
GPGPU enabled CFD simulation for

fully coupled fire and evacuation

modelling

Markus Sauter

A thesis submitted in partial fulfilment of the

requirements of the University of Greenwich

for the Degree of Doctor of Philosophy

July 2015

mailto:sm76@greenwich.ac.uk

DECLARATION

I certify that this work has not been accepted in substance for any degree, and
is not concurrently being submitted for any degree other than that of Doctor of
Philosophy being studied at the University of Greenwich. I also declare that this
work is the result of my own investigations except where otherwise identified
by references and that I have not plagiarised the work of others.

............................
Markus Sauter (PhD Student)

Date:

............................
Prof Edwin Galea (Supervisor)

Date:

............................
Dr Angus Grandison (Supervisor)

Date:

ii

ACKNOWLEDGEMENTS

First and foremost I would like to say thank you to Professor Ed Galea and the
University of Greenwich for giving me the opportunity as well as the financial
support to complete this degree.

I would like to thank my supervisors, Professor Ed Galea and Dr. Angus Gran-
dison. Both have over the years provided me with endless support and advice
and made sure that I did not get discouraged . Without their good guidance and
mentoring this Phd would not have been as successful and enjoyable. Looking
back, I could not have asked for a better supervisors.

I furthermore have to thank my colleagues Dr. John Ewer and Dr. Peter Lawrence
who always had a minute to spare to shed some light into the endless SMART-
FIRE and EXODUS code maze, as well as Professor Mayur Patel who always
had an open door and good advise if I wanted to chat. A big thank you also
goes to my, in the beginning fellow Phd student and now, brilliant post doc Dr.
Andrew Kao with who I always had the most productive and memorable con-
versations down in the pub.

Thanks to my lovely, soon to be wife Kristin who over the years never lost faith
in me and who always was my support away from family in Germany. Without
her blessing I never would have been able to finish my Phd. My biggest thank
you goes to my parents Marianne & Franz, who since I can remember have al-
ways supported me financially as well as being perfect role models. My father
was always the successful hard-working person that I wanted to become and I
therefore want to dedicate this thesis to him. Thanks Dad!!!

iii

Last but not least I want to thank all my friends and the rest oft the FSEG fam-
ily for making this journey something I will always enjoy remembering and be
proud of, for the rest of my life.

A person who never made a mistake never tried anything new

Albert Einstein

iv

ABSTRACT

Traditionally fire and evacuation models are run independently of one another to
ascertain two key building safety parameters: ASET (available safe evacuation
time) determined by the fire spread; RSET (required safe exit time) determined
by the evacuation model. A building can be deemed to be safe if RSET<ASET.
A more advanced method is to couple the models together to give a dynamic fire
environment superimposed on the evacuation. This has typically been achieved
using a one way couple where the fire is predetermined prior to the evacua-
tion. A more advanced two-way couple can be used in scenarios, where the
evacuation behaviour effects the fire environment, e.g. opening/closing doors
by agents, extinguishment of fire by agents etc. Presently the time taken to run
these simulations is dominated by the CFD fire model.

The problem with two-way coupling is that every change requires a recalcu-
lated CFD environment and as the evacuation simulation is based on Monte
Carlo methods this leads to multiple calculations to achieve statistically signifi-
cant results. A complete GPGPU implementation (solver, coefficients and other
dependent variables) of the CFD based fire model has been developed which
leads to a substantial execution speed-up. Many previously reported implemen-
tations are limited to the matrix solver and are thus limited to the speed of the
host calculating the coefficients and thereby returning modest overall speedups.
The speed-up gained through the parallel implementation enables the practical
use of the two way coupling. The key point of the two way coupling is that
the agents in the evacuation model dictates the way the CFD code calculates its
values. By letting the agents directly interact with the geometry it eliminates
the element of making assumptions when events happen and drastically reduces
the number of required simulation runs for all permutations.

v

CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT v

CONTENTS vi

FIGURES x

TABLES xvi

1 INTRODUCTION 1
1.1 Research Aims And Objectives . 2

1.1.1 Research Questions . 3
1.2 Thesis Outline . 5

2 BACKGROUND AND LITERATURE REVIEW 7
2.1 CFD Modelling . 7
2.2 Modelling Tools . 11

2.2.1 CFD Fire Models . 12
2.2.2 Evacuation Models . 13
2.2.3 Coupled Models . 17
2.2.4 SMARTFIRE . 20

vi

CONTENTS

2.2.5 EXODUS . 23
2.3 Parallel Processing . 26

2.3.1 Domain decomposition . 28
2.4 General-Purpose Graphics Processing Unit 28

2.4.1 History of the modern GPU . 29
2.4.2 GPU APIs . 33

3 MATHEMATICAL MODELLING FOR CFD - FIRE SAFETY ENGINEER-

ING 46
3.1 Mathematical equations for fire CFD modelling 47

3.1.1 The General Conservation Equation 47
3.1.2 The Momentum Equation . 47
3.1.3 The Continuity Equation . 47
3.1.4 The Enthalpy Equation . 48
3.1.5 Turbulence Model . 48
3.1.6 Radiation Model . 51

3.2 Numerical Procedure . 52
3.3 Discretisation Scheme . 52

3.3.1 The Computational Grid . 53
3.3.2 The Discretised General Conservation Equation 56
3.3.3 Explicit Discretisation . 60

3.4 Discretisation of The Momentum Equation 60
3.4.1 Transient Term . 61
3.4.2 Convection Term . 61
3.4.3 Diffusion Term . 62
3.4.4 Pressure Gradients . 62

3.5 Discretisation of the Radiation Model . 62
3.5.1 Six Flux Model . 63
3.5.2 Discrete Transfer Model (Multi-ray) 63

3.6 Staggered And Co-Located Meshes . 64
3.6.1 Rhie And Chow Interpolation . 65

3.7 Solution Methods . 67
3.7.1 The Mass Continuity Equation . 68

vii

CONTENTS

3.7.2 Pressure And Velocity Correction 68
3.8 Boundary Conditions . 69

3.8.1 Inlet . 70
3.8.2 Wall Boundary Condition . 70

3.9 Solvers . 73
3.9.1 JOR Method . 73

4 PARALLEL IMPLEMENTATION OF SMARTFIRE 75
4.1 Mesh Partitioning . 76
4.2 Halo Cells . 78
4.3 JOR Solver . 81

4.3.1 Shared Memory Concept . 85

5 TESTCASES CFD 92
5.1 Steckler Room . 93
5.2 Care Facility . 98

6 MODEL COUPLING 108

7 TESTCASES COUPLING 115
7.1 Coupling Case 1: Simplified Geometry . 115
7.2 Coupling Case 2: Care Facility . 130

7.2.1 Coupled vs. Non-Coupled . 132
7.2.2 Further Coupling Scenarios . 156

8 CONCLUSION 178

9 FUTURE WORK 183

REFERENCES 188

A Appendix 207
A.1 Pipelines . 207
A.2 Explicit Discretisation . 208

viii

CONTENTS

A.3 Large Eddy Simulation Model . 209
A.4 Metis Input Format . 211
A.5 Shared Memory Mapping . 212
A.6 Simple Geometry - Narcotic properties . 214
A.7 Scenario 1 . 222

ix

FIGURES

2.1 Sub-models used in SMARTFIRE. 21
2.2 Sub-models used in buildingEXODUS . 24
2.3 Increase in GB/s for CPU and GPU . 30
2.4 GPU vs CPU Navier Stokes benchmark 32
2.5 GPU performance vs CPU performance 33
2.6 Fermi Grid - Block - Thread layout . 36
2.7 Compute Capability of Fermi and Kepler GPUs 38
2.8 Fermi memory model . 43

3.1 A finite difference grid. 53
3.2 Structured Grids. 54
3.3 Unstructured Grids. 55
3.4 Unstructured mesh . 56

4.1 Problem, decomposed to 3 domains gets mapped to GPU hardware. 76
4.2 Example three dimensional mesh partitioning of a 5x5x5 cell domain. . . . 77
4.3 9x5 domains . 79
4.4 Domain subdivided with halo cells added for communication at the domain

partitions . 79
4.5 Different partitioning approaches requiring different halo cells 80
4.6 Serial and parallel calculation of a JOR solver step, for cells C1 and C2

using neighbouring values Neighbour1 to Neighbour4. 82
4.7 Block and thread numbering schemes used by CUDA 84
4.8 Different types of memory available on a CUDA device. 86

x

FIGURES

4.9 Two dimensional mesh partitioning of a 5x5 cell domain. 87
4.10 Shared memory cell number and halo mapping. 87
4.11 Shared memory populated with corresponding temps as in Figure (4.9). . . 88
4.12 5 x 3 domain no renumbering scheme applied. 89
4.13 5 x 3 domain renumbering according to boundaries applied. 89
4.14 2D heat transfer problem solver benchmark. 91

5.1 Steckler room setup, probes in red . 93
5.2 Steckler room simulation u-velocity results for various models. 95
5.3 Steckler room simulation temperature results for various models. 95
5.4 Cut plane view of the temperature distribution for different opening times

of the door. 97
5.5 Day care facility, identical layout for both floors. 98
5.6 Smoke zone layout, ground floor. 101
5.7 Smoke zone layout, first floor. 101
5.8 Serial and CUDA temperatures vs. height, Ground Floor. 103
5.9 Serial and CUDA temperatures vs. height, First Floor. 103
5.10 Serial and CUDA velocity vs. height, Ground Floor. 104
5.11 Serial and CUDA velocity vs. height, First Floor. 104
5.12 Serial and CUDA radiation vs. height, Ground Floor. 105
5.13 Serial and CUDA radiation vs. height, First Floor. 105
5.14 CUDA speed up vs problem size. 107

6.1 Simplified illustration of One-way and Two-way coupling of EXODUS and
SMARTFIRE. 109

6.2 Detailed illustration of Two-way coupling of EXODUS and SMARTFIRE. . 110
6.3 Communication flow between SMARTFIRE and buidlingEXODUS during

coupling. 112
6.4 Sequential diagram between SMARTFIRE and buidlingEXODUS during

coupling. 114

7.1 Geometry and population set up for test case 1. 116
7.2 Manuel execution process for two-coupling. 118

xi

FIGURES

7.3 Cut plane temperature distribution inside the middle of the corridor for sce-
nario one to three, 47 seconds into simulation. 121

7.4 Scenario one, warden does close door 1 before evacuating the rest of the
building. 123

7.5 Scenario two, warden does not close door 1 before evacuating the rest of the
building. 124

7.6 Scenario three, warden does close door 1 after he evacuated the last person. 124
7.7 Scenario one, warden does close door 1 before evacuating the building. . . 125
7.8 Scenario two, warden does not close door 1 before evacuating the building. 125
7.9 VR Exodus output for the temperature distribution 251 seconds into simu-

lation. 131
7.10 VR Exodus output for the smoke distribution 251 seconds into simulation. . 132
7.11 Exodus temperature and smoke outputs for both floors for scenario 1 non-

coupled. 134
7.12 Temperature, Smoke and Radiation outputs for Zone 67 136
7.13 Temperature, Smoke and Radiation outputs for Zone 86 137
7.14 Temperature, Smoke and Radiation outputs for Zone 84 138
7.15 Temperature, Smoke and Radiation outputs for Zone 91 139
7.16 Temperature, Smoke and Radiation outputs for Zone 63 140
7.17 Temperature, Smoke and Radiation outputs for Zone 89 141
7.18 Exodus temperature and smoke outputs for both floors for scenario 3 non-

coupled. 144
7.19 Non-coupled CFD temperature outputs around the first floor door event and

at the end of simulation, door event at 38 seconds. 145
7.20 Coupled CFD temperature outputs around the first floor door event and at

the end of simulation, door event at 70 seconds. 146
7.21 Non-coupled CFD smoke outputs around the first floor door event and at the

end of simulation, door event at 38 seconds. 147
7.22 Coupled CFD smoke outputs around the first floor door event and at the end

of simulation, door event at 70 seconds. 148
7.23 Temperature, Smoke and Radiation outputs for Zone 67 150
7.24 Temperature, Smoke and Radiation outputs for Zone 86 151
7.25 Temperature, Smoke and Radiation outputs for Zone 84 152

xii

FIGURES

7.26 Temperature, Smoke and Radiation outputs for Zone 91 153
7.27 Temperature, Smoke and Radiation outputs for Zone 63 154
7.28 Temperature, Smoke and Radiation outputs for Zone 89 155
7.29 Exodus temperature and smoke outputs for both floors for scenario 1. . . . 159
7.30 Exodus temperature and smoke outputs for both floors for scenario 2. . . . 162
7.31 Exodus temperature and smoke outputs for both floors for scenario 3. . . . 165
7.32 Temperature, smoke and radiation vs. time for zone 84. 166
7.33 Temperature, smoke and radiation vs. time for zone 85. 167
7.34 Temperature, smoke and radiation vs. time for zone 86. 168
7.35 Temperature, smoke and radiation vs. time for zone 87. 169
7.36 Temperature, smoke and radiation vs. time for zone 88. 170
7.37 Temperature, smoke and radiation vs. time for zone 67. 171
7.38 Temperature, smoke and radiation vs. time for zone 89. 172
7.39 Temperature, smoke and radiation vs. time for zone 90. 173
7.40 Temperature, smoke and radiation vs. time for zone 91. 174
7.41 Temperature, smoke and radiation vs. time for zone 92. 175
7.42 Temperature, smoke and radiation vs. time for zone 93. 176
7.43 Temperature, smoke and radiation vs. time for zone 63. 177

A.1 Graphics pipeline in NVIDIA GeForce 8800 208
A.2 A sample graph . 211
A.4 Shared memory mapping on a block by block basis. 212
A.3 φiP mapping on a block by block basis for the two dimensional domain as in

Figure 4.9. 213
A.5 Narcotic properties for person 4, warden and person 1 for scenario 1. 214
A.6 Narcotic properties for person 4, warden and person 1 for scenario 2. 215
A.7 Narcotic properties for person 4, warden and person 1 for scenario 3. 216
A.8 Properties for person 4, warden and person 1. 217
A.9 Narcotic properties for person 4, warden and person 1 for scenario one to

three. 218
A.10 Properties for person 4, warden and person 1. 219
A.11 Property outputs for both wardens, ground floor and first floor for scenario 3. 220
A.12 Property outputs for both wardens, ground floor and first floor for scenario 3. 221

xiii

FIGURES

A.13 Temperature, smoke and radiation vs. time for zone 84. 222
A.14 Temperature, smoke and radiation vs. time for zone 85. 223
A.15 Temperature, smoke and radiation vs. time for zone 86. 224
A.16 Temperature, smoke and radiation vs. time for zone 87. 225
A.17 Temperature, smoke and radiation vs. time for zone 88. 226
A.18 Temperature, smoke and radiation vs. time for zone 89. 227
A.19 Temperature, smoke and radiation vs. time for zone 90. 228
A.20 Temperature, smoke and radiation vs. time for zone 91. 229
A.21 Temperature, smoke and radiation vs. time for zone 92. 230
A.22 Temperature, smoke and radiation vs. time for zone 93. 231
A.23 Temperature, smoke and radiation vs. time for zone 84. 232
A.24 Temperature, smoke and radiation vs. time for zone 85. 233
A.25 Temperature, smoke and radiation vs. time for zone 86. 234
A.26 Temperature, smoke and radiation vs. time for zone 87. 235
A.27 Temperature, smoke and radiation vs. time for zone 88. 236
A.28 Temperature, smoke and radiation vs. time for zone 89. 237
A.29 Temperature, smoke and radiation vs. time for zone 90. 238
A.30 Temperature, smoke and radiation vs. time for zone 91. 239
A.31 Temperature, smoke and radiation vs. time for zone 92. 240
A.32 Temperature, smoke and radiation vs. time for zone 93. 241
A.33 Temperature, smoke and radiation vs. time for zone 84. 242
A.34 Temperature, smoke and radiation vs. time for zone 85. 243
A.35 Temperature, smoke and radiation vs. time for zone 86. 244
A.36 Temperature, smoke and radiation vs. time for zone 87. 245
A.37 Temperature, smoke and radiation vs. time for zone 88. 246
A.38 Temperature, smoke and radiation vs. time for zone 89. 247
A.39 Temperature, smoke and radiation vs. time for zone 90. 248
A.40 Temperature, smoke and radiation vs. time for zone 91. 249
A.41 Temperature, smoke and radiation vs. time for zone 92. 250
A.42 Temperature, smoke and radiation vs. time for zone 93. 251
A.43 Temperature, smoke and radiation vs. time for zone 84. 252
A.44 Temperature, smoke and radiation vs. time for zone 85. 253
A.45 Temperature, smoke and radiation vs. time for zone 86. 254

xiv

FIGURES

A.46 Temperature, smoke and radiation vs. time for zone 87. 255
A.47 Temperature, smoke and radiation vs. time for zone 88. 256
A.48 Temperature, smoke and radiation vs. time for zone 89. 257
A.49 Temperature, smoke and radiation vs. time for zone 90. 258
A.50 Temperature, smoke and radiation vs. time for zone 91. 259
A.51 Temperature, smoke and radiation vs. time for zone 92. 260
A.52 Temperature, smoke and radiation vs. time for zone 93. 261
A.53 Temperature, smoke and radiation vs. time for zone 67 serial. 262
A.54 Temperature, smoke and radiation vs. time for zone 67 coupled. 263
A.55 Temperature, smoke and radiation vs. time for zone 84. 264
A.56 Temperature, smoke and radiation vs. time for zone 85. 265
A.57 Temperature, smoke and radiation vs. time for zone 86. 266
A.58 Temperature, smoke and radiation vs. time for zone 87. 267
A.59 Temperature, smoke and radiation vs. time for zone 88. 268
A.60 Temperature, smoke and radiation vs. time for zone 89. 269
A.61 Temperature, smoke and radiation vs. time for zone 90. 270
A.62 Temperature, smoke and radiation vs. time for zone 91. 271
A.63 Temperature, smoke and radiation vs. time for zone 92. 272
A.64 Temperature, smoke and radiation vs. time for zone 93. 273

xv

TABLES

3.1 Constants used in k − ε model . 50
3.2 Neighbouring cells coordinates . 55
3.3 Table of Differencing Schemes . 59
3.4 y+ to determine near wall flow . 71

4.1 Cells excluding halo-cells as in Figure 4.9 87
4.2 Cells including halo-cells as in Figure 4.9 88

5.1 CUDA execution speeds vs serial execution speeds 96
5.2 CUDA execution speeds vs serial execution speeds 106

6.1 Coupling control status messages. 111

7.1 Narcotic properties for Agent A, Agent B and the warden, Scenario 1 - 60
seconds delay non-coupled. 119

7.2 Narcotic properties for Agent A, Agent B and the warden, Scenario 1 - 60
seconds delay coupled. 119

7.3 Action, exit and total evacuation times for scenario 1. 119
7.4 Narcotic properties for Agent A, Agent B and the warden, Scenario 1, coupled.122
7.5 Narcotic properties for Agent A, Agent B and the warden, Scenario 2, coupled.122
7.6 Narcotic properties for Agent A, Agent B and the warden, Scenario 3, coupled.126
7.7 Narcotic properties for Agent B. 127
7.8 Narcotic properties for warden. 127
7.9 Narcotic properties for Agent A. 128

xvi

TABLES

7.10 Narcotic properties for Agent A, Agent B and the warden, additional sce-
nario 1, 75 seconds delay, coupled. 129

7.11 Narcotic properties for Agent A, Agent B and the warden, additional sce-
nario 3, 75 seconds delay, coupled. 129

7.12 Door events scenario 1 serial. 133
7.13 Property output for the warden at the end of the simulation for scenario 1

serial. 133
7.14 Door events scenario 3 serial. 142
7.15 Fractional Incapacitating Doses for the ground floor warden at the end of

the simulation for scenario 3 serial. 143
7.16 Fractional Incapacitating Doses for the first floor warden at the end of the

simulation for scenario 3 serial. 143
7.17 Door events scenario 1. 157
7.18 Property output for the warden at the end of the simulation for scenario 1

coupled. 158
7.19 Door events scenario 2. 161
7.20 Property output for the warden at the end of the simulation for scenario 1

coupled. 161
7.21 Door events scenario 3. 164
7.22 Property output for the ground floor warden at the end of the simulation for

scenario 3 coupled. 164
7.23 Property output for the first floor warden at the end of the simulation for

scenario 3 coupled. 165

A.1 Metis input for a sample graph see Figure 211

xvii

Glossary

ALU Arithmetic Logical Units. 28

AMD Advanced Micro Devices. 34

API Application Program Interface. 31

ASET Available Safe Egress Time. 11

BE Boundary Element. 48

BFC Body Fitted Co-ordinates. 13

CAA Computational Aeroacoustics. 18

CAD Computer Aided Design. 14

CFD Computational Fluid Dynamics. 2, 184

CHT Conjugate Heat Transfer. 13

CO Carbon Monoxide. 10

CPU Central Processing Units. 28

CUDA Compute Unified Device Architecture. 34

CV Control-Volume. 48

DDM Domain Decomposition Methods. 28

xviii

Glossary

DE Differential Equation. 46

DNS Direct Numerical Simulation. 62

DSP Digital Signal Processors. 33

FD Finite-Difference. 48

FE Finite-Element. 48

FED Fractional Effective Dose. 15

FIH Individuals cumulative exposure to radiative and convective heat. 120

FMAD Fused Multiply-Add. 94

FPGA Field Programmable Gate Arrays. 33

FSEG Fire Safety Engineering Group. 20

FSEs Fire Safety Engineers. 1, 156

FV Finite-Volume. 48

GPGPU General Purpose GPU. 31

GPU Graphics Processing Unit. 4

GUI Graphical User Interface. 12

HCl Hydrogen Chloride. 10, 184

HCN Hydrogen Cyanide. 10, 184

ILP Instruction Level Parallelism. 27

ISA Instruction Set Architecture. 35

JOR Jacobi Over Relaxation. 48, 73

LAN Local Area Network. 8

xix

Glossary

LES Large Eddy Simulation. 10

MC Monte Carlo. 3

MIMD Multi Instruction Multi Data. 26

MISD Multi Instruction Single Data. 26

MPF Message Passing File. 109

MPI Message Passing Interface. 28

OpenACC Open Accelerators. 34

OpenCL Open Computing Language. 33

PBA Performance Based Approach. 11

PDE Partial Differential Equations. 8

RSET Required Safe Egress Time. 11

SIMD Single Instruction Multi Data. 26

SIMPLE Semi Implicit Method for Pressure Linked Equations. 5

SM Streaming Multiprocessors. 31

SOR Successive Over Relaxation. 73

SP Scalar Processors. 31

TLP Thread Level Parallelism. 27

TPC Thread Processing Clusters. 31

xx

Chapter 1

INTRODUCTION

Fire related incidents in 2013/2014 included 322 fatalities and 9,748 non-fatal casualties,
as well as an estimated 8 billion worth of damages to homes and business in the UK alone
[1]. According to these statistics many of the incidents are preventable by closer comply-
ing with the existing regulations. In order to improve regulations and to gain more insight
into the complex physical and chemical processes involved in fires, more research has to be
conducted. Unfortunately by the destructive nature of fires it can be very difficult to collect
accurate data, which on the other hand is necessary to gain more insight into the processes
involved from ignition to extinction to prevent future incidents from happening. Fire exper-
iments offer an alternative but are very costly to carry out. Nowadays fire modelling offers a
very practical and inexpensive alternative for Fire Safety Engineers (FSEs) to simulate fires
and all the processes involved.

The models have various purposes, to reduce the requirement to run actual experiments in
order to save time and money as well as to detect exception cases which could have been
missed otherwise. In that sense, Fire Safety Engineering represents a very challenging re-
search field, the modelled cases are usually large in size and complex in terms of processes
involved e.g chemical or physical reactions. Another problem is that real life experiments
are often restricted by health and safety rules and engineers have to rely on accurate models
that produce realistic results. If this wasn’t already challenging enough fire safety engineers
often need more than one model to represents different parts of the problem, therefore it is

1

1.1 Research Aims And Objectives

often necessary to use a Computational Fluid Dynamics (CFD) based fire model in com-
bination with an evacuation model. This thesis will show a new concept for two of these
models to efficiently interact and to eliminate as much human errors, required simulation
runs and interaction within the modelling process. A so called two-way coupling will be
developed. An evacuation model will be used in dynamic combination with a CFD fire sim-
ulation model. Instead of using pre-calculated fire scenarios in the evacuation model, the
evacuation model will be used to control the CFD model throughout the simulation run. This
means the CFD simulation will provide the evacuation simulation with hazard data for every
upcoming time step. The two-way coupling will therefore be able to incorporate changes in
the geometry e.g door changes immediately.

1.1 Research Aims And Objectives

The primary aim is to explore a full two way coupling of a fire and evacuation modelling tool
to examine the interaction of all the processes involved in a fire and evacuation simulation.
In order to establish the coupling each of the software models used, the CFD model and
the evacuation model, have to be enhanced to incorporate the coupling processes. The most
important change will be a new communication process that allows both software pieces
to send and receive instructions from each other. When this is established, the evacuation
model needs to be extended to give the agents further abilities to interact with the envi-
ronment. In the CFD model, a mechanism to dynamically change boundary conditions is
needed as well as the ability to send back the updated CFD data to the evacuation model
(every time step).

Furthermore one of the CFD model downsides, the execution speed, will be improved. This
will make the process a more accessible tool for fire safety engineers where one does not
have to sacrifice accuracy (reduced mesh sizes) or scenario complexity in order to get results
in a reasonable amount of time. These improvements will be achieved by the use of parallel
processing techniques (in the form of advanced graphics processor hardware) to accelerate
the CFD based fire simulation.

The necessary steps involved will be

2

1.1 Research Aims And Objectives

• to port the existing CFD code, written in C++, to a faster hardware accelerated lan-
guage.

• to develop a communication system between the two software tools.

• to extend the capabilities of the evacuation model to be able to control the CFD model.

1.1.1 Research Questions

• Will a fully two way coupled model result in more realistic results? - As it currently
stands one way coupled models take the results of a CFD simulation and apply those to
the evacuation model on a time step basis. If one wanted to incorporate changes in the
fire scenario he would have to stop the evacuation model, re-run the CFD model and
re-enter the fire data into the evacuation model. These techniques all require assump-
tion when things will be happening, the fully dynamic coupling will apply changes on
different dynamic triggers e.g. an agent decides to open a door because the tempera-
ture in an area reached a critical level. By not relying on predefined assumptions any
more, more realistic simulation outcomes could be achieved. The evacuation model
will be the decision maker for environmental changes and trigger boundary updates
in the CFD code which incorporates the changes and recalculates the scenario.

• Why is speed so important? - Faster execution times are a desirable feature of a piece
of software. It not only enables the fire engineer to perform more tasks in a specific
time frame, it also enables additional features which would result in an exponen-
tial increase in computing power or execution time and making it therefore imprac-
tical to use. One example is that of the Monte Carlo (MC) based EXODUS model,
which needs a great number of simulation runs to get statistically significant results,
by changing the CFD environment during runtime a new set of MC-simulations is
required for every change. Taking all the permutations of geometry changes into ac-
count which could be happening this will quickly constitute weeks of simulations if
not even an impossible task to model.

• How will the speed-up be obtained? - The CFD model will be ported onto a new
hardware execution platform, which is a modern Nvidia graphics card (GPU). In order
to get the code to execute a rewrite of the existing code will be required. The more of

3

1.1 Research Aims And Objectives

the existing model that can be ported the better the overall performance increase will
be because the main known bottleneck will be data transfers to and from the Graphics
Processing Unit (GPU). The main focus will be to optimize memory access patterns
and to make full use of the available hardware resources.

• What will be the magnitude of the speed-up? - As mentioned above, the speed-up will
be closely related to the proportion of the code that will run simultaneously on the
GPU and the kind of problem that will be modelled. There will be many other factors
influencing this performance outcome, but a reasonable expectation for a practical
model would be a speed-up, of somewhere in between 10x to 40x speed-up regarding
overall execution time.

• Are all parts of the CFD equally likely to execute efficiently on the GPU? - The general
assumption is that all the cell/ face based calculation which will include the majority
of the computational domain will run equally fast. The only exception will be the
radiation model which will only calculate cell values that will fall on the rays assigned
to each cell. The critical part here will be that rays will cross multiple partitions
requiring a lot of communications between partitions.

4

1.2 Thesis Outline

1.2 Thesis Outline

This thesis consists of 9 chapters. Chapter 1 sets the background for undertaking this re-
search and explains the motivation behind it.

Chapter 2, gives an overview of CFD modelling in general and specifically the tools used in
this thesis. Previous work and literature relevant for this research will be introduced. Fur-
thermore parallel techniques mentioned in the research question and the state of the art for
current hardware and software technology are reviewed.

Chapter 3 introduces the equations and numerical methods used by CFD models to solve
fire modelling problems. The general conservation equation is detailed and methods to
solve these equations by discretisation will be described. The SIMPLE solution method for
the coupled equations of heat, mass, momentum and pressure will be given. Turbulence
modelling will be described in terms of the Reynolds average approach. Furthermore the
radiation model, boundary conditions and the solver method will be introduced.

Chapter 4 describes the methods necessary to implement the parallel concept, particularly
the mesh partitioning and the so called halo concept will be discussed in detail. Furthermore
two solver methods are introduced, a classic approach and a performance improved version,
which will be used in this thesis.

Chapter 5 describes the CFD test cases used to show the agreement of results from the se-
rial and CUDA implementation of SMARTFIRE. And explains the differences in the two
implementations.

Chapter 6 details the implementation of the coupling between the two software tools. Syn-
chronization and control mechanisms are described which enable a full two way coupling.

Chapter 7 describes the test cases used in this thesis to show the different results obtained
by using the two-way coupling and shows the results compared to non-coupled cases. Dif-
ferences between a one way coupling and a full two way coupled model will be given.

5

1.2 Thesis Outline

Furthermore constrains are shown that illustrate the necessity of the two way couple for a
fire safety engineer.

Chapter 8 contains conclusions from the work mentioned in previous chapters. Furthermore
the research question will be re-evaluated, to see if all questions have been answered.

And finally in Chapter 9 suggestions for areas of further work will be suggested.

6

Chapter 2

BACKGROUND AND LITERATURE

REVIEW

In this chapter the background to the problems addressed in Chapter 1 will be detailed. A
review of CFD fire modelling is given. The literature directly relevant to the different areas
which will be addressed later in this thesis is described. An overview of existing evacuation
and CFD models will be given, as well as various combinations of coupled models. One of
the main issues of this thesis is the performance of the serial CFD code. Therefore methods
to parallelise the original code and improve the performance of the parallel version will
be discussed, from a hardware point of view as well as from a broader parallel computing
perspective.

2.1 CFD Modelling

CFD modelling attempts to represent the actual physics behind fluid flow in a computer
model. The modelling process generally consists of the discretisation of the problem do-
main and solving it using the Navier-Stoke set of equations [2] in combination with addi-
tions to include turbulence and radiation. The first CFD models came up about 80 years ago
but used a much simpler approach [3] compared to models used nowadays. The main lim-
itation of the earlier models was not the actual mathematical complexity, it was the lack of

7

2.1 CFD Modelling

computing power or computers in general available at the time. Even today the complexity
of the problem, although vastly more complex than in the past, is limited by the available
computational resources.

The partial differential equations (PDE) used by CFD codes to calculate the individual vari-
ables normally cannot be solved analytically and must therefore be solved numerically by
discretising them [2]. This creates thousands to millions of smaller sub-domains, control
volumes or cells. The computational difficulties come from the fact that to get the solution
to converge, many iterations are required per time step. And for an actual transient problem
case many time steps are needed [4].

Most of the computational intense variable calculations require a cell-based solution. Dif-
ferent variable states (newest, last and old) have to be stored in a vector or even matrix form,
which requires considerable memory and CPU power [5]. Additional memory is needed to
include turbulence phenomena which require mesh refinements to get more accurate results
[6] or trans-sonic/ super-sonic flows.
Although fire models do not require all of these extensions e.g trans- and super-sonic flow ,
additional models like radiation are necessary but they are actually not part of Navier-Stokes
equations. The radiation model plays an extremely important role in modelling realistic fire
scenarios as thermal radiation can dominate the heat transfer. Various radiation models will
be discussed later in this thesis in Section 3.1.6, but generally the more accurate the model
the more computing power it will require.

The earliest publications where CFD models were used to model fire situations came up in
the early 1980s [4; 7–12] and have since then become more and more popular so that fire
safety engineer nowadays can access a large portfolio of modelled cases [13–22]. These
models all contributed to a much greater insight in the actual physics and dynamics behind
fires. The biggest constraint with CFD and fire modelling respectively is the time needed
to calculate complex scenarios, over the years new techniques have been investigated e.g
parallel processing in various forms. Variations include transputers [23], using PCs con-
nected via a Local Area Network (LAN)[12; 24], multi-core CPUs in general [25; 26] or as
described in this thesis, GPU-hardware acceleration.

8

2.1 CFD Modelling

Another hardware independent approach is using group solvers, it groups cells into logical
sets therefore specific solver criteria can be set for these groups which can significantly re-
duce the execution time [27]. Group solvers essentially try to priorities groups and allocate
resources to groups that are computationally more intense than others. Another method of
reducing runtime is the concept of using a hybrid field/zone model [28] where parts of the
computational CFD domain are replaced by a zone model.

Turbulence plays a very important role and will be included in any realistic scenario when
modelling fluid dynamic problems, both in transport/mixing and energy transfer [29]. The
complexity of modelling turbulence comes from the fact that it randomly fluctuates and its
occurrence in three dimensions over different time and length scales. As with many stochas-
tic modelling approaches it can be assumed to have an average velocity for the fluid along
with the deviations of it. Reynolds started modelling turbulence by splitting the fluid motion
into a mean and random component [30].

The second component is random, its cumulative effect equals zero, therefore it is valid to
consider the mean component of the motion. The next step is now to substitute this mean-
random representation of the velocity into the Navier-Stokes equations which gives a new
almost similar system but with new unknown terms [31] known as the Reynolds stresses.
These stresses are now part of the flow itself, more precisely the momentum equation of
the mean flow instead of the more familiar viscous stresses. Therefore the turbulent fluctua-
tion still has an effect on the mean flow and shows a difference compared to non-turbulence
cases. The challenge now is that the number of unknowns exceeds the number of equations
present making it an underdetermined system, the research that is still done on turbulence
mainly focuses on determine these unknowns.

SMARTFIRE uses a k − ε model [31] for these unknowns. The method was first used by
Boussinesq [32] when looking at the transfer of momentum caused by Reynolds stresses to
be actually caused by an ”eddy-viscosity”, in the same way as the usual viscous stresses.
Based on this transport equations for the turbulent kinetic energy k and dissipation rate ε
can be created and solved along with the remainder of the Navier-Stokes equations.

9

2.1 CFD Modelling

Another method of separating the velocities is by their scale. One part will be directly
resolved by cell resolution while the other part relies on the ”eddy-viscosity”, mentioned
above, for the smaller scales. This is called a Large Eddy Simulation (LES) and will be
explained in detail in Section 3.1.5.3. The work was originally performed by Smagorinsky
[33]. LES performs better than the k − ε method if the resolution is fine enough [34] but
significantly increases the computational overhead.

Fire safety engineers are interested in simulating or reproducing realistic fire scenarios with
the presence of gaseous species i.e fuel, oxidant and product concentrations or more complex
combustion/ pyrolysis processes releasing toxic threats i.e carbon monoxide (CO), hydro-
gen chloride (HCl) or hydrogen cyanide (HCN). These gases constitute the biggest threat to
people within burning enclosures [35; 36]. The main reason for performing fire safety en-
gineering is to save lives by optimizing building designs, procedures, protocols or materials
used or to get more insight into past incidents.

The transport of the species mentioned above can easily be incorporated into the Navier-
Stokes equations, especially if simplifying assumptions are made for a basic mass/volume
fraction treatment. The problem actually lies on the creation side of the species, the model
sources include the physical and chemical properties and processes necessary to accurately
represent the phenomena [37; 38]. Specifically the time steps and the mesh size play an im-
portant role in the modelling process as they can be significantly smaller than for the other
variables. Therefore simplification methods have been used such as assuming infinitely fast
one step chemistry thereby allowing the use of mixture fraction [39–42]. Although accurate
results for simple fuel/product/oxidant concentration can be achieved more detailed species
formulations e.g soot production/ flame extinction cannot be obtained. To solve this con-
straint Floyd [43] came up with a list of extensions although it still remains a more simplified
model than the actual chemical process.

Combustion will not be included in this thesis, therefore fires will be represented by heat
(enthalpy) sources. This is backed up by a number of experiments that have been conducted
over time which give a benchmark how accurate the models are [17; 44–46]. The chal-
lenge will always be to find an intermediate way between accuracy and the corresponding
increased processing time and the need to run detailed models for cases where the actual

10

2.2 Modelling Tools

chemistry is the driving force of the flow dynamics e.g fire proliferation and suppression
[47]. Although processing power is less of a problem nowadays than in earlier days of mod-
elling (as predicted by Moore [48]), the increase of processor speeds is not happening as fast
any more as it used to [49]. The reason being the increasing difficulties with the transistor
density on the silicon wafer, especially the energy supply and heat development.

Finally it must be added that despite the complex mathematics and physics behind the fire
models, simulation tools still must be practical for engineers working in the industry to
produce accurate results in reasonable time frames without the need of profound knowledge
of how to manually optimize the models themselves. End users typically come from fire
safety engineering, science and architecture/building design backgrounds.

2.2 Modelling Tools

Modelling tools are increasingly becoming a part of performance-based analysis to assess
a level of detail similar to that from experiments but without the associated incurring costs.
This section will introduce the most common egress and fire models also stating there dif-
ferent capabilities.

One category of models use predefined sets of parameters to specify how fast evacuations
must complete. These parameters are typically set by regulators e.g for public buildings in
the UK (2.5 minutes) or public transport (90 seconds) [50]. The other category of mod-
els which try to eliminate the shortcomings of using predefined parameters follow the so
called Performance Based Approach (PBA), see Section 2.2.3. Although there are many
different flavours of this approach, they essentially all follow the concept that there is an
Available Safe Egress Time (ASET) and a Required Safe Egress Time (RSET) [51] where
RSET <ASET.

ASET could be a time until a critical level is reach e.g smoke or temperature and RSET
could be the time required to vacate a building. In order to achieve accurate ASET and
RSET values multiple evacuation and fire scenario combinations have to be assessed. This
procedure means that the evacuation parameters are individually determined for a specific

11

2.2 Modelling Tools

geometry and scenario.

2.2.1 CFD Fire Models

There are also a number of CFD fire models available to date which include SMARTFIRE
[52], FDS [53], FIRE3D [54], RMFIRE [55], SOFIE [56], SPLASH [57], CFX [58], FIRE
[59], JASMINE [60], PHOENICS [61] and ALOFT-FT [62]. Where some of them can be
used to create fire output data to feed into the egress models, which will be mentioned in
the next section. The following list will give an overview of these models, showing their
capabilities and limitations:

• SMARTFIRE: Fire field model, including automated mesh generator and interactive
Graphical User Interface (GUI). The model can simulate fire, smoke, thermal radia-
tion,gaseous combustion and toxic products in complex structures. It can also be run
in a parallel version.

• FDS: The Fire Dynamics Simulator is a LES model for low-speed flows, it models
turbulence, as well as combustion and radiation. The emphasis is on smoke and fire
heat transportation for spreading heat from a fire source. FDS also offers a parallel
execution concept.

• FIRE3D: CFD model to simulate jet and buoyant turbulent diffusion, combustion,
thermal radiation and spray-flame interactions in compartments and open atmosphere.

• RMFIRE: A two dimensional field model for the transient calculation of smoke move-
ment in room fires.

• SOFIE: Simulation of Fires in Enclosures, is a model developed by a number of
European Universities, governments and research institutes. The model uses a non-
orthogonal curvilinear coordinate system, a laminar flamelet model, fire spread mod-
els and a radiation model which uses the Discrete Transfer method.

• SPLASH: A quasi-field model describing the interaction of sprinkler sprays with fire
gases.

12

2.2 Modelling Tools

• CFX: Developed by ANSYS Inc. General-purpose fluid dynamics software, appli-
cable to dispersion, fire and explosion within internal and/or external environments.
The model offers the use of structured and unstructured meshes, a coupled multi-
grid solver, gaseous combustion models (including EDM, flamelets), turbulence mod-
els (including LES and DES), radiation models (including Monte Carlo and Discrete
Transfer) and Conjugate Heat Transfer (CHT). The model can also be run in parallel.

• FIRE: CFD model with water sprays, coupled to solid or liquid phase fuel to predict
burning rate and extinguishment.

• JASMINE: A CFD or field model developed by the UK Fire Research Station (FRS),
for predicting consequences of fire to evaluate design issues such as the assessment
of smoke ventilation design and/or interactions with HVAC and other fire protection
measures. JASMINE offers the capability to model combustion and solid body heat
transfer as well as a six-flux radiation model. It is limited to orthogonal meshes which
makes it difficult to model complex geometry.

• PHOENICS: PHOENICS simulates fire progression, smoke and pollutant disper-
sion in steady state or transient conditions. It comes with a variety of turbulence
and gaseous combustion models and includes the capability to use Body Fitted Co-
ordinates (BFC) grids. As with JASMINE, radiation is modelled using a six-flux radi-
ation model which is not surprising as PHOENICS was the basis of the development
for the JASMINE code.

• ALOFT-FT: Calculates the rise and dispersion of smoke from a large outdoor fire
blown by a non-zero wind.

2.2.2 Evacuation Models

There are a number of evacuation models currently available which include, EXODUS
[63; 64], PATHFINDER [65], GRIDFLOW [66; 67], FDS-EVAC [68], MASSEGRESS [69],
LEGION [70], PEDGO [71], EVI [72], SIMULEX[73; 74], EVACNET4 [75], STEPS[76],
MassMotion [77] and BFIRES [78].

13

2.2 Modelling Tools

The brief review of these models will focus on capabilities like, modelling methods, model
structure, occupant behaviour and movement, use of fire data, output, CAD geometry input,
visualisation, validation studies, limitations. As this thesis focuses on the evacuation pro-
cess of buildings models used in the maritime and aviation field will be disregarded. The
following list shows the capabilities of the models mentioned above [79].

• Exodus: Incorporates occupants performing actions, in addition to movement towards
a specified goal, exiting a building, also decision-making and actions performed due
to conditions in the simulation. The grid structure is represented by small grid cells
which are used by the occupants to move from point A to B. In this process each
agent acts as an individual, using different rules and conditional behaviours. These
conditional behaviours are statistically determined, allowing variations in the differ-
ent simulation runs. The movement model is a probabilistic density correlation where
each individual gets a speed and flow assigned depending on the density of the space.
Fire data can be imported from other tools allowing to perform specific fire actions at
specific times. Geometry data can be imported from Computer Aided Design (CAD)
files. Data is represented in a two dimensional way allowing the user to see bottle-
necks in the simulation. The model input parameters have been validated against fire
drills or other people movement experiments and trials.

• Pathfinder: Incorporates movement towards a specified goal, exiting a building. The
grid structure is represented by small grid cells which are used by the occupants to
move from point A to B. It does not incorporate behaviour, only the movement aspect.
The movement model is a probabilistic density correlation where each individual gets
a speed and flow assigned depending on the density of the space. The model also
cannot import fire data, and simulations can only be run in drill-mode. Geometry
data can be imported from CAD files. Outputs are represented in a two dimensional
fashion, in the same way as EXODUS does.

• Gridflow: Uses a partial behaviour model, which primarily calculates occupant move-
ment, but begins to simulate behaviours as pre-movement time distributions, agents
characteristics, overtaking, smoke and smoke-effects. Space is represented as a con-
tinuous network applying a two dimensional space. Agents have implicit behaviour.
The movement model is a probabilistic density correlation where each individual gets

14

2.2 Modelling Tools

a speed and flow assigned depending on the density of the space. This model cannot
import fire data and simulations can only be run in drill-mode. Allows the input of
CAD files. Visualisation can be made in two in three dimensional view. Model has
been validated against fire drills or other people movement experiments, trials and
literature on past evacuation experiments.

• Fds-evac: Model offers agent based simulation of humans. The movement is repre-
sented by a panic model. Scenarios are defined by text based config files. Visualisation
and data post-processing is done using the smokeview software package. Fire data
can be imported by using the fractional effective dose (FED) sub-model. Fds-Evac
has also been thoroughly validated against various scenarios [80].

• Massegress: Is a multi-agent simulation system to model building occupants as indi-
vidual agents equipped with sensors, brains and actuators for egress analysis. Capable
of conducting simulations for multi-storey buildings. Offers CAD file import to de-
fine geometries. Offers individual decision-making for agents as well as interaction
among individuals (social interaction) and special group (crowd and environment)
interactions. Model takes into account, crowd density, environmental constraint, per-
ceived emotion and tension, queuing behaviour, herding behaviour and bi-directional
flow [81].

• Legion: Uses a behavioural model, representing occupants actions in addition to
movement. Each pedestrian is represented as a 2-dimensional object which moves
in a 2-dimensional space. Behaviour is represented by an artificial intelligence model.
The movement uses two models, a probabilistic density correlation and a conditional
movement model where movement throughout the building is dependent upon the
conditions of the environment, the structure, the other evacuees, and/or fire situation.
The model allows people to import fire data at certain times throughout the simulation.
CAD data can be imported. Visualisation can be produced in two or three dimensions.
Model has been validated against fire drills or other people movement experiments,
trials and other models.

• Pedgo: The model is a behavioural simulation model, decisions and movement of ev-
ery single person is simulated. PedGo is able to model multi-agents in discrete time
and space. The floor plan of the investigated geometry is subdivided into quadratic

15

2.2 Modelling Tools

cells (0.4mx0.4m), which represents the space a single person occupies while stand-
ing. Agents are able to evade obstacles and other agents [82].

• Simulex: Uses a partial behaviour model, which primarily calculates occupant move-
ment, but begins to simulate behaviours as pre-movement time distributions, agents
characteristics, overtaking, smoke and smoke-effects. Space is represented as a con-
tinuous network applying a two dimensional space. Agents have implicit behaviour.
Movement is represented by a inter-person-distance model which forces the agent
to always keep a certain distance from other agents, objects and components of the
building. Simulations can only be performed in drill mode and no fire data can be
imported. Geometry data can be imported from CAD files. Visualisation can be made
in two or three dimensional view. The model has been validated against fire drills,
other people movement experiments and trials, as well as against literature on past
evacuation experiments.

• Evacnet: Evacnet is a flow-based approach which models a crowd as continuous flow
of fluid by neglecting the features of individuals. Flow-based models are mainly use-
ful in estimating the flow of movement/evacuation process for huge and dense crowds.
The environment is abstracted into a mesh, consisting of nodes and arcs. The nodes
represent the physical structures, such as rooms, stairs, and hallways. The node ca-
pacity is determined by the number of occupants the structure may accommodate.
The arcs represent the passageways for the occupants flow. Similarly, the arc ca-
pacity needs to be determined to limit the amount of human traffic that can traverse
the passageways in certain time periods. Another parameter to be determined is the
traversal time, which denotes the time an occupant flow takes to traverse the arc. A
flow-based model relies on a specialized algorithm, used in solving linear program-
ming problems with network structure, to generate optimal evacuation plans. Results
can be used to determine the shortest evacuation time based on the network structure
and corresponding physical constraints. The model does not take any behavioural as-
pects into account besides movement. Movement is also greatly simplified no vector
fields and differential equations are used, i.e. the speed of the crowd is treated as a
piece-wise constant [83].

16

2.2 Modelling Tools

• STEPS: Is a model designed to simulate pedestrian movement under both normal and
emergency conditions. It employs a modern agent-based approach which predicts the
movement of individuals in space. STEPS uses the principles of cellular automata.
The model can handle complex emergent modes of behaviour which arise from sim-
ple deterministic and non-deterministic principles. Agents attributes include walking
speeds, awareness, patience, associations and pre-movement times. The model has
been verified and validated by comparison with analytical solutions, internationally-
accepted design codes and full-scale testings [76].

• Bfires: Uses a behavioural model, representing occupants actions in addition to move-
ment, plus risk assessment capabilities. The grid structure is represented by small grid
cells which are used by the occupants to move from point A to B. Behaviour is mod-
elled using a set of probabilistic rules or conditions. Movements are represented by
the users inputs for speed, flow and density for certain parts of the geometry. The
model also allows the user to input fire data at certain times throughout the simula-
tion. The model does not allow the user to import CAD data but offers a geometry
building environment. The model also does not offer visual outputs. Furthermore no
indication of validation of the model is provided.

2.2.3 Coupled Models

The primary objective of fire safety engineering must always be to save life and minimize in-
juries caused by fire related products or evacuation procedures, followed by the commercial
aspect of making it an inexpensive way of replacing trials and real life testing to an agreed
level of safety. Over the years, approaches to improve procedures have changed, from ap-
plying simple assumptions and quantifying results, collected from surveys and drills, to
sophisticated computer models to approximate outcomes as realistic as possible.

One of the simplest methods are ”Required Safe Egress Time” and ”Available Safe Egress
Time” (RSET and ASET). The general idea behind RSET is that people in a fire situation
will require a specific time to evacuate, which can be pre-calculated. At the same time
ASET is calculated. If the simple relationship ASET>RSET is fulfilled it is assumed that

17

2.2 Modelling Tools

all occupants can evacuate safely. The concept was first used 1975 by NIST [84]. The oc-
cupants adapt a ’robotic’ behaviour whilst moving towards the exits, intervening activities
are not taking into account, e.g. slowing down due to their physical condition or counter-
productive, unsafe, or seemingly unreasonable behaviour [51]. The two major problems
with the concept are that the evaluation is highly subjective, conditions must be quantified,
and evaluated afterwards against the computer-calculated results. As well as the complex
interaction between physical and psychological variables which cannot be derived from ex-
periments with humans as these would be potentially harmful.

The next logical step towards more realistic results is to improve the quality and capabil-
ities of the available computer models. Different fire scenarios were introduced, enabling
insight into new scenarios where life threatening outcomes were detected that would have
stayed undetected until a real incident would have happened. The Fire Safety Engineer-
ing Group of the University of Greenwich [85] and the VTT Technical Research Centre of
Finland [68] were amongst the first ones to introduce coupled CFD-evacuation model. The
evacuation model (buildingEXODUS [64; 86]) reads in hazard data created by FSEG’s CFD
model (SMARTFIRE [52][18]) and CFAST [87]. The hazard data is averaged over prede-
fined zones which have to match in both models. The hazard zones consist of two layers,
represented by two values one at 1.7m (head height) and 0.5m (knee height). These two
levels have an effect on the evacuees physical and psychological state and affect the walking
and crawling abilities which results in slower evacuation times, injuries or even fatalities.
The coupling offers the possibility to introduce different hazards e.g. toxic products, heat
(including radiation) and smoke. The results of the coupled simulation showed that the fire
conditions have a direct effect on the occupants physical condition and therefore the simula-
tion results, making them more realistic. Another example of a coupled fire model is CRISP
[88], a Monte-Carlo based model for entire fire scenarios (fire zone model). The sub-models
represent physical ’objects’ including rooms, doors, windows, detectors and alarms, items
of furniture and hot smoke layers. Coupled models can not only be found in the field of fire
modelling, they can also be used to model other physical problems e.g acoustic problems,
as Djambazov showed by coupling a CFD and Computational Aeroacoustics (CAA) code
where the coupling used a CFD code as the base to reduce the implementation work as well
as a CAA model [89]. Another kind of coupling processes, although more manual, are so

18

2.2 Modelling Tools

called Performance-Based Codes, where a set of defined goals and conditions (performance-
based document) get assessed and potential hazards get identified. Solutions are developed
using a suitable calculation method e.g a computer model. Afterwards, these outcomes get
assessed again and a decision can be made if the chosen solution was suitable, or if another
solution method is required [90–92]. This process allows performance-based documents to
be implemented and insures that their goals are met.

However even with a coupled version the evacuation scenarios are still ”static” which means
the models do not take into account that occupants could interact with the geometry or fire
which could affect the outcome. Dynamic geometrical changes will often change the ven-
tilation inside a building and will for example occur by opening doors, collapsing walls or
shattering windows. FDS-Evac eludes to the possibility of a full two way coupling between
the fire and evacuation model in their manual [93; 94] but there are no apparent examples
of this capability. A two-way coupling was also described in the FireGrid project from the
University of Edinburgh [95], which uses the BRE Monte-Carlo model CRISP [88], which
includes a fully-coupled simulation of fire growth, smoke spread, active and passive fire
protection systems, and the egress and interaction of people with the fire environment. The
model couples sensors and fire modelling to achieve a more realistic outcome. However
CRISP uses a zone model and therefore has several disadvantages in regards to modelling
complex geometries and non uniform zones.

Although some models offer the capability to combine evacuation modelling with fire mod-
elling, non of the models offers the possibility to look at scenarios where agents can influ-
ence the fire input directly. In order to enable the evacuation simulation to perform these
tasks, a complete two-way coupling of egress and CFD model is required which will be
discussed in detail in Chapter 6.

This thesis will focus on a fully two-way coupled fire and evacuation model (SMARTFIRE
and buildingEXODUS) which will be able to allow the occupants in the evacuation model to
interact with the environment, causing the CFD environment to constantly adapt itself to the
changing scenario. SMARTFIRE and buildingEXODUS have been chosen mainly because
of freely available entire source codes (only to FSEG students), the modern object oriented

19

2.2 Modelling Tools

program design methodologies implemented in C++, the already existing one-way coupling
capabilities, as well as the parallel execution capability for the full CFD model.

2.2.4 SMARTFIRE

SMARTFIRE is an advanced CFD fire simulation environment (C++) developed by the Fire
Safety Engineering Group (FSEG) at the University of Greenwich [96][52].

The SMARTFIRE software package consists of a desktop fire-laboratory enabling rapid
turnaround of sophisticated fire simulation analyses, including problem specification tools,
execution and analysis tools which allows the user, not very familiar with the background of
modelling physics problems, to concentrate on design issues rather than CFD details. This
is mainly achieved by embedding as much expert knowledge as possible into the software,
to reduce the possibility of fundamental errors being introduced into the scenarios.

The main four components are:

• The core CFD engine

• Graphical user interface (GUI)

• Automated meshing tool

• Intelligent control system

The interaction between the components mentioned above can be seen in Figure 2.1, where
the CFD engine represents the core of the SMARTFIRE model.

SMARTFIRE includes several additional features that are needed to model fire problems,
compared to conventional CFD codes, e.g a six-flux radiation model [97], a radiation model
(multi ray) [98], provision for handling the heat transfer through walls and a volumetric
heat release model or gaseous combustion model (eddy-viscosity dissipation model) [99] to
represent fires, smoke and turbulence (two equations k − ε closure with buoyancy modifi-
cation). All the mathematics to describe the different parts of the CFD code will be covered
in Chapter 3.

20

2.2 Modelling Tools

Figure 2.1: Sub-models used in SMARTFIRE.

A GUI represents the link between the user and the CFD engine, enabling him to specify
the geometry/ problem by setting up

• Walls

• Material properties

• Compartments and obstacles e.g desks, stairs or partitions

• The fire (locations and properties)

• The radiation model type

• Gaseous properties (absorption coefficients)

• Location of vents (along with any fans, inlets or outlets)

After the problem has been set up, the GUI also enables the user to generate the control
volumes (mesh) for the geometry, either manually or using the automated meshing tools.
It should be mentioned that manually setting up the mesh requires a certain expertise to

21

2.2 Modelling Tools

achieve the right solution, which is already build into the automated routines.

Finally the GUI handles the execution of the CFD calculations using the CFD engine. The
problem domain will be numerically solved using a set of differential equations that describe
the laws governing the physical processes involved. The solving of the actual variables uses
a set of initial approximations whose accuracy is evaluated repeatedly. The solution has
been obtained, as soon as the differences of consecutive accuracies fall under a pre-defined
threshold (convergence). Convergence is only obtained if all variables fulfil the mentioned
criteria.

SMARTFIRE’s GUI offers a multi-window output layout so the user can track and alter out-
puts while the solution is obtained (using graphs, visuals and different data outputs). This
thesis will not be using these features, reasons will be given in Chapter 4. However this is a
feature not found in many CFD codes as making changes often requires the termination and
restart of the CFD engine.

The work mentioned in this thesis will only focus on re-writing the CFD engine and recycle
the other input and output features of SMARTFIRE as the engine constitutes the computa-
tional bottleneck of the simulation while the other parts are mostly idle.

Finally, SMARTFIRE has been specifically designed and developed as a Fire Simulation
Tool to be used by Fire Safety Engineers and is based on more than 20 years of CFD fire
modelling experience and research of FSEG [100].

22

2.2 Modelling Tools

2.2.5 EXODUS

Exodus is a set of software tools designed to simulate the evacuation of a large number
of people (agents) from a variety of enclosure types by considering circulation/ pedestrian
dynamics in complex environments. The set currently consists of three models airEXO-
DUS [101] for aviation environments, maritimeEXODUS [102] for marine applications,
and buidlingEXODUS [86] for applications in the built environment.

BuildingEXODUS [64] is used to model urban environments e.g. supermarkets, hospitals,
cinemas, rail stations, airport terminals, high rise buildings, schools etc. One of the main
purposes for simulating evacuation behaviour in buildings is to demonstrate compliance
with building codes, evaluate the evacuation capabilities of buildings or spaces and to inves-
tigate crowd movement efficiency.

Various types of geometries can be created, including multi-levels and complex staircases,
the software offers the ability to either draw the layout manually, or the import of different
file types e.g DXF files from CAD software tools. Next, EXODUS sets up a two dimen-
sional mesh of nodes over the floors (typically 0.5m2 per node) which represents the space
normally occupied by an individual person. Individual nodes are different to the CFD mesh
nodes and linked by arcs, which do not occupy any space.

EXODUS can simulate people-people, people-fire and people-structure interactions. Each
agent in the simulation is treated as an individual and various data like exit times, speeds,
etc. are recorded if the agents evacuation process is not prematurely terminated by exposure
to fire (heat), smoke or toxic gases.

Internally, EXODUS consists of an object oriented, rule based engine written inC++ which
controls the simulations. Therefore the behaviour and routes of all agents are determined by
a set of heuristics or rules. To introduce more flexibility into the modelling process these
heuristics have been grouped into five sub-models which interact with each other, see Figure
2.2.

23

2.2 Modelling Tools

The sub-models are:

(i) Occupant

(ii) Movement

(iii) Behaviour

(iv) Toxicity

(v) Hazard

Figure 2.2: Sub-models used in buildingEXODUS [64].

Sub-models explained:

MOVEMENT: Controls the physical movement of each individual from their current posi-
tion to their next position. It also controls waiting periods, overtaking, side-stepping and
other evasive behaviours.

BEHAVIOUR: Controls how agents react to the currently present situation based on each
agents personal attributes which then interacts with the movement model mentioned above.
There are global and local behaviour levels, the local level controls how the agents react to
their local environment whereas the global level holds the overall strategy for the population
employed by each individual e.g. exit via the nearest exit or the most familiar one.

24

2.2 Modelling Tools

OCCUPANT: Defines the agents attributes lists, there are static attributes like age, gen-
der, fast walking speed, walking speed, response time, agility, presence of life jacket, etc.
and dynamic attributes that can also change during the simulation, triggered by other sub-
models.

HAZARD: Controls the atmospheric and physical environment. The atmospheric aspects
comprise the distribution of fire hazards CO2, CO, HCN, O2 depletion, Heat (radiative and
conductive) and Smoke, as well as the irritant gases HCl, HBr, HF, SO2, NO2, CH2CHO
(Acrolein) and HCHO (Formaldehyde). The physical aspects include setting of opening and
closing times for LSAs. The hazard sub-model is basically responsible for the fire hazard
and represents the interface to load-in SMARTFIRE data. The SMARTFIRE cell-by-cell
based accurate results will be averaged over pre-defined zones which match in EXODUS
and SMARTFIRE respectively. Generally two values are used for each hazard, one at 1.7m
height and one at 0.5m height, which represents head height (standing height) and knee
height (crawling height) of an average person [64]. Agents will automatically start crawling
if the temperatures at head height exceed a critical value [86]. Agents will also be effected
by smoke and their walking speeds will slow down [103][104].

TOXICITY: Determines the effects, including incapacitation, on an individual agent, ex-
posed to heat, smoke and toxic products distributed by the hazard sub-model. The physio-
logical effects on an individual exposed to the toxic and thermal environment are determined
by using the Fractional Effective Dose (FED) concept [86][105].FED models assume that
the effects of certain fire hazards are related to the dose received rather than the exposure
concentration. The model calculates, for these fire hazards, the ratio of the dose received
over time to the effective dose that causes incapacitation or death, and sums these ratios dur-
ing the exposure. When the total reaches unity, the toxic effect is predicted to occur. Within
buildingEXODUS, as the FED approaches unity the agents mobility, agility, and travel rates
can be reduced making it more difficult for the affected agent to escape. Radiative heat also
effects the agents through a pain threshold which is 80s(kW/m2)4/3 and an radiative in-
capacitation threshold at 1000s(kW/m2)4/3 which is considered more representative of the
required dose for incapacitation of an average adult [64]. This means, buildingEXODUS
takes the toxic and physical hazards associated with elevated temperature, thermal radia-
tion, HCN, CO, CO2 and low O2, HCL, HBr, HF, SO2, NO2, Acrolein and Formaldehyde

25

2.3 Parallel Processing

into account. The effects are passed back to the behaviour model which then effects the
movement model.

2.3 Parallel Processing

Gill, in 1958, defined ’Parallel processing’ as ”Using multiple processors operating together
on a single problem” [106]. The concept has already been recognised as an important tech-
nology by Flynn in 1996 [107] which led to his conclusion ”The continued drive for higher-
and higher-performance systems thus leads us to one simple conclusion: the future is paral-
lel.”

There are various different forms of parallelism within a computer system. One important
requirement for a parallel operation is the independence of streams, where a stream is de-
fined as a sequence of objects,data or instructions. In order to execute streams concurrently
they have to be independent [107]. The three most common forms of parallelism are:

1. SIMD: Single Instruction Multi Data.

2. MISD: Multi Instruction Single Data.

3. MIMD: Multi instruction Multi Data.

SIMD architecture contains both array and vector processors which have been developed to
operate on regular data structures like vectors and matrices. Array processors have multiple
processor elements which process multi data elements, where vector processors have a sin-
gle processor that sequentially operates on multi data elements. To run efficiently the array
processor needs a massive set of data (therefore often called massive-parallel-processor), the
vector processor on the other hands works good on smaller data sets by pipelining, see Ap-
pendix A.1, and increasing the clock rate to reduce latency. Over the years vector processors
became increasingly popular and nowadays they are able to handle both SIMD and MIMD
parallelism. MISD processors hardly exist, mainly due to restrictions in program designs
and the mapping of applications onto the processors. Last MIMD forms the most basic form
of parallel processor in contrasts to SIMD each processor works completely independently
while they communicate through a shared memory space. With this layout two problems

26

2.3 Parallel Processing

arise, the ordering of memory references across resources and maintaining cache coherence.

After having looked at the different types of hardware architecture it has to be determined
whether a program is suitable for parallel execution. Most programs are initially designed to
run in a sequential fashion, including loops and if statements that will cause the separation
of the execution flow (branching). It is not a new concept to execute tasks in parallel, one
of the first sophisticated systems was the SOLOMON machine 1962 [108][109] which was
effectively a number of identical individual machines which could communicate through a
supervisor unit. However the limitation was the dependency of the machine to the supervi-
sor machine what meant they either executed the same task or were idle. The relationship
of parallel processing and time sharing has been first pointed out by Gill [106]. Bernstein
[110] showed that in order to decide whether a task is suitable for parallel execution it is
also important to look at the algorithm performed as well as the way it is implemented. This
means even if execution in parallel is possible the algorithm could still prevent effective
parallel execution e.g. some recursive (sequential) operations can also be implemented in a
non recursive fashion and executed in parallel.

As mentioned before in Section 2.1, Moores law of doubling the number of transistors per
square inch per year does not fully apply any more and chip designers are facing problems
like physical limitations (mostly power consumption and heat dissipation). Therefore they
had to move away from Instruction Level Parallelism (ILP) to Thread Level Parallelism
(TLP) where instead of being limited to physical space more and more execution units can
be added whilst keeping clock rates low so power consumption and heat development stays
low [111]. The Top500 list [112] shows as well that from year to year more cores are getting
added to the world’s top computer systems. The downside of increasing the number of cores
is that the complexity of programming increases and programmers cannot rely on compilers
to automatically take advantage of the new resources without major rewrites of the code.

The next step is to divide the problem up into individual parts (domains) that can be exe-
cuted simultaneously. The most suitable and most frequently used approach is called do-
main decomposition, where a problem gets split into smaller problems (sub-domains), to
iterate over them to coordinate the solution between adjacent sub-domains. An alternative
approach is called functional decomposition, where the decomposition of the computation

27

2.4 General-Purpose Graphics Processing Unit

is done before dealing with the data. Both techniques are complementary and are often
used in conjunction. A big advantage of decomposition methods is that the problems on the
created sub-domains are almost independent, which makes them perfectly suitable for par-
allel processing. This thesis will focus on the domain decomposition strategy. A common
approach for the coordination between the sub-domains is to use a Message Passing Inter-
face (MPI), which handles the data exchange between the boundaries of the sub-domains.
An MPI version of SMARTFIRE has been implemented by Grandison in 2003 [24]. MPI
essentially spreads the problem over a number of machines available in a network, where
communication, distribution of data and obtaining results is handled by sending messages.

This thesis will focus on a newer kind of parallelism, introduced in 2007 by Nvidia, which
uses the hardware acceleration of the GPU to achieve SIMD parallelism. This technique
will be detailed in Section 2.4.

2.3.1 Domain decomposition

Domain Decomposition Methods (DDM) solve boundary value problems by dividing a do-
main into smaller sub-domains, each a boundary value problem in itself. DDMs can be
used with any discretization method in two ways, disjoint sub-domains or overlapping sub-
domains [113]. A detailed description what was used in this thesis will be given in Section
4.1.

2.4 General-Purpose Graphics Processing Unit

GPUs were originally designed to do large amounts of repetitive work, i.e one task applied
to a very large number of pixels. GPUs therefore have many more Arithmetic Logical Units
(ALU) than Central Processing Units (CPU). As a result, they can do larger amounts of cal-
culations than CPUs. CPUs on the other hand were designed to make decisions, directed by
inputs from the software running. Therefore a large bulk of the CPU’s structure is dealing
with being able to switch to a different task on a moment’s notice when needed. It also has
to enforce privilege levels between user programs and the OS and handle memory manage-
ment for executed programs.

28

2.4 General-Purpose Graphics Processing Unit

The workload on GPUs used to do graphical operations on pixel, in fact is equivalent to
many individual mathematical calculations to determine coordinates for screen outputs. This
shows that the strength of the GPU hardware is to do a lot of calculations very efficiently
which makes it very suitable for other computational intensive applications.

Exactly these advantages, combined with the pipeline concept described in Section A.1
allow the GPU to handle non-graphical operations very well.

2.4.1 History of the modern GPU

The era of modern computer graphics and therefore GPUs started in the early 1980s. IBM
introduced the first video processing units in 1981. The so called monochrome display

adapter was only able to handle monochrome colours, text only and always had to process
groups of pixels at a time1. Even though these cards were quite limited in their abilities they
still offered more capabilities compared to the present CPUs at the time. Following that, the
next generation of hardware was called All points addressable and offered higher resolu-
tions, greater colour depth and finally the ability to control individual pixels. But these cards
were still limited as the main processing unit was still the CPU, which performed the whole
workload and equated to increased performance at the expense of increased CPU workloads.

IBM changed the industry again in 1984, introducing the first processor based graphics card
for PCs. The so called PGA 2 incorporated its own Intel 8088 processor which took over
the video related tasks form the CPU. This was a very important step in the GPU evolution
since it helped to further the paradigm of having separate processors performing the graphic
relevant tasks. The lifespan of the card wasn’t very long as it required 3 card slots on a very
specific system, a special monitor and was expensive with around 4k$ [114] although it was
targeted at businesses in the engineering and science field.

System requirements got larger and more graphic computational power was required when
VisiOn introduced the first GUI in 1983 [115]. Even so the GUI made it more accessible,

19x14 pixels
2Professional Graphics Adapter

29

2.4 General-Purpose Graphics Processing Unit

the two main reason why GPUs got affordable over time, and why technology improved so
much over the years is because of the so called the pipeline concept (see Appendix A.1) and
the gaming industry, which demands high performance hardware at affordable prices. How-
ever as the hardware got more powerful other areas like engineering and science became
interested in the technology. Figure 2.3 shows the development of GB/s over the years for
CPUs and GPUs, it can be seen that since 2003, the GPUs clearly outperform the CPUs.

Figure 2.3: Increase in GB/s for CPU and GPU [116].

Over time hardware changed from more specialised logic units dedicated to do one kind
of job e.g vertex processing or pixel processing to more general units that can be used for
all kinds of jobs. Precision has also increased by moving away from indexed arithmetic to
integer and fixed point, then to floating point and most recent to double precision operations
and data storage concepts. In the next step general purpose programming languages like C
and C++ have been introduced [117; 118] to lower the entry barrier for programmers. There
is clearly a trend that GPUs will cover more and more tasks in the near future and this trend

30

2.4 General-Purpose Graphics Processing Unit

will continue [119; 120]

Around 2003 big companies, most of all Nvidia, aggressively pushed GPUs towards be-
ing general purpose parallel computing devices[121], which they for the first time called
General Purpose GPU (GPGPU) [122–124]. People used graphics Application Program In-
terfaces (API), which were not originally intended to do scientific computing, to implement
all sorts of applications to the GPU, amongst them: pharmaceutical, financial, physics and
medical applications. The current development indicates that GPUs are becoming much
more capable processors and in difference to CPUs, still increase their hardware potential
dramatically with every generation [125].

With Nvidia’s introduction of the unified shader model 2008 (used in their 8800 chips), ver-
texes and shaders from there on relied on the same instruction set and therefore the same
hardware. These chips consist out of eight Thread Processing Clusters (TPC), each contain
two Streaming Multiprocessors (SM). Each SM furthermore eight Scalar Processors (SP)
each with it’s own ALUs and FPUs which can run multiple threads. The main idea here was
to distribute the workload equally to all available hardware resources on the card[126].

Furthermore, GPUs have become much more complex than CPUs, if you look at the transis-
tor count GPUs have more than doubled the amount of a general purpose CPU. By looking
at Moore’s Law, which states that transistor count doubles every 12 months1 [48]. In the
last decade, GPU manufacturers have far exceeded Moore’s Law by doubling the transistor
count every 6 month [127].

In the past, there has been a point where low volume specialized CPUs, like the ones found
in high end vector supercomputers, had become too expensive to manufacture. Therefore
the market had to swing to commodity processors and clusters. Which brought great re-
ductions in price-to-performance, but then scaling problems accrued and the size of clusters
became a problem in terms of power, space, and even the speed of light. One solution would
be to continue to add cores to commodity processors, but basically this means adding more
general purpose scalar nodes. The GPU’s advantage here is that it has been specifically op-
timised for these kind of tasks (SIMD Single Instruction Multiple Data). The Nvidia Fermi

1Nowadays its more every 18 months.

31

2.4 General-Purpose Graphics Processing Unit

architecture’s HPC features, bring vector processors back into supercomputing by enhanc-
ing the commodity scalar core with a commodity vector processor [128].

Performance Statistics

Despite having a great amount of processing power manufacturers are working hard on
improving energy efficiency along with increased processing power which is stated as per-
formance per watt. Figure 2.4 and 2.5 show the flops rates CPU and GPU implementations
produced. It can clearly seen that the GPU outperforms the CPU by far, where the speed-up
was depending on the case they ran. It can also be seen in Figure 2.4 that GPUs only fully
utilise their performance if the workload is high enough.

Figure 2.4: GPU vs CPU Navier Stokes benchmark [129]

32

2.4 General-Purpose Graphics Processing Unit

Figure 2.5: GPU performance vs CPU performance [130]

2.4.2 GPU APIs

To utilise the processing power of GPUs and to reduce the amount of low-level hardware
programming, a number of APIs have been developed. The three main APIs are Nvidia’s
CUDA [117], an OpenSource API called OpenCL [131] and OpenACC. Each of the APIs
has its advantages and disadvantages which will be discussed in the following sections.

2.4.2.1 Open Computing Language (OpenCL)

Open Computing Language(OpenCL) is a framework that targets a multi heterogeneous
platform approach which includes CPUs, GPUs, Digital Signal Processors (DSP) and other
platforms like Field Programmable Gate Arrays (FPGA) and Intel’s Phi[132]. OpenCL con-
sists of two languages, both based on the C99 standard, one for writing parallel functions

33

2.4 General-Purpose Graphics Processing Unit

and the other parts that handle the platform controls. OpenCL provides the developer with
the ability to write parallel computing using task-based and data-based parallelism which
will natively run on different platforms. It has been adopted by Apple, Intel, Qualcomm,
Advanced Micro Devices (AMD), Nvidia, Altera, Samsung, Vivante and ARM Holdings.
However it has been shown [133] that code portability does not always guarantee perfor-
mance portability and that the real effort still lies in tuning and often rewriting function for
different platforms. Therefore the future advantage of OpenCL will mainly lie in the reduc-
tion of the development time and therefore the time to market for platforms that are difficult
to program in a traditional way e.g FPGA with VHDL1 or Verilog[134].

2.4.2.2 OpenACC

Open Accelerators (OpenACC) is an accelerator programming standard that enables For-
tran, C and C++ programmers to take advantage of heterogeneous CPU/accelerator systems
(including GPUs).Nvidia, CRAY and CAPS recently (May 2014) introduced an OpenACC
version (PGI 14.4) for GPU programming that supports C++. In contrast to a full program-
ming model OpenACC uses compiler re-directives, similar to OpenMP [26], which try to
offload computational heavy parts of the code, e.g. loops to an attached hardware device
like a GPU. By offloading these loops OpenACC takes care of the data movement between
CPU and device. The main advantage here is that computationally intensive parts of the
codes can be quickly identified and parallelized with much less coding effort. The addi-
tional code directives only get executed by compilers supporting the OpenACC API and get
ignored otherwise. Hoshino published a paper in May 2013 [135] in which he evaluates
the performances of a Compute Unified Device Architecture(CUDA) CFD code compared
to an OpenACC implementation, he came to the conclusion that on average OpenACC per-
formed 50% slower than the CUDA implementation but that for other types of applications,
by using more manual optimisation, results closer to 98% of the CUDA performance can
be achieved. The main disadvantage is the lack of full hardware support , e.g no shared
memory use available. The CFD code used was UPACS, a Fortran code project that offers
multiple different solvers on structured meshes. By the time this research was conducted
there was no GPU capable OpenACC version and the shared memory concept is one of the
key concepts for the solver implementations discussed in Section 4.3.1.

1VHSIC Hardware Description Language

34

2.4 General-Purpose Graphics Processing Unit

2.4.2.3 CUDA

This work exclusively focuses on the uses of NVIDIA’s CUDA parallel computing ar-
chitecture [117], but the concepts described in this thesis can also be implemented using
OpenCL[118]. This is mainly due to the fact that by the time when this work was conducted
OpenCL was fairly new and had several disadvantages compared to CUDA, e.g no tem-
plate support, no 3rd party libraries were available e.g thrust [136] or CULA[137] and the
development environment was far less practical than CUDA. The CUDA debugging tool,
NSight [138], was far superior to the tools available for OpenCL. The biggest disadvantage
of CUDA is that it exclusively runs on NVIDIA hardware.

One of NVIDIA’s purposes to introduce CUDA was to lower the entry barrier for program-
mers to cope with the complexity of low level programming. CUDA offers essential func-
tionality for parallel applications, such as scattered read and write accesses in memory and
atomic operations which were not easily possible in previous APIs. A full list of operations
is available in NVIDIAs programming guide [117]. CUDA C is essentially a C extension
which adds extra constructs to deal with the hardware. CUDA provides a computing model
and an Instruction Set Architecture (ISA)[117]. It is important that the hardware and the
implementations are scalable due to the variety of hardware and software available which
was traditionally very difficult to achieve in traditional parallel programming.

CUDA Programming Model

Before the CUDA hardware model will be introduced, the focus is on the programming
model. One important point here is that Nvidia guarantees the compatibility to earlier gen-
erations in the future. That means code developed now will run without or only minor
changes on future hardware generations even if they are a lot more complex and technically
advanced.

The program structure always requires a serial part of the program that calls parallel rou-
tines, the kernels. Kernels can be simple or very complex functions. Kernels execute as

35

2.4 General-Purpose Graphics Processing Unit

parallel processes by launching a set of parallel elements, called threads 1. Threads are
grouped into a hierarchy of thread blocks which form a grid, as in Figure 2.6. To make
problem abstraction easier blocks can be one, two or three dimensional and grids can also
be one, two or three dimensional.

Figure 2.6: Fermi Grid - Block - Thread layout

The actual execution configuration, number of blocks and number of threads per block have
to be set by the programmer and are a crucial factor how efficient the code will run. Nvidia
provides a number of optimisation and profiling tools which provide support for the pro-
grammer i.e Nvidia Visual Profiler, nvprof and the CUDA Occupancy Calculator spread-
sheet. By executing a kernel, each thread is given an unique identifier, the thread id and

1Thread here is not the same as in the classic CPU multi-thread concept.

36

2.4 General-Purpose Graphics Processing Unit

each block is given a unique block id based on the chosen configuration. This is important
as it ensures that all threads are accessible when needed. The CUDA commands threa-
dIdx, blockIdx and blockDim in Listing 2.1 are used to calculate exactly this identifier. This
principle corresponds to the row-major order and column-major order methods for storing
multidimensional arrays in linear memory in conventional coding [139]. At present Nvidia’s
latest hardware generations called Fermi [121] and Kepler [140] support block sizes of up
to 1024 threads per block see Figure 2.7.

Listing 2.1: Vector addition example in CUDA

1 __global__ void vec_add(int *vec_a, int *vec_b, int *vec_c,

2 int *length)

3 {

4 int identifier = blockIdx.x * blockDim.x + threadIdx.x;

5 if(identifier < length)

6 {

7 vec_c[identifier] = vec_a[identifier] + vec_b[identifier];

8 }

9 }

Figure 2.7 shows the CUDA version of a vector addition operation, where vec c = vec a +
vec b. The three vectors have ’length’ number of elements. It can be seen that ’identifier’
accesses the same element of each vector per operation.

37

2.4 General-Purpose Graphics Processing Unit

Figure 2.7: Compute Capability of Fermi and Kepler GPUs [140]

The next paragraph will demonstrate the basic use of the C extensions mentioned in Section
2.4.2.3. Listing 2.1 shows a simple vector addition of vec a and vec b into vec c. Functions
executed on the GPU have to be defined in files with the file ending .cu or .cuh to let the
compiler know how to handle the code. Inside these files, functions must start with either
the identifier global or device . Global functions are kernels which are triggered by
host calls. Device functions are functions which can be called from within a kernel call.
CUDA offers the option to launch kernels from within a kernel since kepler was introduced
[140]. This can be useful if the grid-block layout has to be changed during runtime. Line
4 in Listing 2.1 dimGrid and blockId are vectors of type dim3 which specify the grid and
block-dimensions. If one dimension is not specified it will automatically be set to 1.

The real difference between the serial (Listing 2.2) and CUDA versions of the code (Listing
2.1) is that the CUDA identifier replaces the for-loop of the C code example. A serial ex-
ecution has therefore been exchanged by ’length’ number of parallel executions, which all
calculate their own entry of vec c. It can also be seen here that the operation is perfectly
parallel none of the threads depends on the results of another thread.

38

2.4 General-Purpose Graphics Processing Unit

Listing 2.2: Vector addition example in C

1 int vec_add(int vec_a, int vec_b, int vec_c, int length)

2 {

3 for(int i=0; i<length: i++)

4 {

5 vec_c[i] = vec_a[i] + vec_b[i];

6 }

7 return vec_c;

8 }

The programmer does not have to handle the parallel execution and thread management
manually. All thread creations, scheduling, and terminations are handled by the underlying
CUDA API. Nvidia’s top range tesla GPUs have specifically been designed to do scien-
tific computing and are more sophisticated than normal consumer GPUs and can handle all
thread management directly in hardware [141]. However the programmer still has the ability
to interfere with the API’s thread management system by using synchronisation commands
i.e syncthreads() [117], these commands are barriers and used to guarantee task comple-
tion up until this barrier before continuing. This method is often used to ensure that memory
loads are finished before memory accesses take place. Using barrier functionality on block
level is not well suited for the CUDA parallel model as it goes against the concept of task
parallelism among threads within a block. This is mainly because this would limit the num-
ber of processes that a kernel could run on.

All memory used on the GPU has to be allocated/ freed see Listing 2.3 and populated see
Listing 2.4 from within the serial host code of the program.

39

2.4 General-Purpose Graphics Processing Unit

Listing 2.3: Host command to allocate and free a CUDA variable

1 cudaMalloc((void **) &var_device,length));

2 cudaFree(var_device);

Listing 2.4: Host command to populate a CUDA variable

1 cudaMemcpy(var_device,var_host,length,←↩

cudaMemcpyHostToDevice);

2 cudaMemcpy(var_host,var_device,length,←↩

cudaMemcpyDeviceToHost);

Listing 2.3 allocates the variable ”var device” with the dimension ”length” on the GPU.
Followed by Listing 2.4 which shows two memory copies host-to-GPU and GPU-to-host.
These memory copies are necessary as CUDA can only handle calls by reference where only
pointers will be passed to data that cudaMemcpy has copied somewhere into the GPU’s
memory before. As soon as the host copies data onto the device, the data on the device
becomes invisible to the host and vice versa the only connection the two still have are the
pointer addresses where the data is stored on the host and on the device. In exceptional cir-
cumstances where it cannot be avoided one can create pinned memory which is both visible
and accessible to the host and the device but its performance is very poor compared to the
non pinned version and should therefore always be avoided. Finally the kernel can now be
called as shown in Listing 2.5.

Listing 2.5: Host command to launch a CUDA kernel

1 kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

Due to this separation of hardware and the use of different compilers debugging applica-
tions can be very tricky as executing the code, often does not cause the program to terminate
even if the actual operation went wrong already, e.g division by zero will lead to ”#INF” but
won’t crash the program.

40

2.4 General-Purpose Graphics Processing Unit

Another thing to avoid are recursive function calls as providing stack space for thousands to
millions of threads that are active would require substantial amounts of memory [126]. Typ-
ical recursion operations like quicksort [142], are normally best implemented using multiple
kernel calls. The first kernel computes the results per block and the second kernel calculates
the results over the blocks.

It is also worth mentioning as well that GPU application will only pay off if they have
a certain problem size to be executed on, otherwise the overhead created by the memory
transfers will outnumber the serial CPU execution time by far.
The main abstractions of the programming model are namely, hierarchy of blocks and
threads, the shared memory model (will be explained in the next section) and barrier syn-
chronisations. These abstractions allow the programmer to control parallelism at a very
detailed level. However programmers have to start thinking ”in parallel” right from the be-
ginning of designing a piece of code. They have to break their problems down into domains
and domains into sub-elements respectively which then can be executed independently.

The concept of partitioning will be discussed in more detailed in Section 4.1. Threads are
lightweight entities whose context can be switched with zero overhead [143]. The zero over-
head is achieved by a concept which Nvidia calls ”the GigaThread engine”, which allows
thousands of threads to be active during execution [144].

CUDA Hardware Model

After having looked at the programming model this section will describe how CUDA pro-
cesses data on the hardware level. A GPU contains various kinds of different memories,
registers and processors. The choice of appropriate memory is one of the main challenges
CUDA programmers face, as the faster the type of memory, the less of it is available. Differ-
ent kinds of memories suit different kinds of problems better than others. The different types
of memories are global, constant, texture, local, shared memory and registers. The memory
types that have been used throughout this thesis are global memory and shared memory.
The other types of memory have their perfect use in image and video processing and were
therefore not important. The biggest type of memory available is global memory which is a
few GB but with a very long latency, in contrast to shared memory which only has a few KB

41

2.4 General-Purpose Graphics Processing Unit

per block but is 10 x faster to access. CFD problems typically need hundreds to thousands
of MB of memory therefore combinations of the faster and limited memories and the larger
and slower ones have to be used. But this does not hold a problem as threads can access
different kinds of memories during their runtime. The most common combination is threads
using global and shared memory.

Global memory is visible to all threads, shared memory is only visible to the threads within
one block and has the lifetime of the kernel call (see Figure 2.8). Shared memory variables
in contrast to the global variables mentioned in the previous section, must be defined inside
the kernel definition and start with shared [117]. On a tesla GPUs, these memories are
physically separated, shared memory is a low-latency on-chip RAM, while global memory
resides in the fast DRAM on the graphics board. As shared memory is so much faster it
has to be close to the processor quite like the L1 cache on CPUs. Shared memory is only
appropriate to use if the trade-off between the additional memory reads and writes pay off.
In this thesis shared memory was used to store the values of the currently solved variable φ
and were therefore accessed 10 x-100 x per sweep. All other values had to be kept in global
memory due to their size.

42

2.4 General-Purpose Graphics Processing Unit

Figure 2.8: Fermi memory model

Looking at Figure 2.8 it can also be seen that there is a physical divide between the blocks,
which means that every information exchange between blocks has to be done through the
slow global memory what will be discussed in detail in Section 4.2. However since threads
in a block may share memory and synchronize via barriers, they will reside on the same
physical processor or multiprocessor. In a typical CUDA program the number of thread
blocks will greatly exceed the number of processors available. As soon as hardware re-
sources are exceeded warps will queue up and the scheduler will pick them up as soon as
resources are available again. Warps are threads executed in groups of 32. On a tesla GPU,
the 8 cores in a group are quad-pumped to execute one instruction for an entire warp, 32
threads, in four clock cycles.

Programmers do not have to deal with hardware resources or processing orders manually
as this is all handled by the internal schedulers and processors. This has the advantage that

43

2.4 General-Purpose Graphics Processing Unit

changing the number of cores or resources in the future will not require programs to be re-
designed and helps to avoid possible deadlocks. The only requirement to the programmer is
that therefore blocks must be completely independent from each other so that the scheduler
can pick them up for execution at any time and in any order. Nvidia has heavily invested in
implementing more functionality to move away from that strict divide e.g atomic memory
operations on global memory visible to all threads by atomically incrementing queue point-
ers. The last and most restricted type of memory to mention is local memory which is only
accessible by each individual thread and normally used to store constants.

CUDA’s biggest limitation is definitely the separation of CPU memory and GPU mem-
ory (which will be solved by CUDA V6.0). This process represents the biggest bottleneck
in every CUDA code and will drastically reduce the efficiency. Therefore one of the main
challenges a developer has to face is to reduce memory transfers between the host PC and
GPU to a minimum. One approach is to create data structures on the device that can be
re-used over and over again during runtime, limiting memory transfers to a bare minimum.1.

Threads are executed in an asynchronous2 fashion. Each SM can handle multiple thread
blocks simultaneously as long as the hardware limits are not exceeded. Execution limita-
tions can be seen in Figure 2.7.

Each streaming multiprocessor has a scheduler which manages when each of the warps will
be executed by their SIMD cores. If any thread within the warp takes a different branch
while executing, a situation occurs which is called branch divergence3. Branch divergence
can have a big effect on execution speeds if many of the warps are effected. Section 4.3.1
will provide techniques to avoid and improve such effects.

To hide latency SMs can automatically switch context to other warps while memory trans-
action are still performed. To hide as much latency as possible a good approach is always
to have a high occupancy and therefore it is better to use more blocks than less. The same
applies to memory accesses as a warp can read/ write up to 32*4 bytes = 128 byte of data

12 memory transfers will be the minimum as data has to be copied onto and off the device
2Threads can complete operations before others are even started
3Serialisation of all 32 threads within the warp

44

2.4 General-Purpose Graphics Processing Unit

in one instruction for coalesced memory. For example if 10 threads want to access mem-
ory locations which are not stored consecutively in memory, this will be performed in 10
individual memory transaction compared to one. Programming issues disregarding these
restriction are mainly the reason for code inefficiency [145].

45

Chapter 3

MATHEMATICAL MODELLING FOR

CFD - FIRE SAFETY ENGINEERING

In this chapter the basic mathematical methodologies used in most CFD codes and in SMART-
FIRE in particular will be discussed. The general conservation equation will be described
and integrated to illustrate the general method of discretisation. The discretisation of the
solved physical equations along with details of the handling of various boundary condi-
tions and special treatment of the source terms will be discussed. The solved equations are
the momentum (Equation 3.1.2), enthalpy (Equation 3.1.3), and mass continuity (Equation
3.1.4) Differential Equation (DE). Fire models require additional modelling for turbulence
and radiation respectively which will also be described. The basic solution algorithm used
in SMARTFIRE and other fluid dynamic codes called SIMPLE will be detailed.

The Rhie and Chow (or Pressure Weighted) interpolation method will be described includ-
ing a discussion on the relative merits and demerits compared to an alternative approach that
utilises a staggered formulation. Finally, the numerical solver will be discussed.

46

3.1 Mathematical equations for fire CFD modelling

3.1 Mathematical equations for fire CFD modelling

3.1.1 The General Conservation Equation

The general conservation equation takes the following form:

∂(ρφ)

∂t
+∇.(ρuφ) = ∇.(Γφ∇φ) + Sφ (3.1.1)

Transient+ Convection = Diffusion+ Source

where φ represents the dependent variable to be solved, ρ is the density of the fluid and u
is the velocity of the fluid. Γφ is the diffusion coefficient for the variable φ , which may
represent such quantities as viscosity or conductivity. Sφ is the additional source terms for
the variable φ.

3.1.2 The Momentum Equation

The conservation of momentum is shown in Equation (3.1.2).

∂(ρui)

∂t
+∇(ρuiu) = µdiv(grad(ui))−

∂P

∂xi
+ Si (3.1.2)

In terms of the general conservation Equation (3.1.1) φ = ui. The source term Si absorbs
all the other terms, although the pressure gradient term is treated separately and is described
in detail in Section (3.4.4).

3.1.3 The Continuity Equation

The mass continuity equation takes the form as shown in Equation (3.1.3):

∂ρ

∂t
+∇(ρu) = ṁ (3.1.3)

where ṁ is a source of mass. In terms of the general conservation equation φ = 1 and Γ = 0.

47

3.1 Mathematical equations for fire CFD modelling

3.1.4 The Enthalpy Equation

It has the same form as the general differential equation and is detailed below:

∂(ρh)

∂t
+∇.(ρuh) = ∇.

(
k∇
(
h

cP

))
+ Sh (3.1.4)

To calculate the spread of heat throughout the domain it is necessary to solve the enthalpy
equation, (see Equation 3.1.4). Where k is the thermal conductivity, cP the specific heat and
Sh represents any source of enthalpy.

3.1.5 Turbulence Model

3.1.5.1 Time Averaged Approach

In previous sections, the conservation equations for momentum continuity and the gen-
eral conservation equations have been shown. These equations describe an instantaneous
value for the flow quantities but scientists are generally more interested in the time averaged
quantity than the actual values due to random fluctuations. The instantaneous equations are
therefore time averaged. The time dependent quantities can be considered to consist of a
time averaged component φ̃ and a random fluctuating component φ”.

The mean value φ̄ of a variable φ can be defined as

φ̄ =
1

∆t

t−1/2∆t∑
t−1/2∆t

φdt (3.1.5)

The Favre (density weighted) average for compressible flows is defined as

φ̃ =
ρφ

ρ̄
(3.1.6)

and the instantaneous value of φ can be described by

φ = φ̃+ φ” (3.1.7)

48

3.1 Mathematical equations for fire CFD modelling

Applying Favre averaging to the conservation equations leads to the following, with the˜

dropped for clarity and superposed bars to indicate the Favre averaging.

∂ρ

∂t
+∇.(ρu) = 0 (3.1.8)

∂(ρui)

∂t
+∇(ρuiu) = µdiv(grad(ui))−

∂P

∂xi
+ Si −

∂

∂xj

(
ρu”

iu
”
j

)
(3.1.9)

∂(ρh)

∂t
+∇.(ρuh) = ∇.

(
k∇
(
h

cP

))
+ Sh −∇.

(
ρu”h”

)
(3.1.10)

The effect of Favre averaging on the general conservation Equation 3.1.1 is similar to the
enthalpy equation.

∂(ρφ)

∂t
+∇.(ρuφ) = ∇.(Γφ∇φ) + Sh −∇.

(
ρu”φ”

)
(3.1.11)

After the averaging the continuity equation remains unchanged. The momentum Equation
3.1.9 and the general conservation Equation 3.1.11 have both gained an additional term on
the right hand side. The term ρ

(
u”
ku

”
l

)
is known as the the Reynolds (turbulent) stress. The

term ρu”φ” is known as the Reynolds (turbulent) flux. These terms need a turbulence model
to be calculated. SMARTFIRE uses the standard buoyancy modified k−ε turbulence model
which will be described in detail in the next paragraph. The various methods of modelling
turbulence from a fire safety engineering (FSE) point of view have been reviewed by Kumar
[146].

The k − ε turbulence model is based on the viscosity hypothesis [32], and two additional
variables k (the turbulent kinetic energy) and ε (the dissipation rate) and leads to the follow-
ing equations

∂(ρk)

∂t
+∇.(ρuk) = ∇

([
µlam +

µt
σε

]
∇k
)

+ P +G− ρε (3.1.12)

∂(ρε)

∂t
+∇.(ρuε) = ∇.

([
µlam +

µt
σε

]
∇ε
)

+
ε

k
[Clε(P +G)(1 + C3)− C2ερε] (3.1.13)

where (Equation 3.1.12) is the turbulent kinetic energy equation and (3.1.13) is the dissipa-
tion rate equation. In these equations, P represents the turbulent production rate:

49

3.1 Mathematical equations for fire CFD modelling

P = 2µt

{([
∂u

∂x

]2

+

[
∂v

∂y

]2

+

[
∂w

∂z

]2
)

+

(
∂u

∂y
+
∂v

∂x

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂w

∂y
+
∂v

∂z

)2
}

(3.1.14)

and G represents the buoyancy term:

G = −gµt
ρ

∂ρ

∂y
(3.1.15)

The eddy viscosity hypothesis assumes that the turbulent stresses are proportional to the
mean velocity gradients in a similar manner to viscous stresses in laminar flows. This is
expressed as,

ρu”
iu

”
j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij (3.1.16)

Similar, in the general conservation equation the turbulent flux is assumed proportional to
the gradient of the variable φ.

ρu”φ” =
µT
σT

(
∂φ

∂x

)
(3.1.17)

The unknown fluctuating quantities have been replaced with known time averaged values.
The last term in Equation (3.1.16) is effectively a pressure term and becomes absorbed into
the pressure gradient term of the momentum Equation. The value of turbulent viscosity,
µt,is calculated from Equation (3.1.18).

µt = ρCµ
k2

ε
(3.1.18)

The constants used with the k − ε model are detailed in Table 3.1 below.

Table 3.1: Constants used in k − ε model

Cµ σk σε Clε C2ε C3

0.09 1.0 1.3 1.44 1.92 1.0

50

3.1 Mathematical equations for fire CFD modelling

3.1.5.2 Direct Calculation

Time averaging only applies if the scientist is not prepared to run the simulation using the
finest time and length scales to resolve all turbulent eddies. This is known as Direct Nu-
merical Simulation (DNS) and is the most realistic approach to modelling turbulence as a
turbulence model is no longer needed. The downside is that very fine meshes and time steps
are needed to resolve all turbulent eddies. The consequences are that even simple models
are expensive to run as they take a long time. An intermediate method, the large eddy sim-
ulation (LES) [147] tries to maintain the accuracy of DNS without the required mesh sizes.
Details of the LES will be discussed in the following Section (3.1.5.3).

3.1.5.3 Large Eddy Simulation Model

LES models are used to model turbulence in computational fluid dynamics but were not part
of this research. To give a full overview the LES background can be found in Section (A.3)
of the Appendix.

3.1.6 Radiation Model

Radiation is the method of heat transfer without any physical contact between sources and
objects, in contrast to conduction and convection in Section (3.4.2). The process of radi-
ation neither requires exchange of mass nor a medium. Radiation contributes a significant
proportion of heat transfer in FSE, and therefore cannot be neglected. The following chapter
will briefly discuss the two radiation models used by SMARTFIRE, a detailed description
is given in [148]. Equation (3.1.19) describes the radiative transfer, while a grey system is
assumed, i.e there is no wavelength dependence.

∂

∂l
I(Ω, r) = −(α + s)I(Ω, r) + αIb(r) +

s

4π

∑
Ω′=4π

I(Ω
′
, r)Φ(Ω

′ → Ω)dΩ
′

(3.1.19)

where Ω is the ray direction, l represents the physical path length along Ω at position r,α is
the absorption coefficient and s is the scattering coefficient of the medium, Ib(r) is the black
body radiation intensity and Φ(Ω

′ → Φ) is the scattering phase function.
Solving Equation (3.1.19) is an extremely complex task therefore a number of assumption

51

3.2 Numerical Procedure

have been made and various simplified radiation models have been developed [149]. Which
are zone method [150], Monte Carlo Methods [151], composite flux models (six-flux) [152–
154] and discrete transfer models [155]. Both Monte Carlo and zone method are computa-
tional very expensive to run unless very coarse meshes are used. As fire modelling usually
demands a fine mesh these two approaches are not practical.

3.2 Numerical Procedure

The process towards making models suitable for numerical evaluation is called discretisation
which transforms a set of simultaneous continuous non-linear partial differential equations
(PDEs) of φ into simultaneous linear algebraic equations which give the values of the vari-
able φ at a number of discrete points in time and space.

Discretisation converts PDEs into a set of algebraic equations that are commonly expressed
in matrix and vector form as Aφ = B. This matrix can now be solved, for simple cases

by finding the inverted matrix A−1 or by using iterative methods such as the Jacobi Over
Relaxation (JOR) methods which will be described later in Section 3.9.1.

3.3 Discretisation Scheme

There are a number of different discretisation methods available in CFD including Control-
Volume (CV)/ Finite-Volume (FV), Finite-Element (FE), Finite-Difference (FD) and the
Boundary Element (BE) method. This section will focus on the finite-volume method.

The FV approach is based on Gauss’ divergence theorem:
y

V

∇FdV =
{

S

F .n̂dS (3.3.1)

where V is some arbitrary volume in space, F is a vector field extending throughout the
volume, S is the surface that encases the volume V and n̂ is the unit normal vector over
the surface S. By looking at Equation (3.3.1) it is clear that there is a relationship between
a volume integral and a surface integral, which is the fundamental part of the FV method.

52

3.3 Discretisation Scheme

Therefore the large computational domain can be divided into smaller sub-domains, finite
volumes (control volumes) around which the surface integral can be used. The main ad-
vantage of the finite volume method is that the variable of interest is conserved for the
corresponding control volume. This means the variable is conserved no matter how coarse
or fine the mesh is, locally and globally.

3.3.1 The Computational Grid

The smaller control volumes discussed in Section (3.3) will now be referred to as cells. The
cells are chosen to fulfil two criteria, they have to completely fill the computational domain
and have to ensure the cells do not overlap. The cells are considered to surround a point in
the computational domain, the variables that will be solved will have their solution in these
cell-centres. The boundaries of these cells form a grid, also known as a mesh.

Figure 3.1: A finite difference grid.

In principle the cells can have any arbitrary shape, but more complex shapes introduce more
complex calculations. An example of such a finite difference grid is illustrated in Figure 3.1

53

3.3 Discretisation Scheme

above. It shows the graphical representation of the computational molecule for the point P.
The value of φ at P is related to the values of φ of the surrounding neighbouring points.

Structured and Unstructured grids

Computational fluid dynamics typically uses two different types of grids, structured grids
and unstructured grids.

Figure 3.2: Structured Grids.

A structured grid (see Figure 3.2) is formed by the intersection of families of curvilinear
lines that coincide with the shape of the physical domain at its boundaries. Which means it
consists of a regular, rectangular grid that has been stretched and pulled to fit the dimension
of the physical domain. The simplest case is a regular rectangular 2D grid. Each cell can be
referred to with respect to their co-ordinates and each neighbouring cell can be identified by
applying an offset to the coordinates, see Table (3.2) . The shaded blue rectangular areas in
Figure (3.2) therefore have the coordinates (3;2),(4;3) and (8;2) from top left in clockwise
direction. This also means that in a structured mesh one can always find a cell’s correspond-
ing neighbours by using regular offsets.

54

3.3 Discretisation Scheme

Table 3.2: Neighbouring cells coordinates

Cell neighbour Coordinate

West Neighbour (X-1,Y)

East Neighbour (X+1,Y)

North Neighbours (X,Y+1)

South Neighbours (X,Y-1)

An unstructured grid (see Figure 3.3) can be formed from any arbitrary set of cells provided
they are non-overlapping. The main difference compared to the structured grid is that there is
no structured co-ordinate system, each cells therefore must have a unique identifier typically
going from 1 to n where n is the number of cells in the physical domain. Hence the co-
ordinate system doesn’t apply any more the information about the neighbours is also lost,
therefore each cells must have an adjacency table of its neighbours. For cell number 13 in
Figure (3.3) this would be (7;17;21).

Figure 3.3: Unstructured Grids.

The unstructured grid allows for a greater flexibility in the formulation of the grid but re-
quires an extra overhead because of the adjacency table for each cell. It also allows the

55

3.3 Discretisation Scheme

grid to be applied to more complex geometries like arches and curves (see Figure 3.4) that
couldn’t be done with an ordinary NSWE1 co-ordinate system. SMARTFIRE uses an un-
structured grid.

Figure 3.4: Unstructured mesh [156]

3.3.2 The Discretised General Conservation Equation

In this section, the FV formulation will be applied to the general conservation equation. To
obtain the finite difference equations the general conservation equation is integrated, for a
general variable φ located at a point P, (see Equation 3.1.1) over a typical cell volume δV
located around that point P, and over a small period of time δt.

By rearranging the general conservation Equation (3.1.1) and integrating with respect to
volume the following is obtained:

y

V

∂(ρφ)

∂t
dV +

y

V

∇.(ρuφ− Γφ∇φ)dV =
x

V

SφdV (3.3.2)

1North South West East

56

3.3 Discretisation Scheme

In Equation (3.3.1) replace F with the quantity (ρuφ- Γφ ∇φ) to obtain:
y

V

∇(ρuφ− Γφ∇φ)dV =
{

S

(ρuφ− Γφ∇φ)n̂dS (3.3.3)

and,
{

S

(ρuφ− Γφ∇φ)n̂dS =
∑

All faces
of FV

x

f

ρφun̂df −
x

f

Γφ∇φn̂df (3.3.4)

and,
x

f

ρφun̂df = ρf (u, n̂)fAfφf (3.3.5)

and,

x

f

Γφ∇φn̂df = ΓφAf

(
∂φ

∂x
nx +

∂φ

∂y
ny +

∂φ

∂z
nz

)
(3.3.6)

Using Equation (3.3.5) and (3.3.6) and substituting into Equation (3.3.2), Equation (3.3.7)
is obtained:[
(ρφ)− (ρφ)old

]
P

δt
VP +

∑
All faces

of FV

(
ρf (un̂)fφf − Γφ

(
∂φ

∂x
nx +

∂φ

∂y
ny +

∂φ

∂z
nz

))
Af = Sφ,PVP

(3.3.7)

In the above formulation it is assumed that the transient term can be approximated by the
average rate of change between the current and previous time steps. It represents an implicit
formulation for the variable φP . This means that the value of φP depends on the neigh-
bours’ φ values at the new time step. The explicit temporal discretisation will be described
in Equation (A.2.1) in Section 3.3.3 in the Appendix.
To obtain the computational molecule φf and ∂φ

∂k f
Equation (3.3.7) must be converted into

values approximated by φP and φA, where A is a neighbouring node.

By assuming orthogonality the partial derivatives of φ can be estimated by using the fol-
lowing relation:

∂φ

∂x
=
φA − φP

d
d̂x (3.3.8)

57

3.3 Discretisation Scheme

where d is the unit vector from node P to the adjacent node A and d is the distance between
these two nodes. Similar relations exist for ∂φ

∂y
and∂φ

∂z
.

If the mass flux through a surface is represented by FA(=ρf (u.n)fAf) where ρf is the up-
winded density, (u.n)f is calculated using Rhie and Chow interpolation [157]

the diffusion coefficient can be represented by

DA =

(
Γφ,fAf

nxdx + nydy + nzdz
d

)
(3.3.9)

where Γφ,f is an average of the cell centred values.

Equation (3.3.7) can now be expressed as:[
(ρφ)− (ρφ)old

]
P

δt
VP +

∑
All faces

of FV

((FA)fφf − (DA)f (φA − φP)) = Sφ,PVP (3.3.10)

In Equation (3.3.10) there still exists a facial value for φf . This is fixed by applying the
upwind scheme [2]. If the convection flux is leaving the cell→ φf = φP , if convection flux
is entering the cell→ φf = φA. Therefore Equation (3.3.10) becomes:

[
(ρφ)− (ρφ)old

]
P

δt
VP+∑

All faces
of FV

[max((FA)f , 0)φP −max((−FA)f , 0)φA − (DA)f (φA − φP))]

= Sφ,PVP (3.3.11)

There are a number of possible estimates for the value of φf [2] in Equation (3.3.10). These
estimates are introduced by the addition of a function A(|P |) where P is the Peclet number
(= FAf/DAf) and leads to:

[
(ρφ)− (ρφ)old

]
P

δt
VP +

∑
All faces

of FV

[
max((FA)f , 0)φP −max((−FA)f , 0)φA

−(DA)fA(|P |)(φA − φP)

]
= Sφ,PVP

(3.3.12)

58

3.3 Discretisation Scheme

Table 3.3: Table of Differencing Schemes

Differencing Scheme Formulae for A(|P |)

Upwind 1

Hybrid Max(0, 1− 0.5 |P |)

Central Difference 1− 0.5 |P |

Power Law Max(0, (1− 0.1 |P |)5)

Exponential |P | /e|P | − 1

The various differencing schemes used for A(|P |) in Equation (3.3.12) are given in Table
(3.3):
Now by using the following notation aA = A(|P |).(DA)f −max((−FA)f , 0) and noting
that max((FA)f , 0) = max((−FA)f , 0) + FAf Equation (3.3.12) becomes:

{
(ρV)P
δt

+
∑

Allfaces

aA +
∑

Allfaces

((FA)f)

}
φP =

∑
All adjacent

nodes

aAφA +
(ρφ)oldP VP

δt
+ Sφ,PVP

(3.3.13)

The source term Sφ can be a function of φ and should be written in the linearised form:

Sφ,P = SC + SPφP (3.3.14)

The continuity equation has the following form:

∂ρ

δt
+∇(ρu) = 0 (3.3.15)

The discretised form of the continuity equation is therefore:∣∣(ρ)− (ρ)old
∣∣
P

δt
VP +

∑
All Faces

of FV

(ρf (u.n̂f))Af = 0 (3.3.16)

By substracting the discretised continuity Equation (3.3.16) from the first coefficient of
Equation (3.3.13) the following is obtained

59

3.4 Discretisation of The Momentum Equation

{
(ρV)oldP
δt

+
∑

Allfaces

aA − SPVP

}
φP =

∑
All adjacent

nodes

aAφA +
(ρφ)oldP VP

δt
+ SCVP (3.3.17)

The above equation can be written as:

aPφP =
∑

All adjacent
nodes

aAφA + b (3.3.18)

where

aP =

{
(ρV)oldP
δt

+
∑

All faces

aA − SPVP

}

b =
(ρφ)oldP VP

δt
+ SCVP (3.3.19)

This is the computational molecule for point P (see Figure 3.1).

A set of Equations like (3.3.18) exists at every discrete point in the computational domain
and this can be written in matrix form as:

Aφ = b (3.3.20)

3.3.3 Explicit Discretisation

Explicit discretisation was not used for this thesis, but can be found for the sake of com-
pleteness in Section (A.2) of the Appendix.

3.4 Discretisation of The Momentum Equation

The conservation of momentum is shown in Equation (3.1.2). The next sections will de-
scribe discretisation of the individual terms of Equation (3.1.2) in detail.

60

3.4 Discretisation of The Momentum Equation

3.4.1 Transient Term

The transient term of the momentum equation can be discretised over the control volume V
as follows:

y

V

∂(ρu)

∂
dV ≈ V

(
∂(ρu)

∂t

)
P

≈ V

(
(ρPuP)P − (ρPuP)oldP

∆t

)
(3.4.1)

In Equation (3.4.1) V stands for the control volume about the node P, ∆t is the time step
size, the ”old” superfix refers to the values of the previous time step and ρP is the density at
the node P.

3.4.2 Convection Term

y

V

∇(ρuu)dV =
{

S

ρuu.dS

=
∑
j

∫
Fj

ρuu.ndS (3.4.2)

By using the divergence theorem the volume integral has been changed to a surface integral
in Equation (3.3.1). The summation is applied over all faces that form surfaces S of the
control volume V. The integration over the face is∫

Fj

ρuu.ndS = AFρF (u.n)FuF (3.4.3)

The convection flux at the face is defines as FA = ρF (u.n)FAF . If the face is an internal
face to the domain Rhie and Chow interpolation (see Section 3.6.1) is used to provide an
estimation for the velocity at the face. In case of a symmetry or wall boundary for the face
there is no mass flux across the boundary→ therefore FA = 0. If the boundary face is an
inlet boundary condition then

FA = AFρF
∑

k=x,y,z

vknk (3.4.4)

61

3.5 Discretisation of the Radiation Model

where v is the inlet velocity. There is no contribution due to an outlet fixed pressure bound-
ary condition.

3.4.3 Diffusion Term

y

V

∇(µ∇u)dV =

∮
S

µ∇u.ndS

=
∑
j

∫
Fj

µ∇u.ndS (3.4.5)

By substitution in Equation (3.3.9) in Section 3.3.2 the following is obtained:

DA = (µA)f
nxdx + nydy + nzdz

d
(3.4.6)

The following relation handles the boundary condition of a wall or an inlet.

DA =
µfAf
dl

(3.4.7)

3.4.4 Pressure Gradients

The pressure gradient is calculated using Gauss’ divergence theorem:

y

V

∇kPdV =
{

S

P .nkdS

=
∑
j

∫
Fj

P .nkdS (3.4.8)

3.5 Discretisation of the Radiation Model

The following sections will briefly discuss the discretisation of the two less computationally
expensive models, as mentioned in Section (3.1.6), the six-flux and discrete transfer model
respectively.

62

3.5 Discretisation of the Radiation Model

3.5.1 Six Flux Model

In this model the discretisation around a solid angle of 4π results in 6 fluxes along the posi-
tive and negative co-ordinate directions.

Traditional six-flux models during discretisation combine the fluxes in positive and negative
directions. The big advantage of this model is that it is very easy to incorporate it into the
FV scheme used by many CFD codes. SMARTFIRE uses Jia’s modified Six-Flux Radiation
model [158] in which scattering is neglected (s = 0). This can be done as the main purpose
of SMARTFIRE is to simulate scenarios e.g enclosed fires where scattering is unimportant
[159]. According to Jia the traditional formulation can lead to ill-posed problems which is
avoided by solving the original first order equations instead. The main disadvantage of this
method is that six equations have to be solved instead of the traditional three.

The six flux model was not used in this work, instead the radiation model described in the
next Section (3.5.2) was utilised.

3.5.2 Discrete Transfer Model (Multi-ray)

In situations where a high accuracy of the heat flux at solid surfaces is required e.g flame
spread over solid surfaces or structural interactions with the fire the six-flux model is not
sufficiently accurate to be used. It is intended for situations where the radiative heat loss
from flames is the dominant factor e.g non-spreading fires. The discrete transfer model with
it’s increased angular resolution is able to fulfil these requirements, e.g spreading flames.

The method was first introduced by Lockwood and Shah [155]. SMARTFIRE offers the
possibility to discretise the 4π solid angle along 6,14,24 or 48 rays. The radiation equation
without scattering along one ray direction is given by

∂

∂l
I(Ω, r) = −αI(Ω, r) + αIb(r) (3.5.1)

If the computational domain is divided into individual zones (not the sub-domains used for
parallel processing as in Section (4.1), zones refer to Exodus/SMARTFIRE hazard zones),

63

3.6 Staggered And Co-Located Meshes

which essentially represent an averaged value over the cells of a zone, where optical proper-
ties and the temperature are constant, so Equation (3.5.1) turns into the following recurrence
equation

In+1 = Ine
αδl + Ib

(
1− e−αδl

)
(3.5.2)

Where In+1 stands for the radiation intensity leaving the zone and In the radiation intensity
entering the zone via the ray. δl stands for the length of the ray segment within the zone. In
SMARTFIRE zones are simply mapped 1 to 1 to each of the computational cells which are
part of the zone, other CFD models define the mesh for zones differently, coarser, but still
average the values over the cells included within the zone.
The soldid 4πangle is divided up into n parts (n being the number of rays) and in each part a
ray is projected. As a rule of thumb, the more rays being used the more accurate the radiation
distribution at the cost of computational complexity and power. The ray distribution has to
follow certain rules which have been described by Lathrop and Carlson [160].
The only two equations left to fully describe the discrete transfer radiation model is the wall
boundary condition

I =
εwIB
π

+ (1− εw) I− (3.5.3)

where Γ is the incident radiation on the wall. And the energy transfer into the enthalpy
equation

Sh,DTM =
∑
rays

(In+1 − In)
−→
Ω .∆
−→
A∆Ω (3.5.4)

3.6 Staggered And Co-Located Meshes

When the first solution schemes for pressure and velocity were first implemented it was
discovered that the velocity and pressure fields oscillated. The reason for this was the strong
coupling between pressure and velocity (as the velocity goes into the solution for pressure).
Therefore when the equations were discretised alternate nodes would be decoupled and the
so called checkerboard effect accrued. To overcome these effects two methods have been
devised.

64

3.6 Staggered And Co-Located Meshes

First, the staggered grid approach, where all the values are solved at cell centre except the
velocity components which are solved at the cell faces. The main advantages for this method
are:

• No interpolation as velocity is calculated at the cell faces already.

• The checkerboard effect gets eliminated by using the adjacent cells for the descretisa-
tion instead of the difference between alternating nodes.

• The velocity calculation at the cell faces is applicable as the velocity is situated half
way between adjacent pressure cells, which are the driving force of the velocity.

The main disadvantage is the need to store a grid for each velocity component u,v,w. So in-
creased memory-usage and book-keeping is required. Also unstructured meshes can make
it particularly difficult to define a staggered mesh.
The other approach is the co-located (unstaggered) grid and the use of a special interpolation
for the velocities devised by Rhie and Chow [157] which will be described in Section 3.6.1.

The main advantages of Rhie and Chow’s method are

• Less memory required.

• The geometric bookkeeping is much simpler when using unstructured meshes.

• Removes the checkerboard effect.

The main disadvantage here is that the cell centred value calculated need not satisfy conti-
nuity. Only the facially interpolated values are constrained to this.

3.6.1 Rhie And Chow Interpolation

Rhie and Chow’s method [157] is used to interpolate cell centred velocities to their cell faces
without the checkerboard effect mentioned by Patankar [2], which was avoided by using the
staggered grid approach. The method uses the discretised momentum equation.

65

3.6 Staggered And Co-Located Meshes

The discretised form of the u momentum equation for a control volume about a node P can
be expressed as

aPuP + (∇P)P =
(∑

anbunb

)
P

+ SP (3.6.1)

or for an adjacent node

aAuA + (∇P)A =
(∑

anbunb

)
A

+ SA (3.6.2)

Following the conservation principle of the finite volume formulation the u velocity com-
ponent at a point on the face (f) between these two nodes must also have a corresponding
discretised momentum equation of a similar form

afuf + (∇P)A =
(∑

anbunb

)
f

+ Sf (3.6.3)

Equation (3.6.1) and (3.6.2) can be used to give an approximate solution of Equation (3.6.3).
It is assumed that the terms on the right hand side of Equation (3.6.3) may be approximated
by a linear weighted average of Equation (3.6.1) and (3.6.2).

afuf + (∇P)f =
(∑

anbunb

)
f

+ Sf = afuf + (∇P)f (3.6.4)

The over line represents the weighted linear average for the variable. It will now be further
assumed that af ≈ af so that

uf = uf + df

(
(∇P)f − (∇P)f

)
(3.6.5)

where

uf = αuP + (1− α)uA

∇P f = α(∇P)P + (1− α)(∇P)A

∇Pf = Afnx(PP − PA) (3.6.6)

af = αaP + (1− α)aA

df =
1

af

66

3.7 Solution Methods

3.7 Solution Methods

After deriving all the equations, the system Aφ = b now needs to be solved . The variable to
be solved is represented by φ and is generally unknown except for the boundary conditions.
As most equations are heavily coupled, the system can not be solved sequentially and must
therefore be solved iteratively.

The major challenge solving these physical equations comes from the strong coupling be-
tween the pressure and velocity fields. The momentum equation is, as shown in Section 3.6,
dominated by the pressure term, therefore an accurate knowledge of the pressure field is es-
sential. However the difficulty with the pressure field is that it is only indirectly specified by
the continuity equation. For a good estimate of the pressure field an accurate measurement
of the velocity field for the continuity equation is required.

To solve the problem Patankar and Spalding came up with an iterative solution scheme
called ”Semi Implicit Method for Pressure Linked Equations” or short SIMPLE [161]. The
method has been well adopted by CFD modellers and other variations have been derived
such as the SIMPLER [2] and SIMPLEC [162] methods.

The basic work flow for the SIMPLE method is

• Initial guess for all the variables.

• Solve the enthalpy equation.

• Solve radiation, turbulence and any extra equations, if required.

• Solve the momentum equations for each phase obtaining a new velocity field. This
velocity field will generally not satisfy the joint continuity equation.

• Solve the continuity equation to get the pressure correction.

• Calculate the pressure correction to the velocity components of each phase. These
corrected velocity field will generally not satisfy the momentum equations.

• Iterate over again from point 2 (solve enthalpy equation) until convergence is achieved.

67

3.7 Solution Methods

• Repeat previous steps for all time steps.

• End.

3.7.1 The Mass Continuity Equation

As mentioned in Section (3.1.3) the mass continuity equation takes the following form

∂ρ

∂t
+∇(ρu) = 0 (3.7.1)

and the discretised form:

ρPVP − ρoldP V old
P

∆t
+
∑
faces

(ρu.n)fAf = 0 (3.7.2)

To satisfy mass continuity during the iterative process a pressure correction is applied to the
pressure field as Equation (3.7.2) will not always sum up to zero. The pressure correction is
applied by using Rhie and Chows interpolation method mentioned in Section (3.6.1). Rhie
and Chow states that

uf = uf + df
(
∇P −∇P

)
f

(3.7.3)

this leads to:

uf =
nxAf
aP,u

((
P + P

′
)
P
−
(
P + P

′
)
A

)
+ uf + d∇Pf (3.7.4)

where P ′ stands for the pressure correction at point P, by using Equation (3.7.4) a com-
putational molecule for P ′ can be formed, which then can be solved like any other matrix
equation.

3.7.2 Pressure And Velocity Correction

The pressure correction from the mass continuity equation from Section (3.7.1) need to be
applied to the pressure field calculated in the previous iteration. Furthermore the corrections
for the velocity field must also be obtained. It is know that u = u∗ + u′, where u stands

68

3.8 Boundary Conditions

for the exact velocity field ,u∗ the current velocity field and u′ the error. Referring to the
discretised momentum Equations (3.7.5) and (3.7.6):

aPuP =
∑

aAuA −∇P + SP (3.7.5)

aPu
∗
A =

∑
aAu

∗
A −∇P ∗ + SP (3.7.6)

subtracting Equation (3.7.5) from Equation (3.7.6) gives:

aPu
′

P =
∑

aAu
′

A −∇P +∇P ∗ (3.7.7)

The term
∑
aAu

′
A can be dropped as it tends to zero towards convergence. Which leads to

the following equation

aPu
′

P = (∇P −∇P ∗) (3.7.8)

For an internal cell

∇P =
∑

Allfaces

Af (αPP + (1− α)PA)nx,f (3.7.9)

and

∇P ∗ =
∑

Allfaces

Af (αP ∗P + (1− α)P ∗A)nx,f (3.7.10)

then

∇P ′
= ∇P −∇P ∗ =

∑
Allfaces

Af

(
αP

′

P + (1− α)P
′

A

)
nx,f (3.7.11)

The same applies for velocity components v and w.

3.8 Boundary Conditions

To correctly model fire and CFD problems in general a set of boundary conditions are re-
quired. The boundary conditions normally used are:

69

3.8 Boundary Conditions

• Inlet

• Wall

• Pressure Boundary

3.8.1 Inlet

The inlet specifies the velocities that are going into the domain. It is also necessary to specify
the other properties for the fluid (φinlet). Looking at a cell that has an inlet a term FAinlet is
specified and DAinlet can be calculated which leads to the calculated ainlet coefficient. The
following sources will then be added to any of the discretised equations. Equation (3.8.1)
shows a fixed value boundary condition.

SP = ainlet

SC = ainletφinlet (3.8.1)

3.8.2 Wall Boundary Condition

Walls are used to confine the flow within a defined geometry. No mass flux can travel
through a wall → FAwall = 0. It is also assumed that velocities parallel to the walls are
zero.

3.8.2.1 Momentum Equation

If a cell has a face which represents a wall boundary the shear force FS in the discretised
momentum equation is described by

FS = −τwallAwall (3.8.2)

where τwall = µ uP
∆yP

stands for the near wall laminar flow and ∆yP for the distance from
node P to the wall.

70

3.8 Boundary Conditions

Which leads to the following additional source term being added to the discretised momen-
tum equation

SP = − µ

∆yP
Awall (3.8.3)

In case of turbulent flow, the above relation for laminar flow will be used as P might lie in
the laminar sub-layer. If P falls within the turbulent layer special log-law functions are used
to model the shear force. To determine where P lies Equation (3.8.4) is used.

y+ =

√
ρτw

µ
∆yP (3.8.4)

The y+ in Equation (3.8.4) above determines the near wall flow is laminar or turbulent. The
limits for y+ are shown in Table (3.4).

Table 3.4: y+ to determine near wall flow

y+ < 11.63→ laminarflow

y+ > 11.63→ turbulentflow

The following Equations (3.8.5) and (3.8.6) show the turbulent shear stress. The source term
in the discretised momentum equation is derived in the same fashion as that for laminar shear
force.

τwall =
ρC

1/4
µ k

1/2
P uP

u+
(3.8.5)

u+ is defined as

u+ =
1

κ
ln(Ey+) (3.8.6)

where κ and E are model constants.

3.8.2.2 Enthalpy Equation

The convective heat flux into a wall for a wall surface temperature, Tw is defined as

qs = hc (TP − Tw) (3.8.7)

71

3.8 Boundary Conditions

where hc is the laminar heat transfer coefficient

hc =
k

∆yP
(3.8.8)

k stands for the turbulent kinetic energy and

T+ =
σT
κ
ln
(
ETy

+
)

(3.8.9)

Tw can either be prescribed or calculated based on the material and properties of and the net
heat flux on the wall. This leads to an iterative process as the net flux depends on Tw. An
efficient calculation can be found in detail in Jia [158].

3.8.2.3 Turbulence Equation

3.8.2.3.1 Kinectic energy equation No modifications are required for the k equation
apart from the turbulent viscosity at the wall which depends on the wall shear stress instead
of the standard Equation (3.1.18).

3.8.2.3.2 Dissipation Rate equation The ε value in the near wall cell for the dissipation
rate is given by

ε =
C

3/4
µ k3/2

κ∆yP
(3.8.10)

3.8.2.4 Pressure Boundary

A pressure boundary is needed in case the exact flow details are not known but instead
the pressure boundary values are. Typically used in FSE to allow mass to vent in/out of
a defined fire domain. It is important to make sure that the area which the modeller is
interested in is far enough away from the pressure boundary so it can not falsely impact
the flow values. This generally requires extending the region beyond the actually modelled
region. As pressure P is prescribed at the boundary the pressure correction P ′ is zero.

72

3.9 Solvers

3.9 Solvers

After all the above equations are discretised, using an implicit formulation, they now need
to be solved. This can be done through numerical matrix solvers. Another but mostly not
practical way of solving the matrix would be through direct methods, such as the Gaussian
elimination. The method requires a lot of memory and the time spent solving the system. So
most CFD codes make use of iterative solvers, including SMARTFIRE. Iterative solvers cal-
culate values based on previously calculated values, this is repeated until the system reaches
a state where the values are not changing any more (within a specified accuracy level), this
state is called convergence. SMARTFIRE uses different kind of solvers, e.g Jacobi Over Re-
laxation (JOR), Successive Over Relaxation (SOR) or the conjugate gradient method. This
thesis will only focus on the Jacobi Over Relaxation solver, a detailed explanation for that
will be given in Section (4.3).

Serial SMARTFIRE generally uses the JOR solver only for the momentum equation, the
other variables use the residual-sor implementation for pressure.

3.9.1 JOR Method

The Jacobi Over Relaxation (JOR) method is based on the iterative method. The i + 1

iteration value of variable φ in element P
(
φi+1
P

)
is obtained by using:

φi+1
P =

1

APP

(
bP −

∑
k 6=P

Apkφ
i
k

)
(3.9.1)

The JOR methods adds an over relaxation term

φi+1
P = (1− α)φiP +

α

APP

(
bP −

∑
k 6=P

Apkφ
i
k

)
(3.9.2)

Although over relaxation is used to speed up the convergence (α > 1) it is more common
in FSE to under relax the solver (α < 1) to give greater stability. The disadvantage of this
method is that it is slow compared to others but very stable.

The basic work flow for the solver is

73

3.9 Solvers

1. for all cells (1 to number of cells), apply Equation (3.9.2) to calculate a value for the
chosen variable φP .

2. repeat previous step until convergence is achieved or the maximum number of itera-
tions is reached.

The new value of φi+1
P is dependent on the previous neighbouring values of φik and is inde-

pendent of φi+1
k . This means the cell ordering makes no difference to the obtained value of

φi+1
P . The differences that can occur are due to machine precision and numerical problems

which will be discussed in Chapter (5).

74

Chapter 4

PARALLEL IMPLEMENTATION OF

SMARTFIRE

After discussing all the different parts of the CFD model in the previous chapters, an effi-
cient way of implementing it will be given in this chapter. The most straight forward way
of running a CFD simulation is to run it using a serial implementation. A serial simulation
processes the problem cell after cell. The other method is running the model in parallel
which is due to the accessibility of powerful computer systems becoming more and more
important. A parallel implementation will split up the problem into sub-problems which
then can be solved simultaneously. The goal of parallel techniques is solving a problem in
less time or solving a larger problem in the same time. This thesis focuses on improving
the execution speed by executing the necessary calculation on GPU hardware. The main
concept is transferring the decomposed problem onto the GPU hardware, where each Block
can run simultaneously, see Figure 4.1. Typical application areas are science and engineer-
ing e.g meteorology, physics, bioscience as well as data mining, financial modelling, film
animation etc.

This chapter describes the steps necessary in the process of applying parallel concepts to
prepare the CUDA GPU execution in SMARTFIRE.

75

4.1 Mesh Partitioning

Figure 4.1: Problem, decomposed to 3 domains gets mapped to GPU hardware.

4.1 Mesh Partitioning

As described above to run problems in parallel the problem has to be divided in individual
partitions that then can be solved simultaneously.

To efficiently divide up a large mesh, the number of cell edges on a partition wall has to
be minimized. This is done by optimising the surface of each partition until the lowest sur-
face area is achieved. As mentioned before, SMARTFIRE uses an unstructured mesh, see
Figure 3.3. Due to the fact that graph partitioning algorithms for unstructured meshes are
very complex, one of the well established available tools can be used e.g Metis [163], Jostle
[164], Chaco [165] and Scotch [166]. In this thesis Metis will be utilised as it is has been
used within the research group by Grandison [167] and Mohedeen [168] successfully, is
open-source, fast and stable. Figure 4.2 shows an example of how a 125 cell cube has been
partitioned into three sub domains using Metis.

76

4.1 Mesh Partitioning

Figure 4.2: Example three dimensional mesh partitioning of a 5x5x5 cell domain.

A detailed description of the required Metis input format can be seen in Section A.4 in the
Appendix.

The CUDA implementation of SMARTFIRE, as mentioned in Section 2.4.2.3, has the limi-
tation that domain sizes are limited to a maximum of 1024 cells. Unfortunately Metis does
not offer the option to specify a maximum domain size instead it only accepts the number of
partitions. But as mentioned above, the goal of Metis is to minimize the surface between the
adjacent partitions, the final number of domains often slightly differs from the input number.
To ensure that the number of cells does not exceed 1024 Metis is repeatedly tested with an
increasing number of j sub-domains until all sub-domains are less than 1024 cells in size,
see Listing 4.1. As Metis runs very fast and normally only 1 to 5 iterations are necessary
this was a sufficient work-around.

77

4.2 Halo Cells

Listing 4.1: Metis iterative implementation.

1 j = # cells / 1024

2

3 fulfilled = false

4

5 while(fulfilled = false)

6

7 ...Metis run

8

9 if (largest_domain < 1024) fulfilled = true

10 else initial_guess++

Where j is the initial guess, obtained by simply using N/block size. If iterations return
block sizes above the one specified j gets increased and Metis runs again.

4.2 Halo Cells

As mentioned in Chapter 3.3.2 in the discretisation process the solution value φ of the cor-
responding variable depends on the φ-values of the neighbouring cells. Which is shown in
the matrix equation Aφ = b from Section 3.2. However as the domains are now physically
separated there is no information exchange from one domain to the other any more. This
simply means the cells on the boundaries of each domain will not get any values passed in
any more from their neighbours. To solve this issue halo cells will be added to each domain.
In the example in Figure 4.3 we have a domain consisting of 9 by 5 cells. These cells are
split up into three domains as shown in Figure 4.4. The lightly shaded grey cells represent
the halo values. The black and white arrows indicate that the last row of calculated values
from one domain represents the halo region for the adjacent domain. It also shows that
halo values will only be read in and not calculated by the domain, this means there is no
additional calculation effort but additional storage and mapping arrays for the halo cells are
necessary.

78

4.2 Halo Cells

Figure 4.3: 9x5 domains [167]

Figure 4.4: Domain subdivided with halo cells added for communication at the domain parti-

tions [167]

The fact mentioned in Section 4.1 that the surface optimisation done by Metis minimizes the
number of halo cells and therefore communications which only occupies resources is im-
portant, is illustrated in Figure 4.5 showing the difference in halo cells required for different
partitioning styles.

79

4.2 Halo Cells

Figure 4.5: Different partitioning approaches requiring different halo cells [167]

It can be seen, that depending on the number of domains and the shape chosen the number
of halo cells varies, Figure 4.5 (b) has 36 halo cells, (c) has 28 halo cells and (d) has 36 halo
cells as well.

The halo communication in this thesis is implemented as a separate kernel function which
is called after each solver iteration. It had to be implemented in this way to ensure that all
the solver calculations have finished before the halos get updated. As said above the halos
do not have to be calculated separately they are essentially taken from one domain (where
they are calculated values, non-halos) and updated in the adjacent domains.

The halo update in the code, has been benchmarked to work out how much time is spent
doing the update compared to the actual solving. On average the update takes less than 12
per cent per iteration (0.0004 seconds vs. 0.0031 seconds) and is therefore almost negligible.
This concept has no effect on the solution process of the CFD code as every update finishes
before the values are used again in the next sweep.

80

4.3 JOR Solver

4.3 JOR Solver

After all the parallel specific concepts were discussed in previous sections they will now
be used to explain the actual implementation of the numerical solver of the SMARTFIRE
CUDA CFD engine. Code Listing 4.2 shows the serial version of the JOR solver used in
SMARTFIRE. It can be seen in line 1 (for loop) of the code that the solver works sequentially
over the number of cells in the domain. Therefore the described solving step will be repeated
until all cells have been updated. First of all the source term (b vector entry) gets stored in
”curval”. Followed by two simplifications to resolve multi-dimensional structures in the
code shown in line 3 and 4 which are not essential for the code. Line 5 loops over the
number of neighbouring cells present for a cell. Now in line 7 and 8 is where the actual
solving happens, which follows the formula shown in Equation (3.9.1). The cumulative
sum of the previous cell value * the corresponding system matrix entry is added up and
subtracted from the source term entry. Followed by a division by the ap coefficient, which in
SMARTFIRES’ case is an unnecessary step as the system matrix is normalized and therefore
always one. The final step is updating the old cell value with the newly calculated one, which
can bee seen in Line 11.

Listing 4.2: Serial solver code.

1 for (cell_num = start_cell; cell_num <= end_cell; cell_num++){

2 curval = source[cell_num];

3 l_s_coeff = s_coeff[cell_num];

4 l_c_index = c_index[cell_num];

5 for (indx = 2; indx <= c_index; indx++)

6 {

7 curval -= l_s_coeff[indx] *

8 previous_value[l_c_index[indx]];

9 }

10 curval /= l_s_coeff[1];

11 local_cell_value[cell_num] = curval;}

81

4.3 JOR Solver

The one important thing to highlight in code Listing 4.2 is the sequential way of executing
the solving steps for each cell. While the product in line 7 and 8 is calculated, the other
calculations over the remaining cells have to wait for the current cell to finish. These se-
quential executions are where the CUDA programming model is used to make full use of the
available hardware resources to reduce the time needed to solve each computational stencil.
Figure 4.6 shows how two cells would be calculated, in serial and in CUDA. Looking at
the time line, it can be seen that the serial version calculates the new cell values (Cell1 and
Cell2) one after the other, the CUDA version performs the same mathematical operation but
for the two cells simultaneously. The calculation uses the sum over the product of previous
value times coefficient for each neighbour. Looking at the serial code in Listing 4.2 this can
be seen in the for-loops in line 1 and line 5, CUDA does not need the outer loop any more
and executes the inner loop for each cell simultaneously.

Figure 4.6: Serial and parallel calculation of a JOR solver step, for cells C1 and C2 using

neighbouring values Neighbour1 to Neighbour4.

82

4.3 JOR Solver

The adjusted solver code can be seen in Listing 4.3. Lines 1 to 11 are performance im-
provements and will be discussed in detail in Section 4.3.1. The first line which resembles
the actual solver logic is line 13, the if statement ensures that each domain stays within its
limits, this is necessary as the Metis domains mentioned before can have different sizes but
the CUDA block size (as mentioned in Section 2.4.2.3) stays the same over all blocks. In
general the logic remains the same as in code Listing 4.2, so the first step is to get the source
term value (line 15) and subtract the previous neighbouring values times the corresponding
system matrix entry (line 16 to 19). Followed by the division using the ap coefficient (line
20). The ”id” index is a global CUDA identifier (an unique identifier for each element),
which is calculated by using block id and thread id (block id ∗ block size + thread id),
Figure 4.7 shows the ids for blocks and threads. Thread ids are unique within each block
and go from 0 to block size -1 and each block has a block id from 0 to number of domains.
These global identifiers are used to access/ write to the correct memory locations, as each
thread executes simultaneously. To summarize the differences in the two implementation
methods, the CUDA model executes all the individual cell updates in parallel with all its
available hardware resources in difference to the cell by cell execution of the serial model.
Therefore eliminating the idle times of the serial version and as a result reducing the time
required for the execution.

Listing 4.3: CUDA solver code.

1 __shared__ Float_Type u_sh[1026];

2

3 u_sh[id] = u_d[id];

4 u_sh[id+offset] = u_d[id+offset];

5

6 if(id == 0)

7 {

8 u_sh[1024] = 1;

9 u_sh[1025] = 0;

10 }

11 __syncthreads();

12

83

4.3 JOR Solver

13 if(id <domain_sizes_d[bx])

14 {

15 u_d[id] = b_vector_d[id];

16 for(int index =0;index<6;index++){

17 u_d[id] -=

18 u_sh[map_d[(id+index)]] * sys_mat_d[id+index]

19 }

20 u_d[id] /= sys_mat_d[id+6];

21 }

Figure 4.7: Block and thread numbering schemes used by CUDA [169]

84

4.3 JOR Solver

4.3.1 Shared Memory Concept

The solver implementation shown above theoretically could be up to (number of cells) times
faster than the serial code, if executed in parallel. This would mean that every cell can be
calculated simultaneously compared to the sequential execution in serial. Unfortunately this
is not the case as hardware limitations i.e number of processors, number of concurrently
running threads, memory limitations, etc. will reduce the speed-up drastically. Therefore
speed-ups can be achieved up until the point where all calculation resources (cores) are oc-
cupied and tasks will be queued up.

This section will show how the solver code can be optimised to further reduce the execution
time inside the solver. Figure 4.8 shows the different kinds of memory i.e global/constant,
shared, registers, accessible to different groups of data on the GPU. So far the data was kept
in global memory meaning all the calculations are executed on the slowest kind of mem-
ory available. Unfortunately the faster types of memory e.g constant memory and shared
memory (registers) are very limited and will be far too small to store all the data. As the
slowest type of memory is also the biggest part available it will have to be used to store the
multi GBs of data. To make use of the so far unused, fast types of memories a combination
of global and shared memory has been developed. Shared memory is about 10 times faster
(˜1.7TB/s, global memory ˜150GB/s).

85

4.3 JOR Solver

Figure 4.8: Different types of memory available on a CUDA device.

The downside of shared memory is that it is only available on a per block basis (not visible
outside the corresponding block), limited in size(50kb per block), and only has the lifetime
of a kernel call. The size limitation is not that much of a problem as with the maximum
block size of 1024 elements (Fermi and later generations) and we are using float numbers
only 1024*4byte = 4.096kb of memory are occupied. To avoid unnecessary time to popu-
late the shared memory for every solver kernel call the number of values has been further
reduced. As multiple cells per block share the same neighbouring values they only get stored
once in shared memory and get accessed by using a cell to shared memory mapping (map d
in Listing 4.3) which stays constant throughout the whole simulation,(see Figure 4.10 and
Figure 4.11) more detailed mappings can be found in Appendix A.5. Unfortunately the fact
that shared memory has to be populated and copied back every solver kernel call (for every
variable) cannot be avoided.

Going back to Listing 4.3 lines 1 to 11 are responsible for the shared memory handling.
First the size of shared memory has to be defined (line 1), then the data (u d) in line 3 plus
the halos in line 4 have to be loaded in. Followed by the allocation of two constants 0 and
1, which will be explained further below. The last step is calling a barrier command in line
11 which ensures that loading in the data is finished before the processing of the data starts.

86

4.3 JOR Solver

The whole process is illustrated with an example of a 25 (5x5) cell heat transfer problem in
Figure 4.9 which was partitioned in 3 domains. Figure 4.9a shows the initial temperature
distribution, Figure 4.9b the partitioned and re-numbered case. Tables 4.1 and Table 4.2
show the cell numbers included in the individual domains and the domains including the
halo cell.

(a) Initial temperatures in degree Celsius. (b) Cell numbering according to the partitioning.

Figure 4.9: Two dimensional mesh partitioning of a 5x5 cell domain.

Table 4.1: Cells excluding halo-cells as in Figure 4.9

Domain 1 1 6 7 11 12 13 16 17 21 22

Domain 2 0 5 10 15 20

Domain 3 2 3 4 8 9 14 18 19 23 24

Figure 4.10: Shared memory cell number and halo mapping.

87

4.3 JOR Solver

Table 4.2: Cells including halo-cells as in Figure 4.9

Domain 1 1 6 7 11 12 13 16 17 21 22

(red) 0 2 5 8 10 14 15 18 20 23

Domain 2 0 5 10 15 20

(green) 1 6 11 16 21

Domain 3 2 3 4 8 9 14 18 19 23 24

(blue) 1 7 13 17 22

Figure 4.11: Shared memory populated with corresponding temps as in Figure (4.9).

Figure 4.10 and Figure 4.11 show the the cell list for u d, in cell numbers and in tempera-
ture values, which is loaded into shared memory. This way of populating the memory makes
renumbering schemes as used by Grandison [167] and McManus [170] unnecessary to im-
plement as the halo values automatically get stored concurrently at the end of the each shared
memory block and map on the actual cell values at the beginning of the next block. How-
ever renumbering still brings advantages for the CUDA implementation regarding memory
access patterns and therefore performance which will be described in the next paragraph.

Looking at Figure 4.12 which uses a thin plate heat conduction problem to demonstrate
that using a fixed numbering scheme is limiting the execution performance. The inner three
columns consist of boundary (blue) - non boundary (red) - boundary (blue) cells. By cal-
culating cells 4,5,6 in this order the calculation will take a different path (represented by if
statements) within the CFD code for each type of cell. Different paths in the code equals
longer memory access times due to physical gaps between the storage positions in memory.
If this happens in CUDA coalesced memory accesses cannot be guaranteed any more

88

4.3 JOR Solver

Figure 4.12: 5 x 3 domain no renumbering scheme applied.

which serializes the code. Serializing the code means that parallel execution is no longer
possible and these parts of the code will get executed in a for loop fashion element by
element. To avoid this the implementation renumbers the geometry as shown in Figure 4.13,
this results in an execution flow which first executes all the non boundary cells followed by
the boundary cells. The basic idea of the CUDA memory allocations is to group as many
similar elements as possible to fully utilise the fact that the smallest unit, a warp, can access
32 elements (of the same kind) which lie back-to-back in memory in one execution cycle.

Figure 4.13: 5 x 3 domain renumbering according to boundaries applied.

After we have partitioned Domain, identified the halo cells, implemented the solver and
taken care of the shared memory, the solution can now be obtained. Figure in Appendix
A.4 shows the complete case to Figure 4.10 with individual thread numbering block by
block, where the largest domain dictates the size for all domains. Partially filled blocks/
domains get populated with zeros to ensure a unified block/ thread layout (see 1024s and
1025 in Figure in Appendix A.4). As it describes a two dimensional case a maximum num-
ber of four neighbours can be assumed. A group of 4 shared memory coordinates plus the
number of neighbouring values (ap coefficient in this case). So for example domain 0 first
cell is 0 which has the mapping coordinates (11;10;1;1025), which stand for cell numbers
(2;0;6;blank). The blank entry is necessary as a consistent offset of max number neighbours
(5) is needed to access each group of neighbours, therefore a zero has been set in shared
memory to eliminate the entry in the summation. The 5th entry is the ap coefficient in the
actual implementation of the code.

89

4.3 JOR Solver

A two dimensional JOR solver applied to a heat transfer problem (as shown in Figure 4.9)
has been benchmarked to demonstrate the difference in shared memory and non shared
memory implementations. The results in Figure 4.14a show a speed-up of 17x for the non
shared memory implementation compared to the serial version, a 37x to 45x speed-up (de-
pending on problem size) for the shared memory implementation compared to the serial
version. Figure 4.14b shows the direct comparison of the (non) shared memory versions,
where it can be seen that the shared memory version outperforms the other version by a
factor of 2.

The main advantages of the mentioned solver implementation are the fact that it uses a
static mapping to access the corresponding values in shared memory. This mapping will not
change during the runtime of the simulation. This makes use of the fact that shared memory
accesses are a lot quicker than accesses to global memory by applying the same mapping for
variable to solve. The second advantage is the fact that the shared memory implementation
eliminates the CUDA constraints of being limited by its block size definition. This means
more values can be stored in shared memory even so the identifiers , determined by the
block size, cannot directly access them. This is particularly useful for the present halo
concept, as the halo cells do not add any additional benefit to the domain, they are sole used
to exchange data with the adjacent domains. The required number of halo cells can quickly
add up and occupy a large number of resources per block, that can in turn not be used for
actual cell calculations any more. For a 125 (5x5x5) cell domain up to 68% of cells can be
halo cells. The loading of the cells that exceed the block size can be seen in line 4 in Listing
4.3. The layout of the data in memory plus the mapping mentioned previously take care of
copying and accessing these values. This concept makes use of the maximum number of
resources to calculate its new values during a solver step.

90

4.3 JOR Solver

(a) CUDA non-shared memory, CUDA shared memory and CPU solver.

(b) CUDA non-shared memory and CUDA shared memory solver.

Figure 4.14: 2D heat transfer problem solver benchmark.

91

Chapter 5

TESTCASES CFD

A CFD fire model must fulfil various criteria to be considered accurate. It has to be able to
model all the products that occur during a fire as well as keeping the overall execution time
at an expectable level. As there will always be a trade off between maximum accuracy and
the computational effort necessary to complete the simulation it is important not to over-
engineer simulation cases and still stay within expected ranges of result.

In order to validate that the model produces results within an acceptable tolerance level,
results have to be benchmarked against verified data sets. Unfortunately the nature of fire
sciences/ fire safety engineering makes it difficult to obtain accurate results.

As part of testing the CUDA CFD model, two cases have been simulated and benchmarked.
The first case is based on one of the experiments performed by Steckler et al. in 1982 [171]
and later in 2001 from Grandison [172]. This case is well suited to validation studies due to
the relatively simple nature of the experiment together with a high degree of instrumentation.
The other case resembles a two storey care home to demonstrate how the CUDA version
performs in more complex scenarios.

92

5.1 Steckler Room

5.1 Steckler Room

The geometry and dimensions of the Steckler room case can be seen in Figure 5.1 and con-
sisted of a compartment measuring 2.8m x 2.8m x 2.18m with a centrally located doorway
with the dimensions 0.74m x 1.83m. Furthermore it included a heat source (non-spreading
fire) in the form of a centrally located methane gas burner. The dimension of the burner
were 0.3m in diameter and 62.9kW output. The room consisted of 0.1m thick ceramic fibre
insulated boards to establish near steady state conditions within 30 minutes. The original
room had moveable bidirectional velocity probes and bare-wire thermocouples within the
door to measure velocities and temps in the doorway (see red line, door frame in Figure 5.1).

Figure 5.1: Steckler room setup, probes in red [171]

The Steckler room model has become one of the standard fire model benchmark cases, used
by a number of field and zone model developers. It is mainly used to test temperature and
flow distributions in small compartments subjected to a steady non-spreading fire where
several predictions of parameters are made and cross compared [172].

93

5.1 Steckler Room

CUDA SMARTFIRE results and serial SMARTFIRE results have been obtained using the
same simulation set ups, over a simulation time of 200 seconds. Measurements were taken
using a vertical measuring line probe, exactly in the middle of the door width. It can be seen
that results (see Figure 5.2 and Figure 5.3) are in good agreement with some minor differ-
ences in the outputs. The differences compared to the serial SMARTFIRE version can be
explained by the fact that the CUDA model uses a different kind of floating point arithmetic.
The differences compared to the experimental results can be explained by the fact that both,
the serial and the CUDA SMARTFIRE model had to be run without the combustion model,
as the CUDA model currently does not have the ability to model combustion. To further
demonstrate the accuracy the CUDA u-velocity and temperature results have been evaluated
against Steckler’s experimental data and the serial SMARTFIRE results and can be seen in
Figure 5.2 and Figure 5.3. It can be seen that the results obtained by the CUDA SMART-
FIRE version fall within the range of results produced by the other model.

The main differences in CUDA’s floating point arithmetic compared to the serial version
are:

• Floating point operations are not associative, so seemingly-benign reorderings (such
as the race conditions from multi threading) can change results

• Different architectures support different levels of precision and rounding under differ-
ent conditions (i.e. compiler flags, control word versus per instruction)

• different compilers interpret the language standards differently

• some architectures support Fused Multiply-Add (FMAD) and some do not

GPUs have a much better-designed architecture for floating point arithmetic than any con-
temporary CPU. GPUs include native IEEE standard support for 16-bit floats and FMAD,
have full-speed support for denormals, and enable rounding control on a per-instruction
basis rather than control words whose settings have side effects on all floating point instruc-
tions and are expensive to change [173].

94

5.1 Steckler Room

Figure 5.2: Steckler room simulation u-velocity results for various models.

Figure 5.3: Steckler room simulation temperature results for various models.

95

5.1 Steckler Room

In addition to the benchmarking, Steckler’s room was used to create further scenarios to
demonstrate the effects of dynamically changing the environment. The original Steckler
room was adapted by adding a door to close the room from its surrounding area. To demon-
strate the door capabilities, the following 4 scenarios have been simulated:

• Door always closed

• Door always open

• Door opening after 50 seconds

• Door opening after 90 seconds

Figures 5.4 shows these 4 scenarios where it can be seen that the further into the simulation
the change happens the bigger the effect on the temperature distribution becomes. In addi-
tion to the benchmarking, performance timings of the parallel code compared to the serial
have been taken, see Table 5.1.

Table 5.1: CUDA execution speeds vs serial execution speeds

Number of cells CUDA (t in s) Serial (t in s) Speed Up

18K 390 4806 12.32x

47K 961.3 14721 15.31x

It can be seen that the speed up increases when the problem size increases. More details
about expected speed ups and measurement results from much larger cases will be presented
in the next Section 5.2. In general the performance of the CUDA code will go up until all
the available hardware resources are in use simultaneously.

96

5.1 Steckler Room

Figure 5.4: Cut plane view of the temperature distribution for different opening times of the

door.

97

5.2 Care Facility

5.2 Care Facility

The second code comparison case, represents a two-storey day care facility. The geometry
consists of 2 floors, 2 staircases, one main exit and three emergency exits on the ground
floor. The building includes several nursing rooms, communal areas and offices for staff
members. The fire is located in the left staircase, starting from the ground floor, see red dot
in Figure 5.5.

Figure 5.5: Day care facility, identical layout for both floors.

The fire has its origin in the left staircase, causing smoke and temperature to spread through
the rest of the ground floor and via the staircases to the first floor. Some rooms are fitted
with fire doors, therefore fire products do not spread within those areas.

98

5.2 Care Facility

Staircase details:

• Style: Dog Leg i.e. Two runs with landing

• Width: 1.2m

• Height: 3.0m combined (1.5m for each leg)

• Length: 1.89m

• Lanes: 2

• Riser number: 10 (i.e. 9 treads)

• Hand rail: enabled with 0.1m handrail diameter

• Land width: 0.5m

Population details:

• 100 occupants on ground floor

• 50 occupants on first floor

• 2 staff per floor

Fire specifications:

• Total source 500KW

• Smoke total source 0.01 kg/s

• Location on ground floor in the left staircase

• The fire volume for fuel release is 1.2m x 1.2m x 1.2m

• Radiation model enabled (multi-ray)

Further geometry specifications:

• Building dimensions are 48m x 36.4m x 6.2m

99

5.2 Care Facility

• Considering the structure ventilation, the door immediately adjacent to the fire is as-
sumed to be closed throughout the simulation beside little gaps above and below the
door. The main entrance door is also assumed to be closed, but the left- and right-
emergency doors, on the ground floor, are open throughout the simulation. There are
no open external doors or windows on the upper floor.

• Heat conduction through solid walls is not enabled. This is a conservative approxima-
tion as all heat will be available for the occupants to experience, within the building
environment.

• All upper floor rooms are assumed to be open to internal corridors, however the lower
long corridor (towards the fire) is assumed to have rooms with their doors closed.

• The geometry is partitioned into 93 separate Hazard Sub-Volumes for exporting the
fire and toxicity environment

100

5.2 Care Facility

Figure 5.6: Smoke zone layout, ground floor.

Figure 5.7: Smoke zone layout, first floor.

101

5.2 Care Facility

The benchmark case uses the same geometry as shown in Figure 5.5, where a measuring
probe has been placed in the corridor on floor one in y direction (floor to ceiling). Figures
5.8 to Figure 5.13 show the measuring probe height, in equal sub units (x axis) vs. measured
quantity (y axis).

102

5.2 Care Facility

Figure 5.8: Serial and CUDA temperatures vs. height, Ground Floor.

Figure 5.9: Serial and CUDA temperatures vs. height, First Floor.

103

5.2 Care Facility

Figure 5.10: Serial and CUDA velocity vs. height, Ground Floor.

Figure 5.11: Serial and CUDA velocity vs. height, First Floor.

104

5.2 Care Facility

Figure 5.12: Serial and CUDA radiation vs. height, Ground Floor.

Figure 5.13: Serial and CUDA radiation vs. height, First Floor.

It can be seen in Figures 5.8 to 5.13 that the values calculated by the CUDA version match
the serial results with very little differences.

105

5.2 Care Facility

The results in Table 5.2 show the full scale simulation runs for the day care facility, all cases
were applied to the same problem and were using a heat model (including 24 ray radiation),
flow model, smoke model and turbulence model. The mesh size has been varied for each

Table 5.2: CUDA execution speeds vs serial execution speeds

Case # Number of Cells Serial (t in s) CUDA (t in s) Speed Up

1 317208 467.00 22.50 20.75x

2 349676 517.00 24.58 21.03x

3 371420 553.00 26.36 20.98x

4 543376 844.00 38.87 21.71x

case, from 317208 in case 1 to 543376 cells in case 4. It can be seen that the CUDA model
performs much better compared to the previous benchmark case in Table 5.1 in terms of
speed ups. As mentioned before in order to run efficiently, the GPU needs a large workload
to exploit its strength. Figure 5.14 shows the performance graphs (speed up vs. problem
size), with full optimisation switched on and compiled up in release mode plus the theoreti-
cal possible speed up. The red line shows the theoretical hardware limit of the GPU where
theoretically 100% of the available resources are occupied and used for calculations. After
that point data has to be added to a queue until resources are available again. Theoretically
the green line should be a straight horizontal line after this point, as no more speed up can be
achieved, but as full hardware occupancy is really hard to achieve and highly case and im-
plementation depended (branching, shared memory limits, synchronisations, etc.) this point
can get shifted to the right. In the present care facility case an occupancy of 92% has been
achieved. But it can clearly be seen that it follows the expected trend and that smaller prob-
lems will result in smaller speed ups as not all resources will be used to calculate results.
The theoretical speed up scales linear up to the point where no additional hardware resources
are available anymore and the speed up stays constant afterwards. The CUDA timing pro-
cedure is very similar to the common approach for general timing purposes, where dynamic
features (file savings and outputs in parallel implementations) get disabled. These dynamic
features can totally distort the actual performance and only highlight the bottlenecks, as
Grandison described in [167].

106

5.2 Care Facility

Figure 5.14: CUDA speed up vs problem size.

107

Chapter 6

MODEL COUPLING

The definition of a coupling is the degree of independence between two pieces of software, a
measurement of how closely together two work flows interact with each other. In this thesis
the coupling of the two software tools, SMARTFIRE and buildingEXODUS, described in
Section 2.2 will be described. On a high level description the coupling enables buildingEX-
ODUS to control features in SMARTFIRE and vice versa. Figure 6.1 shows a simplified
illustration of the previously used one-way coupling, where a pre-calculated CFD files gets
loaded into EXODUS prior to the simulation, compared to the newly developed two-way
coupling where the CFD files are updated every time step. This feature can be used to
give agents in buildingEXODUS the capability to change the geometry and therefore the
CFD results. Geometry changes can be the opening/ closing of doors, smashed windows,
structural changes, collapsing walls etc. The CUDA version of SMARTFIRE will focus on
dynamic door changes triggered by agents in the buildingEXODUS model. The interaction
is established by connecting the two models and passing control messages between them.
To capture every event the synchronisation will be performed every CFD time step, in order
to incorporate every geometry change in the next upcoming time step. One example of a
single time step process flow is e.g an agent has a task to open Door A at his arrival, at the
times step of his arrival he changes the the door status in EXODUS to ”open” and simulta-
neously sends the update command to SMARTFIRE. The control message gets picked up by
SMARTFIRE and gets executed i.e the boundary condition for Door A gets updated, and the
next time step values get calculated using the updated conditions. The final step is to send

108

the newly calculated end results back to EXODUS. This process can repeat itself numerous
times during a simulation run and can include multiple events at the same time as well.

(a) One way coupling, hazard file gets passed in before simulation.

(b) Two way coupling, Message Passing File (MPF) constantly exchanges control instructions and

hazard data between the models.

Figure 6.1: Simplified illustration of One-way and Two-way coupling of EXODUS and

SMARTFIRE.

Figure 6.2 gives an overview how the different EXODUS and SMARTFIRE modules, dis-
cussed in Section 2.2 (see Figure 2.2 and Figure 2.1) interact, it can be seen how the con-
nection between the SMARTFIRE CFD engine and the EXODUS HAZARD and ENCLO-
SURE models are established. Where the ENCLOSURE model communicates the actions
performed by the agents on the geometry back to the SMARTFIRE model which then up-

109

dates the HAZARD sub-model data in EXODUS. A detailed overview of the synchronisa-
tion model can be seen in Figure 6.3 which shows the different stages of the two models
during a coupled simulation run.

It can be seen that both models reside in suspended states after their time step opera-
tions complete. Unfortunately these suspended states cannot be avoided as EXODUS and
SMARTFIRE both have very different execution times. EXODUS takes seconds to minutes
to finish while SMARTFIRE can take minutes to hours to complete, depending

Figure 6.2: Detailed illustration of Two-way coupling of EXODUS and SMARTFIRE.

on the case simulated. In detail this means that the models are time step locked, while
one tool calculates its current time step the other waits idle for a status message to start
its next time step calculation. Figure 6.3 shows these idle stages in (2) and (5) the two
status messages required to continue are EXMS SMF ESF READY for SMARTFIRE and
SMF EX DAT READY for EXODUS respectively. The different control messages can be
seen in Table 6.1. The synchronisation system is established by using a binary file to store
the status messages from both tools. During each step the file will be blocked by the model
currently using it, to ensure that no messages get lost. The execution order of the two

110

Table 6.1: Coupling control status messages.

EXMS SMF CONNECTED Connection to .esf file established

EXMS SMF ESF READY EXODUS finished writing .esf file

SMF EX DAT READY SMARTFIRE finished writing .dat file

models is predetermined, as the CFD data has to be available to initialise EXODUS first.
This can be seen in Figure 6.4, SMARTFIRE is started first, checks for the existence of the
synchronisation (.esf) file and connects to it, next the data output file (.dat)is created and
header entries are written, describing the hazard zone configuration and the variables used
to calculate the upper and lower layer per zone. Next SMARTFIRE sets the status message
to EXMS SMF CONNECTED, followed by a message containing the total CFD simulation
time and the file name of the data output file (.dat). SMARTFIRE then performs the cal-
culation for the initial entries of the output file. After the output file is ready, EXODUS
can initialise the geometry and run its first time step. The highlighted area in blue in Fig-
ure 6.4 represents the time step calculation loop in SMARTFIRE which repeats itself from
n=1...n=total simulation time.

The biggest strength of the two-way coupling is the ability to eliminate the necessitate to
pre-create CFD cases based on assumptions when events might have occurred, meaning the
two-way couple gives the agents the ability to execute tasks as they reach target locations.
This means the agents do not have a pre-set input, when to perform a task e.g open a door.
The time the tasks get executed purely depends on environmental factors present in the evac-
uation simulation, e.g temperature, smoke and radiative heat. These environmental factors
control the time it takes the agent to reach its targets.

111

SMF simulation

run for 1 time step

Has SMF finished the time step

calculations and created the dat file?

EXODUS dat file import

EXODUS

idle

Has EXODUS finished the time step

simulation and created the esf file?

Did door changes

happen ?

Create esf output

for door changes

Keep esf file

status

ESF file ready

AND

Simulation time < total

time

?

SMF

idle

START

Message:

SMF_EX_DAT_READY

Message:

EX_SMF_ESF_READY

SIMULATION

TIME +1

Simulation of 1

time step

Yes

No

Yes

No

NoYes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 6.3: Communication flow between SMARTFIRE and buidlingEXODUS during cou-

pling.

112

By nature, EXODUS is a stochastic model where behaviours and movements are determined
probabilistically, in order to get statistically significant results, a sufficient, preferably large
number of simulation runs (with different starting positions for the agents) have to be per-
formed per scenario (see Section 2.2.2). Each change that happens during a simulation run
creates a new sub-scenario. In order to stay statistically significant, a large number of sim-
ulation runs have to be performed for all permutations of the sub-scenarios (e.g changes in
the populations properties, e.g starting locations). The cases discussed in this thesis, re-used
the same population for each scenario as the focus is on the capabilities of the coupling,
which made the results obtained deterministic. This reaches a point very quickly, where it is
simply too time consuming or just impractical to pre-calculate that many different CFD sub-
scenarios. This shows the other big advantage of the two-way coupling, which eliminates
this necessity by constantly exchanging information to adjust to changing environments,
which means there is no need any more to manually go through all the permutations.

The two-way coupling offers several novel capabilities and eliminates possible causes of
problems in the modelling process. It is for example almost impossible to know a priori
how the fire and evacuation will interact which makes it difficult to set up scenarios using
pre-defined parameters. The two-way coupling eliminates some of these assumptions pre-
viously required to model scenario when a one way coupling was used e.g. doors staying
open or closed at fixed times, these times will be determined during the simulation by the
environment and the interaction of the agents with the environment. This allows FSEs the
variation of the evacuation to effect the course of the fire scenario. At the time when this
research was carried out this complete two-way coupling of a CFD code and an evacuation
simulation hasn’t been done before.
The two-way coupling will hopefully establish itself in the FSE community and make a
valuable contribution to CFD fire and evacuation modelling and eventually safe lives.

The next chapter will describe different example coupling cases and highlight the differences
compared to non-coupled executions.

113

SMARTFIRE EXODUS

Initialisation finished

Start

ESF FileConnect

DAT FileCreate Header

Start

Connect

Run

SMF_EX_DAT_READY

SMF 1st time step calculated

DAT File

Import time step entry

Run

Check for door changes

EX_SMF_ESF_READY

EXODUS time step finished

ESF File

Import door changes

Apply changes if any

Run

SMARTFIRE time step finished

SMF_EX_DAT_READY

DAT File

Geometry

Load

SMF_EX_DAT_FILE_<FILENAME>

DAT File
Create time step entry

DAT File
Create time step entry

Disconnect

Time

step

Loop

1

2

3

4

5

6

Figure 6.4: Sequential diagram between SMARTFIRE and buidlingEXODUS during coupling.

114

Chapter 7

TESTCASES COUPLING

In this chapter the capabilities of the two-way coupled model will be demonstrated. SMART-
FIRE and buidlingEXODUS will be used on two scenarios, a simplified geometry consisting
of three rooms, connected by a corridor and the more complex care facility scenario already
presented in Section 5.2. The simplified scenario will be used to highlight the general con-
cept of the coupling and demonstrate the interactions of the agents with the geometry plus
the differences in evacuation outcomes this leads to. The care facility case will give an
overview of how the coupling performs in complex environments, with one or more agents
performing tasks.

7.1 Coupling Case 1: Simplified Geometry

Coupling case one consists of a very simplified layout and hazard set up. Figure 7.1 shows a
geometry with three rooms, two doors and a total population of 10 people plus one warden.
The three agents, Agent A in Figure 7.1 green circle, Agent B, blue circle and a warden, red
circle . A fire is located in the room on the right (red square) which is initially connected to
the corridor by an open door. The warden has the task to inform the people in both rooms
and lead them to the main exit in the bottom right hand corner. The door to the room con-
taining the fire is labelled Door 1 the door to the rooms with the ten people as Door 2.

115

7.1 Coupling Case 1: Simplified Geometry

Figure 7.1: Geometry and population set up for test case 1.

Three scenarios were simulated using this simplified geometry:

1. Warden checks the room on the right for people, closes Door 1, opens Door 2, informs
the people to start evacuating and guides them to the main exit where all of them exit
the building.

2. Warden checks the room on the right for people, but does not close Door 1 and goes
directly to open Door 2 to get the people to guide them to the main exit where all of
them exit the building.

3. Warden goes directly to the room on the left, opens Door 2, informs the people and
guides them towards the main exit before he checks the room on the right before he
closes Door 1.

The outcomes of these scenarios are evaluated by comparing the narcotic properties for
specific agents and by comparing the overall evacuation times required. The different kind
of exposures an agent faces, have been described by Galea et al. [174]. The ones important
for this thesis are:

• FIH: FED (fractional effective dose) model measuring the individuals cumulative ex-
posure to radiative and convective heat.

• FIHc: FED model measuring an individuals cumulative exposure to convective heat.

• FIHr: FED model measuring an individuals cumulative exposure to radiative heat

116

7.1 Coupling Case 1: Simplified Geometry

Coupled versus Non-Coupled results

As previously mentioned the strength of the coupled version is that a fire safety engineer
does not have to make as many assumptions and can safe time. In the classic approach, by
using the one way coupled version of Exodus and SMARTFIRE, from point a to point b
(point a being a starting point and point b being a point of interest, e.g a door, a person’s lo-
cation , etc.). In the previously discussed test cases point a would be the starting position of
the warden and point b one of the two doors as they will have an effect on the CFD outputs.
After obtaining times t1 and t2, for the times it takes the warden to reach door 1 and door 2
respectively the static CFD fire case will be simulated in SMARTFIRE, using door event
times t1 and t2. Afterwards the results of the fire simulation will be used to simulate the
Exodus case to obtain individual exit times and narcotic properties. The fundamental prob-
lem with this approach is that one has to set event times purely based on distance and static
travel speed (RSET/ASET). Which represents a difficult problem as environmental factors
that might delay the agents event times t1 and t2 have to be an assumption. The coupled
version does not rely on any predefined settings or assumptions, it constantly updates the
environmental influenced attributes in Exodus, adjusting health and speed levels. The result
is a more realistic representation of individual times, overall time and health statistics for
each agent.

A more accurate, non-coupled simulation could be achieved by manually feeding back EX-
ODUS times into SMARTFIRE. Figure 7.2 shows the simple case where a door gets opened
during the simulation run. An initial CFD hazard case will be created, EXODUS uses this
data to determine the arrival time of an agent at the door to be changed, this time will be used
to create a second CFD hazard file which includes the geometry change and finally this CFD
hazard data can be used to run the rest of the simulation. This process can be extended for
more than one event but the modelling work becomes quite time consuming pretty quickly.

117

7.1 Coupling Case 1: Simplified Geometry

Figure 7.2: Manuel execution process for two-coupling.

The number of cases that have to be simulated for more complex scenarios and the cumu-
lative errors caused by introducing more assumptions per CFD stage, quickly makes it an
impracticable approach.

The following results in Table 7.1 and 7.2 show the comparison of the results for scenario 1
with a 60s delay for the warden, coupled and non-coupled (with action times derived from a
basic EXODUS run). The fire strength has been slightly lowered (700KW to 500KW) and
the smoke yield has been slightly upped (0.000125 to 0.01 Kg/s) to clearly show the effect
the environment has on the agents travel speeds without instantly killing them. Table 7.3
shows the differences in action times, exit times and total evacuation time. It can be seen
that action times for door 1 and door 2 differ by 72 seconds from 81 seconds non-coupled
to 153 seconds coupled and by 129 seconds from 101 seconds non-coupled to 230 seconds
coupled. This is caused by the effect the smoke has on the agents travel speeds, furthermore
in the non-coupled version door 1 closes 72 seconds earlier, increasing the concentration of
radiation and heat inside the room

118

7.1 Coupling Case 1: Simplified Geometry

Table 7.1: Narcotic properties for Agent A, Agent B and the warden, Scenario 1 - 60 seconds

delay non-coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00124 0.0 0.0 0.0

Agent B 0.00040745 0.0 0.0 0.0

Warden 0.00118 0.93988 0.04525 0.89463

Table 7.2: Narcotic properties for Agent A, Agent B and the warden, Scenario 1 - 60 seconds

delay coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00145 0.0 0.0 0.0

Agent B 0.00040745 0.0 0.0 0.0

Warden 0.00138 0.01105 0.01105 0.0

Table 7.3: Action, exit and total evacuation times for scenario 1.

Non-coupled Coupled

Action time door 1 81s 153s

Action time door 2 101s 230s

Exit time Agent A 266s 311s

Exit time Agent B 88s 88s

Exit time warden 256s 296s

Total evacuation time 285s 329s

119

7.1 Coupling Case 1: Simplified Geometry

on the right a lot. The assumed pre-calculated closing time of door 1 did not take into ac-
count that due to the presence of smoke it will take the warden much longer to reach the
door before he can close it. As EXODUS in the non-coupled version does not feed back the
slower pace to the CFD results, door 1 closes purely based on the pre-calculated time, while
the warden is still in the room, causing the conditions to be a lot worse.

This can bee seen in the wardens FIH readings in Table 7.1 and 7.2, a reading of 0.93988
(1.0 being the fatal dose) means he would have been nearly incapacitated in the non-coupled
version. Furthermore it can be seen that the smoke increases individual exit times and the
overall evacuation time by 15% (44s). The delay in the closing of door 1 allowed a lot more
smoke to fill up the corridor and also effecting the populations travel speeds.

Further Scenarios

In addition to the under or over-estimation of factors as described in the coupled versus
non-coupled comparison, this section will focus on the variety of sub-scenarios that can be
directly simulated to show how the coupling can be also used to determine the range of
outcomes for a given geometry. It can be seen in Figure 7.3, that the closing of door 1 has
a large effect on the environment and therefore the outcomes. The closed door 1 prevents
the temperature, smoke and radiation to enter the corridor. Table 7.4, 7.5 and 7.6 show the
properties of three agents, Agent A , Agent B and the warden.

120

7.1 Coupling Case 1: Simplified Geometry

(a) Scenario 1 with closed Door 1.

(b) Scenario 2 with open Door 1.

(c) Scenario 3 with closed Door 1.

Figure 7.3: Cut plane temperature distribution inside the middle of the corridor for scenario one

to three, 47 seconds into simulation.

The outcomes in Table 7.4 and Table 7.5 for Agent B, who was located in the upper right
corner of the geometry, show that this agent is not effected by the door change in scenario
1 and 2 as he goes straight down towards the main exit after the door was closed. Meaning
he faces the same situation in both scenarios and is only exposed to a different environment
during the short time it takes him to travel from door 1 to the exit. In contrast to in scenario

121

7.1 Coupling Case 1: Simplified Geometry

Table 7.4: Narcotic properties for Agent A, Agent B and the warden, Scenario 1, coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00038022 0.0 0.0 0.0

Agent B 0.00014318 0.06364 0.06364 0.0

Warden 0.00026514 0.05156 0.05156 0.0

Table 7.5: Narcotic properties for Agent A, Agent B and the warden, Scenario 2, coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00037717 0.03867 0.03867 0.0

Agent B 0.00014443 0.06364 0.06364 0.0

Warden 0.00025738 0.06020 0.06020 0.0

3 where he gets notified at last and had a much longer exposure time to a much more devel-
oped fire environment.

The warden on the other hand shows a 17% higher FIH reading in scenario 2 compared to
scenario 1. In both cases he is exposed to heat and radiation while he enters the room on
the right to check for people. The higher FIH reading for scenario 2 can be explained as
the exposure to heat and radiation in scenario 1 stops right after he closes door 1 whereas in
scenario 2 the doors stays open and he faces more heat and radiation on his way back to the
main exit. Where the fire had more time to increase the temperature and radiation inside the
corridor.

The most obvious effect can be seen for Agent A, who was not exposed to any heat or ra-
diation in scenario 1, as he is the last one to exit the building. In scenario 2 Agent A is the
person who has the longest exposure to the most evolved fire conditions.

The closing time of the door also has a direct effect on the amount of smoke present in the
corridor, which decreases the visibility and therefore slows down the agents. This can be

122

7.1 Coupling Case 1: Simplified Geometry

seen in total simulation times which are 82 seconds in scenario 1 and 83 seconds in scenario
2. The smoke concentration only reaches a critical level within the room on the right, in
scenario 1 the warden and Agent B leave the room at an early stage where the fire didn’t
have enough time to develop. After door 1 gets shut no more smoke or temperature can
penetrate into the corridor. In scenario 2 the smoke and temperature can spread through the
corridor during the whole time of the simulation as door 1 stays open.

Scenario 3 describes a different evacuation strategy, the warden decides to first notify the
people in the room on the left before he decides checking the room on the right, notifying
the person in there and closing door 1.

Figure 7.4 to Figure 7.6 show the different temperature distributions in EXODUS for sce-
narios 1 to 3. Figure 7.4a, Figure 7.5a and Figure 7.6a show the temperature conditions 10
seconds into the simulation run. It can be seen that the same condition are present in all
three scenarios as no changes were applied at that stage. In comparison Figure 7.4b, Figure
7.5b and Figure 7.6b show the different outcomes for scenario 1 to 3, 47 seconds into the
simulation, which represents the point where the fastest scenario (scenario 3) finishes. It can
be seen that by not closing door 1 the temperature inside the corridor increases and agents
get exposed to heat and radiation on their way towards the main exit. Scenario three also
shows that closing door 1 again after leaving the room on the right, lowers the temperature
inside the corridor again.

(a) Warden checking room, walking through high

temperature area, 10 seconds into simulation.

(b) Warden leading the agents towards the main

exit, 47 seconds into simulation, door 1 closed.

Figure 7.4: Scenario one, warden does close door 1 before evacuating the rest of the building.

123

7.1 Coupling Case 1: Simplified Geometry

(a) Warden checking room, walking through high

temperature area, 10 seconds into simulation.

(b) Warden leading the agents towards the main

exit 47 seconds into simulation, door 1 stays open.

Figure 7.5: Scenario two, warden does not close door 1 before evacuating the rest of the build-

ing.

(a) Warden on his way to door 1 after opening

door 2 first, 10 seconds into simulation.

(b) Last person just left the building, door 1

closed, 47 seconds into simulation.

Figure 7.6: Scenario three, warden does close door 1 after he evacuated the last person.

To highlight the differences between scenario 1 and scenario 2, where scenario 2 could al-
most be modelled in a non-coupled way (by neglecting the closing event of door 2) Figure
7.7 and Figure 7.8 show the outcomes after 60 seconds into the simulation. It can be seen
in Figure 7.8b that the longer the evacuation takes place with door 1 open, the higher the
temperature levels inside the corridor get and the higher the exposure to heat are for the re-
maining agents. Despite the different strategies, Figure 7.6 shows similarities to scenario 1
in Figure 7.4, where very little heat spreads into the corridor. This is due to the fact that the
whole evacuation only took 47 seconds as all the people in the room on the left get notified
at a much earlier stage. Figure 7.6b was taken at 47 seconds into the simulation right after
the last person exited the building.

124

7.1 Coupling Case 1: Simplified Geometry

The coupling provides the user with the possibility to test various different strategies to see
the effects of human interaction with the environment.

(a) Warden checking room, walking through high

temperature area.

(b) Warden leading the agents towards the main

exit at 60s, door 1 closed.

Figure 7.7: Scenario one, warden does close door 1 before evacuating the building.

(a) Warden checking room, walking through high

temperature area.

(b) Warden leading the agents towards the main

exit at 60s, Door 1 open.

Figure 7.8: Scenario two, warden does not close door 1 before evacuating the building.

The narcotic properties in Table 7.6 show that Agent A who is the last one to leave the
building gets no measurable exposure to heat (FIH) but it can be seen that that Agent B and
the warden experience much higher effect of the radiation and temperature inside the right
room. This is due to the fact that they have to cross the area in front of the fire source at
a much later stage as in scenarios 1 and scenario 2. Looking at Figure 7.3c it can be seen
that the additional time before shutting door 1 raises the temperature inside the corridor, not
as much as in scenario 2 where the door was open the whole simulation, but more than in
scenario 1 where the door was shut at an early stage.

125

7.1 Coupling Case 1: Simplified Geometry

Table 7.6: Narcotic properties for Agent A, Agent B and the warden, Scenario 3, coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00021956 0.0 0.0 0.0

Agent B 0.00021500 0.13639 0.08695 0.04945

Warden 0.00020582 0.13723 0.09557 0.04166

To further demonstrate the differences caused by varying the scenarios, three more sub-cases
have been set up where the wardens initial response time was increased:

• Warden’s response time was set to 10 seconds.

• Warden’s response time was set to 20 seconds.

• Warden’s response time was set to 30 seconds.

It can be seen that the delay of the warden exposes the agents to fire conditions which had
an additional 10, 20 and 30 seconds to develop and therefore are more harmful. Tables 7.7,
7.8 and 7.9 show the narcotic property results for Agent B, the warden and Agent A. It also
shows that Agent B’s narcotic properties, see Table 7.7 between the individual cases, e.g
scenario 1 with 10 seconds delay, scenario 2 with 10 seconds delay and scenario 3 with 10
seconds delay only depend on the fire conditions up to the point where he leaves the room.
Therefore scenario 1 and scenario 2 are expected to produce similar results. The rest of the
population is effected by the delay in events happening, therefore the longer the delay the
higher the narcotic property readings. Total evacuation times vary from {83 seconds, 90
seconds, 101 seconds} for scenario 1, {82 seconds, 90 seconds, 101 seconds} for scenario
2 and {77 seconds, 77 seconds, 78 seconds} for scenario 3. The shorter times for scenario 3
are caused by the fact that the warden first gets to inform the agents in the rooms on the left,
Agent A in the upper left corner (green circle in Figure 7.1) otherwise is always the last one
to exit the building, experiencing the most developed fire conditions if present.

A full list of property outputs can be found in Section A.6 of the Appendix.

126

7.1 Coupling Case 1: Simplified Geometry

Table 7.7: Narcotic properties for Agent B.

Scenario FIH FIHc FIHr

Scenario1 10s delay 0.10770 0.05733 0.05036

Scenario2 10s delay 0.10877 0.05837 0.05041

Scenario3 10s delay 0.22034 0.16325 0.05709

Scenario1 20s delay 0.13547 0.08326 0.05222

Scenario2 20s delay 0.13997 0.08931 0.05066

Scenario3 20s delay 0.38924 0.25619 0.13305

Scenario1 30s delay 0.19858 0.14163 0.05695

Scenario2 30s delay 0.20473 0.14843 0.05630

Scenario3 30s delay 0.64146 0.34209 0.29937

Table 7.8: Narcotic properties for warden.

Scenario FIH FIHc FIHr

Scenario1 10s delay 0.09717 0.06504 0.03212

Scenario2 10s delay 0.10099 0.07332 0.02767

Scenario3 10s delay 0.23008 0.16027 0.06981

Scenario1 20s delay 0.12678 0.08833 0.03845

Scenario2 20s delay 0.15774 0.11751 0.04023

Scenario3 20s delay 0.32482 0.22229 0.10253

Scenario1 30s delay 0.20998 0.14199 0.06799

Scenario2 30s delay 0.24752 0.18093 0.06659

Scenario3 30s delay 0.45576 0.24429 0.21147

127

7.1 Coupling Case 1: Simplified Geometry

Table 7.9: Narcotic properties for Agent A.

Scenario FIH FIHc FIHr

Scenario1 10s delay 0.0 0.0 0.0

Scenario2 10s delay 0.03444 0.03444 0.0

Scenario3 10s delay 0.00891 0.00891 0.0

Scenario1 20s delay 0.00372 0.00372 0.0

Scenario2 20s delay 0.04485 0.04485 0.0

Scenario3 20s delay 0.02053 0.02053 0.0

Scenario1 30s delay 0.00649 0.00649 0.0

Scenario2 30s delay 0.13803 0.09142 0.04661

Scenario3 30s delay 0.02068 0.02068 0.0

From the narcotic property readings it can be seen that scenario 1 has the most favourable
outcome for the population. This goes against the assumption that it is most beneficial that
the warden always should rescue the majority of the people first (scenario 3). To further
investigate this situation, scenario 1 and scenario 3 have been modelled as another case with
an initial 75 seconds delay time for the warden. It can be seen in the outcomes in Table 7.10,
that scenario 1 now results in the worst case, where everyone would have eventually died as
the warden would have never made it to the second room. The warden enters the room on
the right after about 80 seconds, the 75 seconds delay results in fire conditions that are much
worse than in previous scenarios, Agent B dies right after the warden enters, at around 85
seconds (see FIH readings for Agent B in Table 7.10, FIH values greater than 1 are fatal).
The warden also dies on his way back towards door 1 because of his high exposure to heat
and radiation right in front of the fire source. The warden’s death directly results in the fact
that the other people won’t get notified any more, giving the simulation basically an infinite
total evacuation time.

Scenario 3 with the 75 seconds delay applied results in similar conditions for the warden and
Agent B, 2 fatalities, but in contrast to scenario 1 the other agents can escape the building,
see Table 7.11. Agent B dies at around 85 seconds as he is facing the same conditions as in

128

7.1 Coupling Case 1: Simplified Geometry

Table 7.10: Narcotic properties for Agent A, Agent B and the warden, additional scenario 1, 75

seconds delay, coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00046707 0.0 0.0 0.0

Agent B 0.00038723 1.00655 0.42340 0.58315

Warden 0.00047099 1.00704 0.56736 0.43969

Table 7.11: Narcotic properties for Agent A, Agent B and the warden, additional scenario 3, 75

seconds delay, coupled.

Agent FIN FIH FIHc FIHr

Agent A 0.00050663 0.31945 0.13721 0.18225

Agent B 0.00038723 1.00655 0.42340 0.58315

Warden 0.00050571 1.00501 0.53508 0.46993

the previous 75 seconds scenario 1 case, which is only determined by the time the fire had to
develop, the warden dies at 109 seconds, just after he reaches Agent B’s location. The last
person to leave the building is Agent A at 113 seconds. Although this resulted in 2 fatalities,
still all the other agents would have survived compared to 100% fatalities in the other case.
The scenarios show a broad variety of outcomes for different starting conditions and be-
haviours. The scheduling of those scenarios would have been almost impossible because
of the various unknowns which are determined during runtime, e.g when will the warden
execute his tasks while he is slowed down to different environmental conditions like smoke
or heat. The coupling offers the possibility to simulate a broad range of scenarios which are
determined by the interaction of the two models removing the uncertainties of making too
many assumption by setting up the models. A fire engineer can now apply various concepts
and ideas in a very reasonable amount if time, in the minutes to tenth of minutes.

129

7.2 Coupling Case 2: Care Facility

7.2 Coupling Case 2: Care Facility

Coupling case two consists of the geometry described in Section 5.2 with added agents. The
population consists of 154 people, 150 aged between 65 and 90 years with mixed abilities
and 4 staff members. To highlight the different environmental conditions throughout the
geometry a total of 93 measuring zones have been set up (see Figure 5.6 and Figure 5.7), of
which 10 zones are probes in the rooms closest to the fire source (zone 84 to zone 93). The
simulated test cases cover different scenarios with the main purpose to protect and evacuate
the people in building as quickly and safely as possible. The strategy in all the test cases is
to shield of the fire source from the rest of the building as quickly as possible and therefore
protect the residents from heat, radiation and smoke. This can only be achieved by closing
off the two doors connecting the staircase to the ground and first floor. Furthermore a strat-
egy to ensure minimal impact on the health of residents, where it is assumed many of them
are bedridden and cannot be moved that easily, is implied. The doors connecting the main
corridors with the rooms to the left and right get shut first, to stop smoke and heat pene-
trating into them, then the fire is shielded off by closing the staircase doors and afterwards
the people in the rooms get evacuated safely. In order to demonstrate the capabilities of
the coupled version and to highlight the complexity of interaction between changing CFD
boundary conditions and adapted behaviour of the agents in the evacuation model a warden
has been introduced who will lead the evacuation procedure in different scenarios.

The coupling was applied to the following three different scenarios:

• Scenario 1: A warden located on the ground floor shuts all doors on the ground floor
corridor first, on the way back he evacuates the people from within these rooms fol-
lowed by the same steps upstairs.

• Scenario 2: A warden located on the ground floor shuts all doors on the first floor cor-
ridor first, on the way back he evacuates the people from within these rooms followed
by the same steps downstairs.

• Scenario 3: Two wardens, one located on each floor, shut all doors on their corre-
sponding floor’s corridors first, on the way back they evacuate the people from within
these rooms.

130

7.2 Coupling Case 2: Care Facility

Figures 7.9 and Figure 7.10 show what the output of the coupled simulation in EXODUS
for the care facility looks like. Figure 7.9 shows the temperature output and Figure 7.10 the
smoke output. The outputs shown are the end results for Scenario 3, discussed in Section
7.2.2.

Figure 7.9: VR Exodus output for the temperature distribution 251 seconds into simulation.

131

7.2 Coupling Case 2: Care Facility

Figure 7.10: VR Exodus output for the smoke distribution 251 seconds into simulation.

The wardens starting locations can be seen in Figure 5.6 and Figure 5.7 highlighted by
the green circles. The outcomes of all three scenarios will be evaluated by looking at the
environmental factors which influence the results of an evacuation simulation. Five mea-
surement probes were set up on each floor as it can been seen in the red dots it Figure 5.6
and Figure 5.7. These probes are used to output temperature, smoke density and ray inten-
sity over the time of the simulation runs. The measurement probes have been placed inside
the rooms closest to the fire, the further away of the source the smaller the readings get.

7.2.1 Coupled vs. Non-Coupled

To further highlight the differences in the outcomes of the coupled and non-coupled version
of the simplified scenario in Section 7.1. This section will compare the coupled and non-
coupled case for scenario 1 and scenario 3 against each other. Scenario 2 was not simulated
using the non-coupled approach as it is very similar to scenario 1.

7.2.1.1 Scenario 1

As already mentioned in Section 7.1 a non coupled approach was also applied to the care
facility scenario. The ASET / RSET method was used to calculate the time it will take the
warden to reach the two exits, Door 25 and Door 26. These two timings are purely based
on the distance and the travel speed of the warden. The fire case was calculated using these

132

7.2 Coupling Case 2: Care Facility

inputs, which results in the fact that the two doors close much earlier than they would do in
the coupled case, as the warden doesn’t get slowed down by smoke. As can be seen in Table
7.12 the door on the ground floor closes at 36 seconds and the first floor door at 125 seconds
compared to 55 seconds and 255 seconds respectively in the coupled scenario shown in Ta-
ble 7.17.

Table 7.12: Door events scenario 1 serial.

Door number Time [s] Action

Door 26 36 Closes
Door 25 125 Closes

Table 7.13 shows the narcotic properties for the warden. It can be seen that FIH, FIHc and
FIHr values are all zero, in comparison to the coupled outputs of scenario 1 in Table 7.18
where FIH and FIHr are equal to 0.82904 where 1 resembles the fatal threshold. The big
differences in the narcotic outputs are a results of the fact that the warden in the coupled
case experiences a high dose of radiative heat when he gets close to the two doors 25 and 26

Table 7.13: Property output for the warden at the end of the simulation for scenario 1 serial.

Person FIN FIH FIHc FIHr

Warden 0.00189 0.0 0.0 0.0

when closing them. In the non-coupled case, the doors close too early, by the time the war-
den arrives at the door locations, the CFD temperature and radiation data is already based
on the closed door scenario and therefore there is no exposure to the fire source any more.

The temperature and smoke outputs for the non-coupled case can be seen in Figure 7.11, in
comparison to the outputs for the coupled case in Figure 7.29 it can be seen that there is a
big difference in the temperature and smoke distribution on the first floor. This can be ex-
plained by the fact that in the coupled case, the door stays open for 255 seconds (compared
to 125 seconds in the non-coupled case) and the fire has 130 seconds more time to spread

133

7.2 Coupling Case 2: Care Facility

(a) Ground floor temperature output. (b) First floor temperature output.

(c) Ground floor smoke output. (d) First floor smoke output.

Figure 7.11: Exodus temperature and smoke outputs for both floors for scenario 1 non-coupled.

temperature and smoke on the upper floor.

This influences the outcomes of the whole simulation the first person exits the building at 38
seconds, the last person (warden) at 406 seconds, the second to last person at 352 seconds.
In the coupled version the first person leaves the building at 66 seconds, the last person at
458 seconds, the warden leaves the building at 408 seconds. The overall differences between
the last persons out is 106 seconds (352 seconds to 458 seconds).

134

7.2 Coupling Case 2: Care Facility

Figures A.43 to A.52 show the combined graphs for coupled versus non-coupled tempera-
ture, smoke and radiation outputs for the probes 84 to 93 shown in Figure 5.6 and Figure
5.7. The blue vertical line in the graphs are the times when door 25 and door 26 respectively
open on each floor.

The following Figures 7.12,7.13,7.14,7.15,7.16 and 7.17 show the temperature, smoke and
radiation outputs for the probes centrally located in zones 67,86,84,91,63 and 98 , see Figure
5.6 and Figure 5.7. It can be seen how the results for the coupled and serial version differ,
due to the different times when the staircase doors were closed. The steep drops in values
highlight how the closing of the door changes the conditions around the staircase. Figure
7.14 and Figure 7.17 are an exception as they both had another door event happening which
was not covered in the serial version. This can be seen in the in the premature drop of values
before the staircase door was closed. These graphs show again what a big difference in event
times and therefore in environmental conditions the two way coupling makes.

135

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.12: Temperature, Smoke and Radiation outputs for Zone 67

136

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.13: Temperature, Smoke and Radiation outputs for Zone 86

137

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.14: Temperature, Smoke and Radiation outputs for Zone 84

138

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.15: Temperature, Smoke and Radiation outputs for Zone 91
139

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.16: Temperature, Smoke and Radiation outputs for Zone 63

140

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.17: Temperature, Smoke and Radiation outputs for Zone 89

141

7.2 Coupling Case 2: Care Facility

7.2.1.2 Scenario 3

To complete the comparison between coupled and non-coupled results, scenario 3 will be
compared against the non-coupled execution. In contrast to the other scenarios, scenario 3
introduces another level of complexity, regarding agent interaction with the geometry. The
results highlighted in Section 7.2.2 were obtained by introducing a second warden, one per
floor. The additional warden reduces the simulation time by reducing the distance a single
warden has to travel to complete his tasks. This introduces another layer of complexity, as
the number of event times (which are strongly dependent on the travel speeds and therefore
the environmental conditions) doubles. As in the previous non-coupled example the event
times have been determined by calculating the time it takes the warden to travel from point
A to point B. The two door event times for door 25 and door 26 can be seen in Table 7.14,
they are identical as the starting locations of the wardens (see Figure 5.6 and Figure 5.7) are
in the same area but on different floors.

Table 7.14: Door events scenario 3 serial.

Door number Time [s] Action

Door 26 38 Closes
Door 25 38 Closes

As it can be seen in Table 7.14 the door on the ground floor closes at 38 seconds and the first
floor door at 38 seconds compared to 54 seconds and 70 seconds respectively in the coupled
scenario shown in Table 7.21. This is due to the fact that for the serial version, where the
times are purely based on the distance and travel speeds and the environmental conditions
were disregarded. As for the coupled version it can be seen that it takes the first floor warden
16 seconds longer to reach his target, which can be explained by the raised smoke levels on
the first floor. Tables 7.15 and 7.16 show the narcotic properties for the ground floor warden
and first floor warden. The coupled results in Table 7.22 and Table 7.23 show that the FIN
readings are slightly higher, 0.00045890 non-coupled versus 0.00049078 coupled for the
warden on the ground floor and 0.00056039 non-coupled versus 0.00059830 coupled for
the first floor warden. Which can be explained by the delayed arrival at the two doors and
the therefore raised temperature and radiation levels.

142

7.2 Coupling Case 2: Care Facility

Table 7.15: Fractional Incapacitating Doses for the ground floor warden at the end of the simu-

lation for scenario 3 serial.

Person FIN FIH FIHc FIHr

Warden 0.00045890 0.0 0.0 0.0

Table 7.16: Fractional Incapacitating Doses for the first floor warden at the end of the simulation

for scenario 3 serial.

Person FIN FIH FIHc FIHr

Warden 0.00056039 0.0 0.0 0.0

The temperature and smoke distribution over both floors can be seen in Figure 7.18. In
comparison to the coupled results in Figure 7.31 it can be seen that by closing the doors
earlier the temperature level and smoke concentration next to the door on the first floor dif-
fers. Closing the door earlier results in higher readings. Figures 7.19 to Figure 7.22 show
the temperature and smoke distributions in a cut-plane-view through the building at different
times during the simulation for the coupled and non-coupled execution. The staircase can be
seen on the left. The measurement times haven been chosen around the actual door events
at 38 seconds for non-coupled and 70 seconds for the coupled case. It can be seen that at
the end of the simulation at 245 seconds, for the non-coupled version the upper temperature
layer descends more than in the coupled version.

Figure 7.21 shows the same cut plane view for the smoke output. As in the temperature
version the times the measurements were taken fall around the door event time. Comparing
the results against Figure 7.22 it can be seen that the smoke outputs follows the same pattern
around the door as the temperature output.

143

7.2 Coupling Case 2: Care Facility

(a) Ground floor temperature output. (b) First floor temperature output.

(c) Ground floor smoke output. (d) First floor smoke output.

Figure 7.18: Exodus temperature and smoke outputs for both floors for scenario 3 non-coupled.

144

7.2 Coupling Case 2: Care Facility

(a) 35 seconds.

(b) 40 seconds.

(c) 45 seconds.

(d) 55 seconds.

(e) 75 seconds.

(f) 245 seconds.

Figure 7.19: Non-coupled CFD temperature outputs around the first floor door event and at the

end of simulation, door event at 38 seconds.

145

7.2 Coupling Case 2: Care Facility

(a) 65 seconds.

(b) 70 seconds.

(c) 75 seconds.

(d) 85 seconds.

(e) 100 seconds.

(f) 251 seconds.

Figure 7.20: Coupled CFD temperature outputs around the first floor door event and at the end

of simulation, door event at 70 seconds.

146

7.2 Coupling Case 2: Care Facility

(a) 35 seconds.

(b) 40 seconds.

(c) 45 seconds.

(d) 55 seconds.

(e) 75 seconds.

(f) 245 seconds.

Figure 7.21: Non-coupled CFD smoke outputs around the first floor door event and at the end

of simulation, door event at 38 seconds.

147

7.2 Coupling Case 2: Care Facility

(a) 65 seconds.

(b) 70 seconds.

(c) 75 seconds.

(d) 85 seconds.

(e) 100 seconds.

(f) 251 seconds.

Figure 7.22: Coupled CFD smoke outputs around the first floor door event and at the end of

simulation, door event at 70 seconds.

148

7.2 Coupling Case 2: Care Facility

The following Figures 7.23,7.24,7.25,7.26,7.27 and 7.28 show the temperature, smoke and
radiation outputs for the probes centrally located in zones 67,86,84,91,63 and 98 , see Figure
5.6 and Figure 5.7. It can be seen how the results for the coupled and serial version differ,
due to the different times when the staircase doors were closed. The steep drops in values
highlight how the closing of the door changes the conditions around the staircase. Figure
7.25 and Figure 7.28 are an exception as they both had another door event happening which
wasn’t covered in the serial version. This can be seen in the in the premature drop of values
before the staircase door was closed. These graphs show again what a big difference in event
times and therefore in environmental conditions the two way coupling makes.

149

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.23: Temperature, Smoke and Radiation outputs for Zone 67

150

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.24: Temperature, Smoke and Radiation outputs for Zone 86

151

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.25: Temperature, Smoke and Radiation outputs for Zone 84

152

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.26: Temperature, Smoke and Radiation outputs for Zone 91

153

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.27: Temperature, Smoke and Radiation outputs for Zone 63

154

7.2 Coupling Case 2: Care Facility

(a) Temperature

(b) Smoke

(c) Radiation

Figure 7.28: Temperature, Smoke and Radiation outputs for Zone 89

155

7.2 Coupling Case 2: Care Facility

7.2.2 Further Coupling Scenarios

After highlighting the differences the two-way coupled simulation produces compared to the
one-way coupled, this section will show the possibilities it offers. The two-way coupling
enables a much more complex interaction of the agents with the environment enabling the
Fire Safety Engineer (FSEs) to accurately model agent-geometry interaction. The following
three scenarios are all using the same care facility geometry but introducing different sce-
narios in which one or more warden manages the evacuation procedure to reduce the impact
the fire, smoke and radiation have on the other agents.

Scenario 1 Results

In Scenario 1 the warden starts off in a room opposite the second staircase (not the one with
the fire source) on the ground floor, making his way towards the door which connects the
other staircase on the ground floor first. After closing the door he returns to his starting area
to go up the staircase to the first floor to close the second door which connects the other
staircase to the floors. On his way through both corridors he closes all the doors to rooms
with people in. It is assumed that these people are elderly, bed-bound patients of the care
facility who are not very mobile. In order to protect them from smoke and heat the warden
closes the doors first. He then shields of the hazard from the rest of the building by closing
the staircase doors and opens up the rooms again to safely evacuate those people.

Table 7.17 shows the times when the warden closes and re-opens the doors, Door 26 and
Door 25 (in bold) are the doors to the staircase with the hazard in it. The effects the en-
vironment has on the warden can be seen in Table 7.18. The warden’s final FIH and FIHr
levels are 0.82904 respectively, where 1.0 resembles the fatal threshold. FIH stands for the
individual’s exposure to radiative and convective heat. FIHr stands for the individual’s ex-
posure to radiative heat. These high readings are the result of the exposure to the fire source
when the warden closes the door. The majority of the high readings come from the second
door event at 255 seconds, the fire had 255 seconds to develop and the bottom door to the
staircase had already been closed at 55 seconds so all the smoke and the heat got more con-
centrated inside the staircase.

156

7.2 Coupling Case 2: Care Facility

Table 7.17: Door events scenario 1.

Door number Time [s] Action

Door 1 12 Closes
Door 2 17 Closes
Door 3 24 Closes
Door 5 28 Closes
Door 11 31 Closes
Door 12 41 Closes
Door 26 (GF) 55 Closes
Door 12 62 Opens
Door 11 69 Opens
Door 5 72 Opens
Door 3 81 Opens
Door 2 87 Opens
Door 1 94 Opens
Door 24 153 Closes
Door 23 171 Closes
Door 22 201 Closes
Door 21 213 Closes
Door 14 220 Closes
Door 13 242 Closes
Door 25 (FF) 255 Closes
Door 13 263 Opens
Door 14 283 Opens
Door 21 290 Opens
Door 22 304 Opens
Door 23 333 Opens
Door 24 351 Opens

157

7.2 Coupling Case 2: Care Facility

Table 7.18: Property output for the warden at the end of the simulation for scenario 1 coupled.

Person FIN FIH FIHc FIHr

Warden 0.00186 0.82904 0.0 0.82904

The smoke and temperature distribution on both floors can be seen in Figure 7.29, (a) shows
how the closed door on the ground floor increases the temperature readings (around 650
◦ C for zone 4) within the staircase. Figure 7.29 (b) shows how the higher temperatures
spread through the corridor away from the staircase door. The same can be seen for the
smoke distribution in Figure (c) and (d). The smoke concentration has a direct effect on
the agents travel speeds and therefore effects the evacuation times for each agent. The first
person leaves the building at 66 seconds, the last one at 458 seconds, the warden exits at 408
seconds.

The following graphs show the detailed temperature, smoke and radiation values for the
most important zones, 84,86,67 on the first floor and 89,91 and 63 (zones and measuring
probes highlighted in Figure 5.6 and Figure 5.7 on the ground floor.

All full list of all temperature, smoke and radiation values versus simulation time curves for
zones 84 to 93 can be seen in Appendix Section A.7. The two fine blue lines in the graphs
shows the two times when the doors close and re-open.

158

7.2 Coupling Case 2: Care Facility

(a) Ground floor temperature output. (b) First floor temperature output.

(c) Ground floor smoke output. (d) First floor smoke output.

Figure 7.29: Exodus temperature and smoke outputs for both floors for scenario 1.

159

7.2 Coupling Case 2: Care Facility

Scenario 2 Results

In scenario 2 the warden’s starting position remains the same as in scenario 1, but in contrast
to scenario 1 the warden makes his way upstairs first. He essentially executes the same tasks
only in reverse order, closing doors and informing people on floor one first followed by the
same procedure on the ground floor.

Table 7.19 shows the times when the warden closes and re-opens the doors, Door 26 and
Door 25 (in bold) are the doors to the staircase with the hazard in it. The effects the environ-
ment has on the warden can be seen in Table 7.20. The warden’s final FIH and FIHr levels
are 0.92444. The majority of the high readings come from the second door event at 370 sec-
onds, the fire had 370 seconds to develop and the first floor door to the staircase had already
been closed at 108 seconds so all the smoke and the heat got more concentrated inside the
staircase and spread throughout the ground floor corridor, this can be seen by comparing
Figures 7.29 and 7.30.

The smoke and temperature distribution for scenario 2 can be seen in Figure 7.30, (a) shows
how the open door on the ground floor increases the temperature readings within the cor-
ridor. Figure (b) shows how the lower temperature spread through the corridor due to the
earlier closing of the staircase door. The same can be seen for the smoke distribution in
Figure (c) and (d). The temperature in zone 63 on the ground floor near the staircase reaches
levels of up to 123 ◦ C. The smoke concentration has a direct effect on the agents travel
speeds and therefore effects the evacuation times for each agent. The first person leaves the
building at 66 seconds, the last one at 582 seconds. It can also seen that in comparison to
scenario 1 the total evacuation time increases by around 27 per cent from 458 seconds to
582 seconds. This can be explained by the fact that the fire is located on the ground floor,
close to the staircase door, the longer the fire has time to develop and spread through the
corridor the worser the conditions for the warden get to close the second door, exposing him
to higher temperatures. First person out : 65.96 seconds Last person out : 581.84 seconds
Detailed information about temperature, smoke and radiation values versus simulation time
for zones 84 to 93 (measuring probes highlighted in Figures 5.6 and 5.7) can be seen in
Appendix section A.7.

160

7.2 Coupling Case 2: Care Facility

Table 7.19: Door events scenario 2.

Door number Time [s] Action

Door 24 24 Closes
Door 23 29 Closes
Door 22 55 Closes
Door 21 67 Closes
Door 14 75 Closes
Door 13 96 Closes
Door 25 (FF) 108 Closes
Door 13 115 Opens
Door 14 133 Opens
Door 21 140 Opens
Door 22 154 Opens
Door 23 183 Opens
Door 24 201 Opens
Door 1 267 Closes
Door 2 286 Closes
Door 3 316 Closes
Door 5 328 Closes
Door 11 336 Closes
Door 12 357 Closes
Door 26 (GF) 370 Closes
Door 12 377 Opens
Door 11 397 Opens
Door 5 403 Opens
Door 3 417 Opens
Door 2 448 Opens
Door 1 466 Opens

Table 7.20: Property output for the warden at the end of the simulation for scenario 1 coupled.

Person FIN FIH FIHc FIHr

Warden 0.00240 0.92444 0.0 0.92444

161

7.2 Coupling Case 2: Care Facility

(a) Ground floor temperature output. (b) First floor temperature output.

(c) Ground floor smoke output. (d) First floor smoke output.

Figure 7.30: Exodus temperature and smoke outputs for both floors for scenario 2.

162

7.2 Coupling Case 2: Care Facility

Scenario 3 Results

In Scenario 3 two wardens have been allocated, one on each floor. The ground floor warden
also starts off in the in the same location as in scenario 1 and scenario 2, the warden upstairs
starts in the same location just one floor higher up. The wardens execute the same tasks,
closing doors and informing people on their floors respectively.

Table 7.21 shows the times when the wardens close and re-open the doors, Door 26 and
Door 25 (in bold) are the doors to the staircase with the hazard in it. The effects the envi-
ronment has on the wardens can be seen in Table 7.22 and Table 7.23. The wardens final
FIH and FIHr levels are 0.0. The low readings are a direct result of the early door events at
54 seconds and 70 seconds, the fire didn’t have enough time to develop and reach the high
levels of the previous scenarios.

The smoke and temperature distribution for scenario 3 can be seen in Figure 7.31, Figure
(a) and Figure (b) show how the closed doors shield of the staircase causing the temperature
throughout the building to stay low. The same can be seen for the smoke distribution in
Figure (c) and (d). The smoke density, which is directly related to the fire output is also
much lower causing the two wardens a lot less problems travelling through the corridors.
The first person also leaves the building at 66 seconds, the last one at 251 seconds.

It can also seen that in comparison to scenario 1 and scenario 2 that the total evacuation
times decreased by around 45 per cent from 458 seconds to 251 seconds for scenario 1 and
by around 57 per cent from 582 seconds to 251 seconds for scenario 2. This can be ex-
plained simply by the fact that the two wardens execute their tasks simultaneously, saving
valuable time to securely exit the building. The combination of these simultaneous exe-
cutions of opening and closing doors and informing people represents a complex scenario
which would be very difficult to implement accurately without using a two-way coupled
simulation model.

Detailed information about temperature, smoke and radiation values versus simulation time
for zones 84 to 93 (measuring probes highlighted in Figures 5.6 and 5.7) can be seen in
Appendix section A.7.

163

7.2 Coupling Case 2: Care Facility

Table 7.21: Door events scenario 3.

Door number Time [s] Action

Door 24 12 Closes
Door 1 13 Closes
Door 23 17 Closes
Door 2 18 Closes
Door 22 24 Closes
Door 3 25 Closes
Door 5 28 Closes
Door 11 31 Closes
Door 21 32 Closes
Door 14 39 Closes
Door 12 41 Closes
Door 26 (GF) 54 Closes
Door 13 59 Closes
Door 12 62 Opens
Door 11 68 Opens
Door 5 69 Opens
Door 25 (FF) 70 Closes
Door 3 75 Opens
Door 13 78 Opens
Door 2 83 Opens
Door 14 86 Opens
Door 21 89 Opens
Door 1 89 Opens
Door 22 92 Opens
Door 23 104 Opens
Door 24 110 Opens

Table 7.22: Property output for the ground floor warden at the end of the simulation for scenario

3 coupled.

Person FIN FIH FIHc FIHr

Warden 0.00049078 0.0 0.0 0.0

164

7.2 Coupling Case 2: Care Facility

Table 7.23: Property output for the first floor warden at the end of the simulation for scenario 3

coupled.

Person FIN FIH FIHc FIHr

Warden 0.00059830 0.0 0.0 0.0

(a) Ground floor temperature output. (b) First floor temperature output.

(c) Ground floor smoke output. (d) First floor smoke output.

Figure 7.31: Exodus temperature and smoke outputs for both floors for scenario 3.

165

7.2 Coupling Case 2: Care Facility

Combined Zone Outputs

Figure 7.32: Temperature, smoke and radiation vs. time for zone 84.

166

7.2 Coupling Case 2: Care Facility

Figure 7.33: Temperature, smoke and radiation vs. time for zone 85.

167

7.2 Coupling Case 2: Care Facility

Figure 7.34: Temperature, smoke and radiation vs. time for zone 86.

168

7.2 Coupling Case 2: Care Facility

Figure 7.35: Temperature, smoke and radiation vs. time for zone 87.

169

7.2 Coupling Case 2: Care Facility

Figure 7.36: Temperature, smoke and radiation vs. time for zone 88.

170

7.2 Coupling Case 2: Care Facility

Figure 7.37: Temperature, smoke and radiation vs. time for zone 67.

171

7.2 Coupling Case 2: Care Facility

Figure 7.38: Temperature, smoke and radiation vs. time for zone 89.

172

7.2 Coupling Case 2: Care Facility

Figure 7.39: Temperature, smoke and radiation vs. time for zone 90.

173

7.2 Coupling Case 2: Care Facility

Figure 7.40: Temperature, smoke and radiation vs. time for zone 91.

174

7.2 Coupling Case 2: Care Facility

Figure 7.41: Temperature, smoke and radiation vs. time for zone 92.

175

7.2 Coupling Case 2: Care Facility

Figure 7.42: Temperature, smoke and radiation vs. time for zone 93.

176

7.2 Coupling Case 2: Care Facility

Figure 7.43: Temperature, smoke and radiation vs. time for zone 63.

177

Chapter 8

CONCLUSION

This chapter will sum up the findings and review how the thesis has addressed the initial
research questions from Chapter 1. The conclusions can be found in more detail in the
previous chapters, the conclusions here will be of a more general nature and provide a sum-
mary.
Building upon the already existing SMARTFIRE numerical CFD model a parallel GPU ex-
tension has been implemented. This extension consists of a graph partitioning routine which
handles how the geometry is split up, based on certain rules to optimise the surface between
the individual domains within the hardware boundaries of the GPU being used. Furthermore
a complete rewrite of the coefficient building routines and the solver has been implemented
to accommodate the completely different execution structures used on the GPU. This re-
quired 50.000 lines of code to be written. The GPU code has been embedded into the serial
code in order to use the other parts of the code which do not benefit from being ported to a
parallel version, i.e meshing routines, geometry parsing, zone data outputs and visualisation
routines.

In addition to the changes in the CFD code a binary message parsing system has been imple-
mented to enable the communication between SMARTFIRE and buildingEXODUS at the
end of each time step. This two-way coupling offers new possibilities for fire safety engi-
neers to examine more realistic scenarios in a reasonable amount of time. The novelty of this
coupling lies within its ability to communicate bi-directional, from SMARTFIRE to EXO-

178

DUS (update environmental values) and vice versa (controlling changes in the CFD code),
so it becomes possible to feed back decision that agents take in EXODUS, like opening
doors, to the CFD code in almost real time (lag of 1 time step). The CFD code dynamically
updates it’s boundary conditions and continues calculating and solving the geometry.

The aim was to provide the fire safety industry with a new simulation tool which reduces
the number of assumptions an engineer has to make in order to model a scenario. The en-
gineer will not have to assume times any more when he thinks an agent will reach certain
destinations. These times will then have to be used in order to set up and calculate the
CFD scenarios. At the end the CFD results will get fed back into the evacuation simulation.
These techniques get very error prone for bigger, complex scenarios. It has been shown
that environmental factors like heat, radiation and smoke have to be taken into account to
accurately determine how agents behave during the simulation. Smoke for example reduces
the walking speeds drastically adding sometimes minutes to the predicted time when an
agent would reach a destination. The two way coupling eliminates the need of these as-
sumptions as the agent only needs a predefined task e.g open door X, the conditions which
he faces on his way to door X determine the time it will take him to get there. When he
finally arrives the opening event for door X triggers a boundary update in the CFD code
which from the following time step on will treat the door as open and therefore adjust the
temperatures/ radiation and smoke levels accordingly. Test cases have shown that this can
have an huge impact on the outcomes of even simple scenarios, the bigger and more com-
plex scenarios get the more complicated the flow dynamics get as well, so can for example
a closed/ opened door or window change the whole ventilation characteristics of a geometry.

Furthermore a new parallel GPU version has been provided which uses state of the art tech-
nology and will offer more opportunities in the future to speed up simulations, which will
directly reduce costs and enable the simulation of more complex scenarios.

Test cases

The selected test cases highlight three main aspects of the newly introduced version:

• correctness of results against the serial version

179

• execution speed compared to the serial version

• differences in the evacuation outcomes due to the two way coupling

The benchmark process was split into different cases, the well documented Steckler room
case [46; 171] to demonstrate the numerical results of GPU and serial version against the
experimental results, a very simplified test case to show the capabilities and differences
the two-way coupling can make and a complex, two storey geometry that shows the out-
comes for a realistic scenario. The benchmark case for the correctness of results was purely
focused on the numerical results and evaluates the numerical results on an individual cell
bases against the experimental data of the original experiment and the numerical results
which FSEG has previously computed using the serial version of SMARTFIRE.

A simplified geometry was used to show how the basic concept of the coupling interacts
with buildingEXODUS based on different evacuation strategies. Big difference in outcomes
could already be demonstrated by executing simplified tasks.

Furthermore the coupling has been compared to traditional approaches which a fire safety
engineer would have tried in order to model these scenarios using the non coupled tools
available. The outcomes showed that the results consistently differed from the fully coupled
version in a way that the impact of the environmental factors was underestimated resulting
in a lot less significant outcomes. These outcomes varied from big differences in overall
simulation times to cases where the complexity of the model couldn’t be accurately rep-
resented without using the coupling. Especially in cases where more than a single event
happens and a series of manually prepared and executed CFD simulations would have to be
applied in order to incorporate every geometry change.

The two way coupling showed great potential to be accurately and cost-effectively used in
fire safety engineering. It also highlighted parts of the model which did not fully benefit
from the new hardware approach and will give a good guidance to which parts of a CFD
model give the biggest benefit if re-writing the full model is not an option.

The coupled fire and evacuation model version of SMARTFIRE and EXODUS comes with
pros and cons, listed below:

180

Pros

• eliminates the need to predefine factors in the model

• more realistic scenarios

• more complex scenarios can be modelled

• foundation for other dynamic changes e.g structural changes

• more interaction of agents with the geometry/ environment

• only one CFD simulation scenario set up required

Cons

• added complexity to set up cases for both CFD and evacuation model

• requires more computation as no assumptions made any more

Looking at the GPU CFD fire model as a standalone version it has also several pros and
cons, which are listed below:

Pros

• execution speed

• only one machine required to achieve high speed-ups

• more complex scenarios can be modelled

• energy efficient

181

Cons

• memory limitations

• limited output capabilities

• only runs on NVIDIA hardware

The main disadvantage is first of all that one is dependent on NVIDIA continuing the CUDA
programming model and their hardware range. Although as mentioned in Section 2.4.2.1
there are alternatives but at the time this research was conducted there was no real alter-
native present. As it looks today it is highly unlikely that NVIDIA will discontinue the
technology as a lot of mainstream software manufacturer now provide CUDA versions of
their products which offer much higher performance for very little hardware investments.
Nevertheless the big hurdle will always remain the complexity of the programming model
and the underlying problem, as there will not be a ”one solution fits all” solution. The
CUDA SMARTFIRE version tried to eliminate as many bottlenecks i.e memory transfers,
as possible at the cost of rewriting a lot of code that doesn’t directly gain further speed-ups
from the parallel implementation. The other big disadvantage that will always be present is
lack of input/ output properties, although NVIDIA has introduced a unified memory concept
recently it goes against the parallel concept and will always resemble less efficient imple-
mentation. It removes the manual allocation of memory and the subsequent memory copies
in order to get data onto the GPU. The unified memory concept allows users therefore to
directly write code as they would do in a traditional host programming language, but behind
the scenes the API will still allocate and copy memory onto the GPU. Currently NVIDIA
provides hardware with memory sizes of multiples of 6 Gigabytes, all higher memory sizes
are a combination of 6 Gigabyte blocks and must be treated as basically two separate pieces
of hardware. If a geometry requires more memory space the only way around this will be to
introduce a multi-GPU version of the code. This multi-GPU code will face the same prob-
lems as the single-GPU version and will not necessarily provide any further speed ups. The
problem still remains the communication between computational domains and in this case
even across different GPUs. Anyway the advantages using GPU for parallel number crunch-
ing outweigh the disadvantages especially as the achieved speed gains can be achieved on a
single machine now instead of using a network of machines.

182

Chapter 9

FUTURE WORK

Although much has been achieved and a complete, fully working CFD model has been im-
plemented, there is still more that can be implemented and improved in the future. This
chapter, will give some ideas for further work that can be done. Some of these ideas will be
carried through in the near future and others may or may not happen depending on circum-
stances.

CFD model extensions

Although, as mentioned above, a complete CFD model has been developed, one important
part for the fire safety research community is missing which the serial SMARTFIRE version
already offers:

• Gaseous combustion

• Toxicity

• HCN

• HCL

• Sprinkler models

183

The current GPU SMARTFIRE CFD model uses temperature, radiation and smoke outputs
to influence the behaviour and properties of the agents in buildingEXODUS. The temper-
ature and radiation will have a direct effect on the health of an agent and will kill him if
the exposure is too high for too long. The temperature will reach high levels in the areas
directly surrounding the fire source, the radiation has a bigger extension area but overall
in big geometries, the majority of the agents might be quite far away from the fire source
and therefore only experience raised temperatures. Where it is unlikely that a few degrees
raised temperature cause any serious risk for the agents well-being. The radiation has an
effect through FIHc and FIHr, the cumulative to convective heat and cumulative exposure to
radiative heat as mentioned in Section 7.1. Radiation has a bigger effect on the agents but
they still need to be fairly close to the heat source for the radiation to become life threaten-
ing. The third output, smoke, only effects the visibility and therefore the travel speeds of the
agents, indirectly hurting them by eventually exposing them to the fire source for longer.
In real fire scenarios, the majority of injuries comes from inhaling toxic products as CO
(Carbon Monoxide), HCN (Hydrogen cyanide) and HCl (Hydrogen chloride). The spread
of these species is pretty similar to the smoke spread within a geometry, with the difference
that even smaller doses can already cause fatalities or serious injuries. The other models
will be needed to be able to model things like fire spreads and various extinction techniques
(water mist, foam, etc.)
For the next version of the SMARTFIRE GPU version the current additional models men-
tioned above will have to be completely re-written and optimised in order to achieve the
same level of accuracy as the serial version of SMARTFIRE.

Another idea for a future version of SMARTFIRE could include a model to incorporate
structural changes caused by the influence of fire or extinguishing agents like water. A
structural change for example could be a collapsing ceiling, wall or any change in the ge-
ometry that could change the CFD dynamic within.

Exodus extensions

Although the CFD part of the coupling has been fully rewritten, the evacuation part only had
a few changes to enable the communication and basic interaction of the models. BuildingEX-

184

ODUS essentially only acts as the trigger for changes in SMARTFIRE. One part that will
be crucial in the future for the coupling to be fully able to simulate real life scenarios is the
ability of the agents to react to the newly occurring events. This means for example the war-
den could make the decisions himself which doors to close depending on the environment
and the routes available. Or an agent might take opening windows into account to get fresh
air in. These approaches will require extensive analysis of evacuation trials and the human
behaviour to come up with a heuristic model.

Performance improvements

There are still some parts of the code left which will contribute to a higher overall perfor-
mance. At the moment the stand-alone CFD model operates almost at peak performance
on the hardware which was available for this research, but when used coupled, one of the
bottlenecks mentioned earlier (see Chapter 8) becomes very obvious, the limited input/out-
put capabilities. After each coupled time step SMARTFIRE has to send 5 values per hazard
zone back to buidlingEXODUS. The values are upper and lower level temperature, upper
and lower level smoke and radiation. Radiation only has one value as the nature of being
a ray and the relatively small rooms it is assumed that the values do not differ much. To
calculate those values averages are calculated over the cells within one zone. This process
still resides in the serial version of SMARTFIRE at the moment. The CUDA version of
SMARTFIRE has to copy every single cell value back to the serial code, re-map them in the
original cell ordering (without the domain setup) and finally calculate the 5 float numbers
per zone. It can already be seen from this description that eliminating this memory copy
bottleneck will speed up the overall time again. This will be achieved by doing the zone
averaging on the GPU as well, even though the actual averaging will probably not be speed
up much (reduction operations across multiple domains are not optimal for parallel imple-
mentation as it cannot be achieved in one single execution and will require some kind of
buffering) the time spent for the memory copy will be almost eliminated. Instead of copying
GBs of memory it will be down to 5 variables * number of zones.

185

Usability improvements

Another useful improvement in the future will be the usability of the coupling. At the
moment the coupling requires several steps to be manually executed when loading up the
case. If one misses a step the process has to be restarted. The steps require to be executed
independently in the right order. These steps are:

• starting SMARTFIRE CUDA version and let it load in the CFD case

• starting buildingEXDOUS and connecting it to the EXODUS server

• SMARTFIRE door initialisation for the geometry

• loading the EXODUS evacuation geometry

• applying EXODUS settings e.g enabling the hazard mode and setting the various prop-
erties for the agents

Now, as soon as the CFD simulation is started the coupling starts communicating and works
independently, so no further interaction is required. The process flow can be seen in Figure
6.3 and Figure 6.4. In the future this will have to be automated so that the user only has to
start one process which handles the rest of the execution.

Furthermore it has to be ensured that the EXODUS geometry and the SMARTFIRE geom-
etry are synchronized. At the moment a user could enter different door identifiers in both
geometries leading to a mismatch of events or a crash in the simulation model. This could
be eliminated by e.g introducing a process which maps the SMARTFIRE ids into EXODUS.

Next generation hardware usage

The final disadvantage, mentioned in the previous chapter (see Chapter 8), is the limitation
in memory which directly translates to limitations in the complexity or size of scenarios to
be run. Future cases which will require much finer meshes or are much larger in nature will
require an extension of the memory. Nvidia has recently introduced the ability to utilize
multiple GPUs to increase the available size of memory. It has to be determined if this adds

186

any benefits regarding further speed ups on top of the benefit of increasing the memory size.
The main problems will stay the same, or even become more obvious as a second level of
bottlenecks, the communication and synchronisation across GPUs will be introduced.

Case Base Reasoning System

Another way of reducing the execution time in the future could be the usage of a case base
reasoning system [175; 176], where CFD simulation results will get stored for future usage.
Instead of rerunning a CFD simulation for a given scenario, the case base reasoning system
will be able to apply a previously run case that will meet the current criteria, e.g door changes
10 seconds into the simulation.

187

REFERENCES

[1] Fire Statistics : Great Britain. https://www.gov.uk/government/

uploads/system/uploads/attachment_data/file/410287/Fire_

Statistics_Great_Britain_2013-14___PDF_Version_.pdf. Ac-
cessed March, 2015. 1

[2] SUHAS PATANKAR. Numerical heat transfer and fluid flow. CRC Press, 1980. 7, 8,
58, 65, 67, 209

[3] LOUIS MELVILLE MILNE-THOMSON. Theoretical aerodynamics. Courier Dover
Publications, 1966. 7

[4] WAN KI CHOW. A comparison of the use of fire zone and field models for sim-
ulating atrium smoke-filling processes. Fire Safety Journal, 25(4):337–353, 1995.
8

[5] EDWIN GALEA. On the field modelling approach to the simulation of enclosure
fires. Journal of Fire Protection Engineering, 1(1):11–22, 1989. 8

[6] JP BORIS, FF GRINSTEIN, ES ORAN, AND RL KOLBE. New insights into large
eddy simulation. Fluid dynamics research, 10(4-6):199, 1992. 8

[7] HI ROSTEN, DB SPALDING, AND DG TATCHELL. PHOENICS: a general-
purpose program for fluid-flow, heat-transfer and chemical-reaction processes.
In Engineering Software III, pages 639–655. Springer, 1983. 8

[8] NIKOS C MARKATOS AND G COX. Hydrodynamics and heat transfer in enclosures
containing a fire source, 5. CHAM Limited, 1983.

188

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/410287/Fire_Statistics_Great_Britain_2013-14___PDF_Version_.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/410287/Fire_Statistics_Great_Britain_2013-14___PDF_Version_.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/410287/Fire_Statistics_Great_Britain_2013-14___PDF_Version_.pdf

REFERENCES

[9] GEOFFREY COX. Combustion fundamentals of fire. Acad. press London etc, 1995.

[10] F JIA, ER GALEA, AND MK PATEL. Simulating FLASHOVER and BACK-
DRAFT Type Events Using Fire Field ModelsA First Approximation. Journal
of Fire Protection Engineering, 9(4):1–17, 1999.

[11] PA RUBINI. SOFIE–Simulation of fires in enclosures. In Proceedings of the 5th
International Symposium on Fire Safety Science, 1997.

[12] KEVIN B MCGRATTAN, SIMO HOSTIKKA, JE FLOYD, HR BAUM, RG REHM,
WILLIAM MELL, AND RANDALL MCDERMOTT. Fire dynamics simulator (ver-
sion 5), technical reference guide. NIST special publication, 1018:5, 2004. 8

[13] S SIMCOX, NS WILKES, AND IP JONES. Computer simulation of the flows of
hot gases from the fire at King’s Cross underground station. Fire Safety Journal,
18(1):49–73, 1992. 8

[14] ZHENGHUA YAN AND G HOLMSTEDT. Investigation of the dance hall fire in
Gothenburg, October 1998- a comparison between human observations and
CFD simulation. In InterFlam 2001: 9 th International Fire Science & Engineering
Conference, pages 951–963, 2001.

[15] MINGCHUN LUO AND VAUGHAN BECK. The fire environment in a multi-room
building comparison of predicted and experimental results. Fire safety journal,
23(4):413–438, 1994.

[16] M LUO AND V BECK. Flashover fires in a full scale building: prediction and
experiment. In Interflam, 96, pages 361–370, 1996.

[17] ZHENG WANG, F JIA, ER GALEA, MK PATEL, AND J EWER. Simulating one of
the CIB W14 round robin test cases using the SMARTFIRE fire field model. Fire
Safety Journal, 36(7):661–677, 2001. 10

[18] F JIA, MK PATEL, ER GALEA, A GRANDISON, AND J EWER. CFD fire simulation
of the Swissair flight 111 in-flight fire-part II: fire spread analysis. Aeronautical
Journal, 110(1107):303–314, 2006. 18

189

REFERENCES

[19] GH YEOH, RKK YUEN, SM LO, AND DH CHEN. On numerical comparison of
enclosure fire in a multi-compartment building. Fire Safety Journal, 38(1):85–94,
2003.

[20] F LIU AND JENNIFER X WEN. The effect of turbulence modelling on the CFD
simulation of buoyant diffusion flames. Fire Safety Journal, 37(2):125–150, 2002.

[21] CÁNDIDO GUTIÉRREZ-MONTES, ENRIQUE SANMIGUEL-ROJAS, ANTONIO

VIEDMA, AND GUILLERMO REIN. Experimental data and numerical modelling
of 1.3 and 2.3 MW fires in a 20m cubic atrium. Building and Environment,
44(9):1827–1839, 2009.

[22] JUAN ABANTO, MARCELO REGGIO, DANIEL BARRERO, AND EDDY PETRO. Pre-
diction of fire and smoke propagation in an underwater tunnel. Tunnelling and
underground space technology, 22(1):90–95, 2007. 8

[23] ER GALEA AND CS IEROTHEOU. Fire-field modelling on parallel computers.
Fire safety journal, 19(4):251–266, 1992. 8

[24] AJ GRANDISON, ER GALEA, MK PATEL, AND J EWER. The Development of
Parallel Implementation for a CFD Based Fire Model Utilising Conventional
Office Based PCs. Journal of Applied Fire Science, 12(2):137–157, 2003. 8, 28

[25] AJ GRANDISON, EDWIN R GALEA, MK PATEL, AND JOHN EWER. Parallel CFD
fire modelling on office PCs with dynamic load balancing. International journal
for numerical methods in fluids, 55(1):29–39, 2007. 8

[26] OPENMP ARCHITECTURE REVIEW BOARD. OpenMP Application Program In-
terface V3.0. 2008. 8, 34

[27] N HURST-CLARK, J EWER, A GRANDISON, E GALEA, ET AL. Group solvers: a
means of reducing run-times and memory overheads for CFD based fire simula-
tion software. 2004. 9

[28] DANIEL BURTON, ANGUS GRANDISON, MAYUR PATEL, EDWIN GALEA, JOHN

EWER, ET AL. Development of a hybrid field/zone fire model. In Fire Safety
Science: Proceedings of the Tenth International Symposium, 10, pages 1373–1385.
International Association for Fire Safety Science, 2011. 9

190

REFERENCES

[29] HENK KAARLE VERSTEEG AND WEERATUNGE MALALASEKERA. An
introduction to computational fluid dynamics: the finite volume method. Pearson
Education, 2007. 9

[30] OSBORNE REYNOLDS. On the dynamical theory of incompressible viscous fluids
and the determination of the criterion. Philosophical Transactions of the Royal
Society of London. A, pages 123–164, 1895. 9

[31] DAVID C WILCOX. Turbulence modeling for CFD, 2. DCW industries La Canada,
CA, 1998. 9

[32] J. BOUSSINESQ. Theorie de L’Ecoulement Toubillant. Mem. Acad. Sci., 23:46,
1877. 9, 49

[33] KEVIN B MCGRATTAN, HOWARD R BAUM, AND RONALD G REHM. Large eddy
simulations of smoke movement. Fire Safety Journal, 30(2):161–178, 1998. 10

[34] STEVEN J EMMERICH AND KEVIN B MCGRATTAN. Application of a large
eddy simulation model to study room airflow. TRANSACTIONS-AMERICAN
SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING
ENGINEERS, 104:1128–1140, 1998. 10

[35] VYTENIS BABRAUSKAS, BARBARA C LEVIN, RICHARD G GANN, MAYA PAABO,
RICHARD H HARRIS JR, RICHARD D PEACOCK, AND SHYUITSU YUSA. Toxic
potency measurement for fire hazard analysis. Fire technology, 28(2):163–167,
1992. 10

[36] VYTENIS BABRAUSKAS. The generation of CO in bench-scale fire tests and the
prediction for real-scale fires. Fire and Materials, 19(5):205–213, 1995. 10

[37] WILLIAM M PITTS. The global equivalence ratio concept and the formation
mechanisms of carbon monoxide in enclosure fires. Progress in Energy and
Combustion Science, 21(3):197–237, 1995. 10

[38] DA PURSER AND JA PURSER. The potential for including fire chemistry and
toxicity in fire safety engineering. BRE Project Report, (202804), 2003. 10

191

REFERENCES

[39] H XUE, JC HO, AND YM CHENG. Comparison of different combustion models
in enclosure fire simulation. Fire Safety Journal, 36(1):37–54, 2001. 10

[40] FALIN CHEN AND JC LEONG. Smoke flow phenomena and turbulence charac-
teristics of tunnel fires. Applied Mathematical Modelling, 35(9):4554–4566, 2011.

[41] L WANG AND Q CHEN. Theoretical and numerical studies of coupling multizone
and CFD models for building air distribution simulations. Indoor Air, 17(5):348–
361, 2007.

[42] G. H YEOH, V. (VUTE) CHANDRASEKARAN, AND E LEONARDI. Numerical
prediction of fire and smoke spread / G.H. Yeoh, V. Chandrasekaran and E. Leonardi.
[S.l.] : CSIRO. Division of Building, Construction and Engineering, 1995. Repr:
Australian refrigeration, air conditioning and heating, vol. 49, no. 1, Jan. 1995, p.
13-14, 16-18. 10

[43] JE FLOYD AND KB MCGRATTAN. Extending the mixture fraction concept to
address under-ventilated fires. Fire Safety Journal, 44(3):291–300, 2009. 10

[44] L KERRISON, ER GALEA, N HOFFMANN, AND MK PATEL. A comparison of a
FLOW3D based fire field model with experimental room fire data. Fire safety
journal, 23(4):387–411, 1994. 10

[45] L KERRISON, N MAWHINNEY, E.R GALEA, N HOFFMANN, AND M.K. PATEL.
A Comparison of Two Fire Field Models with Experimental Room Fire Data.
Proceedings of the 4th International Symposium on Fire Safety Science, pages 161–
172, 1994.

[46] JOUNI BJÖRKMAN AND OLAVI KESKI-RAHKONEN. Simulation of the Steckler
room fire experiment by using SOFIE CFD-model. VTT PUBLICATIONS, 1996.
10, 180

[47] GV HADJISOPHOCLEOUS AND CJ MCCARTNEY. Guidelines for the use of CFD
simulations for fire and smoke modeling. ASHRAE transactions, pages 583–594,
2005. 11

192

REFERENCES

[48] GORDON MOORE. Progress in Digital Integrated Electronics IEEE. IEDM Tech
Digest, 24:11–13, 1975. 11, 31

[49] HADI ESMAEILZADEH, EMILY BLEM, RENEE ST AMANT, KARTHIKEYAN

SANKARALINGAM, AND DOUG BURGER. Dark silicon and the end of multi-
core scaling. In Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, pages 365–376. IEEE, 2011. 11

[50] ER GALEA ET AL. The use of computer simulation for aircraft evacuation cer-
tification: A report from the VERRES project. In The 4th Triennial International
Fire and Cabin Safety Research Conference, Lisbon, Portugal, 2004. 11

[51] VYTENIS BABRAUSKAS, JOSEPH M FLEMING, AND B DON RUSSELL.
RSET/ASET, a flawed concept for fire safety assessment. Fire and Materials,
34(7):341–355, 2010. 11, 18

[52] E GALEA, B KNIGHT, M PATEL, J EWER, M PETRIDIS, AND S TAYLOR. SMART-
FIRE V2. 01 build 369D, User Guide and Technical Manual. SMARTFIRE CD
and bound manual, 1999. 12, 18, 20

[53] KEVIN B MCGRATTAN AND GLENN P FORNEY. Fire Dynamics Simulator: User’s
Manual. US Department of Commerce, Technology Administration, National Insti-
tute of Standards and Technology, 2000. 12

[54] A YU SNEGIREV, JA MARSDEN, J FRANCIS, AND GM MAKHVILADZE. Nu-
merical studies and experimental observations of whirling flames. International
journal of heat and mass transfer, 47(12):2523–2539, 2004. 12

[55] G.V. HADJISOPHOCLEOUS AND A. YAKAN. Computer modeling of compart-
ment fires. Internal Report, (613), 1991. 12

[56] M AKSIT, P MACKIE, AND PA RUBINI. Coupled radiative heat transfer and
flame spread simulation in a compartment. In Proceedings of the 3rd International
seminar on Fire and Explosion Hazards, Windermere, UK, 2000. 12

[57] AJ GARDINER. The mathematical modelling of the interaction between sprinkler
sprays and the thermally buoyant layers of gases from fires. PhD thesis, Polytechnic
of the South Bank, 1988. 12

193

http://www.chemheritage.org/Downloads/Publications/Books/Understanding-Moores-Law/Understanding-Moores-Law_Chapter-06.pdf

REFERENCES

[58] N.S. WILKES, J.H. ALDERTON, AND L.M. MACINTOSH. A comparison of
predictions with experimental data for a fire in a hospital ward: 1 - preliminary
precautions. AERE memorandum / M: AERE memorandum. Atomic Energy Re-
search Establishment, Engineering Sciences Division, 1988. 12

[59] DF FLETCHER, JH KENT, VB APTE, AND AR GREEN. Numerical simulations
of smoke movement from a pool fire in a ventilated tunnel. Fire Safety Journal,
23(3):305–325, 1994. 12

[60] G COX AND S KUMAR. Field modelling of fire in forced ventilated enclosures.
Combustion Science and Technology, 52(1-3):7–23, 1987. 12

[61] CHAM LIMITED. Documentation for PHOENICS TR003 version 2006. http:
//www.cham.co.uk/documentation/tr003.pdf. Accessed Jan 26, 2015.
12

[62] KEVIN B MCGRATTAN AND WILLIAM H TWILEY. Smoke plume trajectory from in
situ burning of crude oil in Alaska. United states department of commerce, National
technical information service, 1993. 12

[63] ER GALEA AND JM PEREZ GALPARSORO. A computer-based simulation model
for the prediction of evacuation from mass-transport vehicles. Fire Safety Journal,
22(4):341–366, 1994. 13

[64] LAWRENCE P J GWYNNE S FILIPPIDIS L BLACKSHIELDS D GALEA, E R AND

D COONEY. buildingEXODUS v5.1 User Guide and Technical Manual. 2013.
13, 18, 23, 24, 25

[65] THUNDERHEAD ENGINEERING. Agent Based Emergency Egress Simulation
Technical Reference. http://www.thunderheadeng.com/pathfinder/
documentation.html. Accessed Feb 19, 2014. 13

[66] BRE FIRE RESEARCH AND CONSULTANCY. Human behaviour in fire and emer-
gency evacuation design. http://www.bre.co.uk/fire/page.jsp?id=
269. Accessed Feb 19, 2014. 13

194

http://books.google.co.uk/books?id=OqUIywAACAAJ
http://books.google.co.uk/books?id=OqUIywAACAAJ
http://books.google.co.uk/books?id=OqUIywAACAAJ
http://www.cham.co.uk/documentation/tr003.pdf
http://www.cham.co.uk/documentation/tr003.pdf
http://www.thunderheadeng.com/pathfinder/documentation.html
http://www.thunderheadeng.com/pathfinder/documentation.html
http://www.bre.co.uk/fire/page.jsp?id=269
http://www.bre.co.uk/fire/page.jsp?id=269

REFERENCES

[67] D PURSER AND KE BOYCE. Implications of Modelling and Experimental Studies
of Evacuation Behaviour on Stairs for Multi-storey Building Design. Human
Behaviour in Fire, pages 147–160, 2009. 13

[68] SIMO HOSTIKKA, TIMO KORHONEN, TUOMAS PALOPOSKI, TUOMO RINNE, KA-
TRI MATIKAINEN, AND SIMO HELIÖVAARA. Development and validation of
FDS+ Evac for evacuation simulations. VTT RESEARCH, 2007. 13, 18

[69] XIAOSHAN PAN. Computational modeling of human and social behaviors for
emergency egress analysis. PhD thesis, Stanford University, 2006. 13

[70] JEAN LOUIS BERROU, JONATHAN BEECHAM, PHILIPPE QUAGLIA, MARIOS A
KAGARLIS, AND ALEX GERODIMOS. Calibration and validation of the Legion
simulation model using empirical data. In Pedestrian and Evacuation Dynamics
2005, pages 167–181. Springer, 2007. 13

[71] HUBERT KLÜPFEL AND TIM MEYER-KÖNIG. Simulation of the Evacuation of
a football stadium using the CA Model PedGo. In Traffic and Granular Flow03,
pages 423–428. Springer, 2005. 13

[72] DRACOS VASSALOS, HS KIM, GURO CHRISTIANSEN, AND JAYANTA MA-
JUMDER. A mesoscopic model for passenger evacuation in a virtual ship-sea
environment and performance-based evaluation. 2002. 13

[73] PETER A THOMPSON AND ERIC W MARCHANT. A computer model for the evac-
uation of large building populations. Fire Safety Journal, 24(2):131–148, 1995.
13

[74] PETER THOMPSON, JIANHUA WU, AND E MARCHANT. Modelling evacuation in
multi-storey buildings with Simulex. Fire Engineers Journal, 56:6–11, 1996. 13

[75] UNIVERSITY OF FLORIDA. Evacnet4 Users Guide. http://tomkisko.com/
ise/files/evacnet/EVAC4UG.HTM. Accessed Feb 19, 2014. 13

[76] NP WATERSON AND E PELLISSIER. The STEPS Pedestrian Microsimulation
Tool-A Technical Summary. Mott MacDonald Limited, Croydon, UK, 2012. 13, 17

195

http://tomkisko.com/ise/files/evacnet/EVAC4UG.HTM
http://tomkisko.com/ise/files/evacnet/EVAC4UG.HTM

REFERENCES

[77] OASYS SOFTWARE LIMITED. MassMotion v6.1.0 Manual - Design Simulate Op-
timize. Oasis Software Ltd., 2014. 13

[78] FRED I STAHL. BFIRES-II: a behavior based computer simulation of emergency
egress during fires. Fire technology, 18(1):49–65, 1982. 13

[79] ED KULIGOWSKI. Review of 28 egress models. In Kuligowski (Eds.), Proceedings
of the Workshop on Building Occupant Movement during Fire Emergencies, pages
68–90, 2004. 14

[80] KEVIN MCGRATTAN, SIMO HOSTIKKA, RANDALL MCDERMOTT, JASON FLOYD,
CRAIG WEINSCHENK, AND KRISTOPHER OVERHOLT. Fire dynamics simulator,
technical reference guide, volume 2: Verification. NIST Special Publication, 1018,
2013. 15

[81] STANFORD UNIVERSITY. What is Egress? http://eil.stanford.edu/

pengao/ResentFocus/. Accessed Feb 19, 2014. 15

[82] TRAFFGO HT. PedGo. http://traffgo-ht.com/en/pedestrians/

products/pedgo/. Accessed Feb 19, 2014. 16

[83] SUIPING ZHOU, DAN CHEN, WENTONG CAI, LINBO LUO, MALCOLM

YOKE HEAN LOW, FENG TIAN, VICTOR SU-HAN TAY, DARREN WEE SZE ONG,
AND BENJAMIN D HAMILTON. Crowd modeling and simulation technologies.
ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(4):20,
2010. 16

[84] RW BUKOWSKI, TE WATERMAN, AND WJ CHRISTIAN. Detector sensitivity and
siting requirements for dwellings: Report of the NBS Indiana Dunes Tests. NFPA
No. SPP-43, National Fire Protection Association, Quincy, MA, 1975. 18

[85] EDWIN R GALEA, ZHAOZHI WANG, ANAND VEERASWAMY, FUCHEN JIA, PE-
TER J LAWRENCE, JOHN EWER, ET AL. Coupled fire/evacuation analysis of the
Station Nightclub fire. In Proc of 9th IAFSS Symp, pages 465–476, 2008. 18

[86] S GWYNNE, ER GALEA, PJ LAWRENCE, AND L FILIPPIDIS. Modelling occupant
interaction with fire conditions using the buildingEXODUS evacuation model.
Fire Safety Journal, 36(4):327–357, 2001. 18, 23, 25

196

http://eil.stanford.edu/pengao/ResentFocus/
http://eil.stanford.edu/pengao/ResentFocus/
http://traffgo-ht.com/en/pedestrians/products/pedgo/
http://traffgo-ht.com/en/pedestrians/products/pedgo/

REFERENCES

[87] WALTER W JONES, RICHARD D PEACOCK, GLENN P FORNEY, AND PA RENEKE.
CFAST–Consolidated model of fire growth and smoke transport (Version 6).
Technical reference guide. NIST SP, 1030:153, 2005. 18

[88] JN FRASER-MITCHELL. Modelling human behaviour within the fire risk assess-
ment tool CRISP. Fire and Materials, 23(6):349–355, 1999. 18, 19

[89] GEORGI S DJAMBAZOV, CHOI-HONG LAI, KOULIS A PERICLEOUS, ET AL. Ef-
ficient computation of aerodynamic noise. Contemporary Mathematics, 218:500–
506, 1998. 18

[90] BJORN KARLSSON AND KOKKALA M. New Developments in Performance Based
Test Methods for Fire safety Assessment of Products. In Proceedings of the CIB
W60 Workshop on New Developments in Performance Test Methods, 1995. 19

[91] BJORN KARLSSON, GREG NORTH, AND DANIEL GOJKOVIC. Using results from
performance-based test methods for material flammability in fire safety engi-
neering design. Journal of Fire Protection Engineering, 12(2):93–108, 2002.

[92] SE MAGNUSSON, H FRANTZICH, B KARLSSON, AND S SÄRDQVIST. Determi-
nation of safety factors in design based on performance. In Proceedings of the
Fourth International Symposium on Fire Safety Science, pages 937–948, 1994. 19

[93] KORHONEN TIMO AND SIMO HOSTIKKA. Fire Dynamics Simulator with Evacu-
ation: FDS+Evac, Users Guide. VTT Working Papers, 119, 2009. 19

[94] TIMO KORHONEN, SIMO HOSTIKKA, SIMO HELIÖVAARA, HARRI EHTAMO, AND

KATRI MATIKAINEN. Integration of an agent based evacuation simulation
and the state-of-the-art fire simulation. In Proceedings of the 7th Asia-Oceania
symposium on fire science & technology, pages 20–22, 2007. 19

[95] JEREMY FRASER-MITCHELL, SUNG-HAN KOO, AND STEPHEN WELCH. Sensor-
linked simulation for emergency response. 2009. 19

[96] JOHN ANDREW CLARK EWER ET AL. An Investigation Into the Feasibility,
Problems and Benefits of Re-engineering a Legacy Procedural CFD Code Into an
Event Driven, Object Oriented System that Allows Dynamic User........ University of
Greenwich, 2000. 20

197

REFERENCES

[97] S KUMAR, AK GUPTA, AND G COX. Effects of thermal radiation on the fluid
dynamics of compartment fires. In Fire Safety ScienceProceedings of the Third
International Symposium, pages 345–354, 1991. 20

[98] GD RAITHBY AND EH CHUI. A finite-volume method for predicting a radiant
heat transfer in enclosures with participating media. Journal of Heat Transfer,
112(2):415–423, 1990. 20

[99] MJ LEWIS, MB MOSS, AND PA RUBINI. CFD modelling of combustion and heat
transfer in compartment fires. In Proc. 5th Int. Symp. on Fire Safety Science, pages
463–474. International Association for Fire Safety Science Australia, 1997. 20

[100] FSEG UNIVERSITY OF GREENWICH. SMARTFIRE INTRODUCTION. http:
//fseg.gre.ac.uk/smartfire/. Accessed Feb 17, 2014. 22

[101] ER GALEA, L FILIPPIDIS, Z WANG, AND J EWER. Fire and evacuation analysis
in BWB aircraft configurations: computer simulations and large-scale evacua-
tion experiment. Aeronautical Journal, 114(1154):271–277, 2010. 23

[102] GALEA E R LAWRENCE P GWYNNE S DEERE, S. The Impact of the agent re-
sponse time distribution on ship evacuation performance. Journal of Maritime
Engineering, 148(Part A1()):35–44, 2006. 23

[103] TADAHISA JIN. Visibility through fire smoke. Journal of Fire and Flammability,
9(2):135–155, 1978. 25

[104] TADAHISA JIN AND TOKIYOSHI YAMADA. Irritating effects of fire smoke on
visibility. Fire Science and Technology, 5(1):79–90, 1985. 25

[105] DA PURSER. Assessment of hazards to occupants from smoke, toxic gases, and
heat. SFPE handbook of fire protection engineering, 4:2–96, 2008. 25

[106] STANLEY GILL. Parallel programming. The Computer Journal, 1(1):2–10, 1958.
26, 27

[107] MICHAEL J FLYNN AND KEVIN W RUDD. Parallel architectures. ACM
Computing Surveys (CSUR), 28(1):67–70, 1996. 26

198

http://fseg.gre.ac.uk/smartfire/
http://fseg.gre.ac.uk/smartfire/

REFERENCES

[108] DANIEL L SLOTNICK, W CARL BORCK, AND ROBERT C MCREYNOLDS. The
SOLOMON computer. In Proceedings of the December 4-6, 1962, fall joint
computer conference, pages 97–107. ACM, 1962. 27

[109] JR BALL, RC BOLLINGER, TA JEEVES, RC MCREYNOLDS, AND DH SHAFFER.
On the use of the SOLOMON parallel-processing computer. In Proceedings of
the December 4-6, 1962, fall joint computer conference, pages 137–146. ACM, 1962.
27

[110] ARTHUR J BERNSTEIN. Analysis of programs for parallel processing. Electronic
Computers, IEEE Transactions on, (5):757–763, 1966. 27

[111] ALFREDO BUTTARI, JULIEN LANGOU, JAKUB KURZAK, AND JACK DONGARRA.
A class of parallel tiled linear algebra algorithms for multicore architectures.
Parallel Computing, 35(1):38–53, 2009. 27

[112] TOP500.ORG (C). TOP500 Supercomputer Site. http://www.top500.org.
Accessed Feb 19, 2015. 27

[113] ALBERTO VALLI, ALFIO QUARTERONI, ET AL. Domain decomposition methods for
partial differential equations. Number CMCS-BOOK-2009-019. Oxford University
Press, 1999. 28

[114] K.A DUKE AND W.A WALL. A professional graphics controller. IBM Systems
Journal, 24(1):14–25, 1985. 29

[115] VisiCorp Visi On. http://toastytech.com/guis/vision.html, August
2013. 29

[116] TIM DETTMERS. Which GPU(s) to Get for Deep Learning: My Experience and
Advice for Using GPUs in Deep Learning, 2014. 30

[117] CUDA NVIDIA. Programming guide, 2008. 30, 33, 35, 39, 42

[118] KHRONOS OPENCL WORKING GROUP ET AL. The opencl specification. A.
Munshi, Ed, 2008. 30, 35

199

http://www.top500.org
http://domino.research.ibm.com/tchjr/journalindex.nsf/0/6829ccaf443f3a6c85256bfa00685b97?OpenDocument
http://toastytech.com/guis/vision.html
https://timdettmers.files.wordpress.com/2014/08/memory-bandwidth.png
https://timdettmers.files.wordpress.com/2014/08/memory-bandwidth.png

REFERENCES

[119] P. GLASKOWSKY. The first complete gpu computing architecture. Technical
report, NVIDIA, 2009. 31

[120] Computer Organisation and Design. Elsevier, 2008. 31

[121] NVIDIA. Nvidia’s next generation cuda architecture: Fermi. Technical report,
Nvidia, 2009. 31, 37

[122] JOHN D. OWENS, DAVID LUEBKE, NAGA GOVINDARAJU, MARK HARRIS, JENS

KRGER, AARON E. LEFOHN, AND TIM PURCELL. A survey of general-purpose
computation on graphics hardware, 2007. 31

[123] JOHN OWENS. Data-parallel algorithms and data structures. In ACM
SIGGRAPH 2007 courses, SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[124] YI YANG, PING XIANG, JINGFEI KONG, AND HUIYANG ZHOU. A GPGPU com-
piler for memory optimization and parallelism management. SIGPLAN Not.,
45(6):86–97, June 2010. 31

[125] J. PALACIOS AND J. TRISKA. A Comparison of Modern GPU and CPU Archi-
tectures: And the Common Convergence of Both, 3 2011. 31

[126] JOHN NICKOLLS, IAN BUCK, MICHAEL GARLAND, AND KEVIN SKADRON. Scal-
able parallel programming with CUDA. Queue, 6(2):40–53, 2008. 31, 41

[127] MARK HARRIS. Gpgpu: General-purpose computation on gpus. SIGGRAPH
2005 GPGPU COURSE, 2005. 31

[128] LINUX MAGAZINE. The Return of the Vector Processor. http://www.

linux-mag.com/id/7575/, Oct 2009. 32

[129] NVIDIA CORP. COMPUTATIONAL FLUID DYNAMICS. http://www.

nvidia.com/object/computational_fluid_dynamics.html. Ac-
cessed April 17, 2014. 32

[130] Nvidia Corp. http://www.nvidia.com/, August 2013. Accessed March 08,
2013. 33

200

http://doi.acm.org/10.1145/1281500.1281644
http://doi.acm.org/10.1145/1809028.1806606
http://doi.acm.org/10.1145/1809028.1806606
http://www.linux-mag.com/id/7575/
http://www.linux-mag.com/id/7575/
http://www.nvidia.com/object/computational_fluid_dynamics.html
http://www.nvidia.com/object/computational_fluid_dynamics.html
http://www.nvidia.com/

REFERENCES

[131] KHRONOS OPENCL WORKING GROUP ET AL. OpenCL. http://www.

khronos.org/opencl/, October 2009. 33

[132] INTEL. Intel Xeon Phi Coprocessor Developer’s quick start guide, 2013. 33

[133] PENG DU, RICK WEBER, PIOTR LUSZCZEK, STANIMIRE TOMOV, GREGORY

PETERSON, AND JACK DONGARRA. From {CUDA} to OpenCL: Towards
a performance-portable solution for multi-platform {GPU} programming.
Parallel Computing, 38(8):391 – 407, 2012. 34

[134] DONALD E THOMAS AND PHILIP R MOORBY. The Verilog R© Hardware
Description Language, 2. Springer, 2002. 34

[135] T. HOSHINO, N. MARUYAMA, S. MATSUOKA, AND R. TAKAKI. CUDA vs Ope-
nACC: Performance Case Studies with Kernel Benchmarks and a Memory-
Bound CFD Application. In Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, pages 136–143, May 2013. 34

[136] N BELL AND J HOBEROCK. The thrust library, 2010. 35

[137] JOHN R HUMPHREY, DANIEL K PRICE, KYLE E SPAGNOLI, AARON L PAOLINI,
AND ERIC J KELMELIS. CULA: hybrid GPU accelerated linear algebra routines.
In SPIE Defense, Security, and Sensing, pages 770502–770502. International Society
for Optics and Photonics, 2010. 35

[138] ROB FARBER. CUDA application design and development. Access Online via Else-
vier, 2011. 35

[139] D.H. LAWRIE. Access and Alignment of Data in an Array Processor. Computers,
IEEE Transactions on, C-24(12):1145–1155, 1975. 37

[140] NVIDIA. NVIDIAs Next Generation CUDA Compute Architecture: Ke-
pler GK110. http://www.nvidia.co.uk/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012. 37, 38

[141] NVIDIA. NVIDIA Tesla C2075 Companion Processor. http://www.nvidia.
com/content/PDF/data-sheet/NV_DS_Tesla_C2075_Sept11_US_

HR.pdf, 2011. 39

201

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.sciencedirect.com/science/article/pii/S0167819111001335
http://www.sciencedirect.com/science/article/pii/S0167819111001335
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.co.uk/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/data-sheet/NV_DS_Tesla_C2075_Sept11_US_HR.pdf
http://www.nvidia.com/content/PDF/data-sheet/NV_DS_Tesla_C2075_Sept11_US_HR.pdf
http://www.nvidia.com/content/PDF/data-sheet/NV_DS_Tesla_C2075_Sept11_US_HR.pdf

REFERENCES

[142] CHARLES AR HOARE. Quicksort. The Computer Journal, 5(1):10–16, 1962. 41

[143] DAVID B. KIRK AND WEN-MEI W. HWU. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1st edition, 2010. 41

[144] C.M. WITTENBRINK, E. KILGARIFF, AND A. PRABHU. Fermi GF100 GPU Ar-
chitecture. Micro, IEEE, 31(2):50–59, 2011. 41

[145] Y. TORRES, A. GONZALEZ-ESCRIBANO, AND D.R. LLANOS. Understanding the
impact of CUDA tuning techniques for Fermi. In High Performance Computing
and Simulation (HPCS), 2011 International Conference on, pages 631–639, 2011. 45

[146] SUSIM KUMAR. Mathematical modeling of natural convection in fire A state of
the art review of the field modelling of variable density turbulent flow. Fire and
Materials, 7(1):1–24, 1983. 49

[147] JACK GM EGGELS. Direct and large-eddy simulation of turbulent fluid flow
using the lattice-Boltzmann scheme. International journal of heat and fluid flow,
17(3):307–323, 1996. 51, 210

[148] F JIA, ER GALEA, MK PATEL, ET AL. The numerical simulation of fire spread
within a compartment using an integrated gas and solid phase combustion
model. Journal of Applied Fire Science, 8(4):327–352, 1999. 51

[149] JOHN R HOWELL. Thermal radiation in participating media: the past, the
present, and some possible futures. Journal of Heat Transfer, 110(4b):1220–1229,
1988. 52

[150] HOYT CLARKE HOTTEL AND ADEL F SAROFIM. Radiative transfer. McGraw-Hill
New York, 1967. 52

[151] JOHN R HOWELL. Application of Monte Carlo to heat transfer problems.
Advances in heat transfer, 5(1):1–54, 1968. 52

[152] H. C. HAMAKER. Radiation and Heat Conduction in Light-Scattering Material:
Part I Reflection and Transmission. Technical report, Philips Research, 1947. 52

202

REFERENCES

[153] H. C. HAMAKER. Radiation and Heat Conduction in Light-Scattering Material:
Part II. Technical report, Philips Research, 1947.

[154] ARTHUR SCHUSTER. Radiation through a foggy atmosphere. The astrophysical
journal, 21:1, 1905. 52

[155] FC LOCKWOOD AND NG SHAH. A new radiation solution method for incorpora-
tion in general combustion prediction procedures. In Symposium (international)
on combustion, 18, pages 1405–1414. Elsevier, 1981. 52, 63

[156] UNITED STATES DEPARTMENT OF TRASPORTATION. RITA - Research and Inno-
vation Techology Administartion. http://ntl.bts.gov/DOCS/ch5.html.
Accessed Jan 06, 2015. 56

[157] CM RHIE AND WL CHOW. Numerical study of the turbulent flow past an airfoil
with trailing edge separation. AIAA journal, 21(11):1525–1532, 1983. 58, 65

[158] FUCHEN JIA. The Simulation of Fire Growth and Spread within Enclosures using an
integrated CFD Fire Field Model,. PhD thesis, University of Greenwich, 1999. 63,
72

[159] ADEL F SAROFIM. Radiative heat transfer in combustion: Friend or foe. In
Symposium (International) on Combustion, 21, pages 1–23. Elsevier, 1988. 63

[160] BENGT G CARLSON, KAYE D LATHROP, ET AL. Transport theory: the method of
discrete ordinates. Los Alamos Scientific Laboratory of the University of California,
1965. 64

[161] SUHAS V PATANKAR AND D BRIAN SPALDING. A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows. International
Journal of Heat and Mass Transfer, 15(10):1787–1806, 1972. 67

[162] JP VAN DOORMAAL AND GD RAITHBY. Enhancements of the SIMPLE method
for predicting incompressible fluid flows. Numerical heat transfer, 7(2):147–163,
1984. 67

[163] GEORGE KARYPIS AND VIPIN KUMAR. Metis-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. 1995. 76

203

http://ntl.bts.gov/DOCS/ch5.html

REFERENCES

[164] CHRIS WALSHAW AND MARK CROSS. JOSTLE: parallel multilevel graph-
partitioning software–an overview. Mesh partitioning techniques and domain
decomposition techniques, pages 27–58, 2007. 76

[165] BRUCE HENDRICKSON AND ROBERT LELAND. The Chaco users guide: Version
2.0. Technical report, Technical Report SAND95-2344, Sandia National Laborato-
ries, 1995. 76

[166] FRANÇOIS PELLEGRINI AND JEAN ROMAN. Scotch: A software package for
static mapping by dual recursive bipartitioning of process and architecture
graphs. In High-Performance Computing and Networking, pages 493–498. Springer,
1996. 76

[167] ANGUS JOSEPH GRANDISON. Improving the regulatory acceptance and numerical
performance of CFD based fire-modelling software. PhD thesis, University of Green-
wich, 2003. 76, 79, 80, 88, 106

[168] BIBI YASMINA YASHANAZ MOHEDEEN. Domain Partitioning and software
modifications towards the parallelisation of the buildingEXODUS evacuation
software. PhD thesis, University of Greenwich, 2011. 76

[169] NVIDIA Developer Zone. https://developer.nvidia.com/. Accessed
August 2013. 84

[170] KEVIN MCMANUS. A strategy for mapping unstructured mesh computational
mechanics programs onto distributed memory parallel architectures. PhD thesis, Uni-
versity of Greenwich London, UK, 1996. 88

[171] KD STECKLER, JAMES G QUINTIERE, AND WJ RINKINEN. Flow induced by
fire in a compartment. In Symposium (international) on combustion, 19, pages
913–920. Elsevier, 1982. 92, 93, 180

[172] AJ GRANDISON, ER GALEA, MK PATEL, AND DAVID PEACE. Fire Modelling
Standards/benchmark: Report on SMARTFIRE Phase 2 Simulations. University of
Greenwich, Centre for Numerical Modelling and Process Analysis, 2001. 92, 93

204

https://developer.nvidia.com/

REFERENCES

[173] NATHAN WHITEHEAD AND ALEX FIT-FLOREA. Precision & performance: Float-
ing point and IEEE 754 compliance for NVIDIA GPUs. nVidia technical white
paper, 21:1–1874919424, 2011. 94

[174] EDWIN R GALEA, ZHAOZHI WANG, MADELEINE TOGHER, FUCHEN JIA, AND

PETER LAWRENCE. Predicting the likely impact of aircraft post crash fire on
aircraft evacuation using fire and evacuation simulation. In Proc. international
fire and cabin safety research conference, 2007. 116

[175] S TAYLOR, M PETRIDIS, B KNIGHT, J EWER, ER GALEA, M PATEL, ET AL.
SMARTFIRE: an integrated computational fluid dynamics code and expert sys-
tem for fire field modelling. 1997. 187

[176] M PETRIDIS, B KNIGHT, AND D EDWARDS. A design for reliable CFD software.
In Reliability and Robustness of Engineering Software II, pages 3–17. Springer, 1991.
187

[177] NVIDIA CORP. 3D Graphics Demystified. http://www.intel.com/, August
2013. 207

[178] THOMAS SCOTT CROW. Evolution of the Graphical Processing Unit. Master thesis,
University of Nevada, Reno, December 2004.

[179] WIKIPEDIA. Graphics pipeline. https://en.wikipedia.org/wiki/

Graphics_pipeline, August 2013. 207

[180] THOMAS VOGEL. BASIC COMPUTER GRAPHICS. http://prosjekt.

ffi.no/unik-4660/lectures04/chapters/Basic.html, August
2013. 208

[181] JOHN CHARLES BUTCHER. The numerical analysis of ordinary differential
equations: Runge-Kutta and general linear methods. Wiley-Interscience, 1987. 209

[182] RICHARD COURANT, KURT FRIEDRICHS, AND HANS LEWY. Über die partiellen
Differenzengleichungen der mathematischen Physik. Mathematische Annalen,
100(1):32–74, 1928. 209

205

http://www.intel.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.368&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Graphics_pipeline
http://prosjekt.ffi.no/unik-4660/lectures04/chapters/Basic.html
http://prosjekt.ffi.no/unik-4660/lectures04/chapters/Basic.html

REFERENCES

[183] RICHARD COURANT, KURT FRIEDRICHS, AND HANS LEWY. On the partial
difference equations of mathematical physics. IBM journal of Research and
Development, 11(2):215–234, 1967. 209

[184] GEORGE KARYPIS AND V KUMAR. Metis manual. University of
Minnesota/Department of Science/Army HPC Research Center, 2011. 211

206

Appendix A

Appendix

A.1 Pipelines

A graphics pipeline or rendering pipeline refers to a sequence of steps to transform a 3D
scene into a 2D raster. The concept exists in three versions, software implementation1,
hardware implementation2 or a combination of both. Simply speaking it converts coordi-
nates which are easier for the programmer to implement into something that is more conve-
nient for the monitor to display. The process chain takes any 3D data i.e a geometry model
or shapes consisting of triangles or coordinates (x,y,z) and transforms it to pixels that can
be displayed on a 2D monitor, an example is shown in Figure A.1. The simplest pipeline
concept consists of two stages, processing stage (3D → 2D) and rendering stage to create
the surface of the 2D object[177–179].

1OpenGL or Microsoft Direct3D
2GPU

207

A.2 Explicit Discretisation

Figure A.1: Graphics pipeline in NVIDIA GeForce 8800 [180]

A.2 Explicit Discretisation

In the previous section an implicit temporal discretisation scheme has been introduced. An
explicit discretisation will now be described here. The explicitly discretised general conser-
vation equation(c.f. implicit equation (3.3.7) is given in (A.2.1)).

[
(ρφ)− (ρφ)old

]
P

δt
VP+

∑
All faces

of FV

(
ρf (u.n̂)fφ

old
f − Γφ

(
∂φ

∂x
nx +

∂φ

∂y
ny
∂φ

∂z
nz

)old)
Af = Sφ,PVP

(A.2.1)
which leads to equation (A.2.2)(c.f. implicit equation 3.3.18):

aPφP =
∑

All adjacent
nodes

(aAφA)old + b (A.2.2)

The difference between the explicit ((A.2.1) and (A.2.2))and the implicit ((3.3.7) and (A.2.2))
formulation is that the value of φP can now be calculated explicitly from the previously cal-
culated old values of neighbouring φ and therefore there is no coupling of the neighbouring

208

A.3 Large Eddy Simulation Model

values of φnew as found in the implicit formulation. The result is a set of independent ordi-
nary differential equations(ODE) for each point in the physical domain that can be solved
by using methods such as corrector-predictor or Runge-Kutta methods [181].

However it has to be ensured that sufficiently small time steps are utilised or the results can
result in physically in-correct results [2]. The time step size δt is limited by the Courant-
Friedrichs-Lewy (CFL) limit [182; 183] (δt < δx

u
|min) where δx is the grid cell size and u

is the velocity within the corresponding grid cell.The implicit formulation is not limited in
this way so that longer time steps can be used for the temporal discretisation. The general
rule is that implicit methods are faster than explicit ones due to the longer time step size that
can be used. However it may still be useful to apply an explicit method when small time
step sizes are inherently required e.g Large Eddy Simulation (LES).

A.3 Large Eddy Simulation Model

In LES models the instantaneous equations are not time averaged but filtered instead to
remove all eddies smaller than a certain size, usually the size equals the resolution of the
cells in the domain. Mathematically this is expressed in A.3.1

f(x) =

∫
D

f(x
′
)G(x, x

′
; ∆)dx

′
(A.3.1)

where the overbar stands for the already filtered function, D is the entire domain, G stands
for the filtering function and ∆ is the filtering width. The filter function defines the size and
structure scales. Similarly to the Reynolds averaging process in 3.1.5.1, the variable can be
decomposed in two parts.

φ = φ+ φ
′

(A.3.2)

but the definition is different here. φ′ stands for the fluctuation of φ at length< ∆. Applying
the filter to the momentum equation and dropping the overbars leads to A.3.3.

∂(ρui)

∂t
+∇(ρuiu) = µdiv(grad(ui))−

∂P

∂xi
+ Si −

∂

∂xj
(ρτij) (A.3.3)

209

A.3 Large Eddy Simulation Model

The filtered fields do not need to resolve at scales< ∆ and can therefore calculated properly.
The last term in equation A.3.3,τij = (uiuj− ūiūj) is called the sub-grid- scale stress tensor
and represents the effects that the small scales have. This term needs to be modelled.
The stress term of an eddy-viscosity model can be modelled as

τij −
1

3
τkkδij = −Vt

(
∂ui
∂xj

+
∂uj
∂xi

)
= −2vtS̄ij (A.3.4)

Sij is the deformation tensor of the filtered velocity(gradient). The unknown variables have
been replaced with the known filtered values, similar to the time-averaged approach. Which
leaves the only term required to model LES turbulent viscosities. The most common and
widely used model was proposed by Smagorinsky [147]. The assumption about a local
mixing-length is made and the eddy viscosity is assumed to be proportional to ∆ and the
characteristic turbulent velocity determined by ∆

∣∣S̄ij∣∣. The turbulent eddy viscosity is given
by Equation A.3.5

vt =
(
CS∆̄

)2 ∣∣S̄ij∣∣ (A.3.5)

CS can either be constant or a variable depending on the method of modelling chosen. This
term will get damped where turbulence can not totally develop e.g. during transitions and
close to walls.

Small time steps are necessary to achieve time accuracy. Which means the advantage of
using an implicit scheme, larger time steps, are lost. As implicit schemes have no real
advantage any more explicit schemes become interesting. The explicit scheme uses a set of
ODE for the thermodynamic quantities.
The main advantage of the LES in FSE that large eddies found in fire plumes are lost or
get averaged out by using a time average approach. LES visually look more realistic in
contrast to time averaged simulations. However the main advantage of using time averaged
approaches still is the execution time.

210

A.4 Metis Input Format

A.4 Metis Input Format

Metis partitions the vertices of a graph in n roughly equal parts, such that the number of
edges connecting vertices in different parts is minimized. Which essentially means the
surface between the individual parts will be minimised to avoid additional communication
overhead. In order to do this a certain input data format for the graph is required, which
SMARTFIRE already provides. An example for a simplified graph is shown in Figure A.2
which can be expressed i the form of table A.1. Row ”xadj” has N elements, N(i + 1) −
N(i) gives the number of neighbours per cell. The values in xadj represent cell numbers in
row ”adjncy” where the group of neighbouring cells is listed. Therefore all information to
describe the graphs are given. When implemented the adjncy row can been seen as places
in memory and xadj essentially pointers into memory.

Figure A.2: A sample graph [184]

Table A.1: Metis input for a sample graph see Figure A.2 [184]

xadj 0 2 5 8 11 13 16 20 24 28 31 33 36 39 42 44

adjncy 1 5 0 2 6 1 3 7 2 4 8 3 9 0 6 10
1 5 7 11 2 6 8 12 3 7 9 13 4 8 14 5
11 6 10 12 7 11 13 8 12 14 9 13

211

A.5 Shared Memory Mapping

A.5 Shared Memory Mapping

Figure A.4: Shared memory mapping on a block by block basis.

212

A.5 Shared Memory Mapping

Figure A.3: φiP mapping on a block by block basis for the two dimensional domain as in Figure

4.9.

213

A.6 Simple Geometry - Narcotic properties

A.6 Simple Geometry - Narcotic properties

(a) Scenario 1 with wardens RT 10s delayed.

(b) Scenario 1 with wardens RT 20s delayed.

(c) Scenario 1 with wardens RT 30s delayed.

Figure A.5: Narcotic properties for person 4, warden and person 1 for scenario 1.

214

A.6 Simple Geometry - Narcotic properties

(a) Scenario 2 with wardens RT 10s delayed.

(b) Scenario 2 with wardens RT 20s delayed.

(c) Scenario 2 with wardens RT 30s delayed.

Figure A.6: Narcotic properties for person 4, warden and person 1 for scenario 2.

215

A.6 Simple Geometry - Narcotic properties

(a) Scenario 3 with wardens RT 10s delayed.

(b) Scenario 3 with wardens RT 20s delayed.

(c) Scenario 3 with wardens RT 30s delayed.

Figure A.7: Narcotic properties for person 4, warden and person 1 for scenario 3.

216

A.6 Simple Geometry - Narcotic properties

(a) Scenario 1 with 60s delay for warden, non coupled.

(b) Scenario 1 with 60s delay for warden, coupled.

Figure A.8: Properties for person 4, warden and person 1.

217

A.6 Simple Geometry - Narcotic properties

(a) Person one’s, four’s and the warden’s properties after evacuation for scenario 1.

(b) Person one’s, four’s and the warden’s properties after evacuation for scenario 2.

(c) Person one’s, four’s and the warden’s properties after evacuation for scenario 3.

Figure A.9: Narcotic properties for person 4, warden and person 1 for scenario one to three.

218

A.6 Simple Geometry - Narcotic properties

(a) Scenario 1 with 75s delay for warden.

(b) Scenario 3 with 75s delay for the warden.

Figure A.10: Properties for person 4, warden and person 1.

219

A.6 Simple Geometry - Narcotic properties

(a) Warden evacuating the ground floor property

outputs.

(b) Warden evacuating the first floor property out-

puts.

Figure A.11: Property outputs for both wardens, ground floor and first floor for scenario 3.

220

A.6 Simple Geometry - Narcotic properties

(a) Warden evacuating the ground floor property

outputs.

(b) Warden evacuating the first floor property out-

puts.

Figure A.12: Property outputs for both wardens, ground floor and first floor for scenario 3.

221

A.7 Scenario 1

A.7 Scenario 1

(a) Temperature outputs and door events for zone 84 in scenario 1.

(b) Smoke outputs and door events for zone 84 in scenario 1.

(c) Radiation outputs and door events for zone 84 in scenario 1.

Figure A.13: Temperature, smoke and radiation vs. time for zone 84.

222

A.7 Scenario 1

(a) Temperature outputs and door events for zone 85 in scenario 1.

(b) Smoke outputs and door events for zone 85 in scenario 1.

(c) Radiation outputs and door events for zone 85 in scenario 1.

Figure A.14: Temperature, smoke and radiation vs. time for zone 85.

223

A.7 Scenario 1

(a) Temperature outputs and door events for zone 86 in scenario 1.

(b) Smoke outputs and door events for zone 86 in scenario 1.

(c) Radiation outputs and door events for zone 86 in scenario 1.

Figure A.15: Temperature, smoke and radiation vs. time for zone 86.

224

A.7 Scenario 1

(a) Temperature outputs and door events for zone 87 in scenario 1.

(b) Smoke outputs and door events for zone 87 in scenario 1.

(c) Radiation outputs and door events for zone 87 in scenario 1.

Figure A.16: Temperature, smoke and radiation vs. time for zone 87.

225

A.7 Scenario 1

(a) Temperature outputs and door events for zone 88 in scenario 1.

(b) Smoke outputs and door events for zone 88 in scenario 1.

(c) Radiation outputs and door events for zone 88 in scenario 1.

Figure A.17: Temperature, smoke and radiation vs. time for zone 88.

226

A.7 Scenario 1

(a) Temperature outputs and door events for zone 89 in scenario 1.

(b) Smoke outputs and door events for zone 89 in scenario 1.

(c) Radiation outputs and door events for zone 89 in scenario 1.

Figure A.18: Temperature, smoke and radiation vs. time for zone 89.

227

A.7 Scenario 1

(a) Temperature outputs and door events for zone 90 in scenario 1.

(b) Smoke outputs and door events for zone 90 in scenario 1.

(c) Radiation outputs and door events for zone 90 in scenario 1.

Figure A.19: Temperature, smoke and radiation vs. time for zone 90.

228

A.7 Scenario 1

(a) Temperature outputs and door events for zone 91 in scenario 1.

(b) Smoke outputs and door events for zone 91 in scenario 1.

(c) Radiation outputs and door events for zone 91 in scenario 1.

Figure A.20: Temperature, smoke and radiation vs. time for zone 91.

229

A.7 Scenario 1

(a) Temperature outputs and door events for zone 92 in scenario 1.

(b) Smoke outputs and door events for zone 92 in scenario 1.

(c) Radiation outputs and door events for zone 92 in scenario 1.

Figure A.21: Temperature, smoke and radiation vs. time for zone 92.

230

A.7 Scenario 1

(a) Temperature outputs and door events for zone 93 in scenario 1.

(b) Smoke outputs and door events for zone 93 in scenario 1.

(c) Radiation outputs and door events for zone 93 in scenario 1.

Figure A.22: Temperature, smoke and radiation vs. time for zone 93.

231

A.7 Scenario 1

Scenario 2

(a) Temperature outputs and door events for zone 84 in scenario 2.

(b) Smoke outputs and door events for zone 84 in scenario 2.

(c) Radiation outputs and door events for zone 84 in scenario 2.

Figure A.23: Temperature, smoke and radiation vs. time for zone 84.

232

A.7 Scenario 1

(a) Temperature outputs and door events for zone 85 in scenario 2.

(b) Smoke outputs and door events for zone 85 in scenario 2.

(c) Radiation outputs and door events for zone 85 in scenario 2.

Figure A.24: Temperature, smoke and radiation vs. time for zone 85.

233

A.7 Scenario 1

(a) Temperature outputs and door events for zone 86 in scenario 2.

(b) Smoke outputs and door events for zone 86 in scenario 2.

(c) Radiation outputs and door events for zone 86 in scenario 2.

Figure A.25: Temperature, smoke and radiation vs. time for zone 86.

234

A.7 Scenario 1

(a) Temperature outputs and door events for zone 87 in scenario 2.

(b) Smoke outputs and door events for zone 87 in scenario 2.

(c) Radiation outputs and door events for zone 87 in scenario 2.

Figure A.26: Temperature, smoke and radiation vs. time for zone 87.

235

A.7 Scenario 1

(a) Temperature outputs and door events for zone 88 in scenario 2.

(b) Smoke outputs and door events for zone 88 in scenario 2.

(c) Radiation outputs and door events for zone 88 in scenario 2.

Figure A.27: Temperature, smoke and radiation vs. time for zone 88.

236

A.7 Scenario 1

(a) Temperature outputs and door events for zone 89 in scenario 2.

(b) Smoke outputs and door events for zone 89 in scenario 2.

(c) Radiation outputs and door events for zone 89 in scenario 2.

Figure A.28: Temperature, smoke and radiation vs. time for zone 89.

237

A.7 Scenario 1

(a) Temperature outputs and door events for zone 90 in scenario 2.

(b) Smoke outputs and door events for zone 90 in scenario 2.

(c) Radiation outputs and door events for zone 90 in scenario 2.

Figure A.29: Temperature, smoke and radiation vs. time for zone 90.

238

A.7 Scenario 1

(a) Temperature outputs and door events for zone 91 in scenario 2.

(b) Smoke outputs and door events for zone 91 in scenario 2.

(c) Radiation outputs and door events for zone 91 in scenario 2.

Figure A.30: Temperature, smoke and radiation vs. time for zone 91.

239

A.7 Scenario 1

(a) Temperature outputs and door events for zone 92 in scenario 2.

(b) Smoke outputs and door events for zone 92 in scenario 2.

(c) Radiation outputs and door events for zone 92 in scenario 2.

Figure A.31: Temperature, smoke and radiation vs. time for zone 92.

240

A.7 Scenario 1

(a) Temperature outputs and door events for zone 93 in scenario 2.

(b) Smoke outputs and door events for zone 93 in scenario 2.

(c) Radiation outputs and door events for zone 93 in scenario 2.

Figure A.32: Temperature, smoke and radiation vs. time for zone 93.

241

A.7 Scenario 1

Scenario 3

(a) Temperature outputs and door events for zone 84 in scenario 3.

(b) Smoke outputs and door events for zone 84 in scenario 3.

(c) Radiation outputs and door events for zone 84 in scenario 3.

Figure A.33: Temperature, smoke and radiation vs. time for zone 84.

242

A.7 Scenario 1

(a) Temperature outputs and door events for zone 85 in scenario 3.

(b) Smoke outputs and door events for zone 85 in scenario 3.

(c) Radiation outputs and door events for zone 85 in scenario 3.

Figure A.34: Temperature, smoke and radiation vs. time for zone 85.

243

A.7 Scenario 1

(a) Temperature outputs and door events for zone 86 in scenario 3.

(b) Smoke outputs and door events for zone 86 in scenario 3.

(c) Radiation outputs and door events for zone 86 in scenario 3.

Figure A.35: Temperature, smoke and radiation vs. time for zone 86.

244

A.7 Scenario 1

(a) Temperature outputs and door events for zone 87 in scenario 3.

(b) Smoke outputs and door events for zone 87 in scenario 3.

(c) Radiation outputs and door events for zone 87 in scenario 3.

Figure A.36: Temperature, smoke and radiation vs. time for zone 87.

245

A.7 Scenario 1

(a) Temperature outputs and door events for zone 88 in scenario 3.

(b) Smoke outputs and door events for zone 88 in scenario 3.

(c) Radiation outputs and door events for zone 88 in scenario 3.

Figure A.37: Temperature, smoke and radiation vs. time for zone 88.

246

A.7 Scenario 1

(a) Temperature outputs and door events for zone 89 in scenario 3.

(b) Smoke outputs and door events for zone 89 in scenario 3.

(c) Radiation outputs and door events for zone 89 in scenario 3.

Figure A.38: Temperature, smoke and radiation vs. time for zone 89.

247

A.7 Scenario 1

(a) Temperature outputs and door events for zone 90 in scenario 3.

(b) Smoke outputs and door events for zone 90 in scenario 3.

(c) Radiation outputs and door events for zone 90 in scenario 3.

Figure A.39: Temperature, smoke and radiation vs. time for zone 90.

248

A.7 Scenario 1

(a) Temperature outputs and door events for zone 91 in scenario 3.

(b) Smoke outputs and door events for zone 91 in scenario 3.

(c) Radiation outputs and door events for zone 91 in scenario 3.

Figure A.40: Temperature, smoke and radiation vs. time for zone 91.

249

A.7 Scenario 1

(a) Temperature outputs and door events for zone 92 in scenario 3.

(b) Smoke outputs and door events for zone 92 in scenario 3.

(c) Radiation outputs and door events for zone 92 in scenario 3.

Figure A.41: Temperature, smoke and radiation vs. time for zone 92.

250

A.7 Scenario 1

(a) Temperature outputs and door events for zone 93 in scenario 3.

(b) Smoke outputs and door events for zone 93 in scenario 3.

(c) Radiation outputs and door events for zone 93 in scenario 3.

Figure A.42: Temperature, smoke and radiation vs. time for zone 93.

251

A.7 Scenario 1

(a) Temperature outputs for zone 84 non-coupled.

(b) Smoke outputs for zone 84 non-coupled.

(c) Radiation outputs for zone 84 non-coupled.

Figure A.43: Temperature, smoke and radiation vs. time for zone 84.

252

A.7 Scenario 1

(a) Temperature outputs for zone 85 non-coupled.

(b) Smoke outputs for zone 85 non-coupled.

(c) Radiation outputs for zone 85 non-coupled.

Figure A.44: Temperature, smoke and radiation vs. time for zone 85.

253

A.7 Scenario 1

(a) Temperature outputs for zone 86 non-coupled.

(b) Smoke outputs for zone 86 non-coupled.

(c) Radiation outputs for zone 86 non-coupled.

Figure A.45: Temperature, smoke and radiation vs. time for zone 86.

254

A.7 Scenario 1

(a) Temperature outputs for zone 87 non-coupled.

(b) Smoke outputs for zone 87 non-coupled.

(c) Radiation outputs for zone 87 non-coupled.

Figure A.46: Temperature, smoke and radiation vs. time for zone 87.

255

A.7 Scenario 1

(a) Temperature outputs for zone 88 non-coupled.

(b) Smoke outputs for zone 88 non-coupled.

(c) Radiation outputs for zone 88 non-coupled.

Figure A.47: Temperature, smoke and radiation vs. time for zone 88.

256

A.7 Scenario 1

(a) Temperature outputs for zone 89 non-coupled.

(b) Smoke outputs for zone 89 non-coupled.

(c) Radiation outputs for zone 89 non-coupled.

Figure A.48: Temperature, smoke and radiation vs. time for zone 89.

257

A.7 Scenario 1

(a) Temperature outputs for zone 90 non-coupled.

(b) Smoke outputs for zone 90 non-coupled.

(c) Radiation outputs for zone 90 non-coupled.

Figure A.49: Temperature, smoke and radiation vs. time for zone 90.

258

A.7 Scenario 1

(a) Temperature outputs for zone 91 non-coupled.

(b) Smoke outputs for zone 91 non-coupled.

(c) Radiation outputs for zone 91 non-coupled.

Figure A.50: Temperature, smoke and radiation vs. time for zone 91.

259

A.7 Scenario 1

(a) Temperature outputs for zone 92 non-coupled.

(b) Smoke outputs for zone 92 non-coupled.

(c) Radiation outputs for zone 92 non-coupled.

Figure A.51: Temperature, smoke and radiation vs. time for zone 92.

260

A.7 Scenario 1

(a) Temperature outputs for zone 93 non-coupled.

(b) Smoke outputs for zone 93 non-coupled.

(c) Radiation outputs for zone 93 non-coupled.

Figure A.52: Temperature, smoke and radiation vs. time for zone 93.

261

A.7 Scenario 1

(a) Temperature outputs for zone 84 non-coupled.

(b) Smoke outputs for zone 84 non-coupled.

(c) Radiation outputs for zone 84 non-coupled.

Figure A.53: Temperature, smoke and radiation vs. time for zone 67 serial.

262

A.7 Scenario 1

(a) Temperature outputs for zone 84 non-coupled.

(b) Smoke outputs for zone 84 non-coupled.

(c) Radiation outputs for zone 84 non-coupled.

Figure A.54: Temperature, smoke and radiation vs. time for zone 67 coupled.

263

A.7 Scenario 1

(a) Temperature outputs for zone 84 non-coupled.

(b) Smoke outputs for zone 84 non-coupled.

(c) Radiation outputs for zone 84 non-coupled.

Figure A.55: Temperature, smoke and radiation vs. time for zone 84.

264

A.7 Scenario 1

(a) Temperature outputs for zone 85 non-coupled.

(b) Smoke outputs for zone 85 non-coupled.

(c) Radiation outputs for zone 85 non-coupled.

Figure A.56: Temperature, smoke and radiation vs. time for zone 85.

265

A.7 Scenario 1

(a) Temperature outputs for zone 86 non-coupled.

(b) Smoke outputs for zone 86 non-coupled.

(c) Radiation outputs for zone 86 non-coupled.

Figure A.57: Temperature, smoke and radiation vs. time for zone 86.

266

A.7 Scenario 1

(a) Temperature outputs for zone 87 non-coupled.

(b) Smoke outputs for zone 87 non-coupled.

(c) Radiation outputs for zone 87 non-coupled.

Figure A.58: Temperature, smoke and radiation vs. time for zone 87.

267

A.7 Scenario 1

(a) Temperature outputs for zone 88 non-coupled.

(b) Smoke outputs for zone 88 non-coupled.

(c) Radiation outputs for zone 88 non-coupled.

Figure A.59: Temperature, smoke and radiation vs. time for zone 88.

268

A.7 Scenario 1

(a) Temperature outputs for zone 89 non-coupled.

(b) Smoke outputs for zone 89 non-coupled.

(c) Radiation outputs for zone 89 non-coupled.

Figure A.60: Temperature, smoke and radiation vs. time for zone 89.

269

A.7 Scenario 1

(a) Temperature outputs for zone 90 non-coupled.

(b) Smoke outputs for zone 90 non-coupled.

(c) Radiation outputs for zone 90 non-coupled.

Figure A.61: Temperature, smoke and radiation vs. time for zone 90.

270

A.7 Scenario 1

(a) Temperature outputs for zone 91 non-coupled.

(b) Smoke outputs for zone 91 non-coupled.

(c) Radiation outputs for zone 91 non-coupled.

Figure A.62: Temperature, smoke and radiation vs. time for zone 91.

271

A.7 Scenario 1

(a) Temperature outputs for zone 92 non-coupled.

(b) Smoke outputs for zone 92 non-coupled.

(c) Radiation outputs for zone 92 non-coupled.

Figure A.63: Temperature, smoke and radiation vs. time for zone 92.

272

A.7 Scenario 1

(a) Temperature outputs for zone 93 non-coupled.

(b) Smoke outputs for zone 93 non-coupled.

(c) Radiation outputs for zone 93 non-coupled.

Figure A.64: Temperature, smoke and radiation vs. time for zone 93.

273

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	CONTENTS
	FIGURES
	TABLES
	1 INTRODUCTION
	1.1 Research Aims And Objectives
	1.1.1 Research Questions

	1.2 Thesis Outline

	2 BACKGROUND AND LITERATURE REVIEW
	2.1 CFD Modelling
	2.2 Modelling Tools
	2.2.1 CFD Fire Models
	2.2.2 Evacuation Models
	2.2.3 Coupled Models
	2.2.4 SMARTFIRE
	2.2.5 EXODUS

	2.3 Parallel Processing
	2.3.1 Domain decomposition

	2.4 General-Purpose Graphics Processing Unit
	2.4.1 History of the modern GPU
	2.4.2 GPU APIs

	3 MATHEMATICAL MODELLING FOR CFD - FIRE SAFETY ENGINEERING
	3.1 Mathematical equations for fire CFD modelling
	3.1.1 The General Conservation Equation
	3.1.2 The Momentum Equation
	3.1.3 The Continuity Equation
	3.1.4 The Enthalpy Equation
	3.1.5 Turbulence Model
	3.1.6 Radiation Model

	3.2 Numerical Procedure
	3.3 Discretisation Scheme
	3.3.1 The Computational Grid
	3.3.2 The Discretised General Conservation Equation
	3.3.3 Explicit Discretisation

	3.4 Discretisation of The Momentum Equation
	3.4.1 Transient Term
	3.4.2 Convection Term
	3.4.3 Diffusion Term
	3.4.4 Pressure Gradients

	3.5 Discretisation of the Radiation Model
	3.5.1 Six Flux Model
	3.5.2 Discrete Transfer Model (Multi-ray)

	3.6 Staggered And Co-Located Meshes
	3.6.1 Rhie And Chow Interpolation

	3.7 Solution Methods
	3.7.1 The Mass Continuity Equation
	3.7.2 Pressure And Velocity Correction

	3.8 Boundary Conditions
	3.8.1 Inlet
	3.8.2 Wall Boundary Condition

	3.9 Solvers
	3.9.1 JOR Method

	4 PARALLEL IMPLEMENTATION OF SMARTFIRE
	4.1 Mesh Partitioning
	4.2 Halo Cells
	4.3 JOR Solver
	4.3.1 Shared Memory Concept

	5 TESTCASES CFD
	5.1 Steckler Room
	5.2 Care Facility

	6 MODEL COUPLING
	7 TESTCASES COUPLING
	7.1 Coupling Case 1: Simplified Geometry
	7.2 Coupling Case 2: Care Facility
	7.2.1 Coupled vs. Non-Coupled
	7.2.2 Further Coupling Scenarios

	8 CONCLUSION
	9 FUTURE WORK
	REFERENCES
	A Appendix
	A.1 Pipelines
	A.2 Explicit Discretisation
	A.3 Large Eddy Simulation Model
	A.4 Metis Input Format
	A.5 Shared Memory Mapping
	A.6 Simple Geometry - Narcotic properties
	A.7 Scenario 1

