommendations do not consider the 

process constraints. 

Owodunni et al. (2007) investigated optimum cutting conditions for STEP-NC turned 

features by using direct search algorithm. 10 ൈ 10 grids were created on ap-f (depth of 

cut and feed rate plane) to represent the cost of operation. The optimal value was 

selected within the feasible direction by considering the constraints of maximum tool 

force, machine power/torque workpiece deflection. The results proved that the 

constraints will control the value of optimum parameters for turning operation. For the 

feature which does not have a deflection constraint, the optimum depth of cut is only 

determined by machine tool power. 

Onwubolu (2005) used term "Tribes" which is the same as Particle Swarm Optimisation 

(PSO) to select optimal cutting conditions for face milling and end milling operations. 

The comparison result with GA by considering comprehensive criteria (cutting force, 

material removal rate, surface roughness and time) showed that the optimal results 
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achieved by using both algorithms are similar. It means the proposed Tribe algorithm is 

an efficient, effective, and competitive method compared to GA. 

Baskar et al. (2005, 2006) conducted optimisation of machining parameters for milling 

operation based on maximum profit rate. Four non-conventional methods (ACO, GA, 

PSO and Tabu Search) were introduced and compared with handbook recommendations 

and method of feasible direction. The results showed that significant improvements can 

be achieved in profit rate from handbook recommendations (283% to 440%) and 

method of feasible direction (0.92% to 54%). Among the four methods, the optimal 

results achieved from PSO were better than the other algorithms. However, the 

difference between GA and PSO was less than 5%. These comparison results proved 

that there was a significant potential improvement for using optimal cutting conditions. 

In addition, the optimal results for different algorithms are not different a lot. Further 

research was carried out by Bharathi Raja and Baskar (2010) to find out which non-

conventional algorithm (SA, GA and PSO) is the robust and versatile for optimising 

machining cost, surface finishing and production time of turning operation. The 

comparison result of SA, GA and PSO showed that the performance of PSO was also 

better than GA and SA, but was not very significant.  

Researchers from University of Maribor (Cus et al., 2006), also implemented PSO to 

optimise machining time of high speed end milling. The simulated result showed that 

PSO was faster than GA and SA. Up to 30% reduction of machining time was observed. 

The following research of Cus and Zuperl (2009) mentioned that evolution algorithm 

(GA, SPO) was more convenient for solving multi-objective optimisation problem. The 

example of optimising material removal rate and machining time showed that by using 

PSO, up to 20% of machining time can be reduced and 28% of MRR can be improved. 

However, there was no evidence showed that PSO had significant advantages than other 

algorithms.   

Wang et al. (2005) proposed an approach to select the optimal processing parameters 

for minimising production time for multi-pass milling. The optimisation was conducted 

by using GA, SA, hybrid of GA and SA (GSA) and proposed parallel genetic simulated 

annealing (PGSA). The results of comparison between geometric programming (GP), 

parallel genetic algorithm (PGA) and PGSA showed that although the optimisation 

result of PGSA was almost the same as PGA, the calculation time can be significantly 

reduced.  
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Pan et al. (2009) used DOE method to investigate the tool life for milling Aluminium 

7050. The coefficients of Taylor's basic tool life equation were determined by using 

multi-linear regression method based on the experimental result. The optimisation 

procedure was also conducted based on the verified equation to select the optimal depth 

of cut and feed rate by maximising tool life. The result shows that the machining 

performance can be possibly improved by selecting the optimal combination of cutting 

parameters. 

2.6.2 Machining Optimisation with Energy Considerations 

One of the earliest contributions to optimise machining process parameters with 

consideration of environmental impacts is by Sheng et al. in mid of 1990s. They 

conducted a series of research which considered environmental factors as one of the key 

issues in machining operations. Munoz and Sheng (1995) developed a model by 

considering material, energy and time consumption. Two main loss streams were 

introduced: primary mass loss which consisted of chip generation in the machining 

process, and catalytic mass losses which consisted of the waste stream of cutting fluid 

and the expended tools.  

Sheng et al. (1995) developed an environmentally conscious, feature-based, multi-

objective process planning method, which was beyond the traditional methods that just 

considered economic criteria. This new process planning method estimated the process 

mechanics, tool life and fluid flow, process energy, machining time and the mass flow 

of component waste streams (shown in Figure 2.14). These waste streams can be 

weighted by environmental factors such as toxicity, carcinogenicity, irritation, reactivity 

and flammability. A prioritisation equation was built with the consideration of cutting 

parameters and the waste weight model to evaluate the performance of new process 

plans by considering process energy, machining time, quality and waste stream mass. 

Thus the specific values of energy and waste can be calculated.  

 

Figure 2.14 The Map of Decision Making System (Sheng et al., 1995) 
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Srinivasan et al. (1995) developed a scoring system called Health Hazard Score (HHS) 

which can quantitatively show the environmental impact based on the chemical effect 

on human health and safety (e.g. toxicity, carcinogenicity, dermal and eye irritation, 

flammability etc). Later on, Gune and Peng (1995) complemented the model by adding 

two additional factors: the effect of waste stream on exposure route, and the effect of 

site-specific conditions on waste containment and handling.  

Srinivasan and Sheng (1995, 1999a, 1999b) applied the environmental process planning 

method to machine parts with hierarchical features. They proposed a process planning 

system in which environmental criteria such as process energy and mass flow of waste 

streams are considered in addition to traditional criteria such as production rate and 

quality. The multi-objective optimisation process proposed uses an overall utility which 

is a weighted sum of the different criteria. The system developed allows optimal 

selection of a process path sequencing the machining operations of interacting feature 

volumes. The other contribution of this research is that they developed a feature-based 

micro and macro planning methods. For the different dimensions of the feature, 

different machining operation or different operation sequences can be selected based on 

the energy and waste values. The micro-planning method was used to machine intra-

feature (e.g. step hole), and the macro-planning method was used to machine the part 

which has interactive features. In this research, they further developed the process 

planning model, and more details were given. Figure 2.15 shows the task sequence for 

environmentally-conscious process planning.  

 

Figure 2.15 Environmentally-Conscious Process Planning System (Srinivasan and 

Sheng, 1995) 
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The micro-planning section integrated the different dimensions at the feature level to 

optimise the process plan in process, parameters, cutting fluid and tool selection. 

Srinivasan and Sheng (1999a) specifically built up the calculation models of these 

factors. The process energy model of machining operation is related to cutting force, 

cutting velocity and process time. The process time can be generated by material 

removal volume and material removal rate. The quality referred to surface roughness 

which is related to feed and diameter of cutting tool. The waste stream mass is related to 

tool wear, chip generation and usage of cutting fluid. The models and process planning 

method were also implemented into 3D solid modelling software Pro/Engineer, and a 

case study of machining a part was given to theoretically verify the function of the new 

computer aided micro-planning system. 

Srinivasan and Sheng (1999b) introduced a macro-planning method which focused 

more on the "global" context. The macro-planning method started with the aggregation 

of features (micro-planning), and then generated the feature clusters or sub-clusters by 

considering the feature interaction situations (geometric interactions and process based 

interactions). For geometric interactions situation, energy consumption was calculated 

based on the removal volume for different sequences to achieve the feature. Then the 

system prioritisations of each sequence can be calculated and compared to choose the 

optimal region. The process based interactions can be divided into tool interactions, 

cutting fluid interactions and set up interactions. Thus, the optimisation of process 

interaction is based on minimising the tool change time, cutting fluid use and setup time. 

The arrangement of clusters or sub-clusters was evaluated by micro-planning method. 

Then the machining sequences of all the clusters or sub-clusters would be re-ordered 

based on the optimised prioritisation. 

By combining unit process models, hazard evaluation and system simulation, Sheng et 

al. (1997) developed a model which can predict capability of energy consumption, 

waste flows and exposure risks over a planning horizon. The case studies were 

conducted in process parameters sensitivity, cutting fluid selection and process changes 

to demonstrate the application of the methodology in machining system. The final 

decision can be showed in a spider chart to compare the environmental burden of 

different strategies based on the calculation result by using this multi-objective model. It 

further improved the new process planning system. Sheng et al. (1998) developed a 

multi-criteria hazard (MCH) method to evaluate environmental impact manufacturing 

process. Different manufacturing process plans could be compared based on MCH 
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weigh in terms of energy consumption, waste flow, processing time and health issues.  

This is one of the earliest research work contributed to improve the sustainability of 

machining process. 

Krishnan and Sheng (2000) integrated this environmentally conscious process planning 

as an agent into a Java based CAD tool called WebCAD and can be applied for CNC 

machining. A case study was conducted to show that the environmental macro-planning 

which was generated by using WebCAD can reduce 4.5% of total energy consumption 

and 47.2% of fluid coated on a chip than conventional macro-planning system. This 

result further verified the effectiveness of environmentally conscious process planning 

system. However, research of Sheng et al. also has some shortcomings. First of all, the 

process planning method is based on the improvement of energy consumption and 

environment affect, but none of the research investigated the energy efficiency for 

specific machining. Secondly, the improved process plan with sustainability 

consideration did not consider optimisation of process parameters. So the optimised 

result might not be the best solution. Thirdly, energy consumption in these researches 

just considered for the machining operation which just accounts for small part of total 

energy consumption for manufacturing process. 

Researcher from University of Manchester Rajemi et al. (2010) conducted research on 

the minimisation of energy consumption by optimising cutting parameters for dry 

turning operations. A prediction model was developed to calculate energy consumed in 

dry turning operations. The proposed model also included explicit expressions for 

components of the Auxiliary Energy (AE) such as machine set up energy, energy for 

tool change and energy embodied in the tool and made explicit the machining 

parameters such as feed rate, cutting velocity and tool life. This informative 

mathematical model made it possible to carry out an optimisation procedure which 

minimises the turning energy with respect to the cutting conditions (e.g. tool life). They 

also identified that optimising energy footprint in machining was a trade-off between 

the use of rapid machining to reduce cycle times and the use of the cutting tool at 

conservative speeds to maintain longer machining activity. 

Further experimental verification of Rajemi et al.'s model was conducted by Mativenga 

and Rajemi (2011) to test the tool breakage constraints, power constraint and optimise 

the cutting variables. The experiment compared the energy and cost between optimal 

result and the suggested values from cutting tool catalogue. The experimental results 
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proved that, based on minimum energy criterion, the optimum tool life can be used to 

constrain and optimise other cutting variables. The total energy consumption and cost 

based on machining parameters from a tool supplier catalogue is not efficient and 

economic. By optimising feed rate, cutting velocity and depth of cut with minimum 

energy and cost criteria, the energy consumption and cost can be significantly reduced 

(up to 64% can be saved). Both criteria can get the same trend of optimisation, and the 

results are same. This research proved that energy footprint can be used as the criteria to 

optimise cutting parameters for machining operation. 

Mori Seiki Co. Ltd in Japan conducted a study to improve the energy efficiency for 

machine tool (Mori et al. 2011). The study focused on the energy consumption during 

the machining operation (e.g. drilling, end milling and face milling), which can be 

further divided into three states: non cutting state, cutting state and positioning state. A 

variable which is equal to energy consumption divided by material removal volume was 

defined to evaluate the improvement. The result proved that the energy consumption 

can be reduced by choosing suitable cutting parameters, toolpath and machining 

strategies, and shortening the process time. The results also showed that cutting 

performance can be improved by adjusting cutting speed, feed rate, depth and width of 

cut. Up to 66% power consumption for milling operation can be reduced by selecting 

high level of cutting conditions within a value range which does not compromise tool 

life and surface finish. The machining time also can be shortened with a significant 

increase in material removal rate (up to 333% material removal rate can be increased by 

selecting optimum cutting parameters). Oda et al. (2012) further carried out experiments 

for energy efficiency improvement in ball end milling on a 5-axis machine tool. They 

reported that up to 50% improvement of power consumption can be achieved by 

applying optimised cutting conditions (higher cutting speed, higher feed rate and 

smaller tool-workpiece inclined angle). 

Newman et al. (2012) investigated energy-efficient process planning for end milling. 

Experiments were conducted to compare the power consumption for different loading 

cutting conditions. The results showed that when keeping material removal rate as a 

constant, light cutting condition (small depth of cut, large feed rate) consumed less 

power than high cutting condition (large depth of cut, small feed rate). However, up to 

6% total power can be saved for slotting aluminium. It means increase of cutting force 

from increasing feed rate is less than increasing depth of cut. This conclusion can be 

also drawn from empirical cutting force equation that the cutting force coefficient of 
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feed rate is smaller than the cutting force coefficient of depth of cut.  This result also 

proved that the specific energy consumption models (e.g. Kara et al., 2011 and Diaz et 

al., 2012) which were just related to MRR were not informative enough. However, the 

experimental comparison and multi-feature test showed that the improvements of power 

consumption are only 6% and 1.7%. This result needs to be further extended by 

considering other energy minimisation methods to draw decision makers' attention to 

the energy consumption. 

2.6.3 Multiple Objectives Machining Optimisation 

The consideration of the improvement of machining operation in term of sustainability 

is actually a multiple objective optimisation or multiple criteria selection problem. In 

practical machining process, these criteria or objectives could be either conflicting or 

non-conflicting. However, when the multiple objectives considered are conflicting, it 

usually require decision makers to have clear preferences. The challenge of current 

research is how preference of decision makers can be accurately and effectively 

represented.  

Chong and Zak (2007) gave a description of multi-objective engineering optimisation 

problems. Compared to the single objective optimisation problems which only have one 

objective function, most engineering problems require designers to consider more than 

one objective which may be in conflict with each other. It means the improvement in 

one objective may lead to deterioration in other objectives. Multi-objective problems in 

which the objectives are conflicting may have no unique optimal solution.  

The purpose of multi-objective optimisation (MOO) is to assist decision makers select 

the optimal plan or make a better decision. Marler and Arora (2004) conducted a survey 

of current nonlinear multi-objective optimisation methods for engineering use. They 

reported that the current methods can be divided into three major categories based on 

the preference type of decision maker, which is priori articulation, posteriori articulation 

and no articulation. They also claimed that no single approach is superior. The selection 

of optimisation method must depend on the type of information provided, the decision 

maker's preferences, the solution requirements and the availability of software.  

Multi-objective optimisation problems are also referred to as multi-criteria or vector 

optimisation problems. A multi-objective optimisation problem can be as follows: 
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Find a decision variable that satisfies the given constraints and optimises a vector 

function whose components are objective functions. In general, there are three different 

types of multi-objective optimisation problems: 

 Minimise all the objectives functions. 

 Maximise all the objective functions. 

 Minimise some and maximise others. 

For the implementation in machining optimisation, the MOO methods can be divided 

into two categories based on the techniques applied which are Priori techniques and 

Posterior techniques (because the optimisation methods applied for solving no 

articulation of preferences problems are just simplification of Priori techniques). The 

basic principle of priori techniques is to convert MOO problems to single-objective 

optimisation by combining different objectives functions as a single objective function. 

The optimal result will be displayed as a unique solution. On the other hand, posterior 

techniques (e.g. evolutionary computation techniques) will present a set of feasible 

solutions for the decision makers to choose. This set of feasible solutions is called 

Pareto optimal set and can be represented as a Pareto front. 

For using priori techniques, Malakooti et al. (1990) proposed a method for assessing the 

weights of the importance of different criteria on machinability including production 

rate, operation cost, product quality, tool life, surface roughness, accuracy, temperature, 

power/force/torque, vibration and noise. A machinability function was developed which 

can combine different process outputs together. The weights of the importance of these 

objectives can be calculated and evaluated according to decision maker's preference. 

Based on this method, Cus and Balic (2003) optimised cutting speed and feed rate by 

using genetic algorithm. A unique optimal plan was achieved for end milling operation 

with the consideration of production rate, operation cost and surface roughness. The 

work was extended in Cus and Zuper’s further publications (Zuper and Cus, 2003, Cus 

and Zuper, 2006 and 2009) by using different optimisation methods for turning and end 

milling operation. Tolouei-Rad and Bidhendi (1996) investigated optimisation of 

machining parameters for conventional milling operation. Profit rate was utilised to 

combine machining cost and process time. A case study of machining a multiple-feature 

component showed that up to 350% improvement can be achieved compared to 

recommendations from Machining Data Handbook. 
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On using posteriori techniques, Sardinas et al. (2006) used genetic algorithm to optimise 

production rate and cost for turning operation. Pareto front was used to represent the 

feasible optimal results. Kapat and Ozel (2007) used neural network and particle swarm 

algorithm to optimise three conflicting cases: surface roughness and productivity, 

material removal rate and tool life, and surface roughness and surface residual stress. 

Three sets of Pareto fronts were plotted to show the optimal results for each case. Pareto 

fronts were also used to show the optimal results of two conflicting objectives such as 

surface roughness and tool wear by Roy and Mehnen (2008), and material removal rate 

and tool wear by Yang and Natarajan (2010) for turning operation. 

For optimising machining operation with energy considerations, Sheng and Srinivasan 

(1995a, 1995b) developed an environmentally conscious multi-objective process 

planning method. This new process planning method estimated the process mechanics, 

tool life, fluid flow, process energy, machining time and the mass flow of component 

waste streams. These waste streams can be weighted by environmental factors such as 

toxicity, carcinogenicity, irritation, reactivity and flammability. Thus the process and 

parameter can be selected based on objectives including process energy, process time, 

surface finish and weighted mass flow. Mativenga and Rajemi (2011) carried out a 

research to optimise energy consumption for turning operation. They also reported that 

the optimal cost can be achieved with optimal energy by using identical optimal process 

parameters.  

Avram et al. (2011) developed a multi-criteria decision method for assessing the 

sustainability of machine tool systems. The proposed method seeks to find one or 

several satisfactory solutions among a set of possible solutions by considering different 

criteria. An interpretation table (Table 2.3) of the weighting methods of different criteria 

was built to capture preference information of the decision makers. Then the overall 

performance of different process plans/cutting strategies can be calculated and selected 

with the corresponding requirements.  So the decision makers can easily select the 

optimal alternative based on the overall rate in both machining process level and 

machine tool system level.  
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Table 2.4 Weighting of Different Criteria (Avram et al., 2011) 

 

 

2.6.4 Summary: Issues of Machining Optimisation Research 

Machining optimisation has been considered for over 100 years. However, there are still 

some issues existing in current machining optimisation research. 

Firstly, although characterisations of machining operation for energy consumption (e.g. 

Kara et al., 2011 and Diaz et al., 2012) and conventional objectives (e.g. cost, time, 

quality, tool life and surface roughness, Meng, 2000) have been presented in early 

research, there still lacks of understandings of the relationship between different criteria 

(e.g. conflicting or non-conflicting). It will cause problems (e.g. how to get the optimal 

results and why the optimal results look like in such form) when multiple objectives 

need to be considered during machining optimisation. 

Secondly, the link between modern optimisation methods and optimisation theory is 

missing or embedded into algorithms functions. As identified by Roy et al (2008), most 

of academic optimisation results have not been used by industry because practitioners 

mostly prefer to select optimal parameters based on expert experience. To solve this 

problem, the optimisation process needs to be uncovered or transparent to make the 

practitioners to understand and accept the optimal results, and implement optimal 

results in practice. The following requirements need to be addressed to achieve this goal: 

 The optimisation procedure must be based on a comprehensive understanding of 

the nature of problem (e.g. search space, variables, constraints). 

 The primary objective (energy) must be related to the conventional objectives 

such as cost, time and quality which the practitioners are familiar with and 

interested in. 

 The optimisation method adopted must be suitable for the machining problem 

and conform to practitioners’ knowledge or obvious general principle. 
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 The optimisation results must be easily visualised, so that decision makers can 

rapidly find the optimal result and have confidence in the obtained optimal 

results. 

Thirdly, too many different optimisation methods have been applied in machining 

optimisation. These methods are developed based on different background and now 

have been widely used in machining operation. The comparison between these methods 

showed that in some circumstance, there is no significant difference in the performance 

(e.g. accuracy) of these methods. So it is difficult to tell which one is the "best". Also 

there is lack of understanding about how these methods function to achieve the optimal 

results. 

Fourthly, the process of understanding machining operation in terms of the nature of 

machining operation and optimisation takes a long time. There is no comprehensive 

framework or guideline to help the users (both academic and industry) who do not have 

good knowledge about machining optimisation to scientifically determine the optimal 

machining parameters. 

Finally, sustainability awareness brings new requirements for existing multi-objective 

machining optimisation research. In carrying out the review of current research 

contributions, the following problems can be identified:  

 For priori techniques, decision maker's preferences are required to determine the 

weight for each objective or directly combine the objectives together. However, 

priori techniques are not suitable for the cases that the decision makers’ 

preferences are not clear, or optimising objectives are not able to be reasonably 

combined.  

 For posteriori techniques, Pareto front is usually employed to present the 

optimal results for the problems when two conflicting objectives need to be 

considered. However, when there are more than 2 objectives, multiple Pareto 

fronts are required to present the optimal results for every two objectives. These 

multiple Pareto fronts are difficult to understand, and analysis process is 

complex and inefficient.  

 Most multi-objective machining optimisation research with energy 

considerations reviewed only used priori techniques. The optimal results 

achieved by using these methods are a unique optimal plan, but not a set of 

feasible solutions. So, it is necessary to investigate the optimal solutions of 
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multi-objective machining optimisation with energy considerations by using 

posteriori techniques.     

2.7 Improvement through the Development of New Processes and Technologies 

Beyond optimisation of existing machining process, further reduction of energy 

consumption can be achieved through the development of energy efficient industrial 

processes and technology. This need is being addressed through ongoing energy 

efficient manufacturing research as part of a wider field of sustainable manufacturing.  

Dahmus and Gutowski (2004) identified factors (e.g. such as material production, 

cutting fluid usage and material removal) which affect energy consumption during 

machining operation. Energy consumption from cutting fluid usage is reduced by 

minimising (i.e. Minimal Quantity Lubrication, MQL) or eliminating (i.e. dry 

machining) the quantity of coolant used during machining,  hence reducing the energy 

used during machining as well as pollution and harmful health effects from additives in 

coolants (Yalcin et al, 2009).  

The minimisation or complete reduction of the usage of cutting fluid and lubrication 

(CLF) in machining process has been investigated to reduce the energy consumption 

and environmental impact to achieve the goal of sustainable manufacturing. By 

abandoning conventional cooling lubricants and coolant strategies, and applying the 

advanced strategies of dry machining or minimum quantity lubrication (MQL), the cost 

of the machining process can be significantly reduced. Dry machining and MQL are the 

key technologies to reduce the cost and improve the overall performance of cutting 

operation through cooling lubrication. Implementing dry machining cannot be simply 

accomplished by switching off the coolant supply pump. The cooling lubricant has 

some important functions that include:  

 Cooling lubricants can reduce the friction, thus reduce the generation of heat and 

dissipate the generated heat. 

 Cooling lubricants can remove the chips to clean the tools, work pieces and 

fixtures. 

 The tool life can be increased and the cutting force can be reduced. 
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Research of CLF for different strategies and application conditions can reduce the 

environmental impact by reducing energy consumption and waste generation, and 

improving the economics and efficiency performance (Hands et al., 1996, Weinert et al., 

2004).  

Minimal Quantity Lubrication (MQL) is a new method between dry and wet machining. 

An experiment conducted by Rahman et al (2002) to evaluate the effect of MQL in 

milling showed that MQL (8.5	ml/h) could drastically save more coolant than the 

traditional flood cooling method (42000	ml/h). Braga et al (2002) applied MQL during 

an experiment of drilling of aluminium-silicon alloys. The result showed that both 

machining precision of hole (37.5% of roughness was reduced for diamond coated tools, 

and 66.7% for uncoated tools) and tool life (25% of the feed force was reduced) are 

improved. Kishawy et al (2005) applied MQL during the high-speed machining of A356 

aluminium alloy, further proving that MQL can replace the flood method and improve 

dry machining (30% of cutting force was reduced). 

Dry machining eliminates the use of cutting fluid during machining, thus completely 

avoiding the energy consumption and environmental damage from coolant use. Without 

the use of coolant, the cutting force and heat generated will be considerably high and 

lead to rapid wear/failure of cutting tools. Kustas et al (1997) used nanocoatings on 

cutting tools, and tested the machining result by comparing with traditional tools, 

reaching the conclusion that the nanocoated cutting tools can greatly reduce the cutting 

force (33%) and wear during machining however, dry machining is not suitable for all 

conditions. It is difficult to use for grinding operation or machining specific materials 

(aluminium and aluminium alloy).  

Campatelli conducted an experiment for three different lubrication strategies: flooded, 

MQL and dry for turning operation of AISI 1040 steel based on Gutowski's work 

(Campatelli, 2009). The energy consumption was evaluated from the analysis of the 

cutting force along the cutting and feed direction (tangential and radius) for using 

different lubrication strategies. According to the experiment result of energy, tool life 

and emission, the overall performance of MQL is better than dry and flooded strategies 

(15% energy saved, 25% tool life increased). 

New CLF technologies (e.g. cryogenic machining and high pressure jet assisted 

machining, HPJAM) were investigated to alternate conventional CLF methods by the 
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researchers from Kentucky. The new technologies can increase the productivity 

(improve material removal rate), tool life (lower abrasion, chemical wear), surface 

quality, and reduce the cutting force, thus achieve the goal of sustainability (lower 

energy consumption, environment impact and machining cost) (Jawahir et al., 2007, 

Pusavec et al., 2010a, 2010b, Kopac 2009, Jayal, 2010). 

New type of lubricant supplies were introduced at 12th Global Conference on 

Sustainable Manufacturing by Klocke et al. (2014) and Blau et al. (2014) by considering 

high pressure lubricant supply and Cryogenic cooling method. These additional coolant 

supplied may cause the increase of total power consumption, but lower temperatures 

can reduce flank wear and break the limits of conventional machining/coolant strategies 

by massively increasing cutting speed without harming the tool life. Thus it will 

significantly reduce the machining time, and the total energy consumption will be 

reduced too. 

Apart from coolant strategies, optimising toolpath or cutting tool utilisation is another 

way to achieve an energy-efficient machining process. Researchers from Laboratory of 

Manufacturing and Sustainability (LMAS) conducted the research in minimising the 

energy consumption in machining operation based on improving the machine tool 

performance, optimising cutting parameters and toolpath strategies. Vijayarahavan and 

Dornfeld (2010) presented a software-based approach to monitor the energy 

consumption for machine tools and help to make decision based on multi-level/scale 

temporal analysis. Diaz et al. (2010) researched on energy minimisation of end milling 

operation. The research was conducted based on an understanding of the direction of 

table travel where more energy is used on machine tools.  The effects of the orientation 

of toolpath were investigated for various toolpath strategies on energy consumption. 

The energy consumption per unit was determined and optimised based on cutting 

parameters (e.g. feed rate). Then the kinetic energy recovery system (KERS) was used 

to improve the production efficiency. 5% to 25% of power consumption can be saved. 

A unified monitoring scheme was used to capture the energy flow which can easily and 

effectively integrate various disparate elements and analyzed the sampled data. Through 

the three approaches, the energy efficiency for precision manufacturing can be easily 

improved. 

Further research was conducted to verify Diaz's research. Life-cycle Assessment (LCA) 

of two types of end milling machines (Bridgeport Manual Mill, low automation and the 
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Mori Seiki Dura Vertical 5060, high automation) was carried out based on energy 

demand and COଶ  emissions. The results showed that the energy requirement to 

manufacture high automation machine is much higher (100,000MJ) than low 

automation machine (18,000MJ). In this case, the different design of machining tool 

will consume different amount of energy (Diaz et al, 2010a). In addition to 

implementing machine tool design changes, energy consumption for using a machine 

tool could also be reduced through selecting process parameter. A total energy 

consumption model for the machine tool operation was proposed based on power 

demand (Diaz et al., 2010b). The energy consumption for machine tool can be classified 

into three categories: constant, variable and cutting energy. Constant energy (CE) comes 

from auxiliary equipment (e.g. computer panel, light fixture and coolant pump). Cutting 

energy is the energy consumed during machining operation, and depends on cutting 

parameters (e.g. feed rate, spindle speed, width of cut, depth of cut, and number of 

flutes of the cutter). Variable energy comes from the spindle motor, which also has two 

states: steady state (spindle drives under a specified value) and transient state (spindle 

accelerating or decelerating). Figure 2.16 shows the processing time and energy 

consumption for different toolpath strategies to produce a pocket feature based on this 

proposed model. It shows that the energy consumption and processing time for different 

toolpath are different, and where more energy is used in machine tools.  

 

Figure 2.16 Processing Time and Energy Consumption of Various Tool Paths 

(Daiz et al. 2010a) 
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Schultheiss et al. (2013) proposed an approach to increase cutting tool utilisation for 

milling and turning operation which can significantly increase cutting tool utilisation 

thus increase the sustainability of the machining process. By swapping the major and 

minor cutting edge (for milling operation) or reversing feed direction (for turning 

operation), the tool life can be possibly increased 50%-100% without harming surface 

roughness. This increase of tool life cannot only reduce the cost of cutting tool purchase, 

but also reduce the energy consumption for changing the cutting tool.   

Advanced Manufacturing Research Group of TechSolve, US conducted the research to 

assess the energy consumption efficiency for discrete part manufacturing at machining 

level (Deshoande et al. 2011a, 2011b). An energy monitoring system called “Smart 

Energy Monitor” was built up based on National Instruments LabView. The energy 

consumption of a discrete part can be specifically represented at feature level. Potential 

energy savings can be achieved by improving the machine tool system, thus achieve the 

goal of energy-efficient machining and sustainability. However, this research did not 

provide the sustainable suggestions by considering the optimisation of process 

parameters and the improvement of machine tools. In addition, the implication of this 

system requires using specific hardware like power sensors to collect the data, which 

will increase the operating cost and cannot be widely implemented. 

In summary, instead of the improvement of current manufacturing strategy, the aim of 

developing new energy-efficient machining strategies is to implement new concepts and 

machining strategies to minimise energy consumption for the machining operation. 

However, these strategies also have limitations and currently are still not able to replace 

conventional strategies. For example, most of these research contributions are related to 

the coolant strategies or using different cutting tools. Although these research 

contributions can reduce the energy consumptions, the inherent inefficiency of existing 

machining process which is caused by the cutting technology is still not solved. In this 

case, it is really important to develop a new energy-efficient toolpath strategy from the 

knowledge of machining science which can further minimise the energy consumption 

and improve the energy efficiency of the existing cutting process. The new proposed 

energy-efficient strategy should be able to identify the potential improvement to the 

theoretical limitation, and give the direction to the new research of technology for tool 

design, toolpath strategy and machining technology. 
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2.8 Industrial Survey 

The survey of industrial practice was also conducted in this research through factory 

visit, industrial exhibitions visit, informal interview and secondary findings from other 

literature survey conducted. The aim of industrial survey is to observe how the 

manufacturing process operates in practice and the current situation of practical 

manufacturing process. The tasks of the industrial survey focus on the following area: 

 Awareness of energy issues in machining operation 

 Energy usage and energy efficiency measurement 

 Determination of selection of process parameters 

 Machining improvement 

 Existing tools applied in practice 

 Capability of CAM software   

The specific interview questions are listed as below: 

 What methods are used to determine process parameters in the machining 

operations? 

 What criteria do the practitioners concern in practice? 

 Do you think energy should be considered as an important criterion? If yes, do 

you know the relationship between energy and other criteria? 

 Are there any methods used to improve the machining process? If yes, what are 

they? 

 What tools have been used to decide the machining process? 

The scale of the visited industry companies covered a broad range including 

large/medium/small machining workshops, industrial/academic machining laboratories, 

and machine/machining tool manufacturers. Over 40 people have been interviewed 

including experienced/young shop floor practitioners, apprentices, sales managers, line 

managers, facility managers, designers and technical engineers and machining science 

students and researchers.  

The results of industry survey showed that: 

 Most of practitioners consider cost (total cost and tool cost) and quality (surface 

roughness) issues, but do not have awareness of the energy issue. One of the 
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possible reasons is that it is difficult to directly feel the energy consumption 

during the machining operation. 

 It is difficult to measure energy consumption in practical manufacturing 

environment. One reason is laboratory measurement system is difficult to setup 

because of the power supply wires and cables in the workshop are integrated and 

set up together. The second reason is practitioners do not like to be disrupted 

when they have started machining jobs. 

 The process parameters applied in practical machining process are not optimal. 

Usually, the process parameters are determined based on practitioners' 

experiences or selected from machining handbook/cutting tool catalogue. Once 

the process parameters are determined, they are seldom changed. 

 Most of the interviewed practitioners lacked the knowledge of machining 

optimisation. It is one of the reasons they do not trust and accept academic 

optimisation results. Compared to academic optimal results, they prefer to trust 

traditional sources (such as machining handbook, cutting tool catalogue, 

experiences and experiment results. Some companies even buy NC code from 

third part process planning company). 

 The most common improvement method used by practitioners is to improve the 

productivity via increasing more shifts. One of the reasons is that they do not 

want to change the process plan. Compared to changing process plan, they 

prefer to keep a stable process which is easy to predict the outputs and control 

the inventory/orders. 

 The process planning capability of existing CAM software is very limited which 

is more like an integrated machining library (machining handbook, cutting tool 

catalogue). Separate from CAM software, some big cutting tool manufacturers 

(such as Sandvic) developed feed/speed calculator (online version or mobile 

applications) to determine process parameters. However, most of the calculators 

are just simple software based on machining science equations. The function is 

very simple usually related to cutting tool dimensions and cutting speed, and 

request to manually input the cutting process parameters.  

 Finally, there are lots of barriers existing which cause the academic 

achievements are very difficult to implement in practice. For example, even 

potential improvements exists in current manufacturing process, almost all of the 

industries do not want to take a risk to implement new methods/techniques and 
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prefer to use conservative methods. Another major problem is most of the 

companies do not have extra budget (small and medium enterprises) or will 

(larger/national enterprises) to purchase an energy-efficient process planning 

system. 

From the result of Anderberg's research (2012) in Figure 2.17, the cost of energy only 

accounts for a very small portion of total cost (less than 1%). This result will cause the 

negative influence that industry may ignore the importance of energy issues. In this 

context, it is necessary to explore other research directions in energy consumption to 

emphasise the importance of energy minimisation, such as: 

 What the energy efficiency is in machining operation?  

 How energy affects the other considerations (e.g. cost and quality)?   

 

Figure 2.17 Proportion between Cost Components for Machining Process 

(Anderberg, 2012) 

In summary, the issues raised from industry survey are also related to two categories 

which are similar as the issues identified from literature survey:  

 Energy/energy efficiency measurement method needs to be developed for 

practitioners to better understand the importance of energy consumption. It can 



` 

72 
 

provide a reason why it is important to pay attention to energy consumption, and 

provide tools to evaluate their current processes. 

 Improvement methods need to be developed for practitioners to improve their 

machining process. Apart from the human factors, it also needs to consider the 

factors including: preferences, habits and capability of different users, and form 

of implementation. So the optimal results can be understood, trusted and 

accepted by practitioners. 

2.9 Summary of Literature Review 

In the chapter of literature review, the research contributions of the related area have 

been investigated in order to identify the issues/gaps of current research and 

development.  Issues of current practical machining process have also been identified 

based on industry survey which is the same as the issues identified from literature 

survey. The research questions can be formulated to address the issues raised from 

literature and industrial survey. According to the investigation of current research in 

sustainable manufacturing, energy measures for manufacturing process, machining 

optimisation and energy-efficient machining strategies, the following tasks have been 

completed and summarised:  

Firstly, general concepts of sustainable manufacturing have been introduced to define 

the research area and describe the current trends in research area. Research of energy 

consumption/efficiency in manufacturing mainly focuses on how to reduce energy 

consumption. Reducing energy consumption can be achieved through the development 

of energy efficient industrial processes and technologies. This need is being addressed 

through ongoing energy efficient manufacturing research as part of a wider field of 

sustainable manufacturing. 

Secondly, the review of how to measure the energy consumption and energy efficiency 

for the manufacturing process has been continuously carried out. The major 

shortcoming of these contributions is that the energy efficiency metrics do not uncover 

the inherent inefficiencies in the machining process and suggest the direction to achieve 

better energy efficiency. Though the academic research has proposed some energy audit 

models and energy efficiency metric to help measure and evaluate the energy usage, 

these models and metrics have some limitations (e.g. not informative enough) and 

problems (e.g. against the common sense). 
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Thirdly, the review of machining optimisation have been carried out to introduce the 

existing machining optimisation methods and commonly accepted optimisation 

procedure which will be used to guide the optimisation based on energy considerations 

to reduce the energy consumption and improve energy efficiency. However, too many 

different optimisation methods have been applied in machining optimisation. The 

optimal results obtained from these research contributions are not transparent enough 

and most of academic optimisation results have not been used in industry. Although the 

environmental challenge provides a new opportunity to apply the results of decades of 

optimisation and process planning research, under this circumstance introducing energy 

as an additional criterion will bring more complexity of existing machining problems.   

Fourthly, sustainability awareness brings new requirements for existing multi-objective 

machining optimisation research. Most multi-objective machining optimisation research 

with energy considerations reviewed only used priori techniques to convert multi-

objective optimisation to single-objective optimisation problem. The optimal results 

achieved by using these methods are a unique optimal plan, but not a set of feasible 

solutions. So, it is necessary to investigate the optimal solutions of multi-objective 

machining optimisation with energy considerations by using posteriori techniques.     

Finally, new energy-efficient machining strategies have been reviewed to introduce the 

important technologies and significant contributions in the area which can improve the 

energy efficiency. Energy consumption during machining was grouped as that due to 

material production, cutting fluid usage and material removal. Reduction of energy from 

material production aims at utilising materials requiring less energy at the primary 

production stage, producing less negative effects on the environment and having good 

recycling properties. Energy consumption from cutting fluid usage is reduced by 

minimising or eliminating the quantity of coolant used during machining, hence 

reducing the energy used during machining as well as pollution and harmful health 

effects from additives in coolants. However, the inherent inefficiency of existing 

machining process which is caused by the cutting technology is still not properly solved. 

The new proposed energy-efficient strategy should show direction to the research of 

new technologies for tool design, toolpath strategy and machining technology. 
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CHAPTER 3: DEVELOPMENT OF PREDICTIVE MODELS AND ENERGY 

EFFICIENCY METRICS FOR MACHINING OPERATION AND THE 

EXPERIMENTAL VALIDATION 

The aim of this chapter is to introduce the mathematical models for machining operation 

such as cutting force, power, time, energy, cost, tool life and surface roughness. 

Mathematical expressions have been modelled based on machining theories and 

common empirical methods. An energy prediction model has been built based on 

cutting force model. Experiments are conducted to determine the coefficients and verify 

the energy prediction model. These mathematical expressions will be used to analyse 

the characteristics of machining operations for the following chapters. 

3.1 Modelling of Prediction Model for End Milling Operation 

In this section, a theoretical energy prediction model for end milling operation will be 

built based on machining science theories and other researchers’ publications in 

regarding to power, time and tool life.  

3.1.1 Power Consumption Model for Machining Operation 

The power consumption to remove a volume of material depends on the force needed to 

carry out the operation and the cutting velocity at which the operation is being 

conducted.  In this context, theoretically the cutting velocity component in the axial 

direction is zero, and the component in the radial direction is insignificant compared to 

the component in the tangential direction (similar conclusion can be drawn from Wan et 

al., 2010, see Figure 2.6). Therefore, the power consumption for machining operations 

can be represented in Equation 3.1 with the tangential cutting force based on Equation 

2.15 multiplied by cutting velocity. 

ܲ ൌ
்ܨ ∙ ܸ

60
																																																																	ሺ3.1ሻ 

where, ܸ is cutting velocity ݉ ݉݅݊⁄ , where, ்ܭ is cutting force coefficient, ܰ/݉݉ଶ.  

ܸ ൌ
݊݀ߨ
1000

																																																																							ሺ3.2ሻ 

As the cutting force model shown in Chapter 2, the cutting force is related to the 

instantaneous cut thickness, depth of cut and feed rate, the power consumption for 

machining operation can be generated as following steps: 
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ܲ ൌ
்ܭ ∙ ܽ ∙ ݂ ∙  sin߶ ݀߶

థೠ
థ

ݖ݊
∙
݊݀ߨ

6 ൈ 10ସ
																														ሺ3.3ሻ 

ܲ ൌ
ߨ ∙ ்ܭ ∙ ܽ ∙ ݂ ∙ ݀

6 ൈ 10ݖ
ሺcos߶ െ cos߶௨௧ሻ																											ሺ3.4ሻ 

                       

When the tool is completely engaged, the power consumption model for machining 

operation can be represented in Equation 3.5. 

ܲ ൌ
ߨ2 ∙ ்ܭ ∙ ܽ ∙ ܽ ∙ ݂ ∙ ݀

6 ൈ 10ସݖ ∙ ݀
ൌ
ߨ ∙ ்ܭ ∙ ܴܴܯ
3 ൈ 10ସݖ

 

ܲ ൌൌ
ߨ ∙ ܴܴܯ ∙ ܥ ∙ ܽ

భ ∙ ܽ
మ ∙ ݀య ∙ రݖ ∙ ௭݂

ఱ ∙ ݊ల

3 ൈ 10ସݖ
												ሺ3.5ሻ 

where, PM is the power consumption for end milling operation W, MRR is material 

removal rate ݉݉ଷ/݉݅݊. 

However, the total power consumed during machining process also need consider the 

component of auxiliary functions including spindle driven servo motor, NC control pad, 

computer and fans, lighting, coolant pumper motor etc. The investigation of power 

consumptions of each component will be shown in the following sections of 

experimental results. 

௧ܲ௧ ൌ ܲ  ܲ௨௫௬																																							ሺ3.6ሻ 

ܲ௨௫௬ ൌ ܲ௦௧௧  ௩ܲ 

The auxiliary power consumption can be further divided into two parts which are 

constant power consumption and variable power consumption. Constant power 

consumption contributes to the functions which consume constant power such as NC 

control pad, coolant pump driven motor and lighting. The variable power consumption 

contributes to the functions that the power consumption changes with the 

increase/decrease with the process parameters (e.g. feed rate and spindle speed), such as 

spindle driven servo motor and workbench driven motor. 
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3.1.2 Time Consumption for Machining Operation 

Total time consumption for machining process can be expressed: 

௧௧ݐ 	ൌ ݐ  ௦௧௨ݐ   ሺ3.7ሻ																																																௧ݐ

Where ݐ is machining time min,	ݐ௦௧௨ is setup time min, ݐ௧ is tool changing time, 

and can be represented as: 

ݐ ൌ ܸ

ܴܴܯ
 

௦௧௨ݐ ൌ ݊௦ ∙  ሺ3.8ሻ																																																													௦ݐ

௧ݐ ൌ ݊௧ ∙ ௧ݐ ൌ
௧ݐ ∙ ݐ

ܶ
																																																	ሺ3.9ሻ 

Where, ݊௦ is number of setup times, ݊௧ is number of tool changing times, ݐ௧ is tool 

changing time min/change, ݐ௦ is setup time min/setup, ܶ is tool life min. So the total 

time consumption can be represented as: 

௧௧ݐ ൌ ݐ  ௦௧௨ݐ  ௧ݐ
ݐ
ܶ
																																												ሺ3.10ሻ 

3.1.3 Modelling of Tool Life 

Tool life depends on a lot of cutting variables. The most significant variables affecting 

tool life are work piece material, tool material, tool shape, cutting speed, feed rate and 

depth of cut. Taylor’s equation was widely used to calculate tool life in machining 

operation. Taylor (1907) is the early pioneer of the research of tool life. The basic 

Taylor’s equation is shown in Equation 3.11. 

ܸܶ௨ ൌ  ሺ3.11ሻ																																																																ܥ

where, V is cutting speed, T is tool life, C is a tool life coefficient, u depends on 

different tool materials. 

This basic equation is easy to use and only has one variable (cutting speed). But it is not 

very accurate. In this case, based on the basic equation, the extended Taylor’s equation 

was developed. Extended Taylor equation can be represented by considering cutting 

speed, feed rate and depth of cut (Enparantza, 1991): 
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ܶ ൌ
ܥ

ܸ ∙ ݂ ∙ ܽ
 																																																											ሺ3.12ሻ 

where, f is feed rate, ܽ is depth of cut, m, p and q are constants. 

Among these three factors, cutting speed is the most important factor, then the second 

one is feed rate and the impact of depth of cut is the least. In Enparantza's research, feed 

rate is fixed, ܽ is related to diameter of tool and very small, the basic equation will be 

suitable for end milling operation. The specific application can be represented as a 

simple Taylor equation as below: 

ܸ ∙ ܶ
௨ 			ൌ ܸோ ∙ ܶோ

௨ 																																																																							ሺ3.13ሻ 

where, ܸோ is reference cutting speed, ܶோ is reference tool life. Then, 

ܸ

ܸோ
ൌ ൬ ܶோ

ܶ
൰
௨

 

ܶ ൌ ܶோ ∙ ൬
ܸோ

ܸ
൰
ି௨

																																																								ሺ3.14ሻ 

Where, 

൝
ݑ ൌ ܾ݁݀݅ݎܽܥ																								0.3~0.25
ݑ ൌ ݏܿ݅݉ܽݎ݁ܥ																					0.7	~	0.5
ݑ ≅ ݈݁݁ݐܵ	݀݁݁ܵ	݄݃݅ܪ												0.125

 

Pan et al. (2009) developed a tool life prediction model for milling Aluminium 7075-T6 

series aeronautical aluminium by using multi-linear regression. The model considered 

the impact of cutting speed and feed per tooth which is: 

ܶ ൌ
41078687

ܸ
ଵ.ହସ ∙ ௭݂

.ସଷ
		 

3.1.4 Energy Consumption Model for Machining Operation 

The energy consumption model for end milling operation can be represented as 

Equation 3.15:  

ܧ ൌ ܲ ∙  ሺ3.15ሻ																																																ݐ
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Where, tm is time consumption for machining process in seconds. Time consumption 

can be approximately calculated by material removal volume divided by material 

removal rate. 

ݐ ൌ
60 ܸ

ܴܴܯ
																																																																ሺ3.16ሻ 

Based on the equation 3.4, 3.7 and 3.8, the energy consumption model can be concluded 

as equation 3.17. 

ܧ ൌ
ߨ ∙ ்ܭ ∙ ܴܴܯ
3 ൈ 10ସݖ

	 ∙
60 ܸ

ܴܴܯ
			 

ܧ ൌ
்ܭߨ2 ܸ

10ଷݖ
																																																		ሺ3.17ሻ	 

where, Emachining is the energy consumption for machining operation J, ܸ is material 

removal volume ݉݉ଷ . Based on equation 3.17, the energy consumption for a 

machining operation is in proportion to material removal volume and reverse proportion 

to the number of flutes.  

The total energy consumption for machining process can be expressed as in Equation 

3.18: 

௧௧ܧ ൌ ܧ  ௨௫௬ܧ  ௦௧௨ܧ   ௧                  ሺ3.18ሻܧ

The expressions of each component are shown as below: 

௨௫௬ܧ ൌ ݐ ∙ ൫ ܲ௦௧௧  ௦ܲௗ൯ 

௦௧௨ܧ ൌ ௦ݐ ∙ ܲ௦௧௧ 

௧ܧ ൌ ௧ݐ
௧
்
∙ ܲ௦௧௧                                     ሺ3.19ሻ 

where, ܲ௦௧௧ is the power consumed by the functional component which requires 

constant power such as control pad, coolant pump, lighting etc. ௦ܲௗis the power 

consumed by the spindle. It depends on the spindle speed applied during machining.  

So the total process energy consumption is: 
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௧௧ܧ ൌ
ଶగ∙బ∙

భ∙
మ∙ௗయ∙௭ర∙ఱ∙ల

௭∙ଵయ
 ݐ ∙ ൫ ܲ௦௧௧  ௦ܲௗ൯  ௦ݐ ∙ ܲ௦௧௧ 

௧ݐ
௧
்
∙ ܲ௦௧௧																																																																																									ሺ3.20ሻ  

3.2 Cost, Surface Roughness and Chatter 

Additional models such as cost and surface will also be introduced in this section for 

carrying out the following research of sustainability improvement with the 

consideration of energy consumption. In addition, chatter as an important factor in 

machining operation will also be discussed.   

3.2.1 Modelling of Cost with Energy Considerations 

The cost of end milling operation is determined by three main factors, which are labour, 

energy and tool.  As expressed in Equation 3.21, the cost, C of end milling operation 

can be determined as the sum of labour cost ܥ, energy cost ܥா, and cost of cutting tool 

 ..்ܥ

ܥ ൌ ܥ  ாܥ   ሺ3.21ሻ																																																										்ܥ

where,	ܥ - labour cost,   tool cost -்ܥ , - Energy costܥ

The most important variable to affect the tool cost is tool life. Tool life is the standard to 

evaluate the performance of the cutting tool. It can be defined as “cutting time required 

to each tool-life criteria” (Lamond and Sodhi, 1997). It is directly related to the 

efficiency and cost of machining operation. The relationship is shown as Equation 3.22. 

்ܥ ൌ ்ܴ
ݐ
ݐ
																																																																ሺ3.22ሻ 

where, ்ܴ – tool rate, equals to tool price or tool resharpening cost divided by tool life, 

  .- tool lifeݐ

்ܴ ൌ
݁ܿ݅ݎܲ	݈ܶ

ܶ
		ݎ		

ݐݏܥ	݃݊݅݊݁ݎ݄ܽݏܴ݁	݈ܶ

ܶ
																				ሺ3.23ሻ 

Labour cost in machining process, is related to total time consumed and labour rate. 

Total time can be determined as the sum of machining time, setup time and tool change 

time. The expression of labour cost is shown as Equation 3.24. 

ܥ ൌ ܴ ∙  ሺ3.24ሻ																																																								௧௧ݐ
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where, ܴ is labour rate. 

Energy consumption in the machining process is basically equal to electricity 

consumption for machine. The energy consumption is related to electricity rate, energy 

consumption for the machining operation and machining efficiency. Thus, the energy 

cost can be represented in Equation 3.25.  

ாܥ ൌ ܴா ∙  ሺ3.25ሻ																																																																					்ܧ

where, ܴா is electricity rate, ்ܧ	 is total energy consumption 

3.2.2 Modelling of Surface Roughness for End Milling Operation 

Surface finish is one of the common criteria to evaluate the quality of the machining 

operation. Early researchers used simplified geometric model to predict the average 

surface roughness. For example, Enparantza (1991) used: 

ܴ ൌ
݂
ଶ

32ܴ
 

where, fn is feed per revolution. 

Tolouei-Rad and Bidhendi (1997) used: 

ܴ ൌ
318 ௭݂

ଶ

4݀
 

To accurately predict surface finish, empirical equation has been widely used in current 

machining research. A statistical model has been generated by carrying out multiple 

regression analysis based on the experimental data. Equation 3.26 shows a typical 

empirical equation with the consideration of depth of cut, width of cut, feed per tooth 

and cutting speed. The reason why this model selected is because of it considered more 

process parameters than the previous models and has a better accuracy because of the 

surface roughness constants will be determined based on experiment data by using 

statistic techniques (Pan et al., 2008). 

ܴ ൌ ܥ ܸ
భ

௭݂
మܽ

యܽ
ర																																															ሺ3.26ሻ 
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According to the validated data from Pan et al. (2008) to investigate surface roughness 

for milling Aluminium 7075-T6, a statistical model can be generated as below (R-

square is 96%): 

ܴ ൌ 2384.4887 ܸ
ିଵ.ସହଵ

௭݂
.ସଽଵହ଼ଷܽ.ଽ଼ଽ 

3.2.3 Chatter in Machining Operation 

Chatter is another important factor in machining operation which can affect the 

accuracy of product (such as surface roughness), force variation, and reduce tool life 

and machine life. The same as other factors, chatter will also be affected by process 

parameters including depth of cut, width of cut, spindle speed and feed rate. The 

increase of process parameters will increase the chatter of machine. 

One of methods can effectively reduce chatter is to reduce the cutting force by adjusting 

process parameters such as spindle speed, depth and width of cut, or improving the 

stability of cutting tools. Enparantz (1991) claimed that at low cutting velocities, the end 

milling operation actually stabilises cutting. The shorter the wave length 

(velocity/frequency), the greater the likelihood of damping will be produced. The 

limiting cutting velocity can be calculated as the following equation: 

ܸ௧ ൌ 
ߨ2 ൈ 60
1000

൨ ൈ ݂ ൈ  ሺ3.27ሻ																																						ߣ

where, fn is machine tool nature frequency, and ߣ is minimal wave length. 

3.3 Experimental Verification of Energy Prediction Model 

To verify and improve the proposed energy prediction models and get accurate data, 

primary experiment was conducted to measure the power consumptions and cutting 

forces. Experiments were carried out on a HAAS TM-1CE 3-axis vertical milling 

machine. The capability of the machine tool is shown in Table 3.1. The power 

consumptions are measured by a FLUKE 435 Power Quality Analyser (see Figure 3.1).  

The aims of the experiment are to measure the power consumption of each machine tool 

section, and compare the power consumption by using different cutting parameters. To 

control the errors in measures and make sure the measures are reproducible and 

repeatable, the validation process will be conducted twice. The data collected from 

primary measure will be used to generate the energy prediction model. 
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Table 3.1 HAAS TM-1CE Basic Specification 

Manufacturer Haas 

Type TM 1CE (Vertical) 

Number of Axes 3 

Tool Station 0 

Spindle 1 

Motor Power 5.6 KW 

Spindle Speed 4,000 RPM 

 

 

Figure 3.1 Laboratory Power Measurement System 

Further experiments were conducted based on the measurement of tangential cutting 

force to verify the developed model. The cutting forces were captured by a force 

measurement system consisting of a Kistler 9367C, force measurement unit, charge 

amplifier, an NI 9205 Analog input/Digital output module and DAQs software system 

(see Figure 3.2). The results of experimental measures and theoretical predictions 

(based on the data collected from primary experiments) were compared to validate and 

check the accuracies of the prediction models. 
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Figure 3.2 Cutting Force Measurement System 

Then the extended power measurements were conducted by using different dimensions 

of cutters and range of process parameters as a Reproducibility and Repeatability (R&R) 

study to further analyse and evaluate the errors and accuracy of the measurement system, 

and make sure the measurement system and methods are acceptable for the intended use. 

3.3.1 Power Measurement for Auxiliary Functions  

Based on the measurement of power consumption, the power consumption via auxiliary 

functions can be determined. For the tested machine tool, the idle power consumption 

(power on) is 237.1W, the power consumption for the coolant pump is 60.48W, the 

power consumption of computer and fan is 74.54W. The power consumption for spindle 

speed has a linear relationship with spindle speed. The detailed results are shown in 

Table 3.2 and Figure 3.3 that the active power for spindle driver is 11.62W and the 

power consumption will increase in proportion to the increase in spindle speed. 
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Table 3.2 Power Consumption for Different Spindle speed 

Spindle Speed (RPM) Power Consumption (W) 
500 61.64 
1000 83.53 
1500 144.02 
2000 174.58 
2500 223.00 
3000 261.14 
3500 299.70 
4000 352.52 

 

 

Figure 3.3 Plot of Power Consumption with the Increase in Spindle Speed 

3.3.2 Primary Power Measurement for Machining Operation 

Three different cutting tools were used which are 10mm 2 flutes end mill, 10mm 3 

flutes end mill and 16mm 3 flutes end mill. The work piece material is Aluminium 

7075-T6. Different process parameters were applied to capture primary data of power 

consumption by using power measurement system in Figure 3.1. The results were used 

to determine the coefficient of the developed model. The detailed experimental plan and 

measurement data is shown in Table 3.3. 

The theoretical power consumption of the above process parameters can be calculated 

based on the constant value in Table 2.1. The comparison results between the theoretical 

calculation and experimental measurement are shown in Table 3.4. The theoretical 

value and experimental value of power consumption for different parameters are 

compared with the accuracy which is equal to the ratio between experimental value and 



` 

85 
 

theoretical value. According to the modelling process of power consumption in section 

3.1, it is really important to determine the cutting force coefficient KT. Based on 

Equation 3.5, the experimental values of tangential cutting force co-efficient and uncut 

chip thickness were calculated and shown as well in Figure 3.4 and Figure 3.5. The 

accuracies between theoretical and experimental values in power can be calculated by 

using the following Equation 3.28. The range of accuracy is between 67.44% and 

85.38%. 

ݕܿܽݎݑܿܿܣ ൌ 1 െ%݁ݎݎݎ ൌ 1 െ
ݎݎݎ݁

݁ݑ݈ܸܽ	݈ܽݎݑݐܿܣ
ൈ 100%													ሺ3.28ሻ 

Table 3.3: Primary Experiment Parameters for Power Measurement 

No. d 

(mm) 

z ࢇ 

(mm) 

 ࢋࢇ

(mm) 

feed 

(mm/tooth) 

n 

(rpm)

 

Total 

Power  

 (W) 

Auxiliary 

Power 

(W) 

Machining 

(W) 

1 10 3 1 10 100 1000 481.925 447.040 34.885 

2 10 2 1 10 100 1000 489.436 447.300 42.137 

3 10 3 1 10 200 1000 495.700 443.967 51.733 

4 16 3 1 10 100 1000 502.571 447.700 54.871 

5 10 3 1 5 100 1000 469.641 445.125 24.516 

6 10 3 1 5 200 1000 479.754 443.967 35.780 

7 10 3 1 5 100 2000 552.125 525.700 26.425 

 

Table 3.4: Comparison of Theoretical and Experimental Result 

No. Theoretical 
(W) 

Experiment 
(W) 

Accuracy ࢎ ࢀࡷ 
(mm) 

1 26.167 34.885 75% 999.89 0.067 
2 32.708 42.1367 77.62% 805.16 0.1 
3 34.889 51.7333 67.44% 741.40 0.133 
4 41.867 54.8714 76.3% 982.97 0.067 
5 20.933 24.5159 85.38% 1405.37 0.033 
6 26.167 35.78 73.13% 1025.54 0.067 
7 31.4 26.425 81.17% 1514.81 0.017 

 



` 

86 
 

 

Figure 3.4 Comparison of Power Consumption for Theoretical and Experimental 

 

Figure 3.5 Tangential Cutting Force Co-efficient of Experimental Results for 

Machining Aluminium 7075-T6 

The cutting coefficients for different operations are totally different (e.g. the co-efficient 

of operation 3 is less than half of that for operation 7) and prove that the cutting force 

coefficient is not constant. According to the experiment results presented in Figure 3.5, 

when the uncut chip thickness is over 0.03mm, the trend of ்ܭ  curve flattens (from 

1045 to 741 N/mm2). This result is very similar to the experimental data from literatures 

(Wan et al., 2009, Dang et al., 2010) and the values are also similar. Two keys 

observations can be made from this result.  
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Firstly, the values of  ்ܭ  are similar by using same cutting strategies on different 

machine tools with the uncut chip thickness. The differences could be caused by the 

accuracy of the measuring system or circumstances (e.g. temperature). 

Secondly, the curve of ்ܭ  can be divided into two linear stages. One is the rapidly 

decreasing stage where the uncut chip thickness is from 0 to 0.03mm. The other one is 

the flattening stage where the uncut chip thickness is over 0.03mm. 

According to these two observations, following suggestions can be proposed to 

commonly apply the developed cutting force model. 

 ்ܭ can be considered as a constant between small range of uncut chip thickness. 

This method can be applied to the situation that, the uncut chip thickness will 

not hugely change for the different cutting parameters. 

 The value of ்ܭ can be considered as in a range. When using ்ܭ to calculate, the 

force and energy are also shown as a range. The sensitivity or accuracy will be 

given to verify the value.  

 The value of ்ܭ can be generated as two functions which are related to uncut 

chip thickness. Since chip thickness is related to feed rate, spindle speed, 

number of flute and rotated angle, the ்ܭ  can be represented as ்ܭ ൌ

݂ሺܽ, ݊, ,ݖ ݂ሻ. The function can be generated by conducting experiments and 

using multi-regression method. 

்ܭ ൌ ݂൫ܽ, ܽ, ݀, ,ݖ ௭݂, ݊൯ ൌ ܥ ∙ ܽ
భ ∙ ܽ

మ ∙ ݀య ∙ రݖ ∙ ௭݂
ఱ ∙ ݊ల 

where, ܥ~ܥ are coefficient 

 Manual of coefficients can be developed by conducting more experiments to 

generate more values in different conditions. 

By using regression analysis, the coefficients for flat end milling operation of 

Aluminium 7075-T6 were determined (presented in Table 3.5). 

Table 3.5 Cutting Force Coefficients for Flat End Milling Operation 

(Workpiece material: Aluminium 7075-T6) 

 ܥ ହܥ ସܥ ଷܥ ଶܥ ଵܥ ܥ
1611.2282 0.01249 -0.0778 -0.59213 1.45596 -0.20856 -0.20856
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3.3.3 Verification Experiments 

The aim of conducting validation expeirments is to validate the developed energy model. 

Two measurement systems (force and power) were used to capture the experimental 

data of cutting force and power consumption for the machining process. Comparison of 

the tangiental cutting force and the energy consumption of the experimental 

measurement and the theorical prediction is shown in the following paragragh in this 

section.  

Figure 3.6 shows the comparing results between the experimental measurement and the 

theoretical prediction by using 2 flutes 10mm end mills in conventional milling. From 

the figure, the experimental measurement fits very well with the calculation results. The 

accuracy of selected range is up to 91.5%. This result proves that the theoretical 

tangential cutting force model is fairly accurate and can be used to predict the energy 

consumption for end milling operation.  

 

Figure 3.6 Comparison of Tangential Cutting Force between Theoretical 

Calculation and Experimental Measurement 

Extended power measurement tests were conducted to further validate the developed 

model. 3 different cutting tools were selected which are 8 mm/4 flutes, 10 mm/3 flutes 

and 12 mm/ 2 flutes. Each tool was used 9 times by using different process parameters 
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based on Taguchi design of experiment method. Totally 27 results were captured and 

shown in detail in Table 3.6. Figure 3.7 shows the comparison of the tangetial cutting 

force of the experimental measurement and the theoritical prediciton. From the figure, 

the experimental measurement also fits very well with the theoretical prediction. The 

average accuracy of total 27 tests is up to 95%. This result further proves that the 

accuracy of the developed energy prediction model is very good. 

Table 3.6: Experimental Verification based on Power Measurement 

No. d 
(mm) 

z ܽ 

(mm) 

ܽ 
(mm) 

feed 
(mm/tooth) 

n 
(rpm)

Prediction 
 (W) 

Measurement 
(W) 

Accuracy 

1 8 4 1 4 0.01 1000 463.552 436.7 94.207% 
2 8 4 1 6 0.02 2000 574.873 560.3 97.465% 
3 8 4 1 8 0.03 3000 711.537 697.8 98.069% 
4 8 4 2 4 0.03 2000 607.617 570.3 93.858% 
5 8 4 2 6 0.01 3000 680.323 629.6 92.544% 
6 8 4 2 8 0.02 1000 509.808 450.1 88.288% 
7 8 4 3 4 0.02 3000 726.14 701.4 96.593% 
8 8 4 3 6 0.03 1000 542.165 470.4 86.763% 
9 8 4 3 8 0.01 2000 621.168 536.7 86.402% 

10 10 3 1 5 0.01 1000 461.148 450.7 97.734% 
11 10 3 1 7.5 0.02 2000 564.406 560.7 99.343% 
12 10 3 1 10 0.03 3000 685.609 680.3 99.226% 
13 10 3 2 5 0.03 2000 587.591 565.4 96.223% 
14 10 3 2 7.5 0.01 3000 663.507 620.3 93.488% 
15 10 3 2 10 0.02 1000 493.901 448.6 90.828% 
16 10 3 3 5 0.02 3000 695.949 632.7 90.912% 
17 10 3 3 7.5 0.03 1000 516.812 450.0 87.072% 
18 10 3 3 10 0.01 2000 597.186 520.4 87.142% 
19 12 2 1 6 0.01 1000 458.749 450 98.093% 
20 12 2 1 9 0.02 2000 553.959 550.5 99.376% 
21 12 2 1 12 0.03 3000 659.729 674.5 97.810% 
22 12 2 2 6 0.03 2000 567.604 565.1 99.559% 
23 12 2 2 9 0.01 3000 646.722 620.5 95.945% 
24 12 2 2 12 0.02 1000 478.024 447.5 93.615% 
25 12 2 3 6 0.02 3000 665.814 657.6 98.766% 
26 12 2 3 9 0.03 1000 491.508 456.8 92.939% 
27 12 2 3 12 0.01 2000 573.250 547.6 95.525% 

The average accuracy of 27 tests is 94.362% 
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Figure 3.7 Comparison of Power Consumption between Theoretical Prediction and 

Experimental Measurement 

 

Figure 3.8 Comparison of Power Consumption between Proposed Model and 

Existed Publications 

Diaz et al. (2012), AISI 1018 

Tlusty, (2000), Aluminium 7075-T6 

Tlusty, (2000), Carbon Steel 1020 

Tlusty, (2000), Carbon Steel 1045 

Kara&Li, (2011), Mild Steel 1020 

Predictive result, Aluminium 7075-T6 
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Comparison of predictive result by using developed model, suggested results from 

textbook and predictive results achieved by using existing models from literature in 

specific energy consumption for various materials are presented in Figure 3.8. The 

results firstly showed that, with the increase of material removal rate, predictive specific 

energy consumption of Aluminium 7075-T6 is close to the constant value of same 

material published in machining science textbook (Tlusty, 2000, 850 N/mm2). The 

predictive results achieved by using Kara and Li's model (2011, mild steel 1020) are a 

little higher than Tlusty's suggested value (approximately 25%). But the predictive 

results by using Diaz et al.'s model are much smaller than Tlusty's suggested value. 

Finally, the characterisation of different conventional materials, such as Aluminium and 

Mild/low carbon Steel are almost same which is monotonously decreases with the 

increase of material removal rate (MRR). 

In addition, the comparison results with other predictive models in different materials 

can also show general character of specific energy consumption. The specific energy 

can be reduced by increasing MRR. This finding can further prove that the results 

achieved by proposed predictive model can be generally implemented for different 

materials and machine tools. 

3.4 Development of New Energy Efficiency Metrics for Machining Operation 

According to the issues identified from literature, the major shortcoming of energy 

efficiency measures for the machining operation is that the inherent inefficiencies of 

energy consumption in the machining operation have not been considered. The existing 

energy efficiency metrics do not uncover the inherent inefficiencies in the machining 

process. To address this shortcoming, new metrics are required to uncover this inherent 

inefficiency. 

The radical difference in Equation 2.26 and the definition of energy efficiency ratio at 

the manufacturing process level in the work of other researchers (e.g. Rahimifard et al, 

2010) is that in these other works Energy Ratio (ER) is defined as ratio of theoretical 

energy consumption (TE) and direct energy consumption (DE). DE is a sum of TE and 

auxiliary energy, AE (energy consumption for functions such as coolants, control panel). 

Hence in existing work, ER for the process can be expressed as in Equation 3.29. 

ܴܧ ൌ ܧሺܶ/ܧܶ   ሺ3.29ሻ																																																								ሻܧܣ
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where, ER is energy efficiency for machining process, AE is auxiliary energy 

consumption. 

The implication of Equation 3.28 is that it is possible to realise an efficiency ratio close 

to 1 (i.e. 100%) if improved technology makes most of the auxiliary functions 

unnecessary (e.g. through dry machining) without making any radical improvement in 

the efficiency of the machining operation itself. However, using 100% energy for 

machining operation does not mean the energy efficiency of machining operation can 

reach 100% too. Thus, the measurement of energy efficiency in current work as 

depicted by Equation 2.26 can only measure the energy efficiency within an existing 

technology and cannot uncover the inherent inefficiency in the process.  

Cullen and Allwood (2010) identified an issue of energy efficiency that to accurately 

uncover the global improvement potential from energy efficiency measures, it is 

necessary to identify the theoretical limits of the existing process. In this case, to 

accurately evaluate the energy usage performance and uncover the inefficiency of 

machining process, a new definition of energy efficiency for machining has been 

proposed in the following section. 

3.4.1 Proposed New Definition of Energy Efficiency for Machining Operation 

A demonstration of the metal cutting process is shown in Figure 3.9. For a single cut 

(feed per tooth), the area of theoretical shear plane is smaller than the area of actual 

shear plane. This inefficiency is caused by the limitation of conventional cutting 

strategy. It means the tangential cutting force generated by using conventional cutting 

strategy will be always higher than pure shear force. 

 

Figure 3.9 Theoretical and Practical Shear Planes of Metal Cutting Process 

(Lantrip et al., 2003) 
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ெ்ܨ݀ ൌ ߬ ∙ ெ்ܣ݀ ൌ ߬ ∙ ܽ ∙ ௭݂																																																ሺ3.30ሻ   

where, dFTM is theoretical minimal shearing force for one feed/tooth, dATM is theoretical 

shear area for one feed/tooth, ߬ is shear strength of the workpiece. Table 3.6 shows the 

value of shear yield strength for cutting typical materials. 

Based on equation 3.30, the theoretical minimal cutting force for shearing a plane can 

be shown in equation 3.31. 

ெ்ܨ ൌ ߬ ∙ ெ்ܣ ൌ ߬ ∙ ܮ ∙ ܹ																																																ሺ3.31ሻ   

where, FTM is theoretical minimal shearing force, ATM is shear area of the shear plane, L 

and W are length and width of the shear plane. 

So the theoretical minimal energy consumption (TME), which is the theoretical minimal 

energy requirement to shear a plane, can be represented by the expression in equation 

3.32.  

ܧܯܶ ൌ	்ܨெ ൈ ௦ܦ 	ൌ ߬ ∙ ெ்ܣ ൈ  ሺ3.32ሻ																																														௦ܦ

where, TME is theoretical minimal energy consumption for shearing a plane, Ds is 

cutting tool travelling distance. 

The theoretical minimum energy term (TME) is not known to have been used in energy 

efficiency calculations and its introduction is one of the investigations presented in this 

research. However, because of the limitation of current machining technology, TME is 

not possible to be achieved. 

Table 3.7 Value of Shear Yield Strength in Cutting (N/mm2) (Trent, 1984) 

Material Shear Yield Strength 
Iron 370 

0.13% C Steel 480 
Ni-Cr-V Steel 690 

Austenitic stainless steel 630 
Nickel 420 

Copper (annealed) 250 
Copper (cold worked) 270 

Brass (70/30) 370 
Aluminium 97 
Magnesium 125 

Lead 36 
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Table 3.7 showed the values of shear yield stress in cutting for varies of materials. 

Based on the expression in Equation 3.32, a metric for the energy efficiency (Energy 

efficiency ratio, ER) in machining operation can be expressed as a ratio of the 

theoretical minimum energy (TME, as equation 3.32) to the actually machining energy 

(referred to as theoretical energy, TE, in work of Rahimifard et al, 2010, as equation 

3.29) employed during the machining operation. This is expressed as in Equation 3.33. 

ER୫ୟୡ୦୧୬୧୬ ൌ
ܧܯܶ
ܧܶ

ൌ
ܧܯܶ

୫ୟୡ୦୧୬୧୬ܧ
																																													ሺ3.33ሻ 

where, ERmachining is energy efficiency for machining operation (cutting), TE is 

theoretical energy consumption for the machining operation.  

So the energy efficiency can be represented in Equation 3.34 

ER୮୰୭ୡୣୱୱ ൌ
ܧܯܶ
ܧܦ

ൌ
ܧܯܶ

ሺܶܧ  	ሻܧܣ
ൌ 	

ܧܯܶ
ݕ݃ݎ݁݊ܧ	݈ܽݐܶ

																							ሺ3.34ሻ 

where, ERprocess is energy efficiency for machining process, DE is direct energy 

consumption for the machining process, AE is the energy consumption for auxiliary 

functions. Based on Equations 3.33 and 3.34, the inherent inefficiencies in the 

machining process can be uncovered by comparing energy efficiencies of current 

definition and proposed energy efficiency metrics. Further investigation of the energy 

usage performance for the machining process will be carried out in the following 

section. 

3.4.2 Investigation of Energy Efficiency of Machining Operation 

In this section, the investigation of energy efficiency of machining operation will be 

carried on for milling a step feature (30mmൈ 30mmൈ 30mm). Figure 3.10 shows the 

shear area of a 2½D step feature. Based on Equation 3.30, the theoretical energy 

consumption (TME) can be calculated as below: 

ܧܯܶ ൌ 	߬ ∙ ெ்ܣ ൈ ௦ܦ ൌ 97 ൈ 30 ൈ ሺ30  30ሻ ൈ
30
1000

ൌ ܬ	5238 ൌ  ܬ݇	5.238

The value of TME for these 27 tests is constant (5.238kJ) and play a role as a theoretical 

limitation of energy consumption for this step feature. The practical energy 

consumption and energy efficiency has been calculated based on the data captured in 

Table 3.8 in section 3.3.3. The calculated results are shown in Table 3.7. 
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Figure 3.10 Shear Area of a 2½D Step Feature 

Table 3.8: Energy Efficiency for the Selected Process Parameters 

No. d z ܽ ܽ feed n TE 
(kJ) 

DE 
(kJ) 

ER 
(TE/DE) 

ERm 

(TME/TE) 
ERp 

(TME/DE) 

1 8 4 1 4 0.01 1000 83.3818 4223.38 1.974% 6.282% 0.124% 
2 8 4 1 6 0.02 2000 60.5069 825.508 7.330% 8.657% 0.635% 
3 8 4 1 8 0.03 3000 49.9613 364.962 13.69% 10.484% 1.435% 
4 8 4 2 4 0.03 2000 57.8815 485.382 11.92% 9.050% 1.079% 
5 8 4 2 6 0.01 3000 64.807 604.808 10.72% 8.082% 0.866% 
6 8 4 2 8 0.02 1000 68.9647 665.215 10.37% 7.595% 0.787% 
7 8 4 3 4 0.02 3000 58.1754 373.176 15.58% 9.004% 1.403% 
8 8 4 3 6 0.03 1000 65.1361 455.136 14.313% 8.042% 1.151% 
9 8 4 3 8 0.01 2000 69.3149 496.815 13.952% 7.557% 1.054% 

10 10 3 1 5 0.01 1000 65.9769 4472.98 1.408% 8.317% 0.117% 
11 10 3 1 7.5 0.02 2000 45.6999 855.701 5.341% 11.462% 0.612% 
12 10 3 1 10 0.03 3000 37.7349 367.736 10.261% 13.881% 1.424% 
13 10 3 2 5 0.03 2000 43.717 493.718 8.855% 11.982% 1.061% 
14 10 3 2 7.5 0.01 3000 48.9477 618.949 7.908% 10.701% 0.846% 
15 10 3 2 10 0.02 1000 52.088 682.008 7.637% 10.056% 0.768% 
16 10 3 3 5 0.02 3000 43.9389 373.94 11.750% 11.921% 1.401% 
17 10 3 3 7.5 0.03 1000 49.1962 459.196 10.714% 10.647% 1.141% 
18 10 3 3 10 0.01 2000 52.3524 502.353 10.421% 10.005% 1.043% 
19 12 2 1 6 0.01 1000 46.3282 5536.33 0.836% 11.306% 0.095% 
20 12 2 1 9 0.02 2000 33.6186 1023.62 3.284% 15.581% 0.512% 
21 12 2 1 12 0.03 3000 27.7592 417.761 6.645% 18.869% 1.254% 
22 12 2 2 6 0.03 2000 32.1598 572.161 5.621% 16.287% 0.915% 
23 12 2 2 9 0.01 3000 36.0078 726.010 4.960% 14.547% 0.721% 
24 12 2 2 12 0.02 1000 38.3178 803.318 4.770% 13.670% 0.652% 
25 12 2 3 6 0.02 3000 32.3231 422.324 7.653% 16.205% 1.240% 
26 12 2 3 9 0.03 1000 36.1906 526.191 6.878% 14.473% 0.995% 
27 12 2 3 12 0.01 2000 38.5124 578.513 6.657% 13.601% 0.905% 
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From Table 3.8, the energy efficiency based on existing definition is between 1% to 

15%. These efficiencies approximately fit the range of energy efficiency measured from 

the previous research contributions for machining operation (Kordonowy, 2001, 

Gutowski et al., 2005). Energy efficiency based on proposed definition is approximately 

between 6% to 19% in ERm (TME/TE) and 0.1% to 1.5% ERp (TME/DE). Based on the 

new proposed definition, the energy efficiency is much smaller than the efficiency 

measured by using the existing definition. It means, though the energy efficiency for 

machining based on the existing definition is very low, the actual energy usage 

performance may be even worse. The proposed energy efficiency metrics can help to 

uncover the inefficiency of the machining process by identifying the theoretical minimal 

energy consumption for the machining operation. Further evidences to support the 

conclusion above will be discussed by analysing Figure 3.11a and 3.11b as below. 

 

Figure 3.11a Energy Efficiency Chart for No.3 Test 

 

Figure 3.11b Energy Efficiency Chart for No.14 Test 

10.482% 

10.698% 
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Figure 3.11a and 3.11b show the energy efficiencies of two selected tests No.3 and 

No.14. From the figures, it can be found that the theoretical energy consumptions (TE) 

of test No.3 and test No.14 are similar (49.96kJ and 48.95kJ). However, the energy 

efficiency of test No.3 is much better than the efficiency of test No.14 (TE/DE, 13.689% 

to 7.908%, up to 40% improvement). The same conclusion can be drawn by comparing 

the proposed energy efficiency for machining process which also shows that test No.3 

has better energy efficiency than test No.14 (TME/DE, which is 1.435% for test No.3 

and 0.846% for test No.14). This conclusion can be verified from the measurement 

results which showed that test No.3 consumed less energy than test No.14 for achieving 

the same feature (DE, 364.962kJ for test No.3 and 618.949kJ for test No.14). The 

reason for this reduction in direct energy consumption is that test No.3 used higher 

MRR than the MRR used in test No.14, which reduced the machining time, thus 

reduced the specific energy consumption. 

However, the improvement achieved above in energy consumption is almost from the 

reduction of auxiliary energy consumption. The energy consumptions for machining 

operation (TE) of two tests are similar (49.961kJ for test No.3 and 48.95kJ for test 

No.14, test 3 even has higher energy consumption). This similarity can be identified by 

comparing the new proposed energy efficiency (TME/TE) for machining operation 

which is 10.482% for test No.3 and 10.698% for test No.14. The function of TME is 

that it can play an important role in energy efficiency metrics as a boundary line of 

energy consumption. By comparing the new proposed energy efficiency of machining 

operation, the potential of energy reduction in TE can be clearly identified. According 

to selected examples in Figure 3.11a and 3.11b, there is still a huge potential (up to 90%, 

TE minus TME) for improvement in energy savings in machining. It is necessary to 

further reduce the theoretical energy consumption and improve the energy efficiency by 

implementing energy-efficient methods.  

3.5 Summary of the Chapter 

In this chapter, predictive models for measuring the performance of end milling 

operation include cutting force, power, time, energy, cost, tool life and surface 

roughness have been introduced based on machining science theories and common 

empirical methods. These mathematical expressions will be used to characterise the 

energy consumption of machining operations in the following chapters. 
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Two measurement systems were set up which can measure the cutting force and power 

consumption for machining operations. Three experiments were conducted to determine 

the coefficients and verify the energy prediction model.  

 Firstly, primary power measurement experiment was conducted to determine the 

coefficients in the energy prediction model. 

 Secondly, cutting force measurement experiment was conducted. Up to 91.5% in 

accuracy can be achieved based on the comparison between the experimental 

measurement and theoretical calculation. 

 Thirdly, extended power measurement experiment was conducted which showed 

that up to 95% in overall accuracy of 27 measures can be achieved. 

 Finally, comparison of experimental result and results from existing publication 

and research contributions further showed that the proposed model is accurate 

and can be generally implemented for different conditions. 

According to the above results, it can be determined that the developed energy 

prediction model is fairly accurate and can be implemented into the following research 

activities. 

In addition, new metrics for measuring energy efficiency of machining operation have 

been proposed which provided the answers of the research question in the follow 

aspects: 

 A prediction model has been developed to measure the energy consumption of 

machining operation. 

 Energy efficiency metrics have been proposed to uncover the inefficiency of the 

machining operation. 

A case study was carried out to investigate the energy efficiency for machining a small 

amount of a 2½D milled feature. The results showed that the new proposed energy 

efficiency metrics cannot only make the same conclusion with the existing energy 

efficiency metrics. It can also identify the inefficiencies of machining operation which 

are considerably large (89.5% for test No.3 and 89.3% for test No.14). This conclusion 

uncovered a huge potential for improvement in energy savings in machining and leads 

the research to the next stage. 
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In addition, although the scope of this thesis only covers 2½ D milled features, the 

principles and methods of energy consumption and energy efficiency modelling process 

can be generically applied in other milled features and operations.  

First of all, although the cutting force models for different operations are different 

(different process parameters need to be considered), the basic principle for modelling 

power (cutting force multiples cutting speed) and energy consumptions (power 

multiples time) are same.  

Secondly, although the machine tools and cutters applied for different operations are 

different, the components of energy consumption of other milled features and 

operations are the same as 2½ D milled features. This conclusion can be generated from 

other researchers publications such as Gutwoski et al. (2006), Diaz et al. (2012), Rajemi 

et al. (2010), Mativenga et al. (2011), Kare and Li (2011) and Guo et al. (2012). 

Finally, proposed theoretical minimal energy consumption is defined based on the 

energy consumption for shearing a specific area of material which can be generally 

applied for all machining operations and features as a theoretical limitation for 

achieving a feature. 
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CHAPTER 4: CHARACTERISATION OF ENERGY CONSUMPTION AND 

ENERGY MINIMISATION BY SELECTING OPTIMAL PROCESS 

PARAMETERS 

The aim of this chapter is to answer the research questions that: 

 What are the effects of energy as a new factor to characterise machining 

operation in addition to conventional factor such as cost, time, cutting force, 

surface roughness, tool life and power? 

 What method can be used to systematically optimise energy consumption? 

 What is the reasoning behind algorithms for solving the energy-minimising 

machining problem? 

The characterisations of machining operation with the consideration of conventional 

criteria have been done by other researchers (Enparatza, 1991, Wan et al., 2010). 

Energy consumption as an additional criterion is firstly characterised by using graphical 

multivariate data analysis in this chapter. Then, based on the characterisation of energy 

consumption, a direct search optimisation method is used as a numerical 

experimentation rig to investigate the reasoning behind the results obtained in applying 

Taguchi method, Genetic Algorithm (GA) and Ant colony optimisation (ACO). Finally, 

a constrained single-objective optimisation procedure is conducted based on energy 

considerations. 

4.1 Characterisation of Energy Consumption in Machining Operation 

According to the review of literature, although some degrees of characterisation of 

machining optimisation problems have been introduced, the nature of the optimisation 

problem when energy is considered as an additional factor still needs comprehensive 

investigations. In this section, the characterisation of the energy consumption and other 

conventional criteria for end milling operation will be introduced by using graphical 

multivariate data analysis tools. 

4.1.1 Design of Numerical Experiment 

The data for analysing the characteristics for end milling operation are collected by 

conducting numerical experiment. Four process parameters depth of cut, width of cut, 

spindle speed and feed rate are considered as independent variables. The data of energy 

consumption and other conventional criteria (e.g. cost, time, power, cutting force, tool 
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life and surface roughness) will be generated by using the validated machining science 

equations from Chapter 2 and Chapter 3. The design of numerical experiment is shown 

in Table 4.1. 

Table 4.1: DOE for numerical experiment 

Process Parameter Value Range 

Depth of cut ap (mm) 1-5 mm 

Width of cut ae (mm) 1-10 mm 

Spindle Speed n (rpm) 500-4000 rpm 

Feed rate fz (mm/z) 0.01-0.1 mm/tooth 

Cutting Tool: 3 flutes carbide flat end mill  

Workpiece material: Aluminium 7075-T6 

 

4.1.2 Characterisation of Energy Consumption for End Milling Operation 

A plot matrix is used to show the energy consumption for the end milling operation with 

respect to four machining process parameters (see Figure 4.1, the clear presentation of 

each plot are shown in Appendix V). All four process parameters changed 

monotonically. The energy consumption of machining operation is characterised by 

using numerical experiments based on validated prediction model. The independent 

variables in the expanded figure (ap =1mm, ae=5mm) are feed rate per tooth and spindle 

speed. The black arrow in the expanded figure points out that with the decrease of 

spindle speed, the energy consumption curve shifts up (more energy consumed). The 

result showed that the energy consumption decreases monotonically with the increase of 

spindle speed and feed rate. 

Based on the observation of this characteristic, it can be found that the energy 

consumptions for end milling specific volume material also decreases constantly with 

the increase of depth of cut and width of cut. The green arrows point out the direction of 

energy reduction. It means that the energy consumption decreases monotonically with 

the increase of process parameters in terms of depth of cut, width of cut, feed rate and 

spindle speed parameters. It can be concluded that using large machining parameters 

(e.g. faster spindle speed, larger feed rate and lager cutting volume) within the practical 

limitations of machining process (e.g. maximal spindle speed, maximal feed rate and 

diameter of cutting tools) consumes less energy than using small machining parameters. 
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For example, up to 70% the specific energy consumption can be reduced (17.17kJ/cc to 

5.08kJ/cc) when increasing depth of cut from 3mm to 5mm, width of cut from 5mm to 

10mm, feed rate from 0.05mm to 0.1mm and spindle speed from 1,000rpm to 4,000rpm. 

 

 

Figure 4.1 Plot Matrix of Energy Consumption based on Process Parameters 

Spindle speed decreasing 

Energy Consumption Decreasing 
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Concluded characteristics of Specific Energy Consumption (SEC, kJ/cc) for end milling 

operation are shown in Figure 4.2. 

 

Figure 4.2 Characterisation of Energy Consumption for End Milling Operation 

Another observation from Figures 4.1 and 4.2 is that the energy consumption curves are 

getting flat. It means energy improvement efficiency becomes smaller with continuing 

increase of process parameters. One of reasons for this observation is that the increase 

of process parameters can reduce the energy consumption by reducing cutting force and 

machining time, but it will also increase the power consumption. Another reason is that 

with the increase of process parameters, tool life will decrease which cause the extra 

energy consumptions. The results achieved in this section are based on common 

materials (such as Aluminium and Steel) and conventional machine tools. No turning 

point was found on the energy plots. However, as mentioned by Professor Wertheim, 

difficult-to-machine materials may have turning point which is caused by frequent tool 

change. When applying large process parameters, the minimisation of energy 

consumption for machining operation will sacrifice the tool life. According to Equations 

3.18 and 3.19, the turning point will occur if the energy consumption for tool change is 

more than the energy consumption for machining operation.  

4.1.3 Characterisation of Conventional Criteria for End Milling Operation 

Repeating the numerical experiment procedure in section 4.1.2 for other criteria, the 

characteristics of these criteria (cost, time, surface roughness, cutting force, power, and 
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tool life) can be also displayed as a plot matrix in Figure 4.3. The arrows in the figure 

show the reducing directions of each criterion as process parameters increase. 

 

Figure 4.3 Characterisation of Conventional Criteria End Milling Operation 

Increasing width of cut Increasing width of cut 

Increasing depth of cut 

Increasing width of cut 

Increasing depth of cut 

Increasing width of cut 

Increasing width of cut 

Increasing width of cut 

Increasing depth of cut 

Increasing width of cut 

Increasing width of cut 

Increasing width of cut 

Increasing depth of cut 

Increasing width of cut 

Increasing width of cut 

Increasing width of cut 

Increasing depth of cut 

Increasing width of cut 
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Figure 4.3 can be summarised and sorted with the independent variables in Figure 4.4. 

Each single plot in Figure 4.4 shows how the criteria changed with the increase of the 

corresponding independent variable. The values of X axis are independent variables 

with constant index. The range of each independent variable is based on the design of 

experiment in Table 4.1. The values of Y axis are ratios between the all generate results 

and the first result. So the values of Y axis are all between 0 and 1. For each figure, only 

one independent variable is selected as the corresponding independent variable and the 

other parameters are set as constant values. 

 

Figure 4.4 Characterisation of End Milling Operation with Respect of Depth of 

Cut, Width of Cut, Spindle Speed and Feed Rate per Tooth 
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Figure 4.4 can clearly identify the characteristics of all the criteria of end milling 

operation. The same as energy, the other conventional criteria also monotonically 

changes with the increase of process parameters. The comparison between energy 

consumption and other criteria showed that energy was non-conflicting with the cost 

and time for all four independent variables. It was conflicting with cutting force for 

depth of cut and width of cut, surface roughness for the width of cut and feed rate per 

tooth, tool life for spindle speed and feed rate per tooth, and power for all four 

independent variables.  

The interacting relationships of these criteria are summarised in Table 4.2. “+” means 

the machining performance will be improved with the increase of selected process 

parameters. “-” means the machining performance will be decreased with the increase 

of selected process parameters.  "N/A" in the table means the mathematical models 

adopted in the analysis are not sensitive with the corresponding independent variable. 

Table 4.2 Characterisation of End Milling Operation with the Increase of 

Process Parameters 

 Energy Cost Time Cutting 
Force 

Surface 
Roughness 

Tool 
Life 

Power 

ap + + + - N/A N/A - 
ae + + + - - N/A - 
n + + + + + - - 
fz + + + - - - - 

 

4.1.4 Classification of the Optimisation Objectives based on the Characterisation 

According to interaction of criteria (dependent variable) and the changing trend in Table 

4.2, the dependent variables can be classified into three groups shown in Table 4.3 as 

below. 

Table 4.3 Three Groups Objectives of Machining Optimisation 

Group A Group B Group C 
The objective will be 
deteriorated with the 
increase in independent 
variables. 

The objective will be 
improved with the 
increase in independent 
variables. 

The value of the objective 
will be improved with the 
increase in some independent 
variables but be deteriorated 
with the others. 

Power, Tool Life Energy, Cost, Time Cutting Force 
Surface Roughness 
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Group A has two objectives: power and tool life. The objectives in this group will be 

deteriorated with the increase in process parameters. 

Group B has three objectives: energy, cost and time. The objectives in this group will be 

improved with the increase in process parameters. 

Group C has two objectives: cutting force and surface roughness. The objectives in this 

group will be improved with the increase in some process parameters (e.g. width of cut), 

but will be deteriorated with the increase of in other independent variables (e.g. spindle 

speed). 

This finding has important influences for the following research about machining 

optimisation because based on this classification and the interaction of each objective:  

 When only one objective is considered, the remaining criteria will be the 

constraints to refine the search space. The optimal points will be located on the 

curves of constraints (boundary of refined search space).  

 When multiple objectives are considered, it is easy to classify them in two 

categories: conflicting and non-conflicting category, and select the suitable 

techniques to solve the problem.   

The specific research for this conclusion will be reported in the following chapters. 

4.1.4 Analysis of Constraints 

Figure 4.5 shows a contour plot of specific energy consumption with the constraint of 

cutting force (N), cutting speed (Vc, m/min) and surface roughness (Ra, μm).  

The coloured arrows in the figure show the directions of reduction of each constraint. 

From the figure, it is easy to identify that if the constraint of cutting speed is no less 

than 85 m/min, the constraint of surface roughness will not affect the final optimal 

result of specific energy consumption. In addition, if the constraint of cutting force is no 

more than 500N, the upper boundary constraint of spindle speed will be overlapped. 

This finding can prove Tandon et al. (2002)'s conclusion that different constraints may 

not be all active at the same time, and some constraints can be redundant and neglected 

in some situation. Compared to surface roughness and power, cutting speed and cutting 

force were the dominant constraints when cutting speed is no more than 85m/min and 

cutting force is no more than 500N. During rough milling operations, cutting speed and 
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cutting force will be the active constraint. While during finish milling operations, 

surface roughness will be the active constraint. The behaviour constraints, such as 

power consumption, will never be reached. So these constraints are redundant and can 

be neglected in this situation. 

 

 

Figure 4.5 Contour Plot of Constraints for End Milling Operation with the 

Constraints of Cutting Force, Cutting Speed and Surface Roughness 

4.1.5 Summary of Characterisation of Machining Operation with Energy 

Considerations 

In this section, the characterisation of machining operation with energy considerations 

has been investigated by using graphical multivariate data analysis techniques. The 

results showed that energy consumption decreases monotonically with the increase of 

process parameters. It is non-conflicting with the cost and time, but conflicting with 

surface roughness, power requirement, tool life and cutting force. Based on this finding, 

the criteria of machining optimisation can be divided into two major categories:  

conflicting and non-conflicting.  

Cutting speed reducing

Cutting force reducing

Surface roughness reducing 

Power reducing 
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4.2 Explanatory Models for Optimisation Results 

The aim of this section is to develop a numerical experimentation test rig based on 

direct search methods to discover the reasoning behind other typical machining 

optimisation methods. The reason for choosing direct search method is that it is similar 

to full factorial design method/Enumeration method within the finite number solutions. 

The direct search method applied in this research is a grid search method which creates 

grids based on numbers and levels of independent variables which can represent all the 

possible solutions. In addition, by graphically presenting the results it is easy to 

visualise where the optimal point is. In this case, the users can easily understand and 

accept the optimal result obtained. The developed experimentation rig will be used to 

explain the reasoning obtained in applying Taguchi methods, Genetic algorithm (GA) 

and Ant colony algorithm (ACO). 

4.2.1 Design of Numerical Experimentation Rig based on Direct Search Method 

Table 4.4 shows a 3-level four variables DOE plan. 81 grids (34) have been created to 

represent 81 combinations of process parameters in the search space. The 

experimentation rig is graphically displayed in Figure 4.6. The label of horizontal axis 

was removed since it represents the order of samples. The original data after initial 

multivariate data analysis showed the energy consumption is changing with some 

pattern which can be displayed as dash squared areas to represent the original searching 

space of three levels four variables full factor design. Each vertical line of small dash 

square contains three grids which are corresponding to every three points (increase of 

spindle speed) in the original energy plot curve. Each horizontal line of small dash line 

represents the samples with the increase of feed per tooth. Each small dash squared area 

contains nine grids which are corresponding to every nine points. Nine dash squares can 

represent the original search space based on the DOE plan. 

Table 4.4: 3-Level Design of Experiment 

Process Parameter Level 1 Level 2 Level 3 

Depth of cut ap (mm) 1 3 5 

Width of cut ae (mm) 5 7.5 10 

Spindle Speed n (rpm) 500 2250 4000 

Feed rate fz (mm/z) 0.01 0.055 0.1 
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Figure 4.6 Characteristics of Specific Energy Consumption 

The highlighted green area in Figure 4.7 shows the data after being sorted with the 

increase of material removal rate per tooth (MRRz). The green band further represents 

the characteristics of energy consumption discussed in the previous section. The band is 

getting narrow which means the range of improvement is getting smaller with the 

increase of MRRz. The red curve shows the samples after being organised with the 

continuing decrease of specific energy consumption.  

 

Figure 4.7 Characterisation of Specific Energy Consumption with the Increase of 

Material Removal Rate per Tooth (MMRz) 

Figure 4.8 shows the contour plot matrix which consists of 9 contour plots to represent 

the designed experimentation rig (4 dimensional search space). Each contour plot is 

corresponding to a dash block in Figure 4.7. It can also clearly show the characteristics 

of energy consumption described in Figure 4.7. In addition, 81 points can be found in 



` 

111 
 

Figure 4.6 and the value of each point can also be also evaluated. This contour plot will 

be used as the examination rig to investigate the other machining optimisation methods 

in the following sections. 

 
Figure 4.8 Contour Plot Matrix for Experimentation Rig  

4.2.2 Investigation of Taguchi Method 

Based on the DOE plan in Table 4.4, specific energy consumption of eight Taguchi 

DOE samples can be shown in Table 4.5 and graphically displayed in the developed 

contour plot matrix of experimentation rig in Figure 4.9. 

Table 4.5: DOE of Taguchi L9 3-level 4 factors  

Number Depth of cut 
(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption 
(kJ/cc) 

1 1 5 500 0.01 336.802 
2 1 5 4000 0.1 11.4782 
3 1 10 4000 0.01 40.3094 
4 1 10 500 0.1 21.4519 
5 5 5 4000 0.01 19.244 
6 5 5 500 0.1 11.6501 
7 5 10 500 0.01 39.0163 
8 5 10 4000 0.1 5.084 
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S/N ratios of energy consumption can be calculated by using Equation 2.24 in Chapter 2. 

Based on these values, the S/N ratio plot can be created in Figure 4.10 to show the 

characteristics of process parameters. The first observation obtained from the S/N plot 

from Figure 4.10 is that depth of cut, width of cut, spindle speed and feed rate all have 

significant influence on specific energy consumption. In addition, in using the Taguchi 

method to optimise energy, high level process parameters can achieve better result than 

the lower level process parameters.  

 

Figure 4.9 Graphical Display of Eight Taguchi Samples in Experimentation Rig 

 

Figure 4.10 S/N Ratio Plots of Process Parameters 
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Figure 4.11 Graphical Displays of Taguchi Method in Experimentation Rig 

 Direction of energy minimisation for width of cut 

Direction of energy minimisation for depth of cut 

Level 1

Level 2

Level 1 Level 2 

Level 1 

Level 1 

Level 2 

Level 2 

 Direction of energy minimisation for width of cut 

Direction of energy minimisation for depth of cut 
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Figure 4.11 graphically shows how the optimal result was obtained by using Taguchi 

method. For each design variable, the samples can be classified according to the design 

levels (shown as the areas framed by dashed lines). The comparison between different 

levels is actually comparing the average value and standard deviation of different level, 

then the optimal level will be suggested. The implementation of Taguchi method 

actually shows the directions of energy minimisation for each process parameter. 

To further prove and generalise the results achieved above, a further investigation was 

conducted with the consideration of increasing levels. An L9 DOE plan has been 

presented according to Taguchi orthogonal experimental design. Nine out of 81 samples 

were selected to carry out the analysis. The specific energy consumption values of nine 

samples are shown in Table 4.6. 

Table 4.6: Specific Energy Consumption for Taguchi L9 3 Levels 4 Factors  

Number Depth of cut 
(mm) 

Width of cut
(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption 
1 1 5 500 0.01 336.802 
2 1 7.5 2250 0.055 16.7368 
3 1 10 4000 0.1 7.8894 
4 3 5 2250 0.1 7.8868 
5 3 7.5 4000 0.01 20.7475 
6 3 10 500 0.055 15.1712 
7 5 5 4000 0.055 7.1512 
8 5 7.5 500 0.1 9.3921 
9 5 10 2250 0.01 15.1919 

 
Figure 4.12 S/N Ratio Plots of Process Parameters 
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The S/N ratios of energy consumption are shown in Figure 4.12 to show the 

characteristics of the variables for three levels case. From the figure, it can be found 

that the characterisation of energy consumption for three levels case is the same as two 

levels case. The additional level does not affect the optimal result. The result of three 

levels case further proved that the energy consumption when high level values are 

selected is less than when lower level values are selected. Meanwhile, the additional 

level can also show the characteristic of energy consumption for the end milling 

operation identified in section 4.1. The energy improvement efficiency becomes smaller 

with continued increase in process parameters. Another finding of Taguchi method with 

respect to the increasing degree of the variables is that for improving the energy 

consumption it is more efficient to increase the process parameters in the order feed rate, 

depth of cut, spindle speed and lastly width.   

However, as pointed out in the literature, this implementation of the Taguchi method for 

optimisation is only a first level approximation as it could miss the real optimal value if 

the optimal point is outside the design search space. For the situations that the selected 

DOE does not cover the whole search space, the use of Taguchi method will require an 

iterative approach, in which the experiment is repeated in the vicinity of optimum 

obtained in a previous step.  

4.2.3 Investigation of Genetic Algorithm 

The comparison of the basic concepts between GA and machining operation is shown in 

Table 4.7. Each variable will be considered as a “Chromosome” and the value of the 

variable will play a role as “Gene”. Energy consumption is the fitness value to evaluate 

the individuals. Process parameters will be randomly selected within the feasible range. 

The crossover and mutation operators are used to generate new individuals. The 

function of crossover is to rapidly explore a search space within the initial data range 

which is the same as changing the combination of process parameters. The function of 

mutation is to provide a small amount of random search which can expand the search 

space by extending data range. It is the same as to replace a process parameter with a 

new value. The function of selection is to compare the results of different combination 

of process parameters and keep a record of the best combination for further operation. 

The optimal combination of process parameters can be determined by repeating above 

operations. 
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Table 4.7: Concept Comparison between GA and Machining 

GA Machining 

Population  Feasible sets of machining process parameters 

Individual A set of machining process parameters 

Chromosome Combination of parameters 

Gene Parameter 

Fitness Optimum value of objective 

Selection Record improved results 

Reproduction  

Change the combination of machining 

parameters 

Crossover 

Mutation 

Evolution Generate new optimal results 

 

The following steps presented an example of implementing GA to optimise specific 

energy consumption. The optimal result can be determined after repeating the algorithm 

4 times. The specific optimal procedure can be shown as below: 

Step 1: Random selection of starting points (initial population/process parameters).  

The first step for implementing GA is to select the initial population set. It is difficult to 

find a completely random selection of starting process parameters in practical 

machining operation. Even for a novice practitioner who is working on new machining 

operations (e.g. new material, tool and machine tool) where the best process parameters 

are not known yet, the selection of the process parameters would be guided by 

suggestions from machining handbook, tool catalogue or the experience of senior 

practitioners. A possible explanation of this random selection cannot also be justified by 

a case of an intelligent machine tool designed to adaptively determine the cutting 

parameters since database values would usually provide initial values.  

The example here shows that the initial population set is located at the beginning of 

search space. The population size is six. The values of process parameter and objective 

are shown in Table 4.8a. Current best three optimal results are highlighted and selected 

to carry out the following steps. 
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Table 4.8a: Individuals of Initial Population  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

1 1 5 500 0.01 336.8022 
2 1 5 500 0.055 65.3628 
3 1 5 500 0.1 38.0781 
4 1 5 2250 0.01 104.8482 
5 1 5 2250 0.055 22.8128 
6 1 5 4000 0.01 42.9969 

Step 2: Generate new individuals by conducting crossover and mutation operation.  

Based on the initial population, the first generation offspring can be generated by 

conducting crossover and mutation operations (in Table 4.8b). The mutation factor is 

value of depth of cut (level 2 replaced level 1). The current best three optimal results are 

also highlighted and selected to carry out the following steps. In addition, it can be 

found that the values of spindle speed and feed per tooth at level 1 are eliminated. This 

process reflects the principle of evolutionary function for implementing GA is "survival 

of the fittest". The value highlighted in red means the new generated result is worse than 

the previous generation. 

Table 4.8b: Individuals of First Generation 

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

Crossover 
7 1 5 4000 0.055 17.4015 
8 1 5 2250 0.1 14.5063 
9 1 5 4000 0.1 11.4782 

Mutation 
10 3 5 2250 0.055 10.7657 
11 3 5 500 0.1 16.0496 
12 3 5 4000 0.01 28.6516 

 

 

 



` 

118 
 

Step 3: Generate second generation offspring, and select and keep the best 

individual.  

The second generation offspring can be generated by repeating the crossover and 

mutation operation (in Table 4.8c). The mutation factor is width of cut (level 2 replaced 

level1). After mutation, it can be found that the new generation offspring may not be 

better than the last generation (as highlighted in red). To keep the new mutation factor, 

result No.18 was selected to replace No.15 to carry out the further operation. 

Table 4.8c: Individuals of Second Generation  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

Crossover 
13 3 5 2250 0.1 7.8868 
14 3 5 4000 0.1   6.7837 
15 3 5 4000 0.055 8.8558 

Mutation 
16 1 7.5 2250 0.1 11.1503 
17 1 7.5 4000 0.1 9.0899 
18 3 7.5 2250 0.055 8.7112 

Step 4: Generate following generation offspring  

The third and fourth generation offspring can be generated by repeating crossover, 

mutation and selection operation. For the third generation, the mutation factor is depth 

of cut (level 3 replaced level 2). The highlighted green results in Table 4.8d are selected 

to carry out the following operation. The highlighted red results are worse than the last 

generation. 

Table 4.8d: Individuals of Third Generation  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

Crossover 
19 3 7.5 4000 0.1 5.9647 
20 3 7.5 4000 0.055 7.3901 
21 3 7.5 2250 0.1 6.7424 

Mutation 
22 5 5 4000 0.1 5.8488 
23 5 5 2250 0.1 6.5674 
24 5 7.5 2250 0.055 7.1111 
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The fourth generation offspring can be generated by repeating the crossover and 

mutation operation (in Table 4.8e). The mutation factor is width of cut (level 3 replaced 

level2). The optimal result can be determined which is highlighted. The determined 

optimal result is the same as the results obtained by using enumeration method and 

Taguchi method which shows that the energy consumption can be minimised by 

selecting high level process parameters. In addition, 29 out of 81 samples in total were 

involved during the optimisation procedure. 

Table 4.8e: Individuals of Fourth Generation  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

Crossover 
25 5 7.5 4000 0.1 5.3436 
26 5 7.5 2250 0.1 5.8652 

Mutation 
27 3 10 4000 0.1 5.5488 
28 5 10 2250 0.1 5.5067 
29 5 10 4000 0.1 5.0845 

 

Step 5: Determine the optimal result. 

The optimal result can be determined after repeating the algorithm four times 

(graphically shown in Figure 4.13). The green dashed arrow shows the overall search 

path of implementing GA. However, the results obtained from crossover and mutation 

operations are not always positive. Defective offspring which are worse than the 

original generation may occur during the optimisation process. However, the repeated 

mutation operation can help jump out of previous local search space and eventually find 

the real optimal specific energy consumption. 
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Figure 4.13 Graphical Display of GA in 3-level Experimentation Rig (Manually 

Generated) 

The result above shows a progress for optimising machining process parameters by 

using GA. However, in practical implementation, the optimisation process is more 

complex in terms of uncertainty and randomisation. Usually the optimal results will be 

affected by other factors, such as the size of samples and the position of initial 

population.  

Figure 4.14 shows a typical GA implementation by using binary coding method with 

MATLAB.  Additional level was considered to fit the programming requirement. 256 

samples were created to represent the search space. The initial population which 

contains eight individuals was selected at the same position (left corner) as the ideal 

example shown in Figure 4.13. The green arrow points out how the optimal result was 

achieved after three generations which is similar to the optimal path shown in Figure 

4.13.   
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Figure 4.14 Graphical Display of GA in 4-levels Experimentation Rig (Generated 

by Using Matlab, Initial Population Located at Left Conner of Search Space, 

Optimal Results Achieved at 3rd Generation) 

However, the optimal path of GA is not always positive. Some redundant or negative 

moves may randomly occur. Although the same optimal results can be achieved by 

using same settings of process parameters, the optimal path may not be same every time. 

Figure 4.15 shows a result of repeating the same settings of Figure 4.14. The result 

shows that the optimal result was achieved after twelve generations. The green arrow 

points out the overall optimal path after twelve generations which is similar to the 

optimal path shown in Figure 4.13 and 4.14. However, the black arrow points out the 

actual optimal path generation by generation which contains many random changes and 

is different from the optimal path in Figure 4.14.  
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Figure 4.15 Graphical Display of GA in 4-levels Experimentation Rig (Generated 

by Using Matlab, Initial Population Located at Left Conner of Search Space, 

Optimal Results Achieved at 12th Generation) 

Figure 4.16 shows an example when initial population was selected at different position 

of search space. The green and black arrows in the figure point out the optimal path that 

the optimal result was achieved after three generations. Both paths can show the similar 

characters as the example when the initial population is located at left conner of search 

space. The result in Figure 4.16 can also identify that even the position of initial 

population is close to the final optimal point, it cannot guarantee to get the optimal 

result faster than the further position. In addition, the optimal results of different 

positions will be same.  



` 

123 
 

 

Figure 4.16 Graphical Display of GA in 4-levels Experimentation Rig (Generated 

by Using Matlab, Initial Population Located at Middle of Search Space, Optimal 

Results Achieved at 3rd Generation) 

Figure 4.17 shows the optimal results of all three examples above and three pure 

random cases. The comparison result identified that the optimal results of presented 

examples with different settings are all same, but the optimisation paths are different. 

This finding can further prove that different settings, such as postition of initial 

population, will not affect the optimal result but only affect the computation time. 

In summary, GA can effectively solve machining optimisation problem according to 

examples shown above. However, compared to systematic direct search method, GA 

may not be always effective because of its randomisation. For the example presented of 

four levels four parameters case, 256 samples were calculated and compared. When 

using GA, eight individuals were calculated and compared for each generation. After 33 

generations (8 ൈ 33 ൌ 264), GA will require more calculations and consume more 

computing time than systematic direct search method. 

Initial population 
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Figure 4.17 Comparison of Optimisation Paths and Results of GA by Running 

Matlab Program Multiple Times   

4.2.4 Investigation of Ant Colony Optimisation (ACO) Method 

The specific optimal procedure can be shown as following steps: 

Step 1: Determine the Layers and nodes 

The first step for implementing ACO is to determine the layers and nodes. According to 

the characterisation of machining, each process parameter represents a design variable 

and the number of levels represents the discrete values for each design variable (see 

Figure 4.18). Four layers have been created based on the design of experiment rig and 

each layer has three nodes. 

Step 2: Determine the optimal node for Layer 1 (spindle speed) 

The process parameters and specific energy consumptions of Layer 1 (spindle speed) 

are shown in Table 4.9a. The result shows that when other process parameters are same, 

large spindle speed will lead to the optimal energy consumption. So the third level 

(n=4000rpm) is the optimal value for spindle speed and the corresponding node will be 

the start node for Layer 2. 

1st example 

2nd example 

3rd example 

Random cases 
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Table 4.9a: Layer 1 Spindle Speed  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

1.1 1 5 500 0.01 336.8022 
1.2 1 5 2250 0.01 104.8482 
1.3 1 5 4000 0.01 75.7220 

 

Step 3: Determine the optimal node for Layer 2 (feed per tooth) 

The process for Layer 2 is the same as Layer 1. The process parameters and specific 

energy consumptions of Layer 2 (feed per tooth) are shown in Table 4.9b. The result 

shows that when other process parameters are same, large feed rate will lead to the 

optimal energy consumption. So the third level (n=4000rpm, fz=0.1mm/tooth) is the 

optimal value for the feed rate and the corresponding node will be the start node for 

Layer 3.  

In addition, before the optimisation started at Layer 2, the spindle speed has already 

been optimised at Layer 1. So, the result achieved at Layer 2 is the optimal result for 

both spindle speed and feed rate.  

Table 4.9b: Layer 2 Feed per Tooth  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

2.1 (1.3) 1 5 4000 0.01 75.7220 
2.2 1 5 4000 0.055 17.4015 
2.3 1 5 4000 0.1 11.4782 

 

Step 4: Determine the optimal node for Layer 3 (width of cut) 

The same as step 2 and step 3, the process parameters and specific energy consumptions 

of Layer 3 (width of cut) are shown in Table 4.9c. The result shows that large width of 

cut will lead to the optimal energy consumption. So the third level (n=4000rpm, 

fz=0.1mm/tooth, ae=10mm) is the optimal value for spindle speed, feed rate, and width 

of cut, and the corresponding node will be the start node for Layer 4. 
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Table 4.9c: Layer 3 Width of Cut  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

3.1 (2.3) 1 5 4000 0.1 11.4782 
3.2 1 7.5 4000 0.1 9.0899 
3.3 1 10 4000 0.1 7.8894 

 

Step 5: Determine the optimal node for Layer 4 (depth of cut, final optimal result) 

Finally, the process parameters and specific energy consumptions of Layer 4 (depth of 

cut) are shown in Table 4.9d. The result shows that large depth of cut will lead to the 

optimal energy consumption. So the third level (n=4000rpm, fz=0.1mm/tooth, 

ae=10mm, ap=5mm) is the optimal value for spindle speed, feed rate, width of cut and 

depth of cut. 

Table 4.9d: Layer 4 Depth of Cut  

Number Depth of 
cut 

(mm) 

Width of 
cut 

(mm) 

Spindle 
speed 
(rpm) 

Feed per 
tooth 

(mm/tooth) 

Specific 
Energy 

Consumption
(kJ/cc) 

4.1 (3.3) 1 10 4000 0.1 7.8894 
4.2 3 10 4000 0.1 5.5488 
4.3 5 10 4000 0.1 5.0848 

 

The optimal result can be determined after five steps and graphically shown in Figure 

4.18. The green dashed arrow shows the search path of implementing ACO which can 

also clearly show an optimisation path. The optimal result achieved is the same as the 

results achieved by using other optimisation methods, such as Taguchi method, GA and 

direct search method (grid search). The optimal result can be gradually achieved layer 

by layer at the highest value/ level of each designed process parameter.  
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Figure 4.18 Graphical Displays of ACO in Experimentation Rig 

4.2.5 Summary of Explanatory Models for Machining Optimisation Methods  

In this section, an experimentation rig was built by using direct search method to 

explain how optimal results are obtained by using Taguchi method, GA and ACO. The 

basic principles of Taguchi method, GA and ACO have been demonstrated by 

graphically displaying the procedures of how these optimisation methods operate to 

achieve the optimal results and explaining the reason why they are faster than the 

traditional method. The uncovered reasons can provide explicit understanding in 

machining terms which can also provide confidence to practitioners to trust and 

implement optimisation results. 

The comparison results of an unconstrained single-objective optimisation problem 

showed that the optimal results obtained by using different methods are same and all of 

the methods can identify optimising directions. However, the result obtained by using 

direct search method can easy point out the improvement directions and is much clearer 

and more convincible. 

Layer 3: Width of cut 

Layer 1: Spindle speed Layer 2:feed per tooth 

Layer 4: depth of cut 

The final optimal result 
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4.3 Constrained Optimisation Procedure based on Direct Search Method  

Based on characterisation of energy consumption machining operation in section 4.1 

and unconstrained optimisation procedure in section 4.2, a constrained optimisation 

procedure has been conducted by using direct search method in this section. 3D contour 

plots of specific energy consumption (SEC) are shown in Figure 4.19 with the respect of 

process parameters (depth of cut, width of cut, spindle speed and feed rate per tooth). 

3D contour plots of specific energy consumption can clearly show the characteristic of 

energy consumption. Vertically changed coloured bands represent the distribution of 

specific energy consumption.  

 

 

Figure 4.19 3D Contour Plot of Specific Energy Consumption Corresponds to 

Design of Experimentation Rig  

ap=5   ae=10 
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According to the characterisation of machining optimisation, the optimal result will be 

located on the boundary of the search space. So the case when depth and width of cut 

reach the maximal value of the range is shown to demonstrate the optimisation 

procedure.  

4.3.1 Determination of Optimal Specific Energy Consumption  

Figure 4.20 shows search space with the constraints of cutting force and surface 

roughness factor displayed. The green area represents the feasible region of search 

space when cutting force is no more than 400N and surface roughness is smaller than 

0.05mm. So the optimal cutting condition based on energy considerations is the optimal 

points highlighted in the figure. The comparison result between cutting tool 

manufacturer's recommendation and optimal result in Table 4.10 shows that up to 75% 

of improvements in energy consumption (20.695kJ/cc to 5.126kJ/cc), cost (0.142£/cc to 

0.036£/cc) and time consumption (50.912sec/cc to 12.778sec/cc) can be achieved by 

using optimal process parameters under the constraints of spindle speed (4,000 rpm), 

cutting force (400N) and surface roughness (0.05mm). 

 

Figure 4.20 Constrained Search Space with Constraints and Optimal Result 

Behaviour constraint: 
Surface roughness

Optimal point 

Behaviour constraint: 
Cutting force 

Boundary constraint: 
Spindle Speed

Handbook  
Recommendation 

Optimising path

rpm 

mm/tooth 
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From the figure, it can also be found that the optimal result achieved is actually only 

affected by cutting force constraints. It means cutting force is the dominant constraint 

compared to surface roughness in this case study (cutting force 400N, surface roughness 

0.05mm). It further proves the conclusion in section 4.1.4 that some constraints can be 

redundant and neglected in some situation. However, for some particular situations, 

dominant constraints may be different. 

According to the results achieved, the problem of machining optimisation is not a 

complex problem as reported in the literature (Tolouei-Rad and Bidhendi, 1997). The 

demonstration above shows that for solving two- variable single-objective optimisation 

problem, optimal result can be achieved quickly by using MATLAB on a common 

computer (Sony, Processor - i7 2.00GHz, RAM - 8GB, Hard Drive - 750GB, Operating 

System - Win 7 Home Premium).  

Although it may be argued that the problem will become more complex when more 

factors are considered (e.g. objectives, constraints, and numbers and levels of 

independent variable), the extra dimensionality will not change the characteristics of 

machining optimisation problems. The only issue of complexity of machining 

optimisation caused by adding levels and accuracy is how the achieved result can be 

effectively presented and how decision makers can handle large amount of data. 

Table 4.10: Comparison of Recommendation and Optimal Process 

Parameters 

Variables Cutting Tool 
Manufacturer's 

Recommendation

Optimal Results Improvement 

ap (mm) 1 5  

ae (mm) 5 10  

n (rpm) 1500 4000  

fz (mm/tooth) 0.067 0.06  

Energy (kJ/cc) 20.695 5.162 75.06% 

Cost (£/cc) 0.142 0.036 74.64% 

Time (sec/cc) 50.912 12.778 74.90% 
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4.3.2 Improvement of Energy Efficiency based on OptimalProcess Parameters  

Based on the new energy efficiency metrics proposed in Chapter 3, the energy 

efficiency of cutting tool manufacturer's recommendation and optimal results can be 

calculated and shown in Table 4.11, Figures 4.21a and 4.21b. The energy efficiency for 

implementing recommended values and optimal process parameters are presented in 

Table 4.11 based on the process parameters in Table 4.10.  

Table 4.11: Energy Consumption and Energy Efficiency for Cutting Tool 

Manufacturer's Recommendation and Optimal Process Parameters 

 TME 

(kJ) 

TE 

(kJ) 

DE 

(kJ) 

AE 

(kJ) 

IE 

(kJ) 

ER 

(TE/DE) 

×100% 

ERm 

(TME/TE) 

×100% 

ERp 

(TME/DE) 

×100% 

Recommended 5.238 38.920 558.771 519.852 33.682 6.965% 13.459% 0.937% 

Optimum 5.238 31.379 139.379 108 26.141 22.513% 16.693% 3.758% 

 

From the figures, it can be found that the energy efficiency of existing definition for 

implementing optimal process parameters is much better than the result of using the 

parameters from cutting tool manufacturer's recommendation (22.513% to 6.965%, 

improvement over 220%). The same conclusion can be determined by comparing the 

proposed energy efficiency for machining process which also shows that a significant 

improvement can be achieved (3.758% for optimal process parameters to 0.937% for 

recommendation). 

The additional benefit for implementing optimal result is that it can further reduce the 

inefficiency of the machining operation. By comparing the energy efficiency of 

machining operation (theoretical minimal energy consumption/energy consumption for 

machining operation), the energy efficiencies for implementing optimal result and 

cutting tool manufacturer's recommendation are 16.693% and 13.459%. Up to 22% 

reduction of inefficient energy consumption (33.682kJ to 26.141kJ) can be achieved. 

According to the analysis of energy efficiency, it can be concluded that the 

implementation of optimal process parameters cannot only reduce the energy 

consumption, but also improve the energy efficiency for manufacturing process and 

machining operation. The improvement of the energy consumption and energy 

efficiency of the machining process (ER and ERp) are significant. However, the 

improvement of the energy efficiency for the machining operation is comparatively 
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small. It means though the optimisation of process parameters can improve the energy 

use of the existing process, the reduction of inefficient energy consumption of operation 

is insignificant because of limitation of current machining strategy. It is necessary to 

develop new process and technologies to further reduce the inefficient energy 

consumption of machining operation to improve the energy efficiency. 

 

Figure 4.21a Energy Efficiency for Cutting Tool Manufacturer's Recommendation 

 

Figure 4.21b Energy Efficiency for Optimal Process Parameters 

4.4 Summary of the Chapter 

In this chapter, firstly, the characterisation of machining operation with energy 

considerations has been investigated by using graphical multivariate data analysis 

techniques. The results showed that energy consumption decreases monotonically with 

the increase of process parameters.   

13.459% 

16.693% 
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Then, a systematic method was proposed for uncovering the reasons behind results 

obtained when energy is considered in machining optimisation. An experimentation rig 

was built by using Direct Search method to explain how optimal results are obtained by 

using Taguchi method, GA and ACO. The uncovered reasons can provide explicit 

understanding in machining terms. It can also provide confidence to practitioners to 

trust and implement optimisation results. The comparison results of an unconstrained 

single-objective optimisation problem showed that the optimal results obtained by using 

different methods are same and all of the methods can identify optimising directions. 

However, the result by using direct search method can easy point out the improvement 

directions and is much clearer and more convincible. 

The optimisation result with the constraints of spindle speed (4,000 rpm), cutting force 

(400N) and surface roughness (0.05mm) for milling Aluminium 7075-T6 (by using 

Haas TM 1CE Vertical milling machine, maximum spindle speed 4,000rpm and 10mm 

3 flutes carbide end mill) showed that up to 75% of improvement of energy, cost and 

time can be achieved by using optimal process parameters compared to cutting tool 

manufacturer's recommendation. The implementation of optimal process parameters for 

the case study shows that over 220% of improvement of energy efficiency (6.965% to 

22.513%) for the process, and up to 22% reduction in inefficient energy consumption 

can be achieved for machining operation.  

However, the improvement of the energy efficiency for the machining operation is 

comparatively small. Reduction of inefficient energy consumption of operation is still 

not signification because of limitation of current machining strategy. It is necessary to 

develop new process and technologies to further reduce the inefficient energy 

consumption to improve the energy efficiency.  



` 

134 
 

CHAPTER 5: MULTIPLE OBJECTIVES OPTIMISATION FOR 

SUSTAINABLE MACHINING 

Chapter 4 has introduced the nature of machining optimisation and the reasoning behind 

the obtained optimal results in applying typical optimisation methods. The sustainable 

machining process needs to consider multiple objectives to fulfil environmental and 

economic requirements. The problem of solving multi-objective optimisation is that the 

current implemented optimising tool (Pareto front) is inefficient and difficult to solve 

machining optimisation problem when the optimisation objectives are more than two. 

To address this problem, scenarios are introduced in this thesis as part of the 

optimisation framework for machining optimisation. According to the relationships 

between objectives, solution scenarios have been developed which contain the problems 

that fit the descriptions of each scenario and the corresponding solutions.  

5.1 Design of the Problem Scenarios  

To accurately describe the problems of machining optimisation, the design of a problem 

scenario will be introduced in this section. The concept of a problem scenario is 

developed based on the characterisation of the machining operation. Each case 

represents a combination of considered objectives. These scenarios can be considered as 

the problem domain which allows decision makers to select the corresponding scenario 

based on their requirements.  

For n objectives, the total number of problem scenarios Ns can be identified by using 

equation 5.1. The total number of cases is 

ݏܰ ൌ ܥ  ଵܥ  ଶܥ  ܥ⋯  ିଵܥ⋯  ܥ ൌ 2																																				ሺ5.1ሻ 

Where Ns is the number of case studies, n is the number of objectives, and i is the 

number of objectives considered. 

The example shown in this chapter is to investigate an end milling operation with the 

consideration of the seven objectives: energy, cost, time, power, cutting force, tool life 

and surface finish. By enumerating the combination of objectives, 128 scenarios in 

sustainable machining optimisation can be generated and classified in three major 

scenarios in Figure 5.1. The explanation of each scenario will be introduced in the 

following section. 
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Figure 5.1 Classification of Machining Optimisation Problem Scenarios 

The optimisation in practice can be divided into three main scenarios which are zero-

objective scenario, single-objective scenario and general multi-objective scenario. The 

design of each scenario are introduced in the following sections.  

5.1.1 Zero-objective Scenario 

The definition of a zero-objective scenario is that there is no fixed optimisation 

objective within the problems in this scenario. Based on the decision makers' 

understanding of the problem, there are two situations in this scenario: 

 The first situation is that decision makers have no idea about how to improve 

their machining process.  

 The second situation is that instead of objectives, decision makers only have 

some constraints, such as: reduce cost/time/energy by 20%, increase tool life by 

10% or improve surface roughness by 30%.  

So the main task for this scenario is to describe the problem of machining optimisation 

(e.g. characteristics of optimisation objectives) and uncover the potential improvement 

of the current machining process to decision makers. The total number of cases in zero-

objective scenario is: 

௭ܰ ൌ ܥ ൌ 1																																																												ሺ5.2ሻ 

If the number of optimisation objectives is seven, there is only one (ܥ
 ൌ 1) scenario in 

the zero-objective scenario. The solution of zero-objective scenario is to describe the 

problem of machining optimisation and uncover the potential possibility of the current 
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process. The result can be demonstrated by using a non-constrained contour plot to 

show the states of optimal criteria. Figure 5.2 indicates the solution of a zero-objective 

scenario with energy, cutting force and surface roughness considerations. It clearly 

describes the optimisation problem and presents the characterisation of each criterion. 

So the decision makers can continue to refine their requirements, determine the optimal 

objectives and select the satisfactory machining plan according to the presented contour 

plot. In addition, the plotted coloured arrows show the directions of how to minimise 

the energy consumption. Figures 5.3a to 5.3c clearly shows how the search space is 

reduced by (a) improving surface roughness by 50% (20µm to 10 µm), (b) reducing 

cutting force by 30% (450N to 300N), and (c) reducing specific energy consumption by 

30% (7.5kJ/cc to 5kJ/cc). The red shadow area represents the original search space and 

the green shadow area represents the search space after refined.  

 

Figure 5.2 Solution of zero-objective scenario 

 

 

 

 

 

30%
50%

30% 
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Figure 5.3a Comparison of Search Space via Reducing Surface Roughness by 50%,  

 

Figure 5.3b Comparison of Search Space via Reducing Cutting Force by 30% 

 

Surface roughness reduced 
50% (20µm to 10 µm) 

Cutting force reduced 30% 
(450N to 300N) 
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Figure 5.3c Comparison of Search Space via Reducing Specific Energy 

Consumption by 30% 

5.1.2 Single-objective Scenario 

The definition of a single-objective scenario is that only one objective function is 

considered for an optimisation problem. It refers to the practical situation when decision 

makers have a very clear objective to improve their process based on one specific 

criterion. The main task in this scenario is to correctly define the constraints to reduce 

the search space and locate the optimum value.  

The total number of cases in a single-objective scenario is: 

௦ܰ ൌ ଵܥ ൌ ݊																																																											ሺ5.3ሻ 

If the number of optimisation objectives is seven, there are seven (ܥ
ଵ ൌ 7) cases in the 

single-objective scenario. The result can be also demonstrated by a contour plot of the 

optimal objective. A feasible search space can be indicated with the consideration of 

constraints. Figure 5.4 indicates the solution of energy minimisation with constraints of 

cutting force ( 400ܰ ), surface roughness ( 0.05݉݉ ) and spindle speed (

 ,The green area represents the constrained feasible region of search space .(݉ݎ4000

and the unique optimal result can be determined.  

Specific energy consumption 
reduced 30% (7.5kJ/cc to 5kJ/cc) 
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Figure 5.4 Solution of single-objective scenario 

The example of energy is specifically shown in section 4.3. The seven objectives are 

energy, cost, cutting force, surface finishing, tool life, cost and power. A unique optimal 

solution will be determined in this scenario. The optimal value will be located on the 

boundary of the constraints. In addition, based on the characteristics of these objectives 

with the changing of process parameters, they can be divided into three groups as shown 

in Table 4.3. 

5.1.3 Multi-objective Scenario 

Generally, a multi-objective scenario consists of a scenario which involves more than 

one objective function to be optimised simultaneously. According to the number of 

objectives, a general multi-objective scenario can be further divided into two sub-

scenarios:  

 Bi-objective scenario 

 Special multi-objective scenario 

The total number of cases in a multi-objective scenario is: 

ܰ௨௧ ൌ ଶܥ  ܥ⋯  ିଵܥ⋯  ܥ ൌ 2 െ ݊ െ 1																													ሺ5.4ሻ 
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ܰ ൌ ଶܥ ൌ
2! ሺ݊ െ 2ሻ!

݊!
																																																																	ሺ5.5ሻ 

ܰ௨௧ ൌ ଷܥ  ܥ⋯  ିଵܥ⋯   ሺ5.6ሻ																																																			ܥ

The definition of a bi-objective scenario is that two objectives will be considered in 

machining optimisation simultaneously. If the number of optimisation objectives is 

seven, there are 21 (ܥ
ଶ ൌ 21) cases in a bi-objective scenario. The solutions of bi-

objective scenario can be represented as a single Pareto front. 

The definition of a special multi-objective scenario is that more than two objectives will 

be considered in machining optimisation simultaneously. There are 99 (ܥଷ  ସܥ  ହܥ 

ܥ  ܥ ൌ 99) cases in this sub-scenario. The solutions of a special multi-objective 

scenario are usually complex and require multiple Pareto fronts. The more objectives 

that need to be considered, the more complex the solution will be. The specific analysis 

will be carried out in the following section. 

5.2 Result Analysis for Multi-objective Scenario 

Figure 5.5(a) to 5.5(f) show the Pareto fronts of energy consumption with cost, surface 

roughness, tool life, cutting force, time and power requirement. From the Pareto fronts 

presented, the optimal result for a bi-objective scenario can be classified into two 

categories: non-conflicting and conflicting. Figure 5.6 shows a combined Pareto front of 

all six objectives, the value of the X-axis represents specific energy consumption (SEC) 

which is selected as a reference objective. 

For the scenarios, such as energy and cost/time, the optimal solution will be a unique 

optimal point (see in Figure 5.6 as a red point). These bi-objective cases with unique 

optimal points indicate that that the objectives are non-conflicting. Similar findings 

were also reported by Mativenga and Rajemi (2011) to optimise energy and cost for 

turning operation. This conclusion can also be drawn from the characterisation of single 

objective in Chapter 4. This means that the multi-objective analysis in these scenarios 

can be converted to a single-objective optimisation problem and becomes the earlier 

results obtained in single objective analysis. These scenarios can be put together as a 

non-conflicting bi-objective category. The example of a non-conflicting bi-objective 

category can be found in section 4.3 where the optimal energy consumption was 

achieved along with the optimal cost and time.  
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For the scenarios, such as energy to surface roughness, tool life, cutting force and power, 

the optimal solutions will be a Pareto front which contains a set of feasible solutions 

without additional preferences. These scenarios can be put together as a conflicting bi-

objective category. According to the plotted Pareto front, decision makers can evaluate 

their current machining plans and make suitable adjustments based on their preferences.   

 

Figure 5.5 Pareto Fronts of (a) Cost, (b) Surface Roughness, (c) Tool Life, (d) 

Cutting Force, (e) Time, (f) Power against Specific Energy Consumption 
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Figure 5.6 Combined Pareto Fronts of Cost, Surface Roughness, Tool Life, Cutting 

Force, Time and Power. 

5.2.1 Optimal Solution for Special Multi-objective Scenario 

Normally, a Pareto front is utilised to solve two conflicting objectives optimisation 

problems. However, Pareto fronts are difficult to understand and inefficient when there 

are more than two objectives being considered. For example, if five objectives are being 

considered, there are ten (ܥହ
ଶ ൌ 10) Pareto fronts which should be plotted to show the 

relationship between each pair of objectives. The analysis process will be very complex 

and requires a lot of explanation, and the optimal solution is very difficult to be clearly 

presented.  

However, according to the characterisation of machining optimisation, the objectives 

are increases or decreases constantly with the increase of process parameters. Every pair 

of non-conflicting objectives can be considered as a single-objective problem, it can be 

easily inferred that all the non-conflicting special multi-objective scenarios can be 

converted to a single objective optimisation. 
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Based on the above conclusion, the optimal solution for a special multi-objective 

scenario can be simplified by carrying out an analysis and combining process with the 

steps below:  

 Characterise the optimising objectives. Identify the relationship between each 

pair of objectives: Are they conflicting or not conflicting? 

 Combine the non-conflicting objectives. The multiple non-conflicting objectives 

can be combined by using one representative objective (could be any one of 

them). 

 Evaluate the remaining representative objectives. If only one objective remains, 

then the problem can be classified in a non-conflicting category. Otherwise it 

can be classified in a conflicting category. The classification and solutions for a 

special multi-objective scenario are the same as for a bi-objective scenario. So 

the multi-objective scenario can be generally classified into two categories. 

Figure 5.7 shows the analysis process of a general multi-objective machining 

optimisation. It is clear that the optimal result will be a unique optimal solution if all the 

objectives are not conflicting with each other. It means the optimal solution of a non-

conflicting category is the same as the solution of a single-objective scenario. The 

optimal result of a conflicting category will be a unique Pareto front which is the same 

as bi-objective conflicting cases shown in Figure 5.5.  

 

Figure 5.7 Result Analysis of Multi-objective Machining Optimisation 
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5.2.2 Classification of Solution Scenario 

According to the analysis of optimal results for each problem scenario, the optimal 

solutions for machining optimisation can be classified into 3 scenarios, which are: 

Descriptive scenario. The solutions in this scenario are to address the problems in a 

zero-objective scenario. The functions of these solutions are to comprehensively 

describe the problems of machining optimisation for decision makers who do not have 

explicit optimising objectives, and help them to uncover the potential improvement of 

their current machining processes. Usually, the solutions in this scenario will be 

presented as a non-constrained contour plot. 

Unique solution scenario. The solutions in this scenario are to address the problems in 

the single-objective scenario and the non-conflicting category of a multi-objective 

scenario. The optimising process for this solution scenario can be conducted by using 

any existing single-objective optimisation algorithms. The solutions in this scenario are 

a unique optimal solution/result for the problems and can be presented as a constrained 

contour plot. 

Pareto front scenario. The solutions in this scenario are to address the problems in the 

conflicting category of a multi-objective scenario. The optimal results in this scenario 

are not a unique optimal result but a set of feasible solutions. The optimal solutions in 

this scenario can be presented as a single Pareto front. 

The proposed solution scenarios in this section can be fused together as a solution 

domain which will provide the corresponding optimal solution for the scenarios in the 

problem domain. Figure 5.8 shows the structure of the proposed scenario-based 

framework for machining optimisation. This framework clearly shows how to solve the 

machining optimisation problem. It is especially suitable for multi-objective problems, 

and provides a generic method to address the issues for achieving a sustainable 

machining process. 
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Figure 5.8 Scenario-based Framework for Machining Optimisation 

5.2.3 Case Study of Multiple Objectives Optimisation for Implementing Proposed 
Scenario-based Framework 

An example has been produced to demonstrate the process of how to use the proposed 

method to optimise four conflicting objectives energy, cost, cutting force and surface 

roughness. By analysing the Pareto fronts of each pair of objectives, energy and cost are 

not conflicting, and cutting force and surface roughness are not conflicting, so they can 

be respectively combined and represented by energy and cutting force. Then the optimal 

result can be plotted as a unique Pareto front as shown in Figure 5.9 where the X axis 

represents specific energy consumption and Y axis represented cutting force (set as a 

representative objective). From the figure, decision makers can evaluate their current 

machining plans and make suitable adjustments based on their preferences, such as 

minimal cost, minimal surface roughness, and minimum change of process parameters 

or balance objectives. 



` 

146 
 

 

Figure 5.9 Pareto Front for Optimising 4 Objectives: Energy, Cost, Cutting Force 

and Surface Roughness  

5.3 Summary and Discussion 

In this chapter, a scenario-based systematic methodology was developed to provide a 

comprehensive solution for decision makers to solve machining optimisation problems 

with sustainability considerations.  

The problem scenarios have been developed to describe the actual problems of 

machining optimisation. By enumerating and characterising the problems in sustainable 

machining operation involving seven objectives including energy, cost, time, power, 

cutting force, tool life and surface finish, 128 scenarios can be identified and  classified 

into three major problem scenarios: zero-objective, single-objective and general multi-

objective scenarios based on the number of objectives considered. Based on the 

complexity of optimal results (number of Pareto fronts required), the general multi-

objective scenarios can be further separated into two sub-scenarios: bi-objective and 

special objective scenario (optimal objectives more than two). 

The solutions for multi-objective scenarios have been investigated by characterising of 

Pareto fronts of bi-objective sub-scenarios. Based on the analysis, the multiple 
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objectives can be divided into two categories: non-conflicting and conflicting category. 

Non-conflicting multi-objective problems can be converted to a single-objective 

situation which has a unique solution, and conflicting multi-objective problems can be 

converted to a set of conflicting bi-objective cases which can be presented as a single 

Pareto front. 

According to the analysis of optimal results, the solutions for machining optimisation 

can be classified into three solution scenarios which are descriptive scenario (for zero-

objective scenario), unique solution scenario (for single-objective scenario and non-

conflicting category of multi-objective scenario) and Pareto front scenario (for 

conflicting category of multi-objective scenario). The proposed solution scenarios can 

be fused together as a solution domain to provide an optimal solution for the 

corresponding problem scenarios. 

Based on the above results, a scenario-based framework has been proposed for solving 

general machining optimisation problems. It can provide a generic and systematic 

methodology for decision makers to better understand their machining processes and 

address recent challenges from sustainable requirements. 
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CHAPTER 6: ENERGY-EFFICIENT CUTTING STRATEGY - A PROFILING 

TOOLPATH STRATEGY FOR END MILLING OPERATION 

The issues of how to improve the sustainability by optimising process parameters have 

been addressed in Chapter 4 and Chapter 5. The aim of this chapter is to address the 

issues of how to further reduce the energy consumption for machining operations by 

developing new machining technologies and strategies. The following research question 

will be answered in this chapter, which is: 

In addition to the optimisation of process parameters, is it possible to further reduce the 

energy consumption by changing/designing new technologies and processes? If it is 

possible, what is the maximal improvement can be achieved? 

The result presented in this chapter will follow the optimal result obtained in Chapter 4. 

A profiling toolpath strategy is introduced in this chapter which is energy efficient and 

cost effective for forming some 2½D features compared to the conventional cutting 

strategy. The application range for each feature will also be introduced based on the 

results of the previous chapters on the measurement of energy consumption and cost. 

6.1 Introduction: Conventional and Proposed Profiling Toolpath Strategy 

The energy efficiency metric developed in Chapter 3 represented a measure that 

uncovers the inherent inefficiency of existing technology and suggests the direction to 

improve energy efficiency. Equation 3.17 shows that the energy consumption for 

machining operations (TE) is related to process parameters and material removal 

volume. The first aspect has been addressed by conducting the optimisation of process 

parameters in Chapter 4 which reduced the energy consumption and improved the 

energy efficiency. The result shows that even when the energy consumption from 

auxiliary functions can be reduced to zero, the inefficiency still exists. The operation 

itself is not efficient enough and contains lots of redundant motions. It requires 

developing new technologies and machining methods to further improve the energy 

efficiency. There are already many research contributions concerning the development 

of new energy-efficient methods/technology. However, most of the literature only tends 

to focus on coolant strategies and tool design, and did not address the inefficiency of the 

machining process.  

Ideally, the absolutely perfect situation in machining should not generate any material 

waste. However, because of the limitation of technology, waste generation cannot be 
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avoided during the machining process. With the inspiration from the second aspect of 

Equation 3.17, it is possible to reduce waste and energy consumption by reducing the 

material removal volume (De Vries, 1992). To address this issue, the research presented 

in this chapter is an attempt in this direction to further reduce the energy consumption 

by developing new machining techniques. A new profiling toolpath strategy for the end 

milling operation that operates outside the boundary of the feature was developed in this 

chapter to reduce the energy consumption and the inherent inefficiency. The proposed 

strategy can give a direction to the new research of technology for tool design and 

toolpath strategy. 

6.1.1 Conventional Cutting Strategy for End Milling Operation 

In the end milling operation, conventional machining strategies (or conventional 

toolpath strategies, CTS) will remove the whole feature volume to achieve the shape. 

Figure 6.1 shows the material removal volume and machining method for conventional 

machining strategy. The advantages of this method include: low cutting force, low 

power requirement, less set-up time. In addition, conventional machining strategy can 

be implemented in machining all types of feature. However, the material removal rate of 

this method is low. Thus, it will use more time for machining the feature and generate 

more waste.  

         

Figure 6.1 Conventional Toolpath Strategy (CTS) 

6.1.2 Profiling Toolpath Strategy for End Milling Operation 

The proposed energy-efficient machining strategy (profiling toolpath strategy, PTS) 

uses slotting method (as for conventional toolpath strategy) to conduct machining 

around the boundary of the feature. Compared to conventional strategy, PTS uses full 

diameter to cut which can increase the material removal rate. The energy consumption 

for machining operations can be reduced by shortening the machining time. Figure 6.2 
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shows the material removal volume and type of energy machining strategy. However, 

PTS also has some limitations which are: 

 The cutting force will be increased by using full diameter cutting. It will cause 

spindle vibration, reduce tool life and increase power consumption. 

 It may take more set up time than conventional strategy, because of using 

slotting operation. 

 It cannot be implemented for all the features, only specific types of feature are 

suitable (e.g. deep narrow hole, wide shallow hole, wide deep hole, long shallow 

slot, long and deep slot, short and shallow slot, short deep slot)  

     

Figure 6.2 Profiling Toolpath Strategy (PTS) 

6.2 Investigation of Profiling Toolpath Strategy 

Since the proposed profiling toolpath strategy has a limitation of implementation, four 

typical features, for which profiling toolpath strategy can be implemented, were selected 

and investigated from a taxonomy of basic features (Owodunni et al., 2002). 

Comparison of energy consumption between conventional machining strategy and 

energy-efficient machining strategy was carried out by conducting numerical 

simulations. Four features are shown in Figure 6.3, which are step, slot, prismatic hole 

and round hole. The 3D demonstrations for implementing PTS to machine these four 

features are shown in Figure 6.4(a) to 6.4(d). The directions of cutting tool movements 

(rough toolpath) are shown as the red arrows in each figure. 

                            

           (a) Step                      (b) Slot                (c) Prismatic Hole           (d) Round Hole 

Figure 6.3 Typical 2½ D Milled Features Suitable for PTS 
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                                (a) Step                                                          (b) Slot 

 

                         (c) Prismatic Hole                                         (d) Round Hole 

Figure 6.4 3D Demonstrations of PTS for Machining 2½ D Milled Features  

6.2.1 Material Removal Volume for Conventional End Milling Operation 

According to Equation 3.17, the energy consumption for the end milling operation is 

related to workpiece material, material removal volume and the number of flutes of the 

cutting tool. For conventional machining strategy, Vm is fixed which is determined by 

machining feature dimensions. It is not related to the type of feature. In this case, the 

energy consumption for specific features can be calculated. Material removal volumes 

of these features are concluded in Equation 6.1. 

ቐ
்ܸௌ ൌ ܮ ∙ ܪ ∙ ܹ			ሺܲܿ݅ݐܽ݉ݏ݅ݎ	݁ݎݑݐܽ݁ܨሻ	

்ܸௌ ൌ
ܪߨ ∙ ݀ு

ଶ

4
		ሺܴ݀݊ݑ	݈݁ܪሻ

																																				ሺ6.1ሻ 
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where, ்ܸௌis material removal volume for conventional machining strategy, L is length 

of feature, H is height of feature, W is width of feature, dୌ is diameter of feature. For 

Step, Slot and Prismatic Hole, the feature shapes are rectangular solids. For Round Hole, 

the feature shape is a cylinder.  

6.2.2 Energy Consumption for Profiling Toolpath Strategy 

Compared to conventional machining strategy, the material removal volume of energy-

efficient machining strategy is not only related to feature dimensions but to also the 

diameter of the tool. In this case, even when the volume of the feature is the same (e.g. 

step, slot and prismatic hole), different types of feature have different toolpaths and 

hence the toolpath volume, V୫. Material removal volumes of PTS are shown as the 

following equations. 

For Step feature: 

்ܸௌ ൌ ܮ ∙ ݀ ∙ ሺܪ ܹ െ ݀ሻ																																																			ሺ6.2ሻ 

For Slot feature: 

்ܸௌ ൌ ܮ ∙ ݀ ∙ ሺ2ܪ ܹ െ 2݀ሻ																																																	ሺ6.3ሻ 

For Prismatic hole: 

்ܸௌ ൌ 2݀ ∙ ܪ ∙ ሺܮ ܹ െ 2݀ሻ																																																ሺ6.4ሻ 

For Round hole: 

்ܸௌ ൌ ܪߨ ∙ ݀ ∙ ሺ݀ு െ ݀ሻ																																																					ሺ6.5ሻ 

where, d is diameter of tool, mm. 

Based on Equation 6.2 to Equation 6.5, if both strategies use the same cutting tool and 

the same process parameters, the ratio between CTS and PTS can be represented as 

equation 6.6.  

ܳ ൌ
்ௌܧ
்ௌܧ

ൌ
௧்ௌܭ ൈ ்ܸௌ

௧்ௌܭ ൈ ்ܸௌ
																																																									ሺ6.6ሻ 

where, ܧ்ௌ  is energy consumption for energy-efficient machining, ܧ்ௌ  is energy 

consumption for conventional machining strategy, Q is the ratio between the proposed 

energy-efficient strategy and conventional strategy. When Q ൏ 1 PTS is more efficient, 

when Q  1 conventional machining is more efficient.  
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Because the work in this section follows the optimal result obtained in Chapter 4, the 

process parameters applied to compare conventional strategy and proposed toolpath 

strategy are the same. In this case, the values of cutting force coefficient Kt for two 

strategies are the same too. So equation 6.6 can be simplified as: 

ܳ ൌ ்ܸௌ

்ܸௌ
									 

In addition, according to the value of the coefficient in Table 3.5, the coefficient for 

width of cut is very close to zero. It means that even when the width of cut for two 

strategies is different, the cutting force coefficient Kt for both strategies is 

approximately equal. 

So the implementation conditions for different features can be theoretically represented 

as below: 

For Step: 

ܳ ൌ ்ܸௌ

்ܸௌ
ൌ
݀ ൈ ሺܪ ܹ െ ݀ሻ

ܪ ൈܹ
 

When Q ൏ 1, 

݀ ൈ ሺܪ ܹ െ ݀ሻ ൏ ܪ ൈܹ 

݀ ൈ ሺܹ െ ݀ሻ ൏ ܪ ൈ ሺܹ െ ݀ሻ 

So when H  ݀ and W  ݀, use energy-efficient machining, when H  d or  W  d, 

use conventional machining. 

For Slot: 

ܳ ൌ ்ܸௌ

்ܸௌ
ൌ
݀ ൈ ሺ2ܪ ܹ െ 2݀ሻ

ܪ ൈܹ
 

When Q ൏ 1, 

݀ ൈ ሺ2ܪ ܹ െ 2݀ሻ ൏ ܪ ൈܹ 

݀ ൈ ሺܹ െ 2݀ሻ ൏ ܪ ൈ ሺܹ െ 2݀ሻ 

So when H  ݀ and  W  2݀, use energy-efficient machining, when H  d or  W  2d, 

use conventional machining 
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For Prismatic hole: 

ܳ ൌ ்ܸௌ

்ܸௌ
ൌ
2݀ ൈ ሺܮ ܹ െ 2݀ሻ

ܮ ൈܹ
 

When Q ൏ 1, 

2݀ ൈ ܮ  2݀ ൈ ሺܹ െ 2݀ሻ ൏ ܮ ൈܹ 

2݀ ൈ ሺܹ െ 2݀ሻ ൏ ܮ ൈ ሺܹ െ 2݀ሻ 

So when D  2݀  and W  2݀, use energy-efficient machining, when D  2d or  W 

2d, use conventional machining. 

For Round hole: 

ܳ ൌ ்ܸௌ

்ܸௌ
ൌ
4݀ ൈ ሺ݀ு െ ݀ሻ

݀ு
ଶ  

When Q ൏ 1, 

4݀ ൈ ݀ு െ 4dଶ ൏ ݀ு
ଶ  

݀ு  2݀ 

So when ݀ு  2݀   use energy-efficient machining, when ݀ு  2d use conventional 

machining. Specific conditions for applying PTS are shown in Table 6.1.  

Table 6.1: Material Removal Volume and Applying Conditions for PTS 

 
 mV d L W H d       2 2mV d L W H d      2 2mV d H W L d      

 m HV d H d d   

,H d W d   2 , 2H d W d  , 2H d W d  2Hd d

 

6.3 Comparison of Energy Consumption for Conventional Toolpath Strategy and 

Profiling Toolpath Strategy 

According to the developed energy consumption and energy efficiency metrics, the 

comparison of energy consumption of conventional (CTS) and energy-efficient machine 

strategy (PTS) can be carried out. There are three groups of parameters, which will be 

applied for different types of feature. The first group is for step and slot, as shown in 

Table 6.2a. The length of the feature is a constant value (30mm), and the height and 
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width of the feature will change from 0 to 50mm. The second group is for prismatic 

hole, as shown in Table 6.2b. The height of the feature is a constant value (30mm), and 

the length and width of the feature will change from 0 to 50mm. The third group is for 

round hole, as shown in Table 6.2c. The height of the feature is a constant value (30mm) 

and the diameter of the hole will change from 0 to 50mm. The process parameters will 

be the same as the optimal result obtained in Chapter 4 and the workpiece material is Al 

7075-T6.  

Table 6.2a: Process Parameters for Step and Slot 

   Parameters Value  
Depth of cut 5 mm  
Width of cut 10 mm  

Tool diameter
Number of flutes

10 mm 
3 

 

Feed rate per tooth
Spindle speed

Height of feature
Length of feature
Width of feature

Materials

0.06  mm/z 
4000 rpm 
0-50 mm 
30 mm 
0-50 mm 
Aluminium 7075-T6

 

Table 6.2b: Process Parameters for Prismatic Hole 

   Parameters Value  
Depth of cut 5 mm  
Width of cut 10 mm  

Tool diameter
Number of flutes

10 mm 
3 

 

Feed rate per tooth
Spindle speed

Height of feature
Length of feature
Width of feature

Materials

0.06  mm/z 
4000 rpm 
30 mm 
0-50 mm 
0-50 mm 
Aluminium 7075-T6

 

Table 6.2c: Process Parameters for Round Hole 

   Parameters Value  
Depth of cut 5mm  
Width of cut 10mm  

Tool diameter
Number of flutes

10mm 
3 

 

Feed rate
Spindle speed

Height of feature
Diameter of feature

Materials

0.06 mm/z 
4000 rpm 
30 mm 
10-50 mm 
Aluminium 7075-T6
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The comparison result will be shown in graphical form in two steps. The first step will 

compare the energy consumptions of CTS and PTS for achieving different dimensions 

of features. The result will be used to determine which strategy is more energy efficient. 

The comparison in this step will use the following equation. 

ܦܥܧ																														 ൌ ்ௌܧ െ  ሺ6.7ሻ																																																									்ௌܧ

where, ECD is the energy consumption difference between CTS and PTS. If ECD  0, 

using PTS is more energy efficient. If  ECD ൏ 0, using CTS is more energy efficient. If 

ECD ൌ 0, the energy consumption of both strategies are the same. 

6.3.1 Energy Consumption for Step 

Figure 6.5 shows the contour plot of energy consumption difference between 

implementing CTS and PTS for different dimensions of step features. The X and Y axes 

represent the ratio between the width/height of the feature and diameter of the cutting 

tool. The red shadow area shows the result when ECD ൏ 0. The dashed lines (W/d = 1, 

H/d = 1) represent the judging criteria that when the width and height of the feature is 

greater than the diameter of the tool (W/d >1 and H/d > 1), PTS is more energy efficient 

than CTS. Otherwise, CTS is more energy efficient. However, according to the process 

parameters applied, the red shadow area is not feasible if the width and the height of 

feature is smaller than the diameter of the tool (W/d <1 or H/d <1). It means PTS is not 

suitable under such conditions. 

Figure 6.6a and 6.6b show the comparison of impact of feature type for implementing 

CTS and PTS. Shadow areas in Figure 6.6a and 6.6b represent three different feature 

shapes which have the same area. The blue shadow areas show the situation when width 

or height of feature is equal to diameter of the tool. It means the machining operation is 

the same as slotting. The green shadow area shows the case where the width and the 

height of feature are equal to each other which means the shape of the shadow area is a 

square.  
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Figure 6.5 Energy Comparison of CTS and PTS for Step Feature 

From Figure 6.6a, it can be found that the energy consumption for three shapes are the 

same (on the same contour). It means when implementing CTS, if the volume of the 

step features are the same, the energy consumption for achieving the same volume of 

the features is same. However, for implementing PTS (in Figure 6.6b), the energy 

consumption for the square is smaller than the rectangle. This is because the material 

removal volume for the square area is smaller than rectangle area. The red shadow area 

in Figure 6.6b shows the differences of material removal volume between the square 

shape and the rectangle shape. The conclusion of findings is that when the cross section 

area of the features are the same, the closer to 1 for the ratio of the width and the height 

of the feature (W/H), the less energy will be consumed by using proposed toolpath 

strategy. 
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Figure 6.6a Energy Comparison of CTS for Different Step Features  

 

 Figure 6.6b Energy Comparison of PTS for Different Step Features 
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6.3.2 Energy Consumption for Slot 

Figure 6.7 shows the contour plot of energy consumption difference between 

implementing CTS and PTS for different dimensions of the slot feature. The X and Y 

axes also represent the ratio between the width/height of the feature and the diameter of 

the cutting tool. The red shadow area shows the result when ECD ൏ 0. The dashed lines 

(W/d = 2, H/d = 1) represent the break-even curves which show that when the width of 

the feature is twice greater than the diameter of the tool, and the height of the feature is 

greater than the diameter of the tool (W/d >2 and H/d > 1), PTS is more energy efficient 

than CTS. Otherwise, CTS is more energy efficient. However, according to the process 

parameters applied, the red shadow area is not feasible if W/d <2 or H/d <1) which 

means PTS is not suitable under such conditions. 

 

 

Figure 6.7 Energy Comparison of CTS and PTS for Slot Feature 

Figure 6.8a and 6.8b show the comparison of impact of feature type for implementing 

CTS and PTS. Shadow areas in Figure 6.8a and 6.8b represent three different feature 

shapes which have the same area. The blue shadow area shows the case where the width 

of the feature is equal to twice the diameter of the tool. The green shadow area shows 
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the case where the width and height of the feature is equal to each other. The purple area 

shows the case where the height of the feature is smaller than the width of the feature.  

From Figure 6.8a, it can be found that the energy consumption for three shapes are the 

same. It means when implementing CTS, if the volume of the slot features are the same, 

the energy consumption for achieving the same volume of the features is the same too. 

However, for implementing PTS (in Figure 6.8b), the energy consumption is decreasing 

with the increase in width of feature. It is because the material removal volume for 

using PTS is reducing with the increase in width of the feature. The conclusion of this 

finding is that when the feature volume is constant, the greater the width of the feature, 

the less energy will be consumed by using PTS. 

 
Figure 6.8a Energy Comparison of CTS for Different Slot Features  
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Figure 6.8b Energy Comparison of PTS for Different Slot Features 

6.3.3 Energy Consumption for Prismatic Hole 

Figure 6.9 shows the contour plot of energy consumption difference between 

implementing CTS and PTS for different dimensions of prismatic hole. The X and Y 

axes represent the ratio between the width/length of the feature and the diameter of the 

cutting tool. The red shadow area shows the result when ECD ൏ 0. The dashed lines 

(W/d = 2, L/d = 2) represent the judging criteria that when the width and height of the 

feature is greater than twice the diameter of tool (W/d >2 and L/d > 2), PTS is more 

energy efficient than CTS. Otherwise, CTS is more energy efficient. However, 

according to the process parameters applied, the red shadow area is not feasible if the 

width and height of the feature is smaller than twice the diameter of tool (W/d <2 or L/d 

<2). It means PTS is not suitable under such conditions. 
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Figure 6.9 Energy Comparison of CTS and PTS for Prismatic Hole 

The result of the comparison for different shapes of prismatic hole is almost the same as 

the result for the step feature. From Figure 6.10a, it can be found that the energy 

consumption for three shapes are the same. It means when implementing CTS, if the 

volumes of the prismatic holes are same, the energy consumption for achieving the 

same volume of the features is the same too. 

However, for implementing PTS (in Figure 6.10b), the energy consumption for the 

square is smaller than the rectangle. This is because the material removal volume for the 

square area is smaller than for rectangle area. The conclusion of findings is that when 

the cross section area of the features are same, the closer to 1 for the ratio of width and 

length of feature (L/H), the less energy will be consumed by using PTS. 



` 

163 
 

 

 

Figure 6.10a Energy Comparison of CTS for Different Shapes of Prismatic Hole  

 

Figure 6.10b Energy Comparison of PTS for Different Shapes of Prismatic Hole 
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6.3.4 Energy Consumption for Round Hole 

Figure 6.11 shows the plot of energy consumption difference between implementing 

CTS and PTS for different dimensions of round hole. The X axis represents the 

diameter of the hole and the Y axis represents the difference in energy consumption 

between CTS and PTS. The result from Figure 6.11 and Figure 6.12 shows the break-

even point occurred on the energy comparison curve when the diameter of the feature 

was equal to twice of diameter of tool (dH = 2d). When the height of the feature is 

constant and the diameter of the feature is greater than twice the diameter of tool (dH > 

2d), PTS is more energy efficient than CTS. Otherwise, CTS is more energy efficient.  

The red shadow area shows that it is not feasible when the diameter of the feature is 

smaller than twice the diameter of the cutting tool (dH < 2d). It means implementing the 

proposed profiling tool path strategy is always more energy efficient than conventional 

toolpath strategy. The larger the feature, the more energy can be saved. 

 
 

 
Figure 6.11 Energy Comparison of CTS and PTS for Round Hole 
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Figure 6.12 Energy Comparison of CTS for Different Shapes of Round Hole 

6.3.5 Summary of Energy Comparison Result 

The results of energy consumption for both strategies are shown as Figure 6.5 to 6.12. 

According to the energy consumption comparison curves of these four features, the 

following conclusions can be drawn: 

 For the features of step, slot and prismatic hole, the judging criteria of the CTS 

and PTS can be identified in energy consumption curves. It means that when the 

dimensions of the feature are greater than the judging criteria, PTS is feasible 

and more energy efficient than CTS. Otherwise, when the dimensions of the 

feature are smaller than the judging criteria, PTS is not feasible to be 

implemented.  

 For round hole, the results showed that when the diameter of the hole is greater 

than twice of diameter of the cutting tool, PTS is energy efficient than CTS. The 

larger the feature is, the more energy efficient it is to implement PTS. Otherwise, 

PTS is not feasible to be implemented. 
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In addition, energy consumption for implementing PTS is also affected by the shape of 

the feature. The following observation can be identified: 

 For features of step and prismatic hole, the energy consumption for the square is 

smaller than for the rectangle when the cross section area is constant. When the 

cross section area of the features are same, the closer to 1 for the ratio of the 

width and length of the feature (L/H), the less energy will be consumed by using 

PTS.  

 For features of the slot feature, the energy consumption is decreasing with the 

increase in the width of the feature when the cross section area is constant. 

When the feature volume is constant, the greater the width of the feature, the 

less energy will be consumed by using PTS.  

 For features of round hole, the larger the diameter of the feature, the more 

energy can be saved. 

The results in development of new energy-efficient machining strategy showed the 

energy consumption of machining can be possibly reduced on the basis of optimal 

process parameters. It can further reduce the gap between theoretical minimal energy 

consumption and practical energy consumption. 

6.4 Comparison of Cost and Energy Efficiency for Implementing CTS and PTS 

According to the comparison of energy consumption in the previous section 6.3, the 

comparison of cost and energy efficiency of CTS and PTS has been discussed in this 

section. 

6.4.1 Comparison of Cost between CTS and PTS 

The cost of implementing CTS and PTS for step and slot feature is shown in Figures 

6.13a to 6.13c, for prismatic hole in Figures 6.14a to 6.14b and for round hole in Figure 

6.14. From the figures of comparison of cost for implementing CTS and PTS, it can be 

found that the cost has the same variation trend as energy consumption for all four 

features. It means when the PTS is more energy efficient than CTS, it is also more cost 

effective. This finding further confirms the conclusion in section 4.1.3 that energy 

consumption and cost are not conflicting with each other (not only for optimal process 

parameters but also for energy-efficient strategy). 



` 

167 
 

 
Figure 6.13a Cost of Implementing CTS for Step and Slot Feature  

 
Figure 6.13b Cost of Implementing PTS for Step Feature 
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Figure 6.13c Cost of Implementing PTS for Slot Feature 

 

Figure 6.14a Cost of Implementing CTS for Prismatic Hole  
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Figure 6.14b Cost of Implementing PTS for Prismatic Hole Feature 

 
Figure 6.15 Cost of Implementing CTS and PTS for Round Hole Feature 
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6.4.2 Comparison of Energy Efficiency for Implementing CTS and PTS 

Based on the new energy efficiency metrics proposed in Chapter 3, the energy 

efficiency of PTS and CTS for step, slot, prismatic hole and round hole can be 

calculated, and are shown in Table 6.3. The process parameters applied in the 

calculation are based on the optimal result obtained in Chapter 5. 

Table 6.3: Energy Consumption and Energy Efficiency for Implementing CTS 

and PTS for Different Features 

  TME 
(kJ) 

TE 
(kJ) 

DE 
(kJ) 

AE 
(kJ) 

IE 
(kJ) 

ER 
(TE/DE) 

ERm 

(TME/TE) 
ERp 

(TME/DE) 

Step CTS  5.238 31.379 139.379 108 26.141 22.513% 16.693% 3.758% 
PTS 5.238 17.433 117.433 100 12.195 14.845% 30.047% 4.460% 

Slot CTS 7.857 31.379 139.379 108 23.522 22.513% 25.039% 5.637% 
PTS 7.857 24.406 128.406 104 16.549 19.001% 32.194% 6.119% 

Prismatic 
 Hole 

 
CTS 

10.476 31.379 139.379 108 20.903 22.513% 33.386% 7.516% 

PTS 10.476 27.892 133.892 106 17.416 20.832% 37.559% 7.824% 
Round 
 Hole 

CTS 9.284 31.379 139.379 108 22.095 22.513% 29.587% 6.661% 
PTS 9.284 26.123 131.109 104.986 16.839 19.925% 35.539% 7.081% 

 

Figure 6.16a and 6.16b show the energy efficiency feature for implementing CTS and 

PTS for step. From the figures, it can be found that the energy efficiency of existing 

definition (TE/DE) for implementing PTS for step feature is smaller than the result by 

using CTS (14.875% for PTS and 22.513% for CTS). However, by comparing the 

proposed energy efficiency for the machining process (TME/DE), PTS has better 

energy efficiency (4.460% for PTS and 3.758% for CTS).  

Another benefit for implementing PTS is that it can further reduce the inefficiency of 

the machining operation. By comparing the ratio between TME and TE (energy 

consumption for machining operation, TME/TE), energy efficiencies for implementing 

PTS is 30.047% which is higher than the energy efficiency of CTS 16.693%. Up to 54% 

of inefficient energy consumption can be further reduced. 

In addition, implementing PTS can further reduce the energy consumption for the 

machining operation and auxiliary function. Compared to energy consumption for 

implementing CTS, up to 16% of direct energy (44.44% of energy consumption for 

machining operation and 7.41% auxiliary energy consumption) can be reduced by using 

PTS. 
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Figure 6.16a Energy Efficiency of CTS for Step Feature 

 

Figure 6.16b Energy Efficiency of PTS for Step Feature 

Similar results can be found for the other feature types. Figures 6.17a and 6.17b show 

the energy efficiency for implementing CTS and PTS for slot feature. Although the 

energy efficiency of existing definition for implementing PTS for slot feature is smaller 

than the CTS (19.001% for PTS and 22.513% for CTS), the proposed energy efficiency 

of the machining process for PTS has better energy efficiency than CTS (6.119% for 

PTS and 5.637% for CTS). Implementing PTS can further reduce the inefficiency of the 

machining operation. The energy efficiencies of the machining process for 

implementing PTS is 32.194% which is higher than CTS 25.039%. Up to 30% of 

inefficient energy consumption can be further reduced. In addition, implementing PTS 

can further reduce the energy consumption for the machining operation and auxiliary 

function. Up to 8% of direct energy (22.22% of energy consumption for the machining 

operation and 3.70% auxiliary energy consumption) can be reduced by using PTS. 

16.693%

30.047%
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Figure 6.17a Energy Efficiency of CTS for Slot Feature 

 

Figure 6.17b Energy Efficiency of PTS for Slot Feature 

Figures 6.18a and 6.18b show the energy efficiency for implementing CTS and PTS for 

prismatic hole. Although the energy efficiency of existing definition for implementing 

PTS for prismatic hole is smaller than the CTS (20.832% for PTS and 22.513% for 

CTS), the proposed energy efficiency of the machining process for PTS has better 

energy efficiency than CTS (7.824% for PTS and 7.516% for CTS). Implementing PTS 

can further reduce the inefficiency of the machining operation. The energy efficiencies 

of the machining process for implementing PTS is 37.559% which is higher than CTS 

33.386%. Up to 17% of inefficient energy consumption can be further reduced. In 

addition, implementing PTS can further reduce the energy consumption for the 

machining operation and auxiliary function. Up to 4% of direct energy (11.11% of 

32.194%

25.039%
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energy consumption for the machining operation and 1.85% auxiliary energy 

consumption) can be reduced by using PTS. 

 

Figure 6.18a Energy Efficiency of CTS for Prismatic Hole 

 

Figure 6.18b Energy Efficiency of PTS for Prismatic Hole 

Figure 6.19a and 6.19b show the energy efficiency for implementing CTS and PTS for 

round hole. Although the energy efficiency of existing definition for implementing PTS 

for round hole is smaller than for CTS (19.925% for PTS and 22.513% for PTS), the 

proposed energy efficiency of the machining process for PTS has better energy 

efficiency than CTS (7.081% for PTS and 6.661% for CTS). Implementing PTS can 

further reduce the inefficiency of the machining operation. The energy efficiencies of 

the machining process for implementing PTS is 35.539% which is higher than CTS 

29.587%. Up to 24% of inefficient energy consumption can be further reduced. In 

addition, implementing PTS can further reduce the energy consumption for the 

machining operation and auxiliary function. Up to 6% of direct energy (16.75% of 

33.386%

37.559%
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energy consumption for the machining operation and 2.79% auxiliary energy 

consumption) can be reduced by using PTS. 

 

Figure 6.19a Energy Efficiency of CTS for Round Hole 

 

Figure 6.19b Energy Efficiency of PTS for Round Hole 

The above results of comparison of energy efficiency showed that implementing PTS 

cannot only further improve the energy efficiency and reduce the inherent inefficiency 

of the machining process, but can also reduce the energy consumption for the 

machining operations (inefficient energy consumption) and auxiliary function. The 

improvement is related to the area of the machined surface. For the same dimension of 

material removal volume, the smaller the area of the machined surface, the more energy 

efficient it is. 

29.587%

35.539 %
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6.5 Summary of the Chapter 

In this chapter, an energy efficient profiling toolpath strategy (PTS) has been proposed 

which can further reduce the energy consumption and improve the energy efficiency for 

the machining process.  

The implementation conditions of PTS for four typical features (step, slot, prismatic 

hole, and round hole) were specifically analysed. The comparison result between 

conventional toolpath strategy (CTS) and proposed profiling toolpath strategy (PTS) 

showed that: 

 For the features of step, slot and prismatic hole, break-even curves of the CTS 

and PTS occurred in energy consumption curves. When the dimensions of the 

feature are greater than the curves, PTS is feasible and more energy efficient 

than CTS. Otherwise, PTS is not feasible to be implemented.  

 For round hole, when the diameter of the hole is greater than twice the diameter 

of the cutting tool, PTS is more energy efficient than CTS. The larger the feature, 

the more energy efficient it is to implement PTS. Otherwise, PTS is not feasible 

to be implemented. 

  For step and prismatic hole, the energy consumption for the square is smaller 

than for the rectangle when the cross section area is constant. When the cross 

section areas of the features are same, the closer to 1 for the ratio of width and 

length of the feature (L/H), the less energy will be consumed by using PTS.  

 For slot feature, the energy consumption is decreasing with the increase in width 

of the feature when the cross section area is constant. When the feature volume 

is constant, the greater the width of the feature, the less energy will be consumed 

by using PTS.  

 For round hole, the larger the diameter of the hole, the more energy can be saved. 

Examples of energy efficiency for implementing PTS and CTS to machine Aluminium 

7075-T6 were produced by using the optimal process parameters obtained in Chapter 4. 

The result showed that although the energy efficiency of existing definition for 

implementing PTS is smaller than for CTS, the proposed energy efficiency of the 

machining process for PTS has better energy efficiency than CTS. In addition, 

implementing PTS can further reduce the inefficiency of the machining operation. For 

the same dimension of material removal volume, the smaller the area of the machined 

surface, the more energy efficient it is.  
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CHAPTER 7: DEVELOPMENT OF A FRAMEWORK FOR MACHINING 

OPTIMISATION WITH SUSTAINABILITY CONSIDERATIONS 

The previous chapters (Chapter 3 to Chapter 6) have developed mathematical models to 

measure the sustainability, introduce a systematic process to optimise the process 

parameters for machining operations, and proposed a new energy-efficient cutting 

strategy. However, existing research contributions of sustainability improvement are too 

difficult for decision makers to implement in practical manufacturing processes. This 

issue raises a research question that: 

"What is the best way to implement the developed sustainability improvement 

methods in practical machining operation to fulfil the requirements from different 

users?" 

To answer the above research question, a framework which integrates the research 

findings in the previous chapters has been developed in this chapter to provide a tool for 

decision makers to improve sustainability performance of their manufacturing process.  

Demonstrations of how to implement the proposed framework will also be conducted 

by dealing with practical cases.   

7.1 General Methods for Machining Performance Improvement 

The determination of product manufacturing plan usually needs to concern multiple 

objectives. In practice, decision makers may have to improve their manufacturing 

process to address the prospective challenges of sustainability performance of customer 

requirements, government/council regulations, national/international standards, and 

demands for lower energy consumption. For example, to achieve a real sustainable 

manufacturing process, it must concern the objectives from environmental, economic 

and social aspects. Unfortunately, without a good understanding of the problem, 

decision makers are not able to adjust the process parameters quickly to solve 

emergency requirements (e.g. rush order) from above drivers.  

From a practical standpoint, the optimisation task is defined as follows: given a system 

or process, find the best solution to this process within constraints. This task requires 

the following elements: 
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 An objective function is needed that provides a scalar quantitative performance 

measure that needs to be minimised or maximised (e.g. system’s cost, product 

quality). 

 A predictive model is required that describes the behaviour of the system. For 

the optimisation problem, this translates into a set of equations and inequalities 

constraints. These constraints comprise a feasible region that defines limits of 

performance for the system. 

 Variables that appear in the predictive model must be adjusted to satisfy the 

constraints. This can usually be accomplished with multiple instances of variable 

values, leading to a feasible region that is determined by a subspace of these 

variables. In many engineering problems, this subspace can be characterised by 

a set of decision variables that can be interpreted as degrees of freedom in the 

process. 

The existing methods of selecting optimal process parameters are not transparent and 

difficult to be implemented. These frameworks have lots of embedded information and 

require very good knowledge in mathematical modelling and optimisation. It takes a 

long time to understand what the problem is even for academic researchers. So it is not 

easy for practical decision makers to understand and use. In addition, the structures of 

these frameworks are usually very general which only concerns major elements/activity. 

The details of each element are not clearly identified. It is difficult to directly implement 

these frameworks to solve a specific machining optimisation problem. Finally, these 

frameworks are not developed for sustainability improvement purpose. 

The framework proposed in this chapter is aiming to provide a comprehensive, step-by-

step method to help users from different levels (practitioners, process planning 

engineers, degree students, and academic researchers) to scientifically and confidently 

select the optimal results with sustainability consideration.   

7.2 General Methods of Machining Optimisation 

The method of selecting optimal process parameters is designed based on the four steps 

introduced in section 7.1. Each step will have several functional elements to answer the 

corresponding questions from the user. Table 7.1 showed the name of the element and 

what questions it will answer. The process of how the elements function and connect is 

shown in Figure 7.1.  
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Step 1: Problem Defining 

Element 1: Problem Domain 

Based on the requirements, the nature of the problem will be defined by determining 

what variables need to be considered for the problem, classifying what type the problem 

is (such as is it single or multiple objective? If it is a multi-objective case, are the 

objectives conflicting or not conflicting with each other?) 

Element 2: Criteria Definition 

Determine what criteria need to be optimised (e.g. energy, cost, time and quality). The 

criteria determination process is actually to determine the objectives of optimisation.  

Step 2: Problem Formulation 

Element 3: Mathematical Model 

Determine what variables should be considered in the optimisation. Which variables are 

input parameters (independent variables) and which ones are objectives and constraints 

(dependent variables). The objective functions should be represented in terms of input 

parameters. 

Element 4: Define Constraints 

Determine what constraints should be considered to refine the search space. 

Step 3: Problem Solution 

Element 5: Problem Scenarios 

The concept of Problem Scenarios is one of the main contributions of Chapter 5. The 

function of the test rig is to build a solution set. The solutions in Test Rig are 

corresponding with the problems in Problem domain. Each solution can link to a unique 

problem in the problem domain. The solutions in Test Rig will be divided into different 

scenarios based on the characteristics of objectives. 

Element 6: Solution Scenarios 

The optimal result can be achieved from Solution Scenarios. For single objective or 

non-conflicting multi-objective optimisation the optimal result will be a unique solution. 



` 

179 
 

For conflicting multi-objective optimisation the optimal result will be an optimal 

solution set. 

Step 4: Problem Evaluation 

Element 7: Satisfaction Detection  

Evaluate the corresponding result or solution set with the decision makers to determine 

whether or not the optimal result or solution set is accurate or sufficient. Usually for 

single-objective optimisation and non-conflicting multi-objective optimisation, the 

optimal result is unique. So they can directly go to the next element. However, for 

conflicting multi-objective optimisation cases the optimal result is a solution set which 

has all the feasible results. Unsatisfactory problems here are usually caused by the large 

number of feasible results. Decision makers should return to Step 2 to refine the 

problem with more specific requirements. 

Element 8: Proposed Result  

If the problem is a single-objective or non-conflicting multi-objective optimisation, the 

unique optimal result will be the proposed result. Otherwise for multi-objective 

optimisation the proposed result/results will be selected based on users’ preferences. 

Element 9: Result Validation 

This process is to validate the result in practice or based on users’ experiences. The 

process is very similar as Element 7. If the proposed result can pass validation, then it 

can be applied in practice. If the proposed result fails, it means mathematical models 

applied in step 2 are not correct. It requires the users to return to step 2 to make the 

correction of objective functions and constraints. 
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Figure 7.1 General Methods for Machining Optimisation 
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Table 7.1 Element of General Optimisation Method and the Corresponding 

Questions  

Step Name of the Element Questions 
Problem 
Defining 

Problem Domain What type the problem is? 
Criteria Definition What is the objective of optimisation?  

Problems 
Formulation 

Mathematical Model What variables are involved in the 
problem? 
How can the objectives be represented? 
What are the dominated variables to 
influence the objective?   

Define Constraints What are the technical limitations of the 
operation? 
What are the users’ requirements?  

Optimal result 
determination 

Problem Scenarios What are the corresponding results to the 
problems? 

Solution Scenarios How can we select the optimal process 
parameters?  

Result 
Evaluation 

Satisfaction Detection Is the solution or solution set good 
enough? 

Proposed Result What are the final optimal results? 
Result Validation Is the optimal result valid? 

 

7.3 Development of Framework for Sustainability Improvement  

To address the issue of general machining optimisation framework, a sustainability 

improvement framework has been proposed in this section which can provide a 

systematic tool for decision makers to improve sustainability performance of their 

manufacturing process. The proposed framework is developed based on the research 

results achieved in the previous chapters and presented in Figure 7.2.  

The structure of the proposed framework can be mainly divided into three parts: 

sustainability performance measures module, improvement of sustainability 

performance by optimising parameters of existing manufacturing process module and 

improvement of sustainability performance by implementing energy-efficient 

machining strategies module, which corresponds to the issues identified of energy-

efficient manufacturing in chapter one. The following sub-sections will explain the 

functions of the elements for each module. 
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7.3.1 Module of Sustainability Performance Measures 

There are two functional elements in this module (see Figure 7.3), which are: 

 Energy audit/prediction 

 Energy efficiency measures 

 

Figure 7.3 Module of Sustainability Performance Measures 

The main function of energy audit/prediction is to provide a method for users to 

measure the energy consumption of their machining processes. For different users, 

multiple types of models can be selected based on their knowledge level. 

 Qualitative model. The models in this type are the experiences or qualitative 

feelings of practitioners. In practice, practitioners may not be able to 

quantitatively measure the machining performance. However, they can improve 

the performance by increasing or decreasing process parameters based on their 

feelings or experiences. For example, the increase of feed rate can minimise 

machining time but reduce tool life. 

 Equations. The models in this type are equations which are mathematically 

represented by process parameters and can be implemented to quantitatively 

predict the machining performance. The accuracy of this type of model is related 

to the complexity of equations. The more complex the model, the more accurate 

it will be. However, high accuracy will also cause the difficulty of verification. 

Typical models in this type are listed as below:  
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 Textbook equations (e.g. constant cutting force coefficient/specific energy 

consumption).  

 Simple linear equations (e.g. material removal rate models proposed by 

Kara, 2011). 

 Empirical equations (e.g. the model proposed in Chapter 4). 

 Comprehensive predictive model (models consider more independent 

variables).  

 Finite element model 

 Experiment/Machining data. The models in this type are the raw data 

collected/captured during the machining process. The data can be represented 

into different forms, such as curves, points and tables.  

The function of energy efficiency measures at the unit process level is to provide a 

method to evaluate and represent the efficiency of energy consumption during the 

machining process. There are two types of energy efficiency metrics (introduced in 

Chapter 3). 

 Energy efficiency for the machining operation. 

 Energy efficiency for manufacturing process. 

7.3.2 Module of Sustainability Performance Improvement by Optimising 

Parameters of Existing Manufacturing Process 

There are five functional elements in this module (see Figure 7.4), which are: 

 Input design variables 

 Select optimisation objectives 

 Select optimisation constraints 

 Select optimisation methods 

 Optimal results representing 

The main function of design variables is to determine and input the process parameters 

based on the selected prediction model. There are two types of process parameters: 

 Parameters from machining process, including: depth of cut, width of cut, feed 

rate and spindle speed. 

 Parameters from cutting tool, including: diameter of cutter and number of 

cutting flutes. 
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Figure 7.4 Module of Optimisation of Existing Manufacturing Process 
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The main function of selecting optimisation constraints is to define what problem is 

going to be solved. The following three steps need to be addressed in this module: 

 Determine the type of optimisation problem: Is it a single-objective or multi-

objective problem? 

 Determine the optimal objective or objectives. The typical objectives include: 

energy, cost, time, surface roughness, power, tool life and cutting force. 

 Determine action of optimisation: minimisation or maximisation. 

The main function of selecting optimisation constraints is to refine cutting conditions 

thus reduce search pace. Optimisation constraints can be selected from the following 

categories: 

 Boundary/side constraints of process parameters. This type of constraint can be 

selected from:  

 Machine tool capability, e.g. as spindle speed. 

 Cutting tool geometry, e.g. number of cutting flutes and diameter of tool. 

 Machining process, e.g. depth of cut and width of cut. 

 Behaviour constraints of dependent variables. This type of constraint can be 

selected from:  

 Machine tool capability, e.g. as maximal power allowance. 

 Cutting tool capability, e.g. maximal cutting force allowance. 

 Behaviour constraints from decision makers' preference, e.g. maximal surface 

roughness, minimal tool life.  

The main function of selecting optimisation method is to select an optimisation method 

to conduct the optimisation procedure. As reported in Chapter 4, the optimal results 

achieved by using different methods are almost same or showing the same character of 

the problem. So the decision makers can select any method according to their 

knowledge and preferences. 

The main function of optimisation result representation is to select the best method to 

represent the optimal results for decision makers to evaluate their current machining 

plan, and guide them to achieve the optimal results. For different requirements and 

purpose, the achieved optimal results can be represented as the following types:  
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 Tables. Tables are suitable for practitioners to quickly evaluate and select 

optimal values during practical machining work. Typically, tables should show 

the following results:  

 Values (for single objective). 

 Feasible value ranges. 

 Multiple values/value range (suitable for multiple objectives scenario). 

 Charts. Charts can help decision makers to visualise the characteristics of 

optimal objective/objectives and determine the optimal results. The typical 

charts include:  

 Curve. It is suitable for the situation that only one design variable (process 

parameters) needs to be considered. 

 Contour plot. It is best for the situation that two design variables need to 

be considered. 

 Plot matrix. It is suitable for the situation that multiple design variables 

need to be considered. 

 Pareto plot. It is suitable for multi-objectives optimisation situation. 

 Excel data. Excel data are similar to tables. But it is suitable for representing 

large amount of data.  

 Optimal value. It is suitable for the situation that decision makers prefer a single 

direct optimal result. 

7.3.3 Module of Sustainability Performance Improvement by Implementing 

Energy-efficient Machining Strategies 

There are four functional elements in this module (see Figure 7.5), which are related to 

the corresponding energy-efficient cutting strategies. The specific types of these energy-

efficient strategies are listed as below: 

 Workpiece 

 Cutting Tools 

 Toolpath 

 Cutting fluid and lubricant 

The function of this module is just to introduce some energy-efficient technologies 

published in existing research contributions. Each functional element in this module is 

independent of each other. Decision makers can select any energy-efficient strategies or 
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continue using the conventional strategy based on their preferences and practical 

manufacturing situations. In addition, in some circumstances multiple strategies can be 

also applied at the same time. 

 

Figure 7.5 Module of Re-engineering Existing Manufacturing Process 

Strategies of workpiece shape are mainly focussed on chipless strategies, including: 

new rapid prototyping strategy and net shape manufacturing. 

Strategies of cutting tool capability can be divided into two categories: 

 Energy-efficient machine tool. This type of strategy is to use energy-efficient 

components to replace conventional component on machine tools. The current 

possible solutions include energy-efficient motor, energy-efficient spindle and 

energy-efficient workpiece handling system. 
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 Energy-efficient cutting tool. This type of strategy is to use energy-efficient 

cutting tools.  Current possible solutions include new design of cutter (shape, 

material and coating) and cutter holder. 

Strategies of toolpath also have two categories: 

 Energy-efficient toolpath type. This type of strategies is to select energy-

efficient toolpath type based on the shape of workpiece, dimensions of feature 

and cutting tools and type of machining operation. 

 Reduction of redundant movement. This type of strategies is to reduce 

unnecessary and non-value-added movement. It can be achieved by redesigning 

the toolpath and reducing the offset. 

Strategies of cutting fluid and lubrication can be also divided into two categories: 

 Environmentally benign coolant. This type of strategy is to use the 

environmentally friendly coolant method to replace conventional cutting fluid, 

such as new type of lubricants and compress air. 

 Reduction of the usage of cutting fluid.  This type of strategies is to reduce the 

usage of cutting fluid by implementing new coolant strategies, such as  

Minimum Quantity Lubrication (MQL), dry machining and Cryogenic 

machining, 

7.4 Implementation of the Framework 

The proposed framework can be used on its own as an independent methodology in 

different formats. Also it can be implemented as part of existing processes in industry. 

The following sections will introduce the implementation of the proposed framework. 

7.4.1 Computer Implementation of the Framework 

The framework has been implemented in MATLAB GUI and Microsoft Excel. This 

type of implementation does not require decision makers to have solid knowledge in 

machining or machining optimisation. 

The user interface (UI) of the MATLAB implementation is shown in Figure 7.6. 

Decision makers can input the process parameters (value or range) according to their 

requirements. Contour plots of selected objectives can be graphically displayed at plot 
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area. Then the optimal plan can be selected by using existing optimisation methods 

based on decision makers' preference. 

 

Figure 7.6 User Interface of MATLAB Implementation  

Figure 7.7(a) shows an implementation by using Microsoft Excel spreadsheet. Decision 

makers can manually input the process parameters according to their manufacturing 

process. Then the corresponding values of each objective and constraint will be 

automatically generated. The constraints value can be set based on the requirements to 

reduce search space and displayed in different colours (e.g. use red region to represent 

non-feasible results, green region to represent feasible results, yellow region to 

represent target objective), and the optimal plan can be selected within the refined range. 

The Excel spreadsheet can be also implemented as separated tables for practitioners to 

use as shown in Figure 7.7(b) (more tabular charts are shown in Appendix III). 

 

Figure 7.7a Excel Spreadsheet Implementation of Proposed Framework 
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500 39.01631 22.12691 16.43118 13.55406 11.81146 10.63938 9.795096 9.156737 8.656352 8.253012 

1000 23.80092 14.39107 11.19739 9.575239 8.587814 7.920581 7.437849 7.071351 6.782934 6.549579 

1500 18.66318 11.75539 9.400355 8.199582 7.466129 6.968936 6.608158 6.333487 6.116764 5.940976 

2000 16.06507 10.41224 8.478584 7.489853 6.884381 6.472988 6.173825 5.945602 5.765185 5.618583 

2500 14.48987 9.592219 7.912531 7.051782 6.523655 6.164177 5.902339 5.702284 5.543908 5.415042 

3000 13.4294 9.036587 7.526939 6.75199 6.275778 5.951187 5.714456 5.533369 5.38985 5.27295 

3500 12.66482 8.63357 7.245877 6.532542 6.093655 5.794171 5.575529 5.40812 5.275325 5.167069 

4000 12.08625 8.326859 7.030992 6.364105 5.953386 5.672871 5.467907 5.310851 5.186179 5.084477 

4500 11.63237 8.084943 6.86077 6.23019 5.841511 5.575853 5.381612 5.23268 5.114387 5.017836 

5000 11.26623 7.888788 6.722182 6.120788 5.749845 5.496152 5.310556 5.168178 5.055036 4.962648 

n/fz 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

Figure 7.7b Tabular Chart Obtained from Excel Spreadsheet: Specific Energy 

Consumption (kJ/cc) for Constraints of Cutting Force (Ft ≤ 400N), Cutting Speed 

(75m/min ≤ Vc ≤ 120m/min) and Surface Roughness (Ra ≤ 12.5μm) 

7.4.2 Implementation of the Framework in CAD/CAM/CAPP Software 

The research contributions in this thesis can also be implemented in CAD/CAM/CAPP 

software tools. For CAD/CAM/CAPP implementation: 

 The proposed methodology in energy consumption and energy efficiency 

measures can be integrated into existing CAD/CAM/CAPP software tools as a 

function module to calculate the energy consumption and energy efficiency for 

exiting machining process based on the input process parameters and selected 

toolpath strategy. 

 The proposed methodology in machining optimisation can be integrated into 

existing CAD/CAM/CAPP software tools as a function module to optimise the 

existing machining process parameters, uncover the potential improvements and 

suggest the improvement methods/directions. 

 The proposed methodology in developing new energy-efficient strategies can be 

integrated into existing CAD/CAM/CAPP software tools as a function module 

to compare the energy consumptions and energy efficiencies for all the available 

machining plans such as coolant type and toolpath generations. 

 The developed algorithm can be embedded into exiting program for calculating 

machining performance. The analysis can be presented in different forms such 

as figures, tables or list of recommended process parameters based on the 

selected criteria/criterions (e.g. energy minimisation). 
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7.4.3 Implementation of the Framework for Existing Process Improvement 

Methods 

The proposed framework can also be implemented in some functional elements of 

existing international standard and process improvement methods. 

For PDCA cycle (proposed in ISO 9001/140001/50001) 

 Plan: the proposed energy efficiency definition can be used to review the energy 

performance and develop the new regulation/policy/standard. 

 Do: the analysis of energy performance/efficiency can increase the awareness of 

energy issues in the industry. In addition, the proposed framework itself can be 

used to train/educate new practitioners/manufacturing process 

planners/engineering students. 

 Check: the proposed measurement and optimisation methods can be used to 

monitor the energy performance, analyse the factors which will affect the energy 

consumption and audit the energy consumption for machining operation.   

 Act: the proposed improvement method can be used to review the existing 

manufacturing process by identifying the potential savings and suggest the 

improvement directions. 

For five phases of six sigma tool DMAIC (Define, Measure, Analyse, Improve and 

Control) or DMADV (Define, Measure, Analyse, Design and Verify):  

 Define: general introduction of the proposed framework will clearly state and 

specify the problem, and identify the solution process. 

 Measure: proposed energy performance measures methods can decide what 

parameters/objectives need to be considered, what is the best way to measure the 

objectives, what data need to be collected and how to carry out the 

measurements (physical and numerical experiments). 

 Analyse: the introduced characterisation process can identify objective 

performance (energy, cost, time, etc.) and determine how process parameters 

affect objectives. 

 Improve/design: proposed optimisation method and energy-efficient strategies 

can be used to reduce the energy consumption of existing manufacturing process 

or develop a new energy-efficient process. 
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 Control/verify: the proposed framework can be used as a tool to 

control/assess/guide the manufacturing process.  

7.4.4 Examples for Demonstrating the Framework 

In this section, a test part has been presented to demonstrate the framework proposed 

(see Figures 7.8). Energy consumptions for each feature can be firstly calculated by 

using the tools (MATLAB or Excel file) introduced in section 7.4.1. The detailed 

features of the test component, process parameters and energy consumptions are shown 

in Tables 7.2. 

 

Figure 7.8 Test Component  

Table 7.2 Features, Process Parameters and Energy Consumption of Test 

Component 

Feature Material 
removal 

mm3 

Cutting 
tool 

Spindle 
speed 
rpm 

Feed rate 
mm/tooth 

ae 
mm 

ap 
mm

 

Energy 
kJ 

TME 
kJ 

ER 

Step: length 
100mm, 

width 20mm, 
depth 20mm 

128,000 16mm 
end mill 
3 flutes 

2,000 0.02 8 1 4565.35 1.086 0.024% 

Round holes: 
4×ϕ10mm, 
depth 20m 

6,283.2 10mm 
end mill 
2 flutes 

1,000 0.03 10 1 385.264 0.274 0.071% 

Total Energy 
Consumption 

      4,950.614 1.36 0.027% 
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Then the improved results will be carried out by optimising process parameters based 

on the methods introduced in Chapter 4. The specific optimisation 

conditions/constraints are:  

 Feed rate per tooth: 0.01-0.1 mm/tooth 

 Maximum spindle speed 4,000rpm 

 Cutting speed no more than 400m/min 

 Cutting force no more than 400N 

The optimal process parameters and energy consumption are shown in Table 7.3. 

Table 7.3 Optimal Process Parameters and Energy Consumption of Test 

Component 

Optimal 
Results  

Spindle 
speed 
rpm 

Feed rate 
mm/tooth

ae 
mm

ap 
mm

 

Optimal
Energy 

kJ 

Original
Energy 

kJ 

Energy 
Reduction 

New 
ER 

Step 4,000 0.1 10 5 281.661 4,565.35 93.830% 0.385%
Holes ϕ10 4,000 0.1 10 2.5 108.725 385.264 71.779% 0.252%

Total 
energy  

    390.386 4,950.614 92.114% 0.348%

The result shows that up to 93.830% and 71.779% of reduction in energy for machining 

step feature and ϕ10 holes, and 92.114% of reduction in total energy consumption can 

be achieved by implementing optimal process parameters. The energy efficiency can be 

improved from 0.027% to 0.348%. 

Further reduction in energy consumption can be achieved by implementing energy-

efficient cutting strategies. The comparison between conventional toolpath strategy 

(CTS) and proposed energy-efficient toolpath strategy (PTS) has been shown in Table 

7.4 for machining a step feature. The result shows that 15.955% of further reduction in 

energy consumption can be achieved by implementing PTS. The energy efficiency can 

be improved from 0.385% to 0.459%. 

Table 7.4 Energy Reduction by using Energy-efficient Cutting Strategy 

Strategy Feature Material 
removal 

mm3 

Energy 
kJ 

TME 
kJ 

ER 
(TME/E) 

CTS Step: length 100mm, 
width 20mm, depth 

20mm 

128,000 281.661 1.086 0.385% 

PTS 121,856 236.720 0.459% 

Energy reduction   15.955%   
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In conclusion, the examples shown in this section explained how to implement the 

proposed framework. Decision makers or shop floor practitioners can easily get the 

optimal/energy-efficient solutions for real components even without a good knowledge 

in machining or optimisation. The improved machining process can be achieved by 

following the step below which is suggested in the proposed framework: 

 Define/measure/predict the performance of machining process.  

 Improve the performance measure through optimisation of process parameters. 

 Further improvement by using new processes/operations/technologies. 

However, according to the theoretical limits of machine tool capabilities, characteristics 

of materials and dimension of features, the improvement for different 

features/operations/materials will be different. These issues will bring new challenges 

for the implementation of the proposed framework and need to be further investigated in 

the future. 

7.5 Summary and Discussion 

In this chapter, a systematic framework for improving sustainability performance of 

machining process has been proposed. The idea of such framework can be simply 

modified by the users based on the understanding of the problem from previous sections. 

The function of the developed framework is to enable people to set up the measures of 

machining performance, and improve the performance by optimising process 

parameters and implementing energy-efficient cutting strategies.  

The elements of the framework were determined in section 7.3 according to the research 

output in Chapter 3 to Chapter 6. The proposed framework can be used on its own as an 

independent methodology in different formats to fulfil different requirement based on 

the users' skills and habits such as checklist, manual, guideline and possible computer 

implementation. Also it can be implemented as part of existing processes in industry, 

such as PCDA cycle and six sigma.  

The results of the framework can be applied in a number of examples as listed below: 

 Applying the framework to academic education or professional training. The 

developed scenarios can be applied to determine what parameters should be used 

for machining and what problems should be solved. It can be achieved by 

studying a machining/manufacturing course for undergraduate students and 

practical apprentices. This is not only a sustainable application/improvements, it 
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also has a social impact of educating next generation machining researchers, 

practitioners and process planers. 

 Applying the framework to existing workshop. The benefits can influence many 

different fields. For example: for the suppliers to make quick decisions when 

urgent orders come, for apprentices to learn how to choose process parameters, 

for tool manufacturers to design the tool handbook, for process programmers to 

decide optimal NC code,  for practitioners to improve the performance by 

developing manuals/application tables. 

 Applying the framework to industrial manufacturing. Even if for proprietary 

reasons, parts details cannot be shared, simple information (e.g. the volume 

removed, material, the parameters used currently) can be used to determine more 

optimum parameters or rather present a search space for the practitioners to 

select from. However, the search space is not unstructured. It looks like a road 

network that they can personally choose from with their decisions. It is also 

possible to use the results as a push button at the machine level if the machine 

tool operators can understand how to achieve the optimal results and take 

responsibility for their decisions.  

Finally, a test part was presented as examples to demonstrate the proposed framework. 

The process clearly showed how to systematically implement the proposed framework 

to reduce energy consumptions and improve energy efficiency via optimisation of 

process parameters and implementation of energy-efficient machining strategy. 
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CHAPTER 8: CONCLUSIONS AND FURTHER WORK 

This chapter presents the main conclusions of the PhD project and recommendations for 

future research and development. 

8.1 Conclusions of the Project 

This research presents a systematic method to measure and evaluate the energy usage 

performance and reduction in energy consumption, for the manufacturing processes at 

the unit process level and thus achieves a sustainable machining process. 

A literature review was conducted in the scoping phase relating to the environmental 

impact (energy consumption) of manufacturing operations and improvement methods in 

the machining performance. Through this review of literature and industrial practices, 

the requirements of current research contributions are identified in the following:  

 Sustainability performance measures, which can be used to effectively identify 

potential inefficiencies, recommend ways of improvement, and act as a bench-

mark against similar external operations. 

 Improvement of sustainability by optimising existing processes, which takes 

energy as an additional factor in the optimisation of machining processes and 

technologies and overcome the multiplicity of the problems in current 

optimisation methods. 

 Improvement of sustainability by developing energy-efficient processes and 

technologies that moves closer to the theoretical boundaries of energy efficiency.  

According to the above requirements, the research questions of this project can be 

defined as:  

What methods can be applied to attain a sustainable manufacturing process by 

improving the energy efficiency in the machining operation? 

This research question can be further divided into several sub-questions which 

correspond with the identified requirements of performance measures, optimisation of 

process parameters and the development of energy-efficient strategies. 

The research question of performance measures is:  
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 What method can be used to measure and evaluate the performance of energy 

consumed for the machining process? 

The research questions of machining optimisation are: 

 What methods can be used to optimise the energy consumption of machining 

operations, based on a comprehensive understanding of how energy affects 

machining optimisation as a factor in addition to the traditional factors of 

cost, time and quality? 

 Which method is the most suitable of the optimisation methods from the 

available varieties of options? 

The research question of development of energy-efficient machining strategy is: 

 What methods can be used to reduce energy consumption for existing 

machining methods by applying the energy-efficient strategies? 

To answer the research question of performance measures, a set of energy prediction 

models were developed to measure the energy usage during machining processes. New 

energy efficiency metrics have been proposed which can accurately evaluate the energy 

performance of machining operation and point out directions of improvement. The 

results show that energy consumption in machining operations can be improved by 

optimising the use of existing processes and by designing new processes and 

technologies.  

To answer the research questions of machining optimisation:  

 Characteristics of machining operations along with energy considerations were 

investigated by using graphical multivariate data analysis techniques.  

 A direct search method was used as an experimental rig to investigate the 

reasoning behind the results obtained in applying Taguchi methods, Genetic 

algorithm (GA) and Ant Colony Optimisation method (ACO), and to conduct 

the optimisation procedure. The results have shown that energy consumption 

decreases constantly as process parameters increase, and up to 75% in energy 

consumption can be reduced without conflicting with cost and time with the 

constraints of cutting force, spindle speed and surface roughness. The 

optimisation process enables practitioners to have more confidence in the 

optimal results.  
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 A scientific framework for solving machining optimisation problems has been 

proposed based on the characterisation of the machining operation. The 

proposed framework can be modified by users, based on the understanding of 

the machining optimisation problems, to solve both single-objective and multi-

objective cases. The function of the developed framework is to enable people to 

set right the machining optimisation problem, identify possible optimisation 

algorithms and achieve an optimal manufacturing process based on their 

requirements.  

To answer the research question of energy-efficient strategies: an energy-efficient 

profiling toolpath strategy was developed to improve energy efficiency for 21/2D milled 

features. It was found that further reduction in energy consumption could be achieved 

compared to conventional cutting strategies. Implementing conditions for different 

feature type and dimensions was discussed.  

Finally, a systematic optimisation framework has been proposed, which can be 

implemented as an independent methodology in different formats to fulfil differing 

requirements (e.g. computer implementation) or as part of existing process 

improvement methods in industry.  Decision makers or shop floor practitioners can 

obtain sustainable solutions for real components even without good knowledge or 

experience in machining optimisation. 

The main achievements of this research are concluded below together with their relation 

to the initial objectives; this provides the answers for the research questions: 

(1) Objective 1: To identify the gap in current research contributions by conducting a 

comprehensive literature review on the topic of energy-efficient design and 

manufacturing to investigate the current research achievements and problems.  

Corresponding achievements: 

 A comprehensive literature review of current research contributions in the field 

of sustainable manufacturing, energy efficient design and manufacturing and 

machining optimisation. The gaps of current research have been clearly 

identified. 

 Research questions formulated based on the issues identified from the literature 

review. 
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(2) Objective 2: The development of energy prediction models and energy efficient 

metrics which can be used to measure and evaluate energy consumption of machining 

process. 

Corresponding achievements: 

 A set of energy prediction models have been developed based on the accepted 

machining science to measure the energy usage during machining processes. 

Experimental verifications of developed models showed that up to 95% of 

accuracy can be achieved by using developed prediction models. 

 New energy efficiency metrics have been proposed to uncover the inherent 

inefficiency of machining process and identify the gap between theoretical 

limitation and existing machining process. 

(3) Objective 3: The characterisation of machining operation with energy considerations 

will be investigated to provide a comprehensive understanding of the machining 

operation and uncover the interaction of different variables. Corresponding 

achievements: 

 The nature of machining optimisation was investigated by introducing the basic 

concept of search space, variables, objectives and constraints. 

 The characterisation of energy consumption showed that energy consumption of 

machining operations decreases monotonically with the increase of process 

parameters.  In addition, energy is non-conflicting with the cost and time, but 

conflicting with surface roughness, power requirement, tool life and cutting 

force.  

 Based on the characteristics, the criteria of machining optimisation can be 

divided into two major categories: conflicting and non-conflicting.  

(4) Objective 4: The development of a numerical experimentation rig to investigate the 

reasoning behind the results obtained in applying typical optimisation methods. 

Optimisation procedures will be carried out to determine the optimal process parameters 

with energy considerations. 

Corresponding achievements: 

 A direct search method was used as an experimentation rig to investigate the 

reasoning behind the results obtained in applying typical optimisation methods. 
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The basic principles of Taguchi method, GA and ACO have been demonstrated 

by graphically displaying the procedures of how these optimisation methods 

operate to achieve the optimal results. 

 The optimisation was conducted for milling Aluminium 7075-T6 (by using Haas 

TM 1CE Vertical milling machine, maximum spindle speed 4,000rpm and 

10mm 3 flutes carbide end mill)and the optimisation result with the constraints 

of spindle speed (4,000 rpm), cutting force (400N) and surface roughness 

(0.05mm) showed that up to 75% of improvement of energy, cost and time can 

be achieved by using optimal process parameters (depth of cut, width of cut, 

spindle speed and feed rate) compared to cutting tool manufacturer's 

recommendation. The optimisation process enables practitioners to have more 

confidence in their results. 

 The implementation of achieved optimal process parameters for the case study 

shows that over 220% of improvement of energy efficiency (6.965% to 22.513%) 

for the process, and up to 22% reduction in inefficient energy consumption can 

be achieved for machining operation. 

Objective 5: Development of a scenario-based framework to solve machining 

optimisation problems especially when multiple objectives need to be considered. 

Corresponding achievements: 

 A scientific framework for solving machining optimisation problems has been 

proposed based on the characterisation of machining operation. The proposed 

framework provides a generic and systematic methodology for decision makers 

to better understand machining processes and address recent challenges from 

sustainable requirements.  

 The problem scenarios were built based on the characteristics of optimisation 

objectives and differing user requirements. These multiple objectives can be 

divided into two categories: non-conflicting and conflicting category. Non-

conflicting multi-objective problems can be converted to a single-objective 

situation which has a unique solution, and conflicting multi-objective problems 

can be converted to a set of conflicting bi-objective cases which can be 

presented as a single Pareto front.  

 According to the analysis of optimal results, the solutions for machining 

optimisation were also built. The optimal solutions can be classified into three 
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solution scenarios which are descriptive scenario (for zero-objective scenario), 

unique solution scenario (for single-objective scenario and non-conflicting 

category of multi-objective scenario) and Pareto front scenario (for conflicting 

category of multi-objective scenario).  

Objective 6: An energy efficient machining strategy, which is beyond optimisation of 

process parameters, will be proposed to further improve energy efficiency for 21/2D 

milled features.  

Corresponding achievements: 

 An energy efficient profiling toolpath strategy has been proposed which can 

further reduce the energy consumption and improve energy efficiency for 

machining process. Compared to the optimisation of existing process, new 

energy-efficient strategies can further reduce the gap between theoretical 

limitation and practical consumptions. 

 Implementing conditions for different feature types and dimensions have also 

been discussed. 

Objective 7: A comprehensive framework which integrates the above research findings 

will be developed for decision makers to improve sustainability performance of their 

manufacturing process.  

Corresponding achievements: 

 A systematic framework for improving sustainability performance of machining 

process has been proposed based on the research output in pervious chapters. 

The function of the developed framework is to enable people to set up the 

measures of machining performance, and improve the performance by 

optimising process parameters and implementing energy-efficient cutting 

strategies.  

 Different forms (e.g. MATLAB GUI and Excel) have been introduced to 

implement the developed methodology. Decision makers can select the most 

suitable form (e.g. checklist, manual, guideline and possible computer 

implementation) based on their skills and habits. Also it can be implemented as 

part of existing processes in industry, such as PCDA cycle and six sigma.  
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 A test part was presented as examples to demonstrate the proposed framework. 

The process clearly showed how to systematically implement the proposed 

framework to reduce energy consumptions and improve energy efficiency.  

8.2 Limitations and Further Work 

Although the proposed methodology provides a reliable tool to measure and evaluate 

energy usage performance and minimise energy consumption and improve energy 

efficiency for machining operation, there are still some identifiable limitations existing 

which need to be improved in further work.  

8.2.1 Scope and Limitations of the Thesis 

The scope and limitations of this thesis are listed as below: 

Firstly, the mathematical models applied in this research originated from commonly 

accepted machining science text books (e.g. Tlusty, 2000). Due to the complexity of 

experiment and verification, not all of the process parameters were considered in the 

modelling process. In this case, the accuracy of the models may not be as high as shown 

in detailed machining science metrics. In addition, because of the limitations of 

measuring instruments and equipment, some models (e.g. tool life and surface 

roughness) have come from existing research publications. Therefore, the results 

obtained from these models may not be as accurate as verified primary models. 

Meanwhile, not all of the objectives during machining operation are considered, such as 

chatter, temperature and noise.  

Secondly, the profiling toolpath strategy proposed is more like a cutting strategy than a 

toolpath strategy. This research did not consider the impact of different toolpath 

strategies (e.g. the orientation of toolpath). The current toolpath generated by CAM 

software contains a lot of redundant motions which causes lots of unnecessary energy 

consumptions. 

Thirdly, only 21/2D milled feature were considered in this thesis. Other milled features 

and operations are not considered in this research. 

Fourthly, current research only focuses on the unit process level. However, to 

successfully implement the concepts of sustainability and developed technology in 

sustainable manufacturing, it is necessary to extend research to other high level 

perspectives, such as workstation level, factory level, enterprise level and global level. 
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Finally, the research contributions in this thesis only considered machining operations 

which is only one phase of manufacturing process. It is also necessary to consider other 

phases of product life cycle, such as product design and development. 

8.2.2 Suggestions for Further Work 

To address the limitations of this research mentioned in section 8.2.1, the suggestions 

for further work are listed as below: 

Firstly, more investigations and experiments need to be carried out to measure and 

characterise the sustainability performance of different materials, machine tools and 

machining operations. More advanced models will be developed to improve the 

accuracy and generality of the prediction models. 

Secondly, the energy efficiency for different type of toolpath needs to be investigated to 

further reduce the energy consumption and improve energy efficiency. Thus provide a 

theoretical foundation to improve the toolpath generation functions for CAM software. 

Thirdly, to implement the result in common machining process, different feature 

type/machining operation types need to be investigated, such as 3D freeform features, 

and turning and drilling operation. In addition, multiple feature cases which combine 

multiple machining operations also need to be considered, such as turning, drilling, 

rough machining and finishing, to fulfil the requirements of practical manufacturing. 

The investigation of energy efficiency can be further extended to investigate the energy 

requirements and energy efficiency for different manufacturing technologies (e.g. 

casting, rolling and 3D printing). It can provide a more comprehensive comparison of 

the energy efficiency for achieving a feature/product by using different manufacturing 

technologies methods (e.g. conventional techniques or advanced methods). 

Fourthly, to better improve the sustainability for manufacturing process, the research 

area should be extended to the higher levels, such as manufacturing system level, or 

factory/enterprise level. More aspects of sustainability should be considered (e.g. safety 

issues, profit issues) to achieve a comprehensive sustainable manufacturing process. 

Fifthly, the research contributions of this project should be delivered into proper form 

which can be easily implemented in the academic and practical area for different levels 

of users. The possible delivery forms include: 
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 Embed result into a module and integrate into new generation energy-efficient 

machining tools. 

 Integrate the result as a mobile/tablet/computer application which can be easily 

used by practitioners. 

 Paper printed tabular catalogue/handbook/guidance.  

 Formulate result as a systematic energy labelling system for machining 

operation/manufacturing process.  

Finally, the current research contributions can be extended to other stages in the product 

life cycle (e.g. product design and development stage). The typical area includes 

product design and material selection. 

 In design stage, the research contributions in sustainability performance (such as 

energy consumption and energy efficiency) based on different dimensions and 

types of feature can be used by product designers to analyse and evaluate the 

sustainability of the current design of product. The research contributions in 

manufacturing process improvement (including: process parameters 

optimisation and sustainable manufacturing strategies) can also provide a 

direction of improvement for product designers to improve their designs. 

 In material selection stage, the research contributions in characterisation of 

workpiece materials can provide a reference for designers to understand the 

sustainability properties of materials, such as specific energy consumption, 

specific cost, specific time, power, and quality (surface roughness). So the 

designers can choose the suitable materials for their designs. 
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APPENDIX І: Additional Data of Energy Consumption  

 

Figure AI.1 UK Electricity Consumption, 1980 to 2012 (UK Department of Energy 

& Climate Change, 2013) 

 

Figure AI.2 UK Electricity Supplied by Fuel Type, 2011 and 2012 (UK Department 

of Energy & Climate Change, 2013)  
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Figure AI.3 UK Fuel Prices, 1980 to 2012 (UK Department of Energy & Climate 

Change, 2013)  

Table AI.1: Energy Consumption of Industry and Manufacturing in China 

(2002-2011) 

Year Industry Manufacturing 

2002 102181.18 79532.95 

2003 119626.63 93163.87 

2004 143244.02 115261.44 

2005 158058.37 127683.89 

2006 175136.64 143051.47 

2007 190167.29 156218.8 

2008 209302.15 172106.52 

2009 219197.16 180595.97 

2010 231101.82 188497.25 

2011 246440.96 200403.37 

Unit: 10,000 tons of SCE (standard coal equivalent 1kg sce=30,000kJ) 
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Figure AI.4 Electricity Supplied by Fuel Type in China 2010, (National Bureau of 

Statistics of China, 2010) 
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APPENDIX II: Research Groups in Sustainable Manufacturing 

Laboratory for Manufacturing and Sustainability (LMAS), http://lma.berkeley.edu/ 

Centre for Sustainable Manufacturing and Recycling Technologies, SMART, 
http://www.centreforsmart.co.uk/ 

Joint German-Australian Research Group, http://www.sustainable-manufacturing.com/ 

The Institute for Sustainable Manufacturing, http://www.ism.uky.edu/ 
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APPENDIX III: Tabular Implementation of Proposed Framework 

The example below shows a tabular implementation of proposed sustainability 

improvement framework. The tables can be generated from the Excel spreadsheet 

presented in section 7.4.1. 

Table AIII.1 shows feasible results of specific energy consumption with the constraints 

of cutting force (Ft ≤ 400N, shown in Table AIII.2), cutting speed (75m/min ≤ Vc ≤ 

120m/min, shown in Table AIII.3) and surface roughness (Ra ≤ 12.5μm, shown in 

Table AIII.4). The red region in the tables shows the result of the objective and 

constraints are not feasible. The green region in the tables shows the feasible results 

after constrained. Then, practitioners can select the optimal results from the feasible 

results. 

 

Table AIII.1 Feasible Results of Specific Energy Consumption with 

Constraints of Cutting Force, Cutting Speed and Surface Roughness 

500 39.01631 22.12691 16.43118 13.55406 11.81146 10.63938 9.795096 9.156737 8.656352 8.253012 

1000 23.80092 14.39107 11.19739 9.575239 8.587814 7.920581 7.437849 7.071351 6.782934 6.549579 

1500 18.66318 11.75539 9.400355 8.199582 7.466129 6.968936 6.608158 6.333487 6.116764 5.940976 

2000 16.06507 10.41224 8.478584 7.489853 6.884381 6.472988 6.173825 5.945602 5.765185 5.618583 

2500 14.48987 9.592219 7.912531 7.051782 6.523655 6.164177 5.902339 5.702284 5.543908 5.415042 

3000 13.4294 9.036587 7.526939 6.75199 6.275778 5.951187 5.714456 5.533369 5.38985 5.27295 

3500 12.66482 8.63357 7.245877 6.532542 6.093655 5.794171 5.575529 5.40812 5.275325 5.167069 

4000 12.08625 8.326859 7.030992 6.364105 5.953386 5.672871 5.467907 5.310851 5.186179 5.084477 

4500 11.63237 8.084943 6.86077 6.23019 5.841511 5.575853 5.381612 5.23268 5.114387 5.017836 

5000 11.26623 7.888788 6.722182 6.120788 5.749845 5.496152 5.310556 5.168178 5.055036 4.962648 
n(rpm)/ 

fz(mm/tooth) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 
 

Table AIII.2: Constraint of Cutting Force (Ft ≤ 400N) 

500 143.5538 248.4631 342.4739 430.0402 513.1065 592.7543 669.6672 744.314 817.0344 888.0853 

1000 124.2315 215.0201 296.3771 372.157 444.0426 512.9699 579.5304 644.1298 707.0621 768.5495 

1500 114.158 197.5848 272.3448 341.9799 408.0366 471.3747 532.5381 591.8993 649.7285 706.2302 

2000 107.51 186.0785 256.4849 322.0649 384.2748 443.9244 501.526 557.4303 611.8919 665.1032 

2500 102.6213 177.6171 244.8219 307.4198 366.8008 423.7381 478.7203 532.0826 584.0677 634.8593 

3000 98.79238 170.99 235.6874 295.9496 353.1151 407.928 460.8587 512.23 562.2755 611.172 

3500 95.66675 165.5801 228.2306 286.5863 341.9431 395.0218 446.2779 496.0238 544.486 591.8355 

4000 93.03925 161.0324 221.9622 278.7152 332.5516 384.1725 434.0209 482.4005 529.5316 575.5807 

4500 90.7816 157.1249 216.5762 271.952 324.482 374.8503 423.4891 470.6948 516.6822 561.6139 

5000 88.80853 153.7099 211.869 266.0413 317.4296 366.7032 414.2849 460.4646 505.4525 549.4076 
n(rpm)/ 

fz(mm/tooth) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
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Table AIII.3 Constraint of Cutting Speed (75m/min ≤ Vc ≤ 120m/min) 

500 15.70796 15.70796 15.70796 15.70796 15.70796 15.70796 15.70796 15.70796 15.70796 15.70796 

1000 31.41593 31.41593 31.41593 31.41593 31.41593 31.41593 31.41593 31.41593 31.41593 31.41593 

1500 47.12389 47.12389 47.12389 47.12389 47.12389 47.12389 47.12389 47.12389 47.12389 47.12389 

2000 62.83185 62.83185 62.83185 62.83185 62.83185 62.83185 62.83185 62.83185 62.83185 62.83185 

2500 78.53982 78.53982 78.53982 78.53982 78.53982 78.53982 78.53982 78.53982 78.53982 78.53982 

3000 94.24778 94.24778 94.24778 94.24778 94.24778 94.24778 94.24778 94.24778 94.24778 94.24778 

3500 109.9557 109.9557 109.9557 109.9557 109.9557 109.9557 109.9557 109.9557 109.9557 109.9557 

4000 125.6637 125.6637 125.6637 125.6637 125.6637 125.6637 125.6637 125.6637 125.6637 125.6637 

4500 141.3717 141.3717 141.3717 141.3717 141.3717 141.3717 141.3717 141.3717 141.3717 141.3717 

5000 157.0796 157.0796 157.0796 157.0796 157.0796 157.0796 157.0796 157.0796 157.0796 157.0796 
n(rpm)/ 

fz(mm/tooth) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 

 

Table AIII.4 Constant of Surface Roughness (Ra ≤ 12.5μm) 

500 0.0369 0.051881 0.063324 0.072944 0.081401 0.089033 0.096042 0.102558 0.108671 0.114448 

1000 0.0135 0.018981 0.023168 0.026688 0.029782 0.032574 0.035139 0.037523 0.039759 0.041873 

1500 0.007497 0.010541 0.012866 0.014821 0.016539 0.01809 0.019514 0.020838 0.02208 0.023254 

2000 0.004939 0.006945 0.008476 0.009764 0.010896 0.011918 0.012856 0.013728 0.014547 0.01532 

2500 0.003573 0.005024 0.006133 0.007064 0.007883 0.008622 0.009301 0.009932 0.010524 0.011083 

3000 0.002743 0.003857 0.004707 0.005422 0.006051 0.006618 0.007139 0.007624 0.008078 0.008508 

3500 0.002193 0.003084 0.003764 0.004336 0.004839 0.005292 0.005709 0.006096 0.00646 0.006803 

4000 0.001807 0.002541 0.003101 0.003572 0.003987 0.00436 0.004704 0.005023 0.005322 0.005605 

4500 0.001523 0.002142 0.002614 0.003011 0.00336 0.003676 0.003965 0.004234 0.004486 0.004725 

5000 0.001307 0.001838 0.002244 0.002585 0.002884 0.003155 0.003403 0.003634 0.00385 0.004055 
n(rpm)/ 

fz(mm/tooth) 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
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APPENDIX IV: Characterisation of Energy Consumption for 

Different Cutting Tools 

The results below show the characterisation of energy consumption for different cutting 

tools.  

Table AIV.1 shows the energy consumption with the constant cutting process 

parameters ap, ae, fz and n. The result can also been graphically presented in Figure 

AIV.1. The result shows that the energy consumption of machining operation 

monotonically reduces with the increase of the diameters of the cutting tools and 

number of flutes. This characteristic of energy consumption is the same as the 

characteristic identified in Chapter 3 with the consideration of other process parameters 

(such as, depth of cut, width of cut, spindle speed and feed rate per tooth). It means for 

machining a same amount of material, using larger, more flutes cutting tools is more 

energy efficient. 

Table AIV.1: Specific Energy Consumption for Different Cutting Tools 

(Constant Process Parameters) 

8 7.5822 6.0261 5.3175 
10 7.4542 5.8722 5.1419 
16 7.2341 5.6074 4.8400 
20 7.1493 5.5053 4.7236 
d/z 2 3 4 

 
Figure AIV.1 Specific Energy Consumption for Different Cutting Tools (Constant 

Process Parameters) 
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The result is Table AIV.2 and Figure AIV.2 shows the energy consumption of the 

slotting operation by using different tools with the constant ap, fz and n. The result can 

further identify more reduction in energy consumption for using larger diameter and 

more flutes cutting tools.  

Table AIV.2: Specific Energy Consumption for Different Cutting Tools 

(Slotting Operation with Constant ap, fz and n) 

8 5.5583 4.6569 4.2731 
10 4.7576 4.0489 3.7521 
16 3.5323 3.1076 2.9374 
20 3.1142 2.7822 2.6524 
d/z 2 3 4 

 

 

Figure AIV.2 Specific Energy Consumption for Different Cutting Tools (Slotting 

Operation with the Constant ap, fz and n) 
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APPENDIX V: Additional Figures of Plot Matrix (Figure 4.1) 

 

Figure AV.1 ap=3mm, ae=5mm, d=10mm, z=3 

 

Figure AV.2 ap=5mm, ae=5mm, d=10mm, z=3 

Spindle speed decreasing 

Spindle speed decreasing 
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Figure AV.3 ap=1mm, ae=8mm, d=10mm, z=3 

 

Figure AV.4 ap=3mm, ae=8mm, d=10mm, z=3 

Spindle speed decreasing 

Spindle speed decreasing 
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Figure AV.5 ap=5mm, ae=8mm, d=10mm, z=3 

 

Figure AV.6 ap=1mm, ae=10mm, d=10mm, z=3 

Spindle speed decreasing 

Spindle speed decreasing 
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Figure AV.7 ap=3mm, ae=10mm, d=10mm, z=3 

 

Figure AV.8 ap=5mm, ae=10mm, d=10mm, z=3 

 

Spindle speed decreasing 

Spindle speed decreasing 


