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Abstract 

 

An Internet worm replicates itself by automatically infecting vulnerable 

systems and may infect hundreds of thousands of hosts across the Internet in 

tens of minutes. The speed of propagation of a worm is significantly higher 

than many other types of malware, including viruses. The potential for 

signification damage within a short time is therefore great. Worm detection 

and response systems must, therefore, act quickly to identify and counter the 

effects of worms. In this thesis, an investigation of mechanisms to mitigate 

zero-day computer worms has been carried out, while defining the key 

research questions to answer.  

 

This thesis presents a novel distributed automated worm detection and 

containment scheme, RL+LA, developed during the course of this research, 

that is based on the correlation of Domain Name System (DNS) queries 

against the destination IP address of outgoing TCP SYN and UDP datagrams 

leaving the network boundary, while utilizing cooperation between different 

communicating scheme members using a custom protocol, which has been 

termed Friends. To the knowledge of author, this is the first implementation of 

such a scheme. A set of tools i.e. a Pseudo-Worm Daemon (PWD), which 

provides random scanning and hit-list worm like functionality; and a 

Virtualized Malware Testbed (VMT) for testing of worm experiments, were 

also developed in order to empirically evaluate the performance of the desired 

countermeasure scheme, RL+LA.  

 

A set of empirical experiments were conducted by using Pseudo-Slammer and 

Pseudo-Witty worms with real world attributes of Slammer and Witty worms 

in order to evaluate PWD. The experimental results are broadly comparable to 

real worm outbreak reported data. Furthermore, these results are compared 

with a biological epidemiological model (SI model) in order to explore the 

applicability of SI model to cyber malware infections in general, as well as to 

assess its usefulness in characterising the virulence of cyber malware. From 

base comparison of Pseudo-Slammer and Pseudo-Witty worm experimental 
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results with reported outbreak data of Slammer and Witty worms; and SI 

model, it is concluded that: (a) PWD can be used as an effective tool to 

empirically analyze the propagation behaviour of random scanning and hit-list 

worms and to test potential countermeasures, (b) SI model can be effectively 

used in characterising the virulence of random scanning worms. Another 

comprehensive sets of empirical experiments were also conducted by using a 

Slammer-like pseudo-worm on a small scale with class C networks and on 

class A networks by using Pseudo-Slammer and Pseudo-Witty worms with 

real attributes of Slammer and Witty worms, without any countermeasures and 

by invoking RL and RL+LA countermeasures, in order to evaluate the 

performance of the proposed scheme, RL+LA. The experimental results show 

a significant reduction in the infection speed of the worms, when the 

countermeasure scheme is invoked.  
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1. INTRODUCTION 

1 INTRODUCTION 

1.1 Chapter Introduction 

Computer network worms are a very serious potential threat to computer 

network security due to their high potential speed of propagation and their 

ability to self-replicate. Zero-day worms such as SQL slammer (Moore et al., 

2003) and Witty (Shannon and Moore, 2004) represent a particularly 

challenging class of such malware that exploits a vulnerability that has not 

been patched at the point of an outbreak. Such network worms are hard to 

prevent or contain due to their high speed of propagation and variant nature. 

Modern hypothetical flash worms are even capable of infecting large 

susceptible population of hosts on the Internet in a few seconds (Staniford et 

al., 2004), thereby making human mediated response for worm detection and 

prevention completely impractical. 

 

Various techniques for worm detection, mitigation and containment have been 

proposed by researchers, such as  rate limiting: Williamson’s IP throttling 

(Williamson, 2002), Wong et al. DNS based rate limiting (Wong et al., 2005), 

automatic signature generation: Autograph (Kim and Karp, 2004), Earlybird 

(Singh et al., 2004), behaviour signature detection: DNS based detection of 

Scanning Worms (Whyte, Kranakis and Oorschot, 2005) and ARP based 

detection of worms (Whyte, van Oorschot and Kranakis, 2005), but none 

provide an effective and an efficient method of worm containment in the case 

of a fast rapid zero day worm outbreak on a large network such as the Internet.  

 

In order to defend against such zero-day worm attacks, it is desirable to 

understand the propagation of worms, their propagation methods, and their 

detection and prevention mechanisms. Hence, the research reported in this 

thesis focuses on the empirical analysis of zero-day worms such as SQL 

Slammer and Witty, and designing and testing a potential distributed 

automated countermeasure for zero-day worm detection and containment, 

capable of automatically containing and preventing worm spread without any 

human intervention.  
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1.1.1 Chapter Layout 

This chapter begins by presenting the problem statement and research question 

present in the domain of computer network worms in section 1.2. Section 1.3 

sets out the aim and key objectives of the research reported in this thesis. 

Section 1.4 describes the overall structure of the thesis while section 1.5 

provides the concluding statement. 

1.2 Problem Statement 

A network worm is a program that self-replicates and self-propagates across a 

network, exploiting security or policy flaws in widely-used network services, 

without any human intervention (Weaver et al., 2003), while zero-day worms 

are a type of malware that exploits a vulnerability that has not been patched at 

the time of the worm outbreak (Li, Salour and Su, 2008). Since the spread of 

the Morris worm in 1988 (Chen and Robert, 2004), computer network worms 

have become a persistent problem to the Internet infrastructure causing billions 

of dollars in losses to businesses, governments, and service providers 

(Chakrabarti and Manimaran, 2002). Melissa, Code Red, Blaster, SQL 

Slammer (also called Sapphire), Conficker etc. (Weaver et al., 2003) did 

considerable damage to the Internet community. SQL Slammer is considered 

to be the fastest random scanning worm in history as its infected population 

doubled in size every 8.5 seconds, with 90 % of vulnerable hosts infected 

within 10 minutes (Moore et al., 2003). This worm achieved its full scanning 

rate i.e. over 55 million scans per seconds, only 3 minutes after it was released. 

It did not contain any malicious payload but the amount of traffic it generated, 

halted small parts of the Internet for several hours. Flash, metamorphic and 

polymorphic worms are evolving categories of network worms, and are 

considered a serious threat to the Internet.   

 
In 2004, Staniford et al. (Staniford et al., 2004) hypothesized the top speed of a 

properly configured flash worm. Furthermore, they predicted that a UDP worm 

could saturate 95% of one million vulnerable hosts on the Internet in 510 

milliseconds. A similar worm using a TCP based service could saturate 95% of 

one million vulnerable hosts in 1.3 seconds. Today, Internet bandwidth is 

much greater than in 2004, whilst many constituent networks employ at least a 
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basic rate limiting countermeasure, with others using more sophisticated 

methods.  It is difficult, therefore, to judge whether Staniford’s figures are still 

accurate.  

 

Although, there has been no major random scanning worm outbreak since the 

Witty event of 2004, a recent study by Tidy et al. (Tidy et al., 2014) provides a 

list of recent wormable vulnerabilities (a vulnerability which worms may 

exploit in order to propagate on the Internet), as well as highlighting the 

number of Windows XP hosts still connected to the Internet as documented by 

the Shodan search engine (SHODAN - Computer Search Engine, 2009). Some 

details of recent wormable vulnerabilities and the Windows XP potential threat 

are given in section 2.2.4 and 2.2.5 of this thesis. With the advent and increase 

in prevalence of cyber warfare such as Stuxnet (Falliere and Murchu, 2011), 

worms have again become weapon of choice for attackers, due to their fast 

propagation and ability to cause considerable damage on the Internet. As 

described previously, factors such as the availability of wormable 

vulnerabilities with a large number of hosts susceptible to those vulnerabilities 

and lack of Windows XP support with a large number of existing hosts, have 

increased the chances of any future potential worm outbreak.    

 

Due to the high speed and zero-day nature of many worms, traditional 

intrusion detection methods (i.e. generation and deployment of attack 

signatures) are ineffective (Moore et al., 2003). These countermeasures also 

lack the ability to propagate malware warnings to uninfected sites in a timely 

manner. Hence, in order to effect automatic detection and containment of zero-

day worms, a rapid, accurate and distributed worm detection and containment 

method is required.  

1.3 Research Aim and Objectives 

1.3.1 Research Aim 

The aim of this research is to develop a worm detection and prevention 

mechanism that will detect and mitigate the propagation of zero-day worms.   
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1.3.2 Research Objectives 

The following are the key research objectives which were defined at the start 

of the research: 

1) To conduct a comprehensive literature review in the field of computer 

worms and their countermeasures. 

2) To design, implement and empirically evaluate one countermeasure 

mechanism for zero-day worm detection and mitigation. 

3) To design and implement suitable tools such as a pseudo-worm daemon 

and a virtualized testbed to allow the developed countermeasure to be 

empirically tested and evaluated.  

1.4 Outline of the Thesis 

The overall structure of the thesis is as follows: Chapter 2 presents the 

literature review detailing an existing taxonomy of malware, worm detection 

and preventions mechanisms and malware testing environments, mathematical 

models for worm propagation and thereby, defines the limitation of the 

existing research work. Chapter 3 details a distributed automated worm 

detection and containment scheme, termed RL+ LA (Rate Limiting + Leap 

Ahead) that is based on the correlation of Domain Name System (DNS) 

queries and the destination IP address of outgoing TCP SYN and UDP 

datagrams leaving the network boundary; and, cooperation between different 

communicating scheme members using a custom protocol, which we termed 

Friends. Chapter 4 describes the architecture and design of a Pseudo-Worm 

Daemon (PWD) having random and hit-list scanning capabilities; and details 

the architecture and design of the malware testing environment, Virtualized 

Malware Testbed (VMT), based on VMware technologies, as background to 

chapter 4. This chapter also presents evaluation of PWD with Pseudo-Slammer 

and Pseudo-Witty worms empirical experiments by comparing them with real 

world reported data and with an epidemiological model. Chapter 5 details the 

design and results of a series of empirical experiments conducted by 

employing the RL+LA scheme on small scale network by using PWD and 

VMT. The analysis of the results shows that the scheme is effective on a small 

scale. Chapter 6 presents the design and results of a series of empirical 
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experiments conducted by employing the RL+LA scheme on a Class A scale 

network by using a PWD (with real Slammer and Witty worm attributes) and 

VMT. Furthermore, this chapter also presents the detailed analysis and 

discussion of the experimental results. Chapter 7 concludes the thesis with the 

list of contributions and a list of areas of possible further research work. 

Finally appendices present the RL+LA and the PWD source codes. 

1.5 Chapter Summary 

This chapter has presented the introduction of the research domain by 

highlighting the research problem present within the domain of computer 

network worms. Furthermore, it describes the aim and objectives of the 

research to be undertaken while finally detailing the overall structure of the 

thesis. The next chapter will present the literature survey of worm detection 

and prevention mechanisms, worm testing environments, and the mathematical 

model used to describe the epidemiology of computer worm and will then set 

out the research questions to carry out this research.  
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2 LITERATURE REVIEW 

2.1 Chapter Introduction 

A detailed literature review was undertaken as an initial part of the work 

reported in this thesis, which consists of different malware concepts, worm 

taxonomy, key worm outbreaks, worm detection and prevention mechanisms, 

worm testing environments and mathematical models for worm propagation. 

This chapter reports the outcome of the review.  

2.1.1 Chapter Layout 

This chapter begins by introducing basic malware concepts and differentiates 

between them in section 2.2. Furthermore, it categories different worms based 

on the taxonomy of worms, summarizes some key worm outbreaks and their 

characteristics, and provides details of wormable vulnerabilities and potential 

threats posed by Windows XP. Section 2.3 presents and classifies different 

worm detection and prevention mechanisms while section 2.4 explores 

previously presented worm testing environments by classifying them into 

different classes. Section 2.5 details various mathematical models for worm 

propagation while section 2.6 presents the research questions developed as an 

outcome of sections 2.3, 2.4 and 2.5. Finally section 2.7 presents the chapter 

summary.  

2.2 Taxonomy of Computer Worms 

In order to understand the taxonomy of computer worms, first different 

malware (short for malicious software) related terms such as virus, worm, 

zero-day worm, trojan horse, rootkit and botnet need to be defined. The next 

sub-section introduces these terms.   

2.2.1 Definitions 

2.2.1.1 Virus 

A computer virus can be defined as a set of program instructions that attaches 

itself to a file, reproduces itself and spreads to other files with the aid of human 
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intervention (Parsons and Oja, 2010). For example, Chernobyl virus 

(Symantec: W95.CIH, 1998), Bomber (F-Secure: Bomber, 1992) etc.  

2.2.1.2 Worm 

A computer worm is a program that self-replicates and self-propagates across a 

network, exploiting security or policy flaws in widely-used network services, 

without any human intervention (Weaver et al., 2003). For example, Code Red 

(Zou, Gong and Towsley, 2002), Slammer (Moore et al., 2003), Witty 

(Shannon and Moore, 2004) etc.  

2.2.1.3 Zero-Day Worm 

A zero-day worm is a type of worm that exploits a zero-day vulnerability that 

has not been patched or widely acknowledged at the point of exploitation 

(Tidy, Woodhead and Wetherall, 2013), (Weaver et al., 2003). For example, 

Code Red (Zou, Gong and Towsley, 2002) and Slammer (Moore et al., 2003) 

both exploit zero-day vulnerabilities. 

2.2.1.4 Trojan Horse 

A trojan horse, or trojan, is considered a malicious program that is non-self-

replicating, which appears to perform a desirable function but instead also 

includes a malicious payload, often including a backdoor allowing 

unauthorized access to the target computer (CERT: Trojan Horses, 1999). For 

example, Beast (Beast 2.07, 2004) is a windows based backdoor program 

which invisibly gives full control of an infected host.  

2.2.1.5 Rootkit 

A rootkit is a type of malware, designed to hide the existence of certain 

processes or programs from normal methods of detection and enable continued 

privileged access to a computer. The term rootkit is a concatenation of the 

terms “root” (UNIX root account) and “kit” (software components which 

implements the tool) (McAfee, 2006). For example, Extended Copy Protection 

(XCP) (TIME Magazine, 2002) 

2.2.1.6 Botnet 

A botnet is a collection of Internet-connected programs communicating with 

other similar programs in order to perform various malicious tasks, such as 

keeping control of an Internet Relay Chat (IRC) channel, sending spam emails 

or participating in distributed denial-of-service attack attacks (Ramneek, 
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2003). The word botnet stems from the two words robot and network. For 

example, Storm Botnet (Holz et al., 2008). 

2.2.2 Type of Worms 

Worms can be classified in different ways according to target discovery 

schemes, transmission schemes, payloads, intents of worm developer and on 

the basis of worm outbreaks as follows:   

2.2.2.1 Based on Target Finding Schemes 

Target discovery refers to mechanisms by which a worm discovers new targets 

to infect. Schemes can be classified into: scanning, hit-list warhol and flash. 

• Scanning worm: A scanning worm employs different scanning 

strategies (random, sequential, permutation etc.) to spread. Scanning 

refers to the process of probing a set of IP addresses to identify 

vulnerable hosts. For example, SQL slammer (Moore et al., 2003), 

Nimda (CERT: Nimda Worm, 2001), Code Red (CERT: Code Red, 

2001) are random scanning worms. Following are different basic forms 

of scanning which a worm will employ: 

o Sequential: Working through an address block using an 

ordered set of IP addresses.  

o Random: Generating IP addresses out of a block in a pseudo-

random fashion. 

o Permutation: This is a type of scanning where worm instances 

coordinate between themselves so that each instance scans a 

disjoint set of the address space. 

 

These basic forms of scanning can be aggregated to form more 

complex schemes as follows: 

o Importance scanning worm: A worm employing this 

technique spreads in two phases: in the first phase, random or 

routing scanning is used to build an initial distribution of 

vulnerable hosts and then in the second phase, it uses 

importance sampling technique to reduce the number of scans 

and attacks a large number of vulnerable hosts rapidly (Chen 

and Ji, 2005).  
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o Topological worm: A topological scanning worm uses an 

internal target list which is created by finding local information 

on networks such as the /etc/hosts file on UNIX hosts, or local 

topological information by using ARP cache tables and netstat 

(Weaver et al., 2003).  

o BGP scanning worm: A BGP routing worm uses BGP 

scanning techniques which employ BGP routing tables to 

narrow the scanning addresses space. This type of worm is 

capable of targeting particular hosts within specific geographic 

location such as a specific country, ISP or autonomous system 

and can spreads 2 to 3 times faster than traditional random 

scanning worms (Zou et al., 2005). 

o Search worms/ meta-server worm: A meta-server worm uses 

an externally generated target list of vulnerable hosts, which is 

maintained by a separate server, such as a matchmaking 

service’s meta-server e-g. Gamespy (Gaespy Archade, 1999) or 

web searches using Google in order to find vulnerable targets. 

o Passive worm: Passive worm does not scan potential victims 

instead it waits for target machines to contact the machine 

where it resides. For example; Gnuman (Eset: Win32/Gnuman, 

2008), CRClean (Weaver et al., 2003) etc.  

o Hit-list worm: A worm that employs a pre-generated list of 

vulnerable IP addresses to infect can be classified as hit-list 

worm, such as Witty (Shannon and Moore, 2004). Witty uses 

multiple spreading strategies including initial hit-list, botnet and 

random scanning.   

o Warhol worm: A Warhol worm (Staniford, Paxson and 

Weaver, 2002) is a hypothetical very fast spreading worm that 

uses a combination of a hit-list (which helps initial spread) and 

permutation scanning (which keeps its infection rate higher than 

random scanning).  

o Flash worm: Staniford et al. (Staniford et al., 2004) proposed 

an extension of the Warhol worm which they named the Flash 

worm. The flash worm contains an initial global size hit-list. 
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They hypothesized that a UDP based flash worm could infect 

95 percent of one million vulnerable hosts in 510 ms, while a 

TCP based flash worm could infect the same population in 1.3s.  

2.2.2.2 Based on Transmission Schemes 

The transmission scheme is a mechanism that a worm employs to transmit 

itself to target hosts. A worm can employ either transmission control protocol 

(TCP) or user datagram protocol (UDP) to transmit itself. TCP is a connection 

oriented protocol and requires a 3-way handshake before connection 

establishment, while UDP is a connectionless protocol. 

• TCP based worm: A TCP based worm uses transmission control 

protocol (TCP) as its transmission mechanism such as Code Red 

(CERT: Code Red, 2001). A TCP based worm tends to have greater 

latency than a UDP based worm as it uses a 3 way handshake for 

connection establishment.  

• UDP based worm: A UDP based worm uses user datagram protocol 

(UDP) as its transmission mechanism such as SQL Slammer (Moore et 

al., 2003). UDP worms are bandwidth limited and are generally 

capable of spreading faster than TCP based worms.  

2.2.2.3 Based on Payloads 

Payload refers to the actual code carried by the worm apart from the 

propagation routines. The worm payload can be used to perform different 

functions such as using the target host as a spam relay as in the case of the 

Sobig worm (CERT: W32/Sobig.F Worm, 2003), employing the target hosts 

as HTML proxy as in the case of Sobig (CERT: W32/Sobig.F Worm, 2003), 

creating a denial of service (DOS) attack against target hosts to deny legitimate 

services, such as the W95/firkin.wom attack against 911 servers (McAffe: 

W95/firkin.worm, 2000), or cyber warfare by creating physical world damage 

such as Stuxnet (Falliere and Murchu, 2011) that has an ultimate goal to 

sabotage Iranian nuclear facilities by reprogramming programmable logic 

controllers (PLCs) in infected SCADA systems.  

 

Based on worm payload itself, a worm can be classified into the following 

three categories (Li, Salour and Su, 2008): 
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• Monomorphic worm: A monomorphic worm uses a monomorphic 

payload that does not change during worm propagation and exhibits a 

consistent signature (Li, Salour and Su, 2008). A monomorphic 

payload can easily be detected by a signature-based detection system 

for non-zero day worms. Some monomorphic worms use a variable 

size payload in different instances by padding the payload with garbage 

data, but the same common signature usually applies.  

• Polymorphic worms: Polymorphic worms use a polymorphic payload 

which changes itself by scrambling the program in different worm 

instances, whilst functioning in the same way. A traditional signature 

based detection systems will not usually detect such  polymorphic 

worms (Li, Salour and Su, 2008). However, it may be possible to 

define a signature based on a common part of such a worm binary or 

another characteristic of the payload (see section 2.3.2). 

• Metamorphic worms: Metamorphic worms use a metamorphic payload 

which changes itself and its behavior by using encryption in different 

instances of the worm (Li, Salour and Su, 2008). It is even harder to 

detect metamorphic worms using signature-based techniques than 

polymorphic worms. 

2.2.2.4 Based on Intent of Worm Developer 

Worms can be classified based on the intentions of the worm developer as 

follows: 

• Harmful worm: A worm can be considered harmful if the intention of 

the worm writer was malicious or harmful, such as disrupting network 

services, physical world damage, physical world DOS, economic 

sabotage, terrorism, or cyber warfare etc. For example, Slammer, Code 

Red, Witty, Stuxnet etc. are all considered harmful worms.  

• Beneficial worm: A beneficial worm, defensive worm, or anti-worm 

can be released with the intent of patching the vulnerabilities which can 

be exploited by a harmful worm. However, a beneficial worm is illegal 

as it patches network hosts without permission of the owner. For 

example, Welchia worm (Symantec: W32.Welchia.Worm, 2003), 

CRClean (Weaver et al., 2003) etc.  
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2.2.2.5 Based on Existence "In the Wild" 

Worms can be classified based on worm outbreaks as follows: 

• Existing Implemented worm: An existing implemented worm is one 

that has been released "In the Wild" on the Internet. For example, SQL 

slammer, Witty, Code Red etc.   

• Hypothetical worm: A hypothetical worm is one that is only proposed 

and not released. For example, the importance scanning worm, the 

BGP routing worm, the flash worm and the Warhol worm. 

 

Table 2.1 summaries the different types of worms as described in section 2.2.2. 

Table 2-1 Types of Worms 

Type of Worms 

Based on Target 

Discovery 

Scanning 

worms 

Random  

Sequential  

Permutation  

Importance  

Topological 

BGP Scanning 

Search worms/ meta-server worm 

Passive worms 

Hit-list worms 

Warhol worm 

Flash Worms 

Based on Transmission 

Scheme 

TCP based worms 

UDP based worms  

Based on Payloads Monomorphic worms 

Polymorphic worms 

Metamorphic worms 

Based on Intent of 

Worm Developer  

Harmful worms 

Beneficial Worms 

Based on Outbreaks  Exiting Implemented worms   

Hypothetical worms 
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2.2.3 Major Worm Outbreaks 

Table 2.2 summarizes the major worm outbreaks along with their different attributes (Li, Salour and Su, 2008), (Xiang, Fan and Zhu, 2009), 

(Falliere and Murchu, 2011): 

Table 2-2 Major Worm Outbreaks 

Major Worm Outbreaks 

Worm Year of Release Target Finding 

Scheme 

Propagation 

Scheme 

Payload Format Platform/ Service Port Vulnerability 

Morris November 1988 Random scanning TCP Monomorphic DECX, Sun 3/ 

sendmail, finger 

25,79 Buffer overflow 

vulnerability 

Code Red I July 2001 Random scanning TCP Monomorphic Microsoft IIS web 

service 

80 Buffer Overflow In 

IIS Indexing Service 

DLL vulnerability 

Code Red II August 2001 Local subnet 

scanning 

TCP Monomorphic Microsoft IIS web 

service 

80 Buffer Overflow In 

IIS Indexing Service 

DLL vulnerability 

Nimda September 2001 Random scanning, 

Network shares, 

Passive 

TCP , UDP Monomorphic Windows 95, 98, 

Me, NT, 2000, XP, 

Microsoft IIS web 

service 

80 Microsoft IIS 4.0 / 

5.0 directory 

traversal 

vulnerabilities 

Slammer January 2003 Random scanning UDP Monomorphic Microsoft SQL 

Server 2000 

1434 Buffer overflow 

vulnerability 



 

 

28 

2. LITERATURE REVIEW 

Witty March 2004 Random scanning, 

Hit-list,Botnet 

UDP Monomorphic Internet Security 

Systems ISSs 

Random destination 

port 

ISS protocol analysis 

module (PAM) 

vulnerability 

Sasser April 2004 Second channel TCP Monomorphic Windows 2000/ 

Security Authority 

Subsystem Service 

(LSASS) 

445,9996 Buffer overflow 

vulnerability 

Conficker November  22, 2008 Local network 

scanning, 

Nearby other 

infected hosts. 

Random scanning, 

TCP Monomorphic Windows 2000,XP, 

Server 2003, Vista, 

Server 2008 

445 Windows Server 

service(MS08-067) 

Stuxnet June 2010 USB,P2P RPC, 

Network shares, 

Botnet 

TCP, UDP, RPC Monomorphic Windows, Siemens 

PCS 7, WinCC and 

STEP7 industrial 

software applications 

that run on 

Windows, Siemens 

S7 PLCs 

80 to contact C&C 

server 

MS10-046 .LNK 

Vulnerability, 

MS10-061 Print 

Spooler 

Vulnerability,  

MS10-073 Win32k 

Keyboard Layout 

Vulnerability, Un-

patched Task 

Scheduler 

Vulnerability,  

MS08-067 Windows 
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Server Service 

vulnerability, 

Hardcoded username 

and password in 

WinCCMSSQL 

database,  

DLL preloading 

attack in Step 7 

Project files, 

Windows rootkit to 

hide Windows 

binaries 
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2.2.4 Wormable Vulnerabilities 

A wormable vulnerability is the vulnerability which worms exploit in order to 

propagate (Nazario, Ptacek and Song, 2004). According to Luc et al. (Tidy et 

al., 2014), a wormable vulnerability can be summarized in the Boolean 

equation (2.1), where a wormable vulnerability, Vw, is determined by not 

requiring human interaction, H, is network reachable, Nr, provides remote 

code execution, R, and provides network access Na once exploited.  

 

   Vw = H' • Nr • R • Na   (2.1) 

 

Luc et al. reports that there are a number of resources that focus on providing 

details for known vulnerabilities. One such source is the Common 

Vulnerabilities and Exposures (CVE) system (CVE - Common Vulnerabilities 

and Exposures, 2014), which provide details for a range of vulnerabilities. The 

CVE system reports the access vector, for instance if the vulnerability is 

network reachable or requires human interaction, and the impact if the 

vulnerability were to be exploited, for instance providing remote code 

execution or network access. These details provide information in order to 

assess whether a vulnerability is wormable or not.   

 

Luc et al. (Tidy et al., 2014) reports five wormable vulnerabilities along with 

their CVE code (CVE - Common Vulnerabilities and Exposures, 2014), which 

have the potential to be used as worm exploit on a large sale on the Internet as 

detailed below:  

• Microsoft Remote Desktop Protocol (RDP) - 13/03/2012 - CVE-

2012-0002: The Microsoft RDP is an application for users to remotely 

access window based hosts in a network. This vulnerability was present 

in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2, 

Windows Vista SP2, Windows Server 2008 SP2, R2, and R2 SP1, and 

Windows 7 Gold and SP1. This vulnerability allows an attacker to send 

a crafted packet on port 3389 to the host running vulnerable RDP 

implementation, and then potentially gain remote code execution, 

finally allowing attacker to send copies of the malicious packet across 
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the network. W3Counter (W3Counter, 2014) reports that these recent 

editions of Windows amount to approximately 3 billion Internet 

connected hosts in 2012. The RDP application is disabled by default 

and needs to be enabled manually. One estimate for the number of 

RDP enabled hosts is one in every 10,000 or 3000,000 hosts  

(KrebsonSecurity, 2012); which is exactly similar to proportion of 

vulnerable hosts to the Code Red worm outbreak in 2001 (Zou, Gong 

and Towsley, 2002). Such a large proportion of hosts could result in a 

virulent worm outbreak.  

• BigAnt Message Server- 09/01/2013 - CVE-2012-6275: The BigAnt 

instant messaging (IM) software is an instant messaging solution 

targeted towards business use. The attacker can cause buffer overflow 

by exploiting this vulnerability and is able to send a crafted packet to 

execute remote code on the targeted host. As the software links with 

active directly, it can lead to comprise of all user accounts and thereby, 

having potentially wider impact than just the host running the message 

server. Although this vulnerability lack the install base like Microsoft 

RDP vulnerability CVE-2012-0002, but this is of particular note owing 

to its use in a corporate setting, as well as potentially allowing access to 

further details which can be used to comprise hosts with active directly 

user accounts details and thereby allowing remote code execution on 

hosts. This process can also leads to create an initial hit-list of 

comprised hosts. 

• VMWare vCenter - 25/04/2013- VMSA-2013-0006.1: VMWare 

vCenter is a management platform for VMware ESXi server running 

virtualised hosts. VMWare vCenter is installed on Windows Server. A 

number of CVEs reported under the VMWare security advisory 

VMSA-2013-006.1 (VMware Security Advisories, 2013) which detail 

how an attacker may leverage Microsoft Active Directory integration 

in order to gain authentication on Windows-based servers running 

VCenter (CVE-2013-3107), and then use this authentication in order to 

execute remote code using another vulnerability (CVE-2013-3079). 

This access grants the attacker administrative privileges to the host 
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system, allowing the attacker to then send copies of the malicious 

packets to other susceptible hosts. As VMware is being the largest 

vendors of software, a vulnerability in VMWare management software 

presents a scenario where a substantial number of management hosts 

may be susceptible to an attack, while also providing further access to 

the virtualised hosts, currently running on it. Although this 

vulnerability has since been patched by VMware, however, it 

demonstrates that virtualisation can present a potential scenario for 

future virulent worm outbreak. 

• ASUS RT-AC66U Router - 26/07/2013- CVE-2013-4659: The ASUS 

RT-AC66U router has a vulnerability in the Broadcom ACSD service 

that allows an attacker to send a crafted packet on port 5916 by causing 

a buffer overflow attack, allowing administrative access on the target 

host with the ability for remote code execution and sending copies of 

the malicious packet to other susceptible hosts. This vulnerability 

demonstrates that network devices such as routers, switches etc. can 

also leads to potential worm outbreak.  

• systemd 208 and prior - 20/09/2013- CVE-2013-4391: systemd is a 

system management service, or daemon, designed specifically for 

Linux-based operating systems, and forms part of the Linux start-up 

process. CVE-2013-4391 allow an attacker to cause buffer overflow by 

using a crafted packet, resulting in allowing remote code execution. In 

addition with another vulnerability (CVE-2013-4394),an attacker can 

gain administrative access, therefore allowing network access to send 

copies of the malicious packets to other susceptible hosts. This 

vulnerability demonstrates that other operating system such as Linux, 

aside from Windows, can also be subject to a wormable vulnerability. 

2.2.5 Windows XP Opportunity 

It has been estimated that Windows XP still constitutes 23.87% of all 

operating systems installed on desktop hosts (Net Market Share: Desktop 

operating system market share, 2014) while a keyword "Windows XP" search 

on Shodan search engine shows 7952 Windows XP live hosts, running 

different services, are still connected to the Internet. As of the 8th April 2014 
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extended support for Windows XP was discontinued, thereby, disallowing free 

support and security patches. Only what is termed “critical patches” will be 

made available to paying customers. Additionally, the built-in anti-malware 

tools i.e. Security Essentials and the Malicious Software Removal Toolkit will 

no longer be supported after the 14th July 2015. Given its lack of support, if 

any wormable vulnerability will exist on Windows XP, it increase the 

likelihood of future potential worm outbreak. This presents a particular 

scenario, as SQL Slammer was able to cause disruption with less than 1% of 

the hosts at the time being susceptible to its infection vector, therefore it is 

reasonable that should a Windows XP vulnerability be exploited by a 

Slammer-like attack, it could cause significant network disruption. 

2.3 Worm Detection and Prevention Mechanisms 

Worm detection and prevention has emerged as an active area of research over 

the last few years. Researchers have proposed various techniques for worm 

detection, mitigation and containment. Worm detection and prevention 

mechanisms can be classified into the following general categories as set out 

by Porras et al. (Porras et al., 2004) and Ziyad AL-Salloum (Ziyad, 2011): 

� Resource Limiting (RL) or Containment solutions 

� Automatic Signature Generation (ASG) solutions 

� Behaviour Signature Detection (BSD) solutions 

� Leap Ahead (LA) solutions 

� Predesigned-Preventative (PP) solutions 

� Mobile Combat (MC) solutions 

� Hybrid Quarantine Defense (HQD) solutions 

� Defensive Worms (DW) solutions  

2.3.1 Resource Limiting (RL) solutions 

Resource Limiting (RL) solutions explore ways in which local hosts or 

gateways may delay worm propagation through limiting the availability of 

resources that fast spreading worms are known to consume at high rates. For 

example; IP throttling (Williamson, 2002), failed-connection-based scheme 
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(Chen and Tang, 2004), credit-based rate limiting (Schechter, Jung and Berger, 

2004), DNS based rate limiting (Wong et al., 2005). 

2.3.1.1 Williamson’s IP Throttling 

Williamson’s IP throttling scheme (Williamson, 2002) is based on the 

observation that during scanning worm propagation, an infected host will 

connect to as many different hosts as possible in unit time. An uninfected host 

has a different behaviour: outgoing connections are made at a lower rate, and 

are locally correlated (repeat connections to recently accessed hosts are likely. 

For example, web servers, file servers). His theory is based on the principle 

that restricting host-level contact rates to unique IP addresses can limit rapid 

connections to random addresses (e.g. worm traffic).  

 

Williamson accomplished this by keeping a working set of addresses for each 

host, which models the normal contact behaviour of the host. The throttling 

mechanism permits outgoing connections for addresses in the working set, but 

delays other packets by placing them in a delay queue. If the delay queue is 

full, further packets are simply dropped. The packets in the delay queue are 

dequeued and processed at a constant rate (Williamson suggests, one per 

second). At the same rate, the least recently used address in the working set is 

removed to make room for the new connection. As a result, connections to 

frequently contacted addresses are allowed through with a high probability 

while connections to random addresses (such as those initiated by scanning 

worms) are likely to be delayed and possibly dropped. The size of the working 

set and the delay queue are important considerations for this scheme. A larger 

working set permits a higher contact rate while the delay queue length 

determines how liberal (or restrictive) the scheme is. Williamson recommends 

a five-address working set and a delay queue length of 100 for host-based 

implementations.  

 

Williamson proposed that the worm throttle could be implemented on the 

Windows platform, using a similar architecture to that used by “personal 

firewall” software as shown in the figure 2.1. The network software of a PC 

has a layered architecture while the filter is best implemented as an extra layer, 
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or shim. Hence, all the traffic from the host can be processed by the filter. The 

logical way to implement the delays is to delay the initial connection attempt 

(e.g. the first SYN packet of the connect handshake in TCP). Since no packets 

will leave the host while a connection is being delayed, any networking 

timeouts will not be a problem. If the malicious code sets its own timeout and 

restarts connection attempts, these will be added to the queue. 

 

When an host is infected by a worm which is attempting to propagate rapidly, 

the filter can detect this very quickly by monitoring the size or rate of increase 

of the delay queue. A suitable response action is then to suspend the offending 

application and pop up a window to alert the user. A windows service is 

necessary for this functionality. This has two important functions: firstly the 

spreading of the worm is stopped (the process in suspended); and secondly the 

user can (hopefully) determine whether this is a real problem or an error. 

 

 

Figure 2-1 Williamson IP throttling implementation in Windows (Williamson, 

2002) 

 

Williamson’s IP throttling can be deployed at an end-host as well as within an 

edge-based router. But, its deployment as edge-based rate limiting exhibits 

significantly higher false positive rates during normal operation. This is 

primarily due to the fact that aggregate throttling penalizes hosts with atypical 

traffic patterns, thereby contributing to a higher false positive rate. A possible 

solution is to increase the working set size at the edge to reduce the false 

positives, but false negatives will increase accordingly. Hence, Williamson’s 
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throttling is best suited for end-host rate limiting where behaviour of the host 

is somewhat predictable. 

2.3.1.2 Chen et al. Failed Connection Based Rate Limiting (FC) 

Chen et al. proposed a distributed anti-worm architecture (DAW) that 

automatically slows down or even halts the worm propagation (Chen and 

Tang, 2004). Their rate limiting scheme is based on the assumption that a host 

infected by a scanning worm will generate a large number of failed TCP 

requests. When a source host makes a connection request, a SYN packet is 

sent to a destination address. The connection request fails if the destination 

host does not exist or is not listening on the port that the SYN is sent to. In the 

former case, an ICMP host-unreachable packet is returned to the source host; 

in the latter case, a TCP RESET packet is returned provided that a network 

firewall or router in the traffic path do not drop ICMP unreachable and TCP 

RESET packets. So this scheme attempts to rate limit hosts that exhibit such 

behaviour. 

 

The failed connection rate limiting mechanism proposed by Chen et al. is 

designed to be deployed at the edge router of an ISP which consists of two 

software components: a DAW agent that is deployed on all edge routers of the 

ISP and a management station that collects data from the agents as illustrated 

in figure 2.2. Each agent monitors the connection-failure replies sent to the 

customer network that the edge router connects to. It identifies the potential 

offending hosts and measures their failure rates (The rate of failed connection 

request from a host is called the failure rate, which can be measured by 

monitoring the failure replies that are sent to it). If the failure rate of a host 

exceeds a pre-configured threshold, the agent randomly drops a minimum 

number of connection requests from that host in order to keep its failure rate 

under the threshold. Chen defined a basic rate-limit algorithm and a temporal 

rate-limit algorithm to constrain any worm activity to a low level over the long 

term, while accommodating the temporary aggressive behaviour of normal 

hosts. 
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Figure 2-2 Distributed Anti-Worm Architecture (Chen and Tang, 2004) 

 

The basic FC algorithm focuses on a short-term failure rate; λ. Chen 

recommends a λ value of one failure per second. Once a hash entry exceeds λ, 

the rate limiting engine attempts to limit the failure rate of each host in the 

entry to at most λ, using a leaky bucket token algorithm—a token is removed 

from the bucket for each failed connection and every λ seconds a new token is 

added to the bucket. Once the bucket for a particular host is empty, further 

connections from that host are dropped. Temporal FC attempts to limit both 

the short term failure rate λ and a longer term rate Ω. Chen suggested Ω be a 

daily rate and λ a per second rate. The value of Ω is intended to be 

significantly smaller than λ * (seconds in a day). Hosts in a hash table entry are 

subjected to rate limiting if the failure rate of the entry exceeds λ per second or 

Ω per day. The objective of temporal FC is to catch prolonged but somewhat 

less aggressive scanning behaviour—worms that spread under the short-term 

rate of λ. 

 

Wong et al. (Wong et al., 2005) have shown from experimental data that 

temporal FC is more restrictive and result in higher false positives as compared 

to other rate limiting mechanisms (Schechter, Jung and Berger, 2004) , (Wong 

et al., 2005). One other limitation of Failed Connection Based Rate Limiting 

(FC) is that it does not address the worm activity within the local customer 

network. A worm-infected host is not restricted in any way from infecting 

other vulnerable hosts on the same customer network. 
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2.3.1.3 Schechter et al. Credit-based Rate Limiting (CB) 

Schechter et al. (Schechter, Jung and Berger, 2004) proposed a credit-based 

rate limiting mechanism that is based on the observation that a worm infected 

host has a high rate of failed first contact connections. This technique performs 

rate limiting exclusively on first contact connections—outgoing connections 

for destination IPs that have not been visited previously while it also considers 

both failed and successful connection statistics. Simply described, CB 

allocates a certain number of connection credits per host; each failed first-

contact connection depletes one credit while a successful one adds a credit. A 

host is only allowed to make first-contact connections if its credit balance is 

positive. CB maintains a Previously Contacted Host (PCH) list for each host in 

order to determine whether an outgoing TCP request is a first contact. 

Additionally, a failure credit balance is maintained for each host. Schechter 

suggested a 64 address PCH and a 10 credit initial balance.   

 

Wong et al. (Wong et al., 2005) conclude that CB limits the first-contact 

failure rate at each host, but does not restrict the number of successful 

connections if the credit balance remains positive. Further, non-first-contact 

connections (typically legitimate traffic) are permitted through irrespective of 

the credit balance. Consequently, a scanning worm producing a large number 

of failed first contacts will quickly exhaust its credit balance and be contained. 

Legitimate applications typically contact previously seen addresses, and 

thereby are largely unaffected by the rate limiting mechanism. 

2.3.1.4 Wong et al. DNS-Based Rate Limiting 

Wong et al. proposed a DNS-based rate limiting mechanism (Wong et al., 

2005) that is based on the rationale that worm activity shows visibly different 

DNS statistics from those of legitimate applications. For instance, the non-

existence of DNS lookups is a tell-tale sign for scanning activity. The DNS 

rate limiting scheme proposed by Wong et al. states that for every outgoing 

TCP SYN packet, the rate limiting scheme permits it through if there exists a 

prior DNS translation for the destination IP address, otherwise the SYN packet 

is rate limited. The algorithm uses a cascading bucket scheme to contain 

untranslated IP datagrams. A graphical illustration of the algorithm is shown in 

Figure 2.3. 
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In this scheme, there exists a set of n buckets, each capable of holding q 

distinct IP addresses. The buckets are placed contiguously along the time axis 

and each spans a time interval t. The algorithm works as follows: When a TCP 

SYN packet is sent to an address that does not have a prior DNS translation, 

the destination IP address is added into the bucket for the current time interval 

and the packet is delayed. 

 

Figure 2-3 Cascading bucket Rate limiting scheme (Wong et al., 2005) 

 

When a bucket is filled with q distinct IP addresses, new connection requests 

are placed into the subsequent bucket, thus each bucket cascades into the next 

one. Requests in the i-th bucket are delayed until the beginning of the i+1 time 

interval. The n-th bucket, the last in line, has no overflow bucket and once it is 

full, new TCP SYN packets without DNS translations are simply dropped. At 

the end of the n*t time periods, another n buckets are reinstated for the next 

n*t time period. This algorithm permits a maximum of q distinct IP addresses 

(without DNS translations) per time interval t and packets (if not dropped) are 

delayed at most n*t.  

 

This scheme can be implemented at the host level or at the edge router of a 

network. A host-level implementation requires keeping DNS-related statistics 

on each host. An edge-router-based implementation would require the border 

router to keep a shadow DNS cache for the entire network.  
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An attacker can attempt to circumvent the DNS rate limiting mechanism in a 

number of ways: First, a worm could use reverse DNS-lookups (PTR lookups) 

to “pretend” that it has received a DNS translation for a destination IP. Jung et 

al. (Jung et al., 2002) characterizes that PTR lookups are primarily for 

incoming TCP connections or lookups related to reverse blacklist services. 

These types of lookups can be easily filtered and not considered as valid 

entries in the DNS cache. In addition, a PTR lookup prior to an infection 

attempt will significantly reduce the infection speed. Second, an attacker could 

setup a fake external DNS server and issue a DNS query for each IP. This 

threat can be alleviated by establishing a “white-list” of legitimate external 

DNS servers. Also, the attacker needs a server with a substantial bandwidth to 

accommodate the scan speed, which is not trivial.  

 

One limitation of the DNS-based rate limiting scheme proposed by Wong et al. 

is that it looks only for TCP datagrams as the connection initiation and does 

not consider UDP based traffic. If a worm were to use UDP (such as SQL 

slammer), the DNS-based rate liming as set out will not be effective. 

2.3.2 Automatic Signature Generation (ASG) solutions 

Automatic Signature Generation (ASG) solutions refer to approaches which 

filter incoming traffic to a network and generate signatures on detecting 

anomalous activity (such as a network worm). For example; Autograph (Kim 

and Karp, 2004), Earlybird (Singh et al., 2004), Polymorphic Worm Detection 

Using Structural Information of Executables (Kruegel et al., 2005), PAYL 

(Wang, Cretu and Stolfo, 2005), PolyS (Paul and Mishra, 2013), LESG (Wang 

et al., 2010), An Automated Signature Generation Method for Zero-day 

Polymorphic Worms Based on Multilayer Perceptron Model (Mohammed et 

al., 2013) etc.  

2.3.2.1 Autograph: Towards Automated, Distributed Worm Signature 

Detection 

Kim and Karp (Kim and Karp, 2004) proposed a system which they named 

Autograph, that automatically generates signatures for novel Internet worms 

that propagate using TCP transport. Autograph generates signatures by 
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analysing the prevalence of portions of flow payloads, and thus uses no 

knowledge of protocol semantics above the TCP level. It is designed to 

produce signatures that exhibit high sensitivity (high true positives) and high 

specificity (low false positives). Kim et al. extend Autograph to share port scan 

reports among distributed monitor instances, and using trace-driven 

simulation, demonstrate the value of this technique in speeding the generation 

of signatures for novel worms. Their results elucidate the fundamental trade-

off between early generation of signatures for novel worms and the specificity 

of these generated signatures. 

 

Autograph automatically, without foreknowledge of a worm’s payload or time 

of introduction, detects the signature of any worm that propagates by randomly 

scanning IP addresses. Kim and Karp assumed that the system monitors all 

inbound network traffic at an edge network’s DMZ. Autograph consists of 

three interconnected modules: a flow classifier, a content-based signature 

generator, and tattler- a protocol through which multiple distributed Autograph 

monitors may share information, in the interest of speeding detection of a 

signature that matches a newly released worm. Figure 2.4 shows the 

architecture of the autograph monitor as proposed by Kim and Karp. 

 

Figure 2-4 Architecture of an Autograph Monitor (Kim and Karp, 2004) 

 

The input of a single Autograph monitor is all traffic crossing the DMZ of an 

edge network, and its output is a list of worm signatures. There are two main 

stages in a single Autograph monitor’s analysis of traffic. First, a suspicious 

flow selection stage uses heuristics to classify inbound TCP flows as either 

suspicious or non-suspicious. After classification, packets for these inbound 
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flows are stored on disk in a suspicious flow pool and non-suspicious flow 

pool, respectively. Further processing occurs only on payloads in the 

suspicious flow pool. Thus, flow classification reduces the volume of traffic 

that must be processed subsequently. Kim et al. use a simple port-scanner 

detection technique as a heuristic to identify malicious traffic; they classify all 

flows from port-scanning sources as suspicious.  

 

Autograph stores the source and destination addresses of each inbound 

unsuccessful TCP connection it observes. Once an external host has made 

unsuccessful connection attempts to more than s internal IP addresses, the flow 

classifier considers it to be a scanner. All successful connections from an IP 

address flagged as a scanner are classified as suspicious, and their inbound 

packets written to the suspicious flow pool, until that IP address is removed 

after a timeout (24 hours in the current prototype). Autograph next selects the 

most frequently occurring byte sequences across the flows in the suspicious 

flow pool as signatures. To do so, it divides each suspicious flow into smaller 

content blocks, and counts the number of suspicious flows in which each 

content block occurs. Kim and Karp term this count a content block’s 

prevalence, and rank content blocks from most to least prevalent. The intuition 

behind this ranking is that a worm’s payload appears increasingly frequently as 

that worm spreads. When all worm flows contain a common, worm-specific 

byte sequence, that byte sequence will be observed in many suspicious flows, 

and so will be highly ranked. The content block with the greatest prevalence is 

chosen as signature.  

 

The following are some of the limitations of this approach: 

• Overload: Autograph reassembles suspicious TCP flows. Flow 

reassembly is costly in state in comparison with processing packets 

individually, but defeats the subterfuge of fragmenting a worm’s 

payload across many small packets. If Autograph tries to reassemble 

every incoming suspicious flow, it may be susceptible to a DoS attack. 

• Source-address-spoofed port scans: Source spoofed port scans can be 

used to mount different attacks, more specific to Autograph: the Tattler 
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mechanism must carry report traffic proportional to the number of port 

scanners. An attacker could attempt to saturate tattler’s bandwidth limit 

with spoofed scanner source addresses, and thus render tattler useless 

in disseminating addresses of true port scanners. A source-spoofing 

attacker could also cause a remote source’s traffic to be included by 

Autograph in signature generation. 

• Hit-list Scanning: If a worm propagates using a hit-list, rather than by 

scanning IP addresses that may or may not correspond to listening 

servers, Autograph’s port-scan-based suspicious flow classifier will fail 

utterly to include that worm’s payloads in signature generation. 

2.3.2.2 Automated Worm Fingerprinting using Earlybird 

Singh et al. (Singh et al., 2004) proposed an automated worm fingerprinting 

mechanism named Earlybird which detects previously unknown worms and 

viruses based on two key behavioural characteristics: a common exploit 

sequence together with a range of unique sources generating infections and 

destinations being targeted. Singh et al. named their detection approach as 

content sifting as it automatically generates precise signatures that can then be 

used to filter or moderate the spread of the worms in the network. Content 

sifting, is based on two observations: first, that some portion of the content in 

existing worms is invariant- typically the code exploiting a latent host 

vulnerability - and second, that the spreading dynamics of a worm are atypical 

of Internet applications. Simply stated, it is rare to observe the same string 

recurring within packets sent from many sources to many destinations. By 

sifting through network traffic for content strings that are both frequently 

repeated and widely dispersed, we can automatically identify new worms and 

their precise signatures. 

 

The Earlybird system consists of two major components: sensors and an 

aggregator. Each sensor sifts through traffic on configurable address space 

“zones” of responsibility and reports anomalous signatures. The aggregator 

coordinates real-time updates from the sensors, coalesces related signatures, 

activates any network-level or host level blocking services and is responsible 

for administrative reporting and control. Earlybird is implemented in C 

programming language and the aggregator also uses the MySQL database to 
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log all events, the rrd-tools library for graphical reporting, and PHP scripting 

for administrative control. Finally, in order to automatically block outbreaks, 

the Earlybird system automatically generates and deploys precise content-

based signatures formatted for the Snort inline intrusion prevention system. 

 

The prototype of an Earlybird sensor was executed on a 1.6 GHZ AMD 

Opteron server configured with a standard Linux 2.6 kernel. The server was 

equipped with two Broadcom Gigabit copper network interfaces for data 

capture. The Earlybird sensor itself is a single threaded application which 

executes at user-level and captures packets using the libpcap library. 

 

The Earlybird system has the following limitations:  

• If content sifting were to be widely deployed this could create an 

incentive for worm writers to design worms with little or no invariant 

content. For example, polymorphic worms encrypt their content in each 

generation and so-called “metamorphic worms” have even 

demonstrated the ability to mutate their entire instruction sequence 

with semantically equivalent, but textually distinct code.  

• As an attacker may attempt to evade content sifting algorithms by 

creating metamorphic worms, he may also attempt to evade Earlybird 

monitoring through traditional IDS evasion techniques.  

2.3.2.3 Polymorphic Worm Detection using Structural Information of 

Executables 

Kruegel et al. (Kruegel et al., 2005) proposed a worm detection technique that 

detects polymorphic worms. A polymorphic worm is one that mutates as it 

spreads across the network. This detector technique is based on the structural 

analysis of binary code that allows one to identify structural similarities 

between different worm mutations. The approach is based on the analysis of a 

worm’s control flow graph and introduces an original graph colouring 

technique that supports a more precise characterization of the worm’s 

structure. The technique has been used as a basis to implement a worm 

detection system that is resilient to many of the mechanisms used to evade 

approaches based on instruction sequences only. 
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Polymorphic worms are able to change their binary representation as part of 

the spreading process. This can be achieved by using self-encryption 

mechanisms or semantics-preserving code manipulation techniques. As a 

consequence, copies of a polymorphic worm might no longer share a common 

invariant substring of sufficient length as observed by Singh et al. (Singh et al., 

2004)and the existing systems will not recognize the network streams 

containing the worm copies as the manifestation of a worm outbreak. 

 

Kruegel et al. observed the fact that some parts of worms contain executable 

machine code. While it is also possible that certain regions of the code are 

encrypted, others have to be directly executable by the processor of the victim 

host (e.g. there will be a decryption routine to decrypt the rest of the worm). 

Based on this assumption, Kruegel et al. analyze network flows for the 

presence of executable code. If a network flow contains no executable code, 

they discard it immediately. Otherwise, they derive a set of fingerprints for the 

executable regions by using control flow graph extraction and graph coloring 

techniques. 

 

The worm detection technique presented by Kruegel et al. has the following 

limitations: 

• Firstly, worms that do not use executable code (e.g. worms written in 

non-compiled scripting languages, for example, Net-Worm: 

W32/Santy.A (F-Secure: Net-Worm:W32/Santy.A, 2004), written in 

Perl,JS.Gigger.A@mm (Symantec: JS.Gigger.A@mm, 2002), written 

in JavaScript) will not be detected by their worm detection system. 

• Secondly, the proposed prototype of Kruegel et al. operates on offline 

data. But this technique has one distinct advantage over Autograph 

(Kim and Karp, 2004) and Earlybird (Singh et al., 2004) as it detects 

polymorphic worms which other techniques are not designed to detect. 
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2.3.2.4 Anomalous Payload-based Worm Detection and Signature 

Generation 

Wang et al. (Wang, Cretu and Stolfo, 2005) proposed a worm detection 

system, which they named PAYL, for the detection of zero-day worms. The 

principle behind PAYL is that a new zero-day attack will have content data 

never before seen by the victim host, and will likely appear quite different 

from normal data and be deemed anomalous. The approach proposed by Wang 

et al. is based on ingress/egress anomalous payload correlation, and uses no 

scan or probe information. The key idea is that a newly infected host will 

begin sending outbound traffic that is substantially similar (if not exactly the 

same) as the original content that attacked the victim (even if it is fragmented 

differently across multiple packets). Correlating ingress/egress anomalous 

payload alerts can detect worm propagation and stop the worm spread from the 

very moment it first attempts to propagate itself, instead of waiting until the 

volume of outgoing scans suggests full-blown propagation attempts. 

 

Although PAYL is a fully automatic, “hands-free” online anomaly detection 

sensor system but it has following limitations:  

• PAYL is not a real time system and is based on analysing network 

traces. 

• The range of worms tested by Wang et al. is limited in number and 

scope. 

2.3.2.5 PolyS: Network-based Signature Generation for Zero-day 

Polymorphic Worms 

Paul and Mishra (Paul and Mishra, 2013) proposed PolyS, a network based 

automated signature generation scheme to thwart zero-day polymorphic 

worms. They presented a novel architecture for successfully matching a 

polymorphic worm payload that reduces the noise in the suspicious traffic 

pool, thus enhancing the accuracy of worm’s signature and a signature 

generation algorithm for successfully matching polymorphic worm payload 

with higher speed and memory efficiency. 

 



 

 47 

2. LITERATURE REVIEW 

2.3.2.6 LESG: Thwarting Zero-Day Polymorphic Worms With Network-

Level Length-Based Signature Generation 

Wang et al. (Wang et al., 2010) proposed network-based length-based 

signature generator (LESG) for generating vulnerability-driven signatures for 

buffer overflow worms at the network level without any host-level analysis of 

worm execution or vulnerable programs. This is the first attempt to generate 

vulnerability-driven signatures at network level. They build a field hierarchy 

model, and formally define the length based signature generation problem 

based on it. The proposed algorithm designed to solve that problem has good 

accuracy even under deliberate noise injection attacks.  Wang et al. evaluated 

LESG against real-world vulnerabilities of various protocols and real network 

traffic and demonstrated that LESG is fast, noise tolerant and has efficient 

signature matching. 

2.3.2.7 An Automated Signature Generation Method for Zero-day 

Polymorphic Worms Based on Multilayer Perceptron Model 

Mohammed et al. (Mohammed et al., 2013) proposed a signature generation 

system for zero-day polymorphic worms based on the Double-honeynet 

system, k-means clustering algorithm and a Multilayer Perceptron Model. The 

Double-honeynet system is used to collect polymorphic worm samples as a 

first step, while the second step is the signature generation for the collected 

samples by using a k-means clustering algorithm and a Multilayer Perceptron 

Model. The k-means clustering algorithm separates different types of collected 

polymorphic worms into different clusters. The Multilayer Perceptron Model 

then generates signatures for each cluster.  

2.3.2.8 Automated Signature Generation for Zero-day Polymorphic 

Worms Using a Double-honeynet 

Mohssen M. Z. E. Mohammed (Mohammed, 2012) designed a system of 

automated signature generation for zero-day polymorphic worms using a 

double-honeynet, Modified Knuth-Morris-Pratt (MKMP) algorithm and a 

Modified Principal Component Analysis (MPCA) algorithm. The polymorphic 

worm instances are collected by designing a novel double honeynet system, 

that allows unlimited honeynet outbound connections to collect all 

polymorphic worm instances. Then, a Modified Knuth-Morris-Pratt (MKMP) 

Algorithm, which is string matching based, and a Modified Principal 
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Component Analysis (MPCA), which is statistics based, are used to generate 

the signatures. The MKMP algorithm compares the polymorphic worms 

substrings to find the multiple invariant substrings that are shared between all 

polymorphic worm instances and uses them as signatures, where as the MPCA 

determines the most significant substrings that are shared between 

polymorphic worm instances and use them as signatures.  

2.3.2.9 Efficient Hybrid Technique for Detecting Zero-Day Polymorphic 

Worms 

Ratinder Kaur and Maninder Singh (Kaur and Singh, 2014) presented a 

technique for detecting zero-day polymorphic worms, which is based on both 

signature detection and anomaly detection techniques. Honeynet is used as an 

anomaly detector to identify and capture new attacks. After detection, the new 

attacks are validated for polymorphism and finally signatures are generated for 

discovered zero-day polymorphic worms to assist in containing them.  

2.3.3 Behavior Based Signature Detection (BSD) solutions 

Behaviour Signature Detection (BSD) solutions refer to approaches which 

look for anomalous behaviour signatures in network traffic. A behavioural 

signature describes aspects of behaviour of a particular worm that are common 

across the manifestations of a given worm and that span its nodes in temporal 

order. Characteristic patterns of worm behaviour in network traffic include 

(Ellis et al., 2004), (Whyte, Kranakis and Oorschot, 2005): 

• Sending similar data from one host to the next 

• Tree-like propagation and reconnaissance 

• Changing a server into a client 

• Lack of DNS lookup 

• Lack of ARP lookup 

 

Various Behaviour Signature Detection (BSD) Solutions are: Network 

Application Architecture (NAA) (Ellis et al., 2004), DNS based detection of 

Scanning Worms (Whyte, Kranakis and Oorschot, 2005) and ARP based 

detection of worms (Whyte, van Oorschot and Kranakis, 2005). 
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2.3.3.1 Network Application Architecture (NAA) - A Behavioral 

Approach for Worm Detection 

Ellis et al. (Ellis et al., 2004)proposed a worm detection approach which they 

term Network Application Architecture (NAA) and employs behavioural 

signatures to detect worms. A behavioural signature describes aspects of 

behaviour of any particular worm that are common across the manifestations 

of a given worm and that span its nodes in temporal order. Characteristic 

patterns of worm behaviour in network traffic include:(1) sending similar data 

from one host to the next, (2) tree-like propagation and reconnaissance, and (3) 

changing a server into a client. 

 

The approach presented by Ellis et al. differs from those used in contemporary 

enterprise postures in two ways. The first characteristic of contemporary 

postures is the reliance on a particular type of signature-based intrusion 

detection. In the contemporary case, a signature is a regular expression known 

a priori. Most signatures deployed in current intrusion detection systems 

(IDSs) focus on detecting specific regular expressions in network packets. The 

use of a previously unknown version of an exploit will evade detection. The 

behavioural detection approach contrasts from this form of signature-based 

detection. Instead of looking for fixed regular expressions in payloads, the 

behavioural approach focuses on detecting patterns at a higher level of 

abstraction. Ideally, the patterns are inherent behaviours of worm spread and 

distinct from normal network traffic. The frequency of and interrelationships 

between behaviours improve detection accuracy. To evade a behavioural 

signature requires a change in fundamental behaviour, not just its network 

footprint. Modifying behaviours to evade detection may be much more 

challenging. 

 

Ellis et al. presented three behavioural signatures. The first is that the inputs 

and outputs of a host are related for all non-discriminating worms that do not 

have a polymorphic network footprint. The second is that non-discriminating 

worms turn servers of a service into clients of the service. Together, these two 

signatures identify behaviour, which, on a per-host basis indicates a change in 

logic. The third signature is identifying a tree-like structure in communication 
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patterns emerging from infected nodes. As the worm spreads, infected hosts 

contact other hosts. The resulting tree-like communications have features in 

common, possibly including the previous two signatures. NAA impacts the 

sensitivity of this behavioural approach. That is, the distribution of hosts and 

network applications across those hosts impacts the normal traffic patterns on 

an enterprise network. Under certain NAAs, constraints are placed on traffic 

patterns, which worm traffic patterns violate. Violations of these constraints 

are straightforward to detect and hence provides the proof of worm activity. 

 

The most significant advantage of NAA is its ability to detect classes of worms 

without a priori information on any specific worm by employing behavioural 

signatures. However, the NAA approach will not be effective in case of fast 

spreading worms as it lacks the functionality of spreading malware warnings 

to uninfected sites in a timely manner. 

2.3.3.2 DNS-based Detection of Scanning Worms in an Enterprise 

Network 

Whyte et al. (Whyte, Kranakis and Oorschot, 2005) proposed DNS-based 

detection of scanning worms in an enterprise network. DNS-based detection 

relies on the correlation of Domain Name Service (DNS) queries with 

outgoing connections from an enterprise network. Whyte et al. claim the 

following improvements over existing scanning worm detection techniques: 

(1) the possibility to detect worm propagation after only a single infection 

attempt; (2) the capacity to detect zero-day worms; and (3) a low false positive 

rate. 

 

Whyte et al. divided the enterprise network into segments called cells. Each 

cell contains a worm containment host to confine and contain worm infection. 

Whyte et al. define a cell as all hosts within the same subnet serviced by a 

distinct root DNS server. The propagation of fast-scanning worms can be 

characterized as: local to local (L2L), local to remote (L2R), or remote to local 

(R2L). In L2L propagation, a scanning worm targets hosts within the 

boundaries (subnets) of the enterprise network. Topological scanning worms 

employ this strategy. L2R propagation refers to a scanning worm within an 

enterprise network targeting hosts outside of the network boundary. Finally, 
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R2L propagation refers to worm scanning from the 

network. The DNS

Whyte et al. detects L2R worm propagation and worm propagation between 

local cells.  

 

Figure 2.5 shows an e

based detection system. 

 

Figure 2-5 DNS Anomaly

 

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2 

contains the sole ingress/egress point for the enterprise network. Prototype B, 

from its vantage point in cell 2, monitors activity from all cells within the 

enterprise network to ex

between cell 3 and cell 2. 

scanning worm, the infected 

hosts both within cell 2 and the 
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R2L propagation refers to worm scanning from the Internet into an enterprise 

network. The DNS-based worm propagation detection method proposed by 

Whyte et al. detects L2R worm propagation and worm propagation between 

shows an example of an operational prototype of the DNS

based detection system.  

DNS Anomaly-based Detection Deployment (Whyte, Kranakis and 

Oorschot, 2005) 

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2 

contains the sole ingress/egress point for the enterprise network. Prototype B, 

from its vantage point in cell 2, monitors activity from all cells within the 

enterprise network to external hosts. Finally prototype C monitors activity 

between cell 3 and cell 2. In the case that a host in cell1isinfected with 

he infected host will begin scanning to locate susceptible 

s both within cell 2 and the Internet. The prototype host

into an enterprise 

based worm propagation detection method proposed by 

Whyte et al. detects L2R worm propagation and worm propagation between 

xample of an operational prototype of the DNS-anomaly 

 

(Whyte, Kranakis and 

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2 

contains the sole ingress/egress point for the enterprise network. Prototype B, 

from its vantage point in cell 2, monitors activity from all cells within the 

s. Finally prototype C monitors activity 

infected with a 
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detect the scanning activity to cell 2 and generate an alert. The prototype host 

in cell 2, at the enterprise gateway, will detect scanning activity from cell 1 to 

the Internet and generate an alert. 

 

The software system design presented by Whyte et al. uses the libpcap library 

(TCPDUMP & LIBPCAP, 2008) and is comprised of two logical components: 

the PPE and DCE. The Packet Processing Engine (PPE) is responsible for 

extracting the relevant features from the live network activity or saved network 

traces. The DNS correlation engine (DCE) maintains in state all relevant DNS 

information, a white-list (which contains applications which do not rely on 

DNS lookup), and numeric IP addresses embedded in HTTP packets extracted 

by the PPE. This information is used to verify both outgoing TCP connections 

and UDP datagrams. In this context, verifying means ensuring that the 

destination IP address of an outgoing TCP connection or UDP datagram can be 

attributed to a DNS query, an HTTP packet, or an entry in the whitelist. The 

software can process either live network traffic or saved network traces in pcap 

file format. To detect L2R worm propagation, the software system must be 

deployed at all external network egress/ingress points. To detect worm 

propagation between network cells, a system would need to be deployed in 

each cell at the internal ingress/egress points (see Figure 2.5). 

 

This detection approach has two limitations as it cannot detect intra-cell and 

Internet to enterprise (R2L) worm propagation. 

2.3.3.3 ARP-based Detection of Worms within an Enterprise Network 

Whyte et al. (Whyte, van Oorschot and Kranakis, 2005) proposed another 

anomaly based worm detection technique that protects internal networks from 

scanning worm infections. Implemented in software, this detection approach 

relies on an aggregate anomaly score, derived from the correlation of Address 

Resolution Protocol (ARP) activity from individual network attached hosts. 

Whyte et al. divided the network into cells and seek to detect scanning worm 

activity within cells. According to the authors, the scanning worm targeting 

hosts within its own network cell exhibits anomalous behaviour distinct from 

normal ARP activity; an infected host generates unusual ARP request activity 

as it tries to infect susceptible hosts within its respective network cell. More 
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specifically, intra-cell worm initiated scans result in discernible behavioural 

changes in the amount and pattern of ARP request activity of the infected 

hosts, because a scanning worm targeting same-cell hosts triggers the 

broadcast of anomalous ARP “who has” requests. 

 

The ARP-based technique proposed by Whyte et al. is based on the following 

three factors; from them they derive an anomaly score for each individual host 

and use this as an infection indicator for each host within a cell:  

• Peer list: connections to hosts outside the set of internal hosts, a host 

normally interacts with.  

• ARP activity: increases in the average number of ARP requests each 

host issues per unit time.  

• Internal network dark space connections to vacant internal IP 

addresses (i.e. addresses not bound to any active hosts): The greater 

the anomaly score attributed to a network host, the more likely it is 

infected with a scanning worm.  

 

Figure 2.6 shows an enterprise network divided into cell structures. Hosts that 

reside within the same network cell use ARP rather than the Domain Name 

Service (DNS) to communicate.  

 

The scheme proposed by Whyte et al. provides a novel approach for worm 

detection but it has following limitations: 

• It cannot detect R2L and L2R remote propagation. This technique is 

probably therefore best suited to be used in combination with another 

technique which covers R2L and L2R.  
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Figure 2-6 ARP

2.3.4 Leap Ahead (LA) solutions
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ARP-based Detection of Worms within an Enterprise Network
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COVERAGE (Anagnostakis et al., 2003), Very Fast C

(Weaver, Staniford and Paxson, 2004), Monitoring and Early 

Internet Worms (Zou et al., 2003). 

Cooperative Response Strategies for Large Scale Attack 

Mitigation 

(Nojiri, Rowe and Levitt, 2003) proposed a cooperative alert 

sharing scheme using a “Friends protocol” under which each node (domain 

selects a set of friends with which to share worm detection 

indicators, and is also selected by other domains gateways to receive reports. 

Although this technique provides an effective way of sharing worm warnings, 

 

Detection of Worms within an Enterprise Network (Whyte, 

(LA) solutions, seek to spread malware warnings to network 

segments not yet affected, and thus potentially stop the worm from reaching its 

full saturation potential. These strategies share cooperative information either 

models. For example Cooperative 

(Nojiri, Rowe and Levitt, 

Containment of 

Monitoring and Early 

Cooperative Response Strategies for Large Scale Attack 

proposed a cooperative alert 

sharing scheme using a “Friends protocol” under which each node (domain 
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Although this technique provides an effective way of sharing worm warnings, 
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it is ineffective in the case of slow spreading worms and also lacks a good 

worm detection mechanism. 

2.3.4.2 COVERAGE 

Anaganostaki et al. (Anagnostakis et al., 2003) proposed a variation of the LA 

scheme called COVERAGE, in which a node randomly selects a set of remote 

nodes to poll for worm reports at periodic intervals. The LA concept is 

effective in spreading malware warnings to uninfected network segments, but 

these solutions are limited in terms of their implementation in current 

networks.  

2.3.4.3 Very Fast Containment of Scanning Worms 

Weaver et al. (Weaver, Staniford and Paxson, 2004) proposed a worm 

detection technique by devising mechanisms for cooperation that enable 

multiple containment hosts to more effectively detect and respond to an 

emerging infection. A key problem in containment of scanning worms is 

efficiently detecting and suppressing the scanning. Since containment blocks 

suspicious hosts, it is critical that the false positive rate be very low. 

Additionally, since a successful infection could potentially subvert any 

software protection put on the host, containment is best effected on the 

network gateway rather than on end-hosts. Weaver et al. developed a scan 

detection and suppression algorithm based on a simplification of the Threshold 

Random Walk (TRW) scan detector. 

 

Weaver et al. augmented the containment system by employing cooperation 

between the containment hosts that monitor different cells. By introducing 

communication between these hosts, they can dynamically adjust their 

thresholds to the level of infection. Weaver et al. showed that introducing a 

very modest degree of bias that grows with the number of infected cells makes 

a dramatic difference in the efficacy of containment above the epidemic 

threshold. Thus, the combination of containment coupled with cooperation 

holds great promise for protecting enterprise networks against worms that 

spread by address-scanning. 

 

Weaver et al. implemented the prototype on an ML300 demonstration platform 

manufactured by Xilinx. This board contains 4 gigabit Ethernet interface, a 
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small FPGA, and a single bank of DDR-DRAM. The DRAM bank is 

sufficiently large to meet the design goals; while the DRAM’s internal banking 

should enable both the address and connection tables to be implemented. 

 

Although, Weaver et al. presented a novel approach for worm detection using 

TRW algorithm, the system lacks enterprise level testing.  

2.3.4.4 Monitoring and Early Warning of Internet Worms 

Zou et al. (Zou et al., 2003) proposed a novel algorithm for early detection of 

the presence of a worm and the corresponding monitoring system. Based on an 

epidemic model and observation data from the monitoring system, by using the 

idea of “detecting the trend, not the rate” of monitored illegitimate scan traffic, 

Zou et al. used a Kalman filter to detect a worm’s propagation at its early stage 

in real-time to detect the overall vulnerable population size.  

 

The Kalman filter detects the propagation of a worm in its early stage based on 

observed illegitimated scan traffic, which includes both real worm scans and 

background noise. The Kalman filter will not only make use of the correlation 

of the history trace of observation data (not just a burst of traffic at one time), 

but also the dynamic trend of the propagation of a worm - at the beginning of a 

worm’s spreading when there are little human counteractions or network 

congestions, a worm propagates almost exponentially with a constant, positive 

infection rate. The Kalman filter is activated when the monitoring system 

encounters a surge of illegitimate scan activities. If the worm infection rate 

estimated by the Kalman filter stabilizes and oscillates a little bit around a 

constant positive value, it is claimed that the illegitimate scan activities are 

mainly caused by a worm, even if the estimated value of the worm’s infection 

rate is still not well converged. If the illegitimate scan traffic is caused by non-

worm noise, the traffic will not have the exponential growth trend, and the 

estimated value of infection rate would oscillate around without a fixed central 

point, or it would oscillate around zero. In other words, the Kalman filter is 

used to detect the presence of a worm by detecting the trend, not the rate, of 

the observed illegitimated scan traffic. In this way, the unpredictable, noisy, 

illegitimate scan traffic we observe everyday will not cause many false alarms 
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Figure 2.7 shows a schematic of the monitoring system proposed by Zou et al. 

with two kinds of monitors: 

• Ingress Scan Monitors:

or border routers of local networks. They can be the ingress filters on 

border routers of local networks or separated passive network monitors. 

The goal of an ingress scan monitor is to monitor scan traffic coming 
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in the network. 
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continuously without significant delay, even when the worm scan traffic has 
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ction system - such background noise will cause 

to traditional threshold-based detection methods.  

shows a schematic of the monitoring system proposed by Zou et al. 

two kinds of monitors:  

Ingress Scan Monitors: Ingress scan monitors are located on gateways 

or border routers of local networks. They can be the ingress filters on 

border routers of local networks or separated passive network monitors. 

The goal of an ingress scan monitor is to monitor scan traffic coming 

into a local network by logging incoming traffic to unused IP addresses 

in the network.  

Egress Scan Monitors: An egress scan monitor is located at the egress 

point of a local network. It can be set up as a part of the egress filter on 

the routers of a local network. The goal of an egress scan monitor is to 

monitor the outgoing traffic from a network to infer a scan

of a potential worm. Ingress scan monitors listen to the global traffic on 

Internet; they are the sensors of global worm incident

as a “network telescope” in (Moore, 2002)).  

Figure 2-7 Worm Monitoring System (Zou et al., 2003)

 
In order to achieve early warning of activity in real-time, distributed monitors 

are required to send observation data to the Malware warning centre (MWC) 

continuously without significant delay, even when the worm scan traffic has 

such background noise will cause significant 

shows a schematic of the monitoring system proposed by Zou et al. 
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border routers of local networks or separated passive network monitors. 

The goal of an ingress scan monitor is to monitor scan traffic coming 

into a local network by logging incoming traffic to unused IP addresses 

An egress scan monitor is located at the egress 

point of a local network. It can be set up as a part of the egress filter on 

al network. The goal of an egress scan monitor is to 

monitor the outgoing traffic from a network to infer a scan behaviour 
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(Zou et al., 2003) 

time, distributed monitors 

are required to send observation data to the Malware warning centre (MWC) 

continuously without significant delay, even when the worm scan traffic has 
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caused congestion to the Internet. For this reason, a tree-like hierarchy of data 

mixers can be set up between monitors and the MWC: the MWC is the root; 

the leaves of the tree are monitors. The monitors close to a data mixer in the 

network send observed data to the data mixer. After fusing the data together, 

the data mixer passes the data to a higher level data mixer or directly to MWC. 

An example of data fusion is the removal of redundant addresses from the list 

of infected hosts. However, the tree structure of data mixers create single 

points of failure, thus there is a trade-off in designing this hierarchical 

structure. 

 

The detection approach of Zou et al. has the following limitation:  

• Although this approach provides an idea of setting up a monitoring 

system with the help of simulations for worm detection, it clearly lacks 

any enterprise level implementation and testing.  

2.3.5 Predesigned-Preventative (PP) solutions 

Predesigned-Preventative (PP) solutions are considered to be those approaches 

which are designed to disrupt the discovery of susceptible nodes within an 

address space, potentially by dynamically altering the connectivity of networks 

or end nodes in the presence of worm propagation. For example, Epidemic 

Profiles and Defense of Scale-Free Networks (Briesemeister, Lincoln and 

Porras, 2003), Least Effort Strategies for Cyber Security (Gorman et al., 2003), 

A Virtual Honeypot Framework (Provos, 2004), Honeypot worm detection 

system “Billy Goat” (Riordan, Zamboni and Duponchel, 2006), Router-based 

Billy Goat (RBG) (Zamboni, Riordan and Yates, 2007) and Network Address 

Space Randomization (NASR) (Antonatos et al., 2007). 

2.3.5.1 Epidemic Profiles and Defense of Scale-Free Networks 

Briesemeister et al. (Briesemeister, Lincoln and Porras, 2003) discussed the 

idea of percolation theory or, epidemic spread, in artificial scale-free networks 

to suggest how networks could be designed to delay the spread of propagating 

malware while still maintaining high reliability of network links.   

2.3.5.2 Least Effort Strategies for Cyber Security 

Gorman et al. (Gorman et al., 2003) studied the use of scale-free properties 

within the autonomous system (AS) map of the Internet, and proposed that the 
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concentration of worm filtering services on the nodes with the highest 

connection density would yield the greatest return while disrupting the 

minimum set of network hosts.  

2.3.5.3 A Virtual Honeypot Framework 

Provos (Provos, 2004) suggested the placement of honeypot hosts in a network 

that engage in slow connection dialogs as a method to dramatically slow an 

aggressive worm’s ability to discover susceptible hosts within an address 

space. Provas presented “Honeyd”, a framework for virtual honeypots that 

simulates virtual computer systems at the network level. The simulated 

computer hosts appear to run on unallocated network addresses. To deceive 

network fingerprinting tools, Honeyd simulates the networking stack of 

different operating systems and can provide arbitrary routing topologies and 

services for an arbitrary number of virtual hosts.  

 

Honeyd, is an effective system to detect worms and spam. Its performance 

measurements showed that a single 1.1 GHz Pentium III can simulate 

thousands of virtual honeypots with an aggregate bandwidths of over 30 

MBit/s and that it can sustain over two thousand TCP transactions per second. 

But, it is ineffective in detecting against fast spreading zero-days worms.  

2.3.5.4 Building and Deploying Billy Goat, Worm-Detection System 

Riordan et al. (Riordan, Zamboni and Duponchel, 2006) proposed a honeypot 

worm detection system “Billy Goat” which is widely deployed throughout 

IBM.  The deployment within IBM covers the entirety of the corporate 

intranet, automatically gathering data from approximately 1.2 million virtual 

sensors, centralizing the data to form a single coherent model of suspicious 

network activity, and analysing this model for evidence of worm activity. Billy 

Goat is designed to take advantage of the propagation strategies of worms. To 

discover hosts to infect, most worms try to connect to IP addresses selected at 

random or scan entire ranges of addresses. By doing so, they find most of the 

hosts in a network, but they also try to connect to a large number of unused 

addresses. The fundamental premise of Billy Goat is responding to traffic 

directed to unused IP addresses. 
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Billy Goat is implemented as a specialized Linux distribution, which self-

installs on standard PC requiring only basic configuration information. It was 

the intention to make Billy Goat as appliance-like as possible, so that it can be 

deployed with minimum effort throughout a large network. Billy Goat includes 

extensive self-monitoring and recovery mechanisms that monitor host activity 

and correct or reinitialize errant components, including the host itself (e.g. 

reboot). Different deployment modes can be used and combined to direct such 

traffic to Billy Goat. 

• Static routes  

• ARP Spoofing 

• Billy Goat as default LAN route 

• ICMP-based Billy Goat 

 

In summary, Billy Goat is an effective approach for detection and prevention 

of worms in an intranet; it lacks the capability to detect and mitigate fast 

spreading zero-day worm outbreak on the Internet.  

2.3.5.5 Boundary Detection and Containment of Local Worm Infections 

Zamboni et al. (Zamboni, Riordan and Yates, 2007) proposed a system for 

detecting scanning-worm infected hosts in a local network. Infected hosts are 

detected after a few unsuccessful connection attempts such as by logging 

ICMP unreachable messages, refused connections and timeouts, and in 

cooperation with the border router, their traffic is redirected to a honeypot for 

worm identification and capture. 

 

Zamboni et al. used Router-based Billy Goat (RBG), a specialized worm-

detecting honeypot, as the host to which traffic is redirected. RBG is a 

mechanism that adds dynamic discovery of external unused or unreachable IP 

addresses and redirects traffic sent to such addresses to a honeypot for 

processing and response. This dynamic assignment vastly extends the 

monitoring abilities of the honeypot. The idea of RBG is to trigger traffic 

redirection upon detection of failed connection attempts. Such attempts can be 

detected by the following mechanisms: 

• Receipt of ICMP unreachable messages 
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• Timed-out initial connections

• Detection of refused connections

 

Under normal conditions, when a host tries to contact an unreachable 

destination or service, one of the thre

occurs. When using RBG, the error condition is intercepted. For example, in 

the case of an ICMP error message, the following sequence (illustrated 

Figure 2.8) takes place:

• The internal host sends the first packet of th

• The external router sends back an ICMP Unreachable message. The 

local router intercepts it and automatically generates a rule to route 

future packets to this unreachable destination, to the honeypot and also 

sends the original packet to the 

•  The Billy Goat system receives the packet and replies to it, spoofing 

the destination host. The internal host gets the reply he wanted and will 

consider the destination host as being up.

Figure 2-8 The “unreachable destination” Behaviour using the RBG Architecture

 

The ideal place to put the RBG logic and mechanisms is in a border router as 

described by Zamboni et al. They have used this approach in their 

implementation using a Linux
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out initial connections 

Detection of refused connections 

Under normal conditions, when a host tries to contact an unreachable 

destination or service, one of the three error conditions mentioned above 

occurs. When using RBG, the error condition is intercepted. For example, in 

the case of an ICMP error message, the following sequence (illustrated 

) takes place: 

The internal host sends the first packet of the connection.

The external router sends back an ICMP Unreachable message. The 

local router intercepts it and automatically generates a rule to route 

future packets to this unreachable destination, to the honeypot and also 

sends the original packet to the honeypot. 

The Billy Goat system receives the packet and replies to it, spoofing 

the destination host. The internal host gets the reply he wanted and will 

consider the destination host as being up. 

The “unreachable destination” Behaviour using the RBG Architecture

(Zamboni, Riordan and Yates, 2007) 

The ideal place to put the RBG logic and mechanisms is in a border router as 

described by Zamboni et al. They have used this approach in their 

implementation using a Linux-based router. However, it would also be 

Under normal conditions, when a host tries to contact an unreachable 

e error conditions mentioned above 

occurs. When using RBG, the error condition is intercepted. For example, in 

the case of an ICMP error message, the following sequence (illustrated in 

e connection. 

The external router sends back an ICMP Unreachable message. The 

local router intercepts it and automatically generates a rule to route 

future packets to this unreachable destination, to the honeypot and also 

The Billy Goat system receives the packet and replies to it, spoofing 

the destination host. The internal host gets the reply he wanted and will 

 

The “unreachable destination” Behaviour using the RBG Architecture 

The ideal place to put the RBG logic and mechanisms is in a border router as 

described by Zamboni et al. They have used this approach in their 

based router. However, it would also be 
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possible to implement RBG as a bridge placed between the border router and 

the internal network, monitoring traffic and remotely reconfiguring routes. 

This mode of deployment would make it easier to adopt RBG without 

modifying deployed routers.   

 

RBG offers the significant benefit of detecting local infections locally, 

providing a valuable tool to network administrators, and it helps perform local 

containment of worm infections, thereby preventing unwanted traffic from 

leaving the local network. But it has following limitations: 

• Detection of scanning worms only: By design, RBG will only detect 

and redirect traffic produced by hosts that are scanning non-existent IP 

addresses. Hit-list worms, and other types of malware that direct their 

attacks against existing hosts and services will not be detected by RBG. 

• IP spoofing: Using IP address spoofing, an attacker inside the local 

network could abuse RBG and make it isolate a local IP address from 

the outside, using the source flooding detection feature of RBG. This 

attack may be mitigated using MAC address checking and filtering. 

2.3.5.6 Defending against Hit-list Worms using Network Address Space 

Randomization 

Antonatos et al. (Antonatos et al., 2007) proposed a proactive worm defense 

mechanism called Network Address Space Randomization (NASR) whose 

objective is to harden networks specifically against hit-list worms. The idea 

behind NASR is that hit-list information could be rendered stale very rapidly if 

nodes are forced to frequently change their IP addresses on a regular basis. 

NASR limits or slows down hit-list worms and forces them to exhibit features 

that make them easier to contain at the perimeter.  

 

A basic form of NASR can be implemented by configuring the DHCP server 

to expire DHCP leases at intervals suitable for effective randomization. The 

DHCP server would normally allow a host to renew the lease if the host issues 

a request before the lease expires. Thus, forcing address changes even when a 

host requests to renew the lease before it expires requires some minor 

modifications to the DHCP server. Fortunately, it does not require any 
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modifications to the protocol or the client. Antonatos et al. have implemented 

an advanced NASR-enabled DHCP server, called Wuke-DHCP, based on the 

ISC open-source DHCP implementation. To minimize the “collateral damage” 

caused by address changes, Antonatos et al. introduced two modules in their 

DHCP implementation: an activity monitoring module, and a service 

fingerprinting module.  

 

In the prototype implementation, Antonatos et al. used three timers on the 

DHCP server for controlling host addresses. The refresh timer determines the 

duration of the lease communicated to the client. The client is forced to query 

the server when the timer expires. The server may or may not decide to renew 

the lease using the same address. The soft-change timer is used internally by 

the server to specify the interval between address changes, assuming that the 

flow monitor does not report any activity for the host. A third, hard-change 

timer is used to specify the maximum time that a host is allowed to keep the 

same address. If this timer expires, the host is forced to change address, despite 

the disruption that may be caused. 

 

Antonatos et al. proposed a novel system for worm prevention but it has some 

practical constraints as described below: 

• It is not feasible to change the IP address of servers like Domain Name 

Server (DNS), Web Servers as public DNS servers require a 

considerable amount of time to replicate on the Internet. 

• Many applications are not designed to tolerate connection failures. For 

instance, NFS clients often hang when the server is lost, and do not 

transparently re-resolve the NFS server address from DNS before 

reconnecting. 

2.3.6 Mobile Combat (MC) solutions 

Mobile Combat (MC) solutions refer to approaches which involve an active 

strategy of interception and rapid patching. These techniques eliminate 

propagating malware by distributing a mobile self-replicating code module 

that searches out for signs of a malicious resident code and vaccinates infected 

hosts through patching or some other removal method. For example, Predators: 
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Good Mobile Code Combat against Computer Viruses (Toyoizumi and Kara, 

2002), Models of Active Worm Defense (Nicol and Liljenstam, 2005) and 

Mobile combat / Beneficial worms "in the wild" (Symantec: 

W32.Welchia.Worm, 2003), (Weaver et al., 2003) etc . 

2.3.6.1 Predators: Good Mobile Code Combat against Computer Viruses 

Toyozumi and Kara (Toyoizumi and Kara, 2002) presented an analysis of a 

predatory vaccination application called Predator. They employed the 

biologically inspired Lotka-Volterra equation (Lotka, 1925), (Volterra, 1926) 

to model the interaction of the predator-prey relationship between the 

malicious code and mobile predator vaccination, with the goal of minimizing 

the number of predators required to eliminate the malware threat. Their paper 

proposed that a small number of good predators, of the order of a few 

thousand, could contain an aggressive large-scale worm such as Code-Red.  

 

2.3.6.2 Models of Active Worm Defense 

Nicol and Liljenstam (Nicol and Liljenstam, 2005) investigated different active 

defense propagation models, from simple scanning systems that race against 

worms to patch susceptible hosts, to sniper worms that behave in a similar way 

to the Predator model. Using a discrete stochastic model, the author proved 

that these approaches can be strongly ordered in terms of their worm fighting 

capability. Using a continuous model, Nicoland and Liljenstam consider 

effectiveness in terms of the number of hosts that are protected from infection, 

the total network bandwidth consumed by the worms and the defences, and the 

peak scanning rate the network endures while the worms and defences battle. 

2.3.6.3 Mobile Combat /Beneficial worms "In the Wild" 

The following are some examples of mobile combat or beneficial worms 

which have been implemented and released in order to combat against harmful 

worms: 

• Welchia: It is Blaster worm variant (Symantec: W32.Welchia.Worm, 

2003), released to mitigate the spread of the Blaster worm. It exploited 

the same vulnerability at the same TCP port as Blaster to propagate and 

immunized a susceptible host by exploiting the vulnerability and 

downloading the MS03-026 patch then rebooting. But, the Welchia 
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worm was unsuccessful in achieving its goals of stopping Blaster due 

to fact that it utilized massive bandwidth on the Internet by 

downloading patches from the vendor server (windowsupdate.com), 

thereby, launching a denial of service attack at windowsupdate.com.  

• CRClean: CRClean is a Code Red II variant (Weaver et al., 2003) 

which exploits a buffer overflow vulnerability in the index server plug-

in in Microsoft IIS Server. It only spreads to hosts that have attempted 

to attack it, referred to as passive scanning. It silently runs on a host, 

waiting and listening for a Code Red attack. When CRClean intercepts 

an attack scan from Code Red infected hosts, it launched a counter 

attack at the host that has launched the attack, removes Code Red and 

installs CRClean. CRClean was never released on the Internet.  

 

Although MC solutions present an effective approaches for worm detection 

and patching, these approaches are not effective in terms of fast spreading 

worms like Slammer. Secondly, legality of such solutions will be a big issue as 

it is illegal and unethical to launch a worm even for constructive purpose.  

2.3.7 Hybrid Quarantine Defense (HQD) solutions 

Hybrid Quarantine Defense (HQD) solutions use a combination of different 

worm detection and prevention solutions. For example, A Hybrid Quarantine 

Defense (Porras et al., 2004) uses combination of RL and LA solutions.  

2.3.7.1 A Hybrid Quarantine Defense 

Porras et al. (Porras et al., 2004) proposed a hybrid quarantine defense system 

for worm detection and prevention by combining rate limiting mechanisms and 

a leap-ahead solution using the friends quarantine strategy. The resource 

limitation strategy proposed by Porras et al. focuses on limiting the number of 

outbound nodes that an internal host may contact per unit time. This strategy is 

motivated from the observation that during normal operation, the rate of 

outbound connections to unique hosts is relatively small, and that rate 

generally increases when a host is infected by a scan based worm in proportion 

to the aggressiveness with which the worm seeks susceptible nodes.  
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Figure 2.9 illustrates the connection rate

by Porras et al. in 

of each domain, rather than at the individual internal

is allowed to make 

connections beyond N per

make any number of

worm enters the d

interference. A threshold limit of N = 10 addresses per unit time is selected as 

the default parameter for this algorithm. 

 

For their leap-ahead strategy, 

Friends algorithm (Zou et al., 2003)

m ∈ M selects F = G 

population M. The 

domain head is a member of multiple groups, in which the other

selected this one as a friend. Under the Friends protocol, each gateway 

activates port or content

friends (including itself) to

sufficient to trigger filtering, and thus Friends

amount of false alarms before

warning state proceeds to temporally decay 

filtering is removed from the gateway, but may be raised indefinitely

worm activity indicators persist.

Figure 2-9 Connection Rate Limitations and Friends Overvie
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illustrates the connection rate-limiting algorithm, as

in their simulation. Rate limiting is performed at

of each domain, rather than at the individual internal node. Each internal node 

is allowed to make ≤ N outbound connections per time unit. Outbound 

connections beyond N per unit time are dropped by the gateway. A host can 

make any number of internal connections without interference, and thus once a 

enters the domain, it may spread to all internal nodes without

interference. A threshold limit of N = 10 addresses per unit time is selected as 

the default parameter for this algorithm.  

ahead strategy, Porras et al. implemented a variation of the

(Zou et al., 2003). Essentially, each domain head (gateway) 

M selects F = G − 1 friends. This selection defines group size G over the 

 group memberships of one domain head overlap so that one

domain head is a member of multiple groups, in which the other

selected this one as a friend. Under the Friends protocol, each gateway 

or content-based filtering, when it receives enough alert

friends (including itself) to indicate the presence of a worm. No single alert is 

sufficient to trigger filtering, and thus Friends gateways tolerate an adjustable 

amount of false alarms before they must react to an emerging worm threat. The 

proceeds to temporally decay until it drops into a state in which

filtering is removed from the gateway, but may be raised indefinitely

worm activity indicators persist. 

 

Connection Rate Limitations and Friends Overview (Porras et al., 2004)

limiting algorithm, as implemented 

. Rate limiting is performed at the gateway 

Each internal node 

connections per time unit. Outbound 

unit time are dropped by the gateway. A host can 

internal connections without interference, and thus once a 

omain, it may spread to all internal nodes without 

interference. A threshold limit of N = 10 addresses per unit time is selected as 

a variation of the 

each domain head (gateway) 

This selection defines group size G over the 

group memberships of one domain head overlap so that one 

domain head is a member of multiple groups, in which the other domain head 

selected this one as a friend. Under the Friends protocol, each gateway 

based filtering, when it receives enough alerts from 

No single alert is 

gateways tolerate an adjustable 

they must react to an emerging worm threat. The 

until it drops into a state in which 

filtering is removed from the gateway, but may be raised indefinitely while 

 

(Porras et al., 2004) 
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In the combined defense strategy proposed by Porras et al., each gateway will 

implement a connection rate limiting defense in parallel with the Friends 

protocol. The objective is to employ each rate limiter to effectively slow down 

the propagation of aggressive worms, allowing Friends messages to propagate 

to groups and activate a defensive posture in time to halt infection growth 

before full saturation is reached. The triggering of node rate limiting can itself 

act as one indicator of worm activity, and extensions of this overlay solution 

could include feedback loops in which the rate-limiting threshold maybe 

adjusted by the accumulation of Friends messages at predefined thresholds. 

 

The Hybrid strategy proposed by Porras et al. yields substantial performance 

improvements, beyond what either technique provides independently but the 

resource limiting technique is prone to high rate of false positives due to the 

rate limiting algorithm.  

2.3.8 Defensive Worms (DW) solutions 

Defensive Worms (DW) solutions employ defensive worms to combat against 

malicious worms. A defensive worm (Ziyad, 2011) refers to a controlled, self-

propagating, and self-contained network program that when released does not 

violate the laws issued by a legislative body and whose purpose of release is 

beneficial. Ziyad AL-Salloum (Ziyad, 2011) proposed two defensive worms 

Seawave I and Seawave II.  

• Seawave I: Seawave I is a novel controlled, topology-aware, 

interactive, self-replicating, self-propagating, and self-contained 

network vulnerability mitigation system (or vulnerability mitigation 

worm), that utilizes CAM and STP information to propagate.  

• Seawave II: Seawave II is based on STP, CAM, ARP, and OSPF, in 

which they enhanced and improved the defensive worm by adding edge 

node failure recovery, network backbone traversal, and intermittent 

node detection and recovery.  

 

Both these approaches were simulated on NS2 with 100 to 8000 nodes on a 

LAN, an approach which in isolation, clearly lacks the real time testing. 

Secondly, Seawave I and Seawave II do not address the mitigation technique 
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on wide area networks i.e. the Internet, thus making them impractical to 

deploy in case of a fast spreading zero-day worm.  

2.4 Worm Testing Environments 

Various network and malware testing environments have been built and 

proposed in the past which can be classified into the following categories:  

• Physical network testbeds 

• Simulation testbeds 

• Emulation testbeds 

• Full system virtualization testbeds 

2.4.1 Physical Network Testbeds 

Physical network testbeds employ real physical hosts and network hardware 

for conducting research experiments. Emulab (White et al., 2002) was a 

distributed physical network setup, implemented for conducting research 

experiments. It consists of 218 physical nodes distributed between two US 

universities. Netbed (White et al., 2002) is a simulation environment 

implemented on Emulab that provides time and space sharing and employs ns-

2 for research and development. Emulab evolved into DETER (Benzel et al., 

2007), which is a cluster based testbed, consisting of high end workstations 

and a control software. It uses high-performance VLAN-capable switches to 

dynamically create nearly arbitrary topologies among the nodes. It was the first 

testbed to be remotely accessible through the public Internet infrastructure.  

The 1998 DARPA off-line intrusion detection evaluation (Lippmann et al., 

2000) and LARIAT (Rossey et al., 2002) are also two physical network 

testbeds sponsored by US Air Force and developed at the Lincoln Laboratory, 

MIT. 

2.4.2 Simulation Testbeds 

Simulation testbeds employ simulation tools to conduct network experiments. 

PDNS and GTNetS (Perumalla and Sundaragopalan, 2004) were two network 

simulators for developing packet level worm models. These simulators allow 

an arbitrary subject network configuration to be specified consisting of scan 

rate, topology and background traffic. On the basis of defined input 
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parameters, various types of outputs such as number of infected hosts in any 

given instance, sub-millisecond granularity of network event statistics or a 

global snapshot of the entire system are produced. Ediger reported the 

development of the Network Worm Simulator (NWS) (Ediger, 2003), which 

implements a finite state machine concept to simulate network worm 

behaviour.  Tidy et al (Tidy, Woodhead and Wetherall, 2013) have reported a 

large scale network worm simulator aimed at the investigation of fast scanning 

network worms and candidate countermeasures. 

2.4.3 Emulation Testbeds 

Emulation testbeds provide a compromise between simulation and real world 

testing. ModelNet (Vahdat et al., 2002) is a emulated testbed, implemented for 

general networking and distributed system experiments. In ModelNet, 

unmodified applications run on edge nodes, configured to route all their 

packets through a scalable core dedicated server cluster, by emulating the 

characteristics of a special target topology. Honeypots such as Honeyd 

(Provos, 2004) can also be classified as an emulation system as it has been 

used in many recent security systems for malware detection and capture.  

2.4.4 Full System Virtualization Testbeds 

Full system virtualization testbeds employ full virtualization; a technique that 

provides a type of virtual machine environment with complete simulation of 

the underlying hardware. vGround (Jiang et al., 2006) has extended UML’s 

virtual networking capabilities by supporting a VM-create-VM approach to 

automatically extend the network size. It uses Snort (Snort, 1998) and Bro 

(Paxson, 1998) as NIDS and Kernort (Jiang, Xu and Eigenmann, 2004) as a 

HIDS to monitor worm target discovery and propagation. ViSe (Richmond, 

2006) provides a virtualization platform where malware exploits can be tested 

against the entire range of x86 based operating systems under controlled 

conditions, while being monitored by a NIDS. V-NetLab (Sun et al., 2008) has 

implemented a model based on DETER’s (Benzel et al., 2007) remote access 

capability by utilizing data link layer virtualization and packet encapsulation, 

thereby  providing a more secure means of remote access to security related 

testbeds. Golath (Fagen, Cangussu and Dantu, 2009) is a virtual network based 
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on a Java Virtual Machine (JVM) and the Ultra-light-weight abstraction level 

(ULAL). It provides a virtual environment to run any application written in 

Java, independent of the type of host operating system. Host behaviour can be 

monitored in this environment by adding different Java plug-in extensions.   

2.5 Mathematical Models for Worm Propagation 

Mathematical models for worm propagation helps us understand the 

epidemiology of worm outbreaks (Chen and Robert, 2004), (Moore et al., 

2003), (Staniford et al., 2004). Various authors have proposed mathematical 

models to describe worm propagation (Chen and Robert, 2004), (Moore et al., 

2003), (Staniford et al., 2004), (Zou, Gong and Towsley, 2002), (Liljenstam et 

al., 2003); based on the models originally developed for biological 

epidemiological studies (Kermack and McKendrick, 1927), (Frauenthal, 

1980). The susceptible-infected (SI) (Kermack and McKendrick, 1927) model 

is the most widely reported biological model, which models the epidemiology 

of infection by assuming a population of hosts is of fixed size and relying on a 

deterministic contact coefficient to govern the differential between each step of 

the model. Variations of the SI model in the field of biological epidemiology 

tend to add addition states (Frauenthal, 1980), for example the susceptible-

infected-recovered  (SIR) model in which all  hosts stay in one of only three 

states at any time: ‘susceptible’ (denoted by ‘S’), ‘infectious’ (denoted by ‘I’) 

or ‘recovered’ (denoted by ‘R’). The susceptible-infected-susceptible (SIS) is 

another variation on the SI model that adds the ability of an infectious host to 

transition back the susceptible state. Of note is another work undertaken by 

Chen et al. (Chen, Gao and Kwiat, 2003) that reports a discrete time 

deterministic model of active worms (the AAWP model), which characterizes 

the propagation of worms that employ random scanning and local subnet 

scanning. It uses a discrete time model and a deterministic approximation to 

describe the spread of computer worms.  
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2.6 Research Questions 

2.6.1 Research Question 1 

All the proposed solutions set out in section 2.3 of this chapter provide 

potential or partial countermeasures against network worms. The following are 

limitations in the above mentioned classes of solutions: 

• RL or containment solutions (as described in section 2.3.1) are limited 

in the efficient and effective detection of worms and lack the 

functionality to spread malware warnings to unaffected networks.  

• ASG solutions (as described in section 2.3.2) are prone to a high no of 

false positives. They also lack the functionality to spread malware 

warnings to unaffected networks.  

• BSG solutions (as described in section 2.3.3) lack the distributed worm 

detection and containment function that is effective in the case of fast 

spreading worms. 

• LA solutions (as described in section 2.3.4) lack effective worm 

detection capabilities.  

• PP solutions (as described in section 2.3.5) are prone to false positives, 

impractical to implement in a real network and lack the functionality to 

spread malware warnings to unaffected networks.  

• MC solutions ((as described in section 2.3.6) are not efficient in the 

case of fast scanning, flash or hit-list worms due to their bandwidth 

usage, legality and limited zero- day vulnerability patching capabilities. 

• HQD solutions (as described in section 2.3.7) lack an efficient 

mechanism for worm detection. 

• Defensive worms (as described in section 2.3.8) are ineffective in the 

case of fast zero-day scanning flash and hit-list worms due to their 

limited zero day vulnerability patching capabilities and legality to 

release on the Internet.  

 

From the above list, it is clear that none of these solutions, in isolation, 

provides an effective and efficient approach for zero day worm detection and 
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containment in a disturbed environment. Hence, research question 1 is defined 

as follows:   

• Is it possible to develop and evaluate a distributed, automated worm 

detection, prevention and containment solution that will be more 

effective against fast zero-day worms than the potential solutions 

summarised in section 2.3? Such a countermeasure may be limited to 

adding delay to the worm infection time so that system administrators 

have additional time to patch  infected hosts.  It would be desirable 

for such a countermeasure to be able to stop the worm infection 

completely.  

2.6.2 Research Question 2 

To the knowledge of the author, no previous research has reported the design 

and development of worm daemon which works in a similar way to a random 

scanning and a hit-list worm such as SQL slammer and Witty, which is self-

contained within an isolated environment, which is self-configurable with 

speed of propagation and hit-list.  Hence there is a need to design and develop 

a worm daemon, which can be employed to empirically investigate the spread 

of a random scanning and hit-list worm in an isolated environment with real 

world Slammer or Witty exploitable conditions and also to test potential 

countermeasures.  

Hence in order to address above limitations and characterising the virulence of 

worms, the following research question is defined:  

• Is it possible to develop a pseudo worm daemon with characteristics 

such as random and hit-list scanning, configurable rate of 

propagation and confinement within defined network space  to allow 

a developed countermeasure to be empirically tested and evaluated?  

2.7 Chapter Summary 

This chapter has presented the definitions of different types of malware, a 

taxonomy of computer network worms and details of potential wormable 

vulnerabilities. It has also summarised a wide range of previously reported 

worm detection and prevention mechanisms, worm testing environments and 

mathematical models for worm propagation, and classified them into different 
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categories. Finally, two research questions have been defined based on the 

limitations identified in the existing work. The next chapter will present the 

details of a proposed distributed worm detection and containment 

countermeasure.  
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3 THE RATE LIMITING + LEAP AHEAD (RL+LA) 

SCHEME 

3.1 Chapter Introduction 

The Rate Limiting + Leap Ahead (RL+LA) scheme is designed as a worm 

detection and containment scheme, which is then implemented as a proof-of-

concept in the C programming language (Shahzad and Woodhead, 2014a). The 

source code of RL+LA is given in Appendices of this thesis. The scheme can 

be deployed on the routers of enterprise networks. It uses the absence of a 

Domain Name System (DNS) (Mockapetris, 1987) lookup, prior to an 

outgoing TCP SYN or UDP datagram to a new destination IP address as a 

behavioural signature to detect worm scanning activity. Upon detection of 

such behaviour, the scheme blocks further traffic from the originating host at 

the network gateway and sends an alert message using a variation of the 

Friends protocol (Nojiri, Rowe and Levitt, 2003) to peer routers which belong 

to the scheme. To the author’s knowledge, this is the first implementation of a 

hybrid worm detection and containment mechanism based on a combination of 

Rate Limiting (RL) on the basis of behaviour signature detection and Leap 

Ahead (LA) solutions. The novelty of this scheme is: its automated, distributed 

behaviour based worm detection, containment and alerting to participating 

peer networks in the scheme. A hybrid worm detection and containment 

solution was designed and implemented as none of solutions described in 

section 2.3, in isolation, provides an effective and efficient approach for zero- 

day worm detection and containment in a disturbed environment. 

3.1.1 Chapter Layout 

This chapter starts by presenting the basis concept of the RL+LA scheme in 

section 3.1. Section 3.2 defines the basic design and methodology of RL+LA 

scheme. Section 3.3 discusses the RL+LA system design and implementation 

by presenting its algorithm while section 3.4 provides the concluding 

statement. 
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3.2 Basic Design and Methodology 

The DNS (Mockapetris, 1987) is a hierarchical globally distributed database 

for computers, services or any resource connected to the Internet that translates 

easily memorized domain names to the numerical IP addresses needed for the 

purpose of locating computer services and devices worldwide. It can be 

classified as phone book for the Internet by translating human-friendly 

computer hostnames into IP addresses. Almost all network traffic leaving a 

workstation host for another Internet host, with which it has not recently 

communicated, requires a DNS lookup. It is quite usual for network segments 

to be logically or physically separated in an enterprise network due to various 

reasons including administration, security, geographical location etc. Whyte et 

al. (Whyte, Kranakis and Oorschot, 2005) divides the different network 

segments into cells as shown in Figure 3.1. According to Whyte et al., the 

traffic generated by the propagation of fast scanning worms can be considered 

under the following three classifications: 

• Local to local (L2L): In L2L, scanning worm targets hosts within the 

boundaries of the enterprise network in which the source host resides. 

Topological worms employ this method to propagate. 

• Local to remote (L2R): L2R refers to a scanning worm whose source 

host is within an enterprise network but which is targeting the whole 

Internet. 

• Remote to local (R2L: While in R2L propagation, scanning worms 

target hosts within an enterprise network from elsewhere within the 

Internet. 

 

The proposed worm detection and containment scheme: The RL+LA, detects 

the L2R propagation of worms based on behaviour signature (lack of DNS 

lookup), and alerts other peer networks, using a variation of the Friends 

protocol (Nojiri, Rowe and Levitt, 2003) of the detected worm event. Ganger 

et al. (Ganger, Economou and Bielski, 2002) first proposed that the lack of 

DNS lookup from a host might be used as a tell-tale sign of worm scanning 

activity.  In the case of a worm infection like Slammer (Moore et al., 2003), an 

infected 



 

 76 

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME 

host tries to send as many UDP datagrams as it can, per unit time, without 

making any DNS requests. The RL+LA scheme uses this behavioural 

signature (lack of DNS lookup) as an indicator of worm scanning activity and 

alerts other participating peer networks.  

 

Figure 3.1 shows the placement of the elements of proposed RL+LA scheme 

in an enterprise network. The RL+LA prototype is deployed on the internal 

network gateways of each cell, on the DMZ gateway to implement rate 

limiting and to send internal Friends messages in case of worm scanning 

activity. While RL+LA on the border gateway of each enterprise does not 

implement rate limiting, it only forwards the Friends messages to external 

Friends peers on the Internet if a worm malware warning is received. Each 

host in any network cell is allowed to send up to N outbound TCP SYN or 

UDP datagrams without a corresponding DNS lookup in a unit interval of 

time. If a host sends more than a threshold value N, outbound datagrams 

without appropriate DNS lookups in a specified time interval, the RL+LA 

implementation flags this as a worm infection indicator, uses iptables (The 

netfilter.org "iptables" project, 1998) to block further datagrams from the host 

from exiting the network cell locally, reduces the threshold to N/2 and sends 

an alert message to internal and external peers using the Friends protocol. On 

receipt of such a message, each peer will reduce its trigger threshold to N/2. 

3.3 The RL+LA: System Design and Implementation 

The RL+LA proof-of-concept implementation is coded in the C programming 

language. The C programming language was chosen to implement RL+LA 

prototype due to its capability to access the system's low level functions and 

easily available open source libraries like libpcap (TCPDUMP & LIBPCAP, 

2008) and libpjlib (PJSIP: PJLIB Library, 2008). The libpcap library is used to 

capture traffic and the libpjlib library is used for parsing incoming DNS 

replies. Figure 3.2 shows the flowchart of the RL+LA algorithm. For any TCP 

SYN or UDP datagram leaving the network, RL+LA looks for a corresponding 

DNS lookup in Table A: Network DNS Cache. In the absence of a 

corresponding entry, it adds the source IP address to Table B: Counters and 

increments the counter value. The result  of  all  DNS  lookups  along  with the  
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Figure 3-1 The RL+LA Proposed Design Architecture 
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source IP address and the destination IP address is saved in Table A. Different 

threshold values can be defined for different networks, depending on the 

nature of the typical traffic of that network. Another time interval K is defined 

in Table B to decrement the values in Table B. The higher the rate of 

decrementing the value of K in Table B, the lower the probability of a false 

positive being triggered. 

Table A:
Network DNS Cache

Incoming data

Router with iptables
and RL+LA

prototype installed
Look up 

source and destination
IPs in Table A:  If there is a
hit, do nothing.  If no hit, 

increment element
in table B 

Decrement
all counters once per

K seconds

If any counter 
in Table B exceeds N,

 update iptables to block source
 IP and notify Friends

Outgoing
datagram
headers

Inbound DNS
lookup results

Table B:
Counters

 

Figure 3-2 Flow Chart for The RL+LA Prototype Algorithm 
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It should also be noted that some legitimate network services generate UDP 

datagrams without a preceding DNS lookup, such as the DNS service itself. In 

order to address this situation, a small number of destination IP addresses are 

white listed in the system, such as those for the primary and secondary DNS 

servers, and other can be added.  

 

Once the threshold value is reached in Table B, the RL+LA application blocks 

outgoing traffic from the offending host using iptables, reduces N to N/2 and 

sends an alert message using the Friends protocol to internal peer routers and 

to the border gateway, which in turn forwards the alert to external peers in the 

scheme, again using the Friends protocol. Each alert message contains the 

router user name, a predefined password, and a command to half the threshold 

value in Table B. 

3.4 Chapter Summary 

This chapter has presented the architecture and design of the RL+LA scheme. 

The RL+LA scheme uses the absence of a DNS lookup, prior to an outgoing 

TCP SYN or UDP datagram to a new destination IP address as a behavioural 

signature to detect worm scanning activity and then uses the Friends protocol 

to send alert messages to other friends within the participating domain. This 

scheme is subject to experimental verification in order to evaluate its 

suitability in the case of a worm outbreak on a small scale (to show proof of 

concept) and on a large scale networks. In order to achieve these goals, a 

pseudo-worm daemon and a suitable worm countermeasure testing 

environment are required, which will be presented in the following chapter.  
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4 THE PSEUDO-WORM DAEMON (PWD) 

4.1 Chapter Introduction 

The Pseudo-Worm Daemon (PWD) is designed to empirically evaluate the 

developed countermeasure as set out in research question 2 in section 2.6.2. 

The PWD performs random scanning and hit-list worm like functionality, and 

is implemented as a proof-of-concept in the C programming language 

(Shahzad and Woodhead, 2014b). The source code of PWD is given in 

Appendices of this thesis. The C programming language was chosen to 

implement PWD prototype due to its capability to access the system's low 

level functions and easily available open source libraries, which makes it 

platform independent. This PWD prototype can be deployed on any host in an 

enterprise network and it functions in similar way to any random scanning and 

hit-list worm. As reported in section 2.6.2 (to the knowledge of the author), no 

previous reported research has presented the architecture and design of any 

worm daemon which works in a similar way to a random scanning and a hit-

list worm such as SQL slammer, Witty etc, which is self-contained within an 

isolated environment, which is self-configurable with speed of propagation and 

contains a user defined hit-list. Hence, the novelty of this worm demon is its 

UDP based propagation, user-configurable random scanning pool, ability to 

contain a user defined hit-list, authentication before infecting vulnerable host 

and efficient logging of time of infection. 

4.1.1 Chapter Layout 

This chapter begins by introducing the basic concept of PWD in section 4.1. 

Section 4.2 presents the basic design and methodology of a random scanning 

or a random scanning hit-list worm. Section 4.3 reports the system design and 

architecture of the PWD, while section 4.4 explores its key characteristics. 

Section 4.5 reports the evaluation of PWD by using Pseudo-Slammer and 

Pseudo-Witty worms and the SI model, while section 4.6 by way of 

background, presents the Virtualized Malware Testbed (VMT), which is 

designed to evaluate PWD and RL+LA. Finally section 4.7 presents the 

chapter summary. 
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4.2 Basic Design and Methodology of Pseudo-Worm Daemon 

(PWD) 

A random scanning worm such as Slammer, Code Red etc. (Moore et al., 

2003), (CERT:Code Red II, 2001) uses a pseudo random number generator to 

scan random IP address whereas a hit-list worm such as Witty (Shannon and 

Moore, 2004) uses an initially generated hit-list embedded into it to infect 

vulnerable hosts on the Internet. Upon initial infection, a UDP based random 

scanning worm such as Slammer generates a number of UDP datagrams, 

whereas a TCP based worm such as Code Red initiates a number of 

connections, (defined by an attacker in the worm algorithm) and sends them to 

number of random IP addresses in a unit interval of time. Each new infected 

host, upon infection, follows the same process and starts scanning further IP 

addresses, thereby creating a chain reaction. Figure 4.1 shows this worm 

infection process (Chen and Robert, 2004). 

 

In each stage of infection, each infected host n, further scans m hosts. In the 

case of a random scanning worm such as Slammer, at the first stage of 

infection, one or two hosts starts the infection process, while in the case of a 

hit-list such as Witty, at the first stage of infection, the worm contains  an 

initial list of vulnerable hosts. It is to be noted that an already infected host can 

receive multiple copies of either UDP datagrams or TCP packet scans, as 

shown by dotted arrow in figure 4.1.  

4.3 Pseudo-Worm Daemon System Design and Implementation 

The PWD is implemented in the C programming language. The C 

programming language was chosen to implement the PWD due to its 

capability to access the systems low level functions, easily available open 

source compiler and ease of use. The basic design of PWD consists of three 

key elements: 

• UDP Server: The UDP server program is a single threaded application 

and performs pseudo worm like functionality. It can be installed on any 

platform host. Upon receiving a UDP datagram from a UDP client on a 

user-defined  port number  and  IP  address,  it  looks for authentication  
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Figure 4-1 Worm Infection Process (Chen and Robert, 2004) 
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string (user- defined) to authenticates the UDP client request, and upon 

authentication, sends a UDP datagram containing local time of 

infection to logging server and turns its behaviour to that of a client by 

sending further UDP datagram to different destination IP addresses 

(generated by a using pseudo random number generator or read from 

text file already containing a list of vulnerable hosts). The rate of UDP 

datagrams generated per second and the pool from which random 

destination IP addresses are chosen (either by random scanning or hit-

list from local file) are user-configurable parameters. 

• UDP Client: A UDP client program is used to launch the worm. It can 

be installed on any platform host. It sends a UDP datagram to UDP 

server with IP address of UDP server, port number on which UDP 

server running and authentication string of UDP Server. UDP client in 

used only once to start the worm infection process. 

• Logging Server: The logging server program is installed on any 

platform host in a network to log the time of infection from UDP 

servers on the network. All hosts running the UDP server holds the IP 

address of the central logging server and upon infection, sends the time 

of infection to the logging server. 

 

The following figure 4.2 shows design architecture of PWD. It can be seen that 

there in only one UDP client presented, which is used to start the worm 

infection process. After that, the UDP Server performs the functionality of a 

true random scanning or hit-list worm. 

 

Figure 4-2 Design Architecture of PWD 
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The following figure 4.3 shows flow diagram of the PWD algorithm, that 

describe its process for only one instance of worm.   

 

 

Figure 4-3 Flow Diagram of PWD Algorithm 
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4.4 Characteristics of the Pseudo-Worm Daemon (PWD) 

Following are key characteristics of the Pseudo-Worm Daemon (PWD). 

4.4.1 UDP based Propagation 

The designed PWD uses UDP as its propagation mechanism, thereby making it 

similar in functionality to the SQL Slammer and Witty worms. A UDP based 

worm can propagate much faster than a TCP based worm (Staniford et al., 

2004), due to the fact that TCP based worm uses three way handshake for 

connection establishment before infecting a new host, whereas a UDP based 

worm uses a single datagram to infect another host. SQL Slammer is 

considered to be the fastest random scanning worm in history as its infected 

population doubled in size every 8.5 seconds, with 90 % of vulnerable host 

infected within 10 minutes (Moore et al., 2003).   

4.4.2 Pseudo Random Number Scanning 

The PWD implementation prototype presented in this chapter uses pseudo 

random number scanning to generate new IP addresses. A pseudo random 

number generator (PRNG) is an algorithm for generating a sequence of 

numbers that approximates the properties of random numbers (Marsaglia, 

2003). A random seed is used to initialize the PRNG. Various types of PRNG 

exist, but the PWD implementation prototype presented in this chapter, uses a 

Complementary-multiply-with-carry (CMWC) type of pseudo random number 

generator (Marsaglia and Zaman, 1991). CMWC method generates sequences 

of random integers based on an initial set from two to many thousands of 

randomly chosen seed values. The key advantages of the MWC method are: 

(a) it invokes simple computer integer arithmetic, (b) leads to very fast 

generation of sequences of random numbers with immense periods, ranging 

from around 260 to 22000000.  

4.4.3 Hit-List  

A pre-generated list of vulnerable IP address can be provided to the PWD in 

the form of a text file. The PWD reads the file and sends a single UDP 

datagram to those IP addresses on a specific port, thereby imitating the 

functionality of a hit-list worm such as the Witty.   
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4.4.4 Containment 

The PWD has a user-configurable random scanning IP addresses pool, which 

can be defined inside it code. For examples, generating IP addresses in one 

class A or generating IP addresses in six class C networks or generating IP 

addresses over the whole Internet space. Hence, its random IP generation can 

be contained in any network size according to the needs of the experiment.  

4.4.5 Scanning rate 

The PWD can be configured to scan at different scanning rates. For example, 

100 scans per seconds, 500 scans per seconds etc. The number of random IP 

addresses scanned per second is defined as the scanning rate of the worm. For 

example, on average, Slammer was reported to have scanned 4000 IP 

addresses per second. 

4.4.6 Authentication 

An authentication mechanism is included into the PWD for safety reasons. 

Any UDP datagram from the PWD contains an authentication string. Upon 

receiving a UDP datagram, a host looks for authentication string, and if it finds 

the authentication string, it starts scanning new hosts.  

4.4.7 Logging and Reporting 

The PWD prototype also includes a logging server, which can be installed on 

any host. Upon infection, the UDP server sends the IP address of the newly 

infected host and the time of infection (with resolution of 10-6 seconds) to the 

central logging server. The central logging server stores this information in a 

text file which can be processed to extract the time of infection of all 

vulnerable hosts on the network. 

4.5 Evaluation of Pseudo-Worm Daemon (PWD) 

In order to evaluate the effectiveness of PWD as an effective tool to 

empirically analyse the propagation behaviour of random scanning and hit-list 

worms, and to test potential countermeasures, a Virtualized Malware Testbed 

(VMT) has been setup ( which is given as background in section 4.6) and a 

series of experiments were conducted using the real worm attributes of 
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Slammer and Witty worms. The SQL Slammer and Witty worms were selected 

for evaluating the PWD due to the fact that reliable empirical data from both 

worm events are available from CAIDA (CAIDA: Center for Applied Internet 

Data Analysis, 2014). Furthermore, Pseudo-Slammer and Pseudo-Witty worms 

results are compared using the SI model. Hence, the effectiveness of PWD was 

evaluated by using two ways: 

• Comparing Pseudo-Slammer and Pseudo-Witty worms results with real 

outbreak data (which is available from CAIDA). 

• Mathematically modelling the Pseudo-Slammer and Pseudo-Witty 

worms results by using SI model and comparing the infection process. 

4.5.1 Pseudo-Slammer Worm Experiments 

4.5.1.1 Slammer Worm Outbreak Attributes 

Moore et al (Moore et al., 2003) reported some key characteristics of the 

Slammer outbreak of 2003 which can be summarised as follows: 

• 18 hosts per million of the entire IPv4 address space were susceptible 

to infection. 

• The maximum recorded scanning rate of Slammer was 26,000 

datagrams per infected host per second. This figure seems reasonable 

while considering the upper bound of 100BaseT interface and the 

worm Ethernet frame size of 430 bytes.  

• The average scanning rate of Slammer was 4000 datagrams per worm 

instance per second during its entire infection period.   

4.5.1.2 Experimental Setup 

In order to empirically analyse the behaviour of the Slammer worm and to 

validate the PWD prototype on a class A scale, an experimental test network 

was configured on the Virtualized Malware Testbed (VMT) (reported in 

section 4.6 of this chapter), comprising of a single Class A address space 

10.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.64.0.0/10, 

10.128.0.0/10 and 10.192.0.0/10 as shown in figure 4.1. These four subnets 

were connected through a central router by using RIP, configured on Quagga. 

Eight further Quagga based routers were implemented (two for each subnet). 

The RL+LA prototype was installed on each of these eight routers. The 

RL+LA prototype installed  on routers A, B, C and D  was  configured to  rate  
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Figure 4-4 Slammer Worm Experimental Test Network 
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limit the outbound connection based on DNS anomalies and to send Friends 

protocol messages whereas the RL+LA prototype installed on the border 

routers only forwarded the Friends protocol messages received from internal 

and external friends. One Linux based virtual host was running in each subnet 

to provide a DHCP service and logging service for the Pseudo Worm Daemon 

(PWD). DSL was installed with the PWD on each of the susceptible 

virtualised hosts. All hosts in the network are time synchronized by using the 

Network Time Protocol (NTP).   

4.5.1.3 Experimental Methodology 

As reported in section 4.5.1.1, approximately 18 hosts per million of the entire 

IPv4 addresses space were susceptible to infection with Slammer and it 

achieved an average scan rate of 4,000 datagrams per infected host per second.  

 

A single class A network has 224 hosts, and so will contain 224 * 18/1,000,000 

= 302 susceptible hosts. On this basis, 302 virtual hosts with the Slammer like 

pseudo-worm daemon were deployed across the four subnets. Each worm 

daemon was configured to scan within a single class A network (10.0.0.0/8).  

In order to avoid overloading the server farm hardware (in which case the 

experiments would have been measuring the effect of the hardware 

restrictions, rather than the properties of the worm), the average worm 

scanning rate was scaled down by a factor of 80. Therefore, based on an 

average scan rate reported by Moore et al. of 4000 scans per second, the 

Pseudo-Slammer network daemon was configured to scan at 50 scans per 

second in the set of Slammer experiments. 

4.5.1.4 Experimental Results 

Figure 4.6 shows the results of a set of three experiments conducted without 

implementing any countermeasures. In the first experiment, all 302 susceptible 

hosts were infected in 15.07 minutes. In the seconds experiment, all 302 

susceptible hosts were infected in 14.58 minutes. While in the third 

experiment, all 302 susceptible hosts were infected in 14.45 minutes.  
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Figure 4-5 Experimental Results of Pesudo-Slammer Worm  

4.5.2 Pseudo-Witty Worm Experiments 

4.5.2.1 Witty Worm Outbreak Attributes 

Shannon et al. (Shannon and Moore, 2004)  reported some key characteristics 

of the Witty worm outbreak of 2004 which can be summarised as follows: 

• The Susceptible population of the Witty worm was 12, 000or between 

2 and 3hosts per million of the entire IPV4 address space. 

• Witty worm had a variable datagram size, with an Ethernet frame size 

between 796 and 1307 bytes.  

• The average scanning rate of Witty was 357 datagrams per infected 

host per second during its entire infection period while the maximum 

recorded scanning rate was 970 datagrams per host per second.  

• Witty also utilized an initial hit-list of 110 hosts which were reported to 

have been infected in the first 10 seconds of launch. Of these110 hosts, 

38 hosts were transferring 9700 datagrams per host per second 

continuously for a period of an hour.  

4.5.2.2 Experimental Setup 

In order to empirically analyse the behaviour of the Witty worm and to 

validate the PWD prototype, an experimental test network was configured on 

the Virtualized Malware Testbed (reported in section 4.6 of this chapter),  
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Figure 4-6 Witty Worm Experimental Test Network 
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comprising of a two Class A address space 10.0.0.0/8 and 11.0.0.0/8 but 

divided into four subnets; 10.0.0.0/10, 10.128.0.0/9, 11.0.0.0/9 and 

10.128.0.0/9 as shown in figure 4.7. All the other network elements of 

experimental test network were the same as those defined previously in section 

4.5.1.3. 

4.5.2.3 Experimental Methodology 

As reported in section 7.3.1, Witty had 3 hosts per million of the entire IPv4 

addresses space were susceptible to infection with an average scan rate of 357 

datagrams per infected host per second.  

 

A single class A network has 224 hosts, and so 2 class A networks will contain 

224 * 2(3/1,000,000) = 101susceptible hosts. On this basis, 101virtual hosts 

with the Witty like pseudo-worm daemon were deployed across the four 

subnets. Each worm daemon was configured to scan within two class A 

networks (10.0.0.0/8, 11.0.0.0/8) at a scanning rate of 357 scans per host per 

second while using an initial hit-list of one susceptible host held by the first 

infected host.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Experimental Results of Pesudo-Witty Worm  
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4.5.3 Discussion 

4.5.3.1 Empirical Analysis of Pseudo-Slammer Worm Results 

Figure 4.9 shows a comparison of real Slammer worm outbreak of 2003 with 

the results of the Pseudo-Slammer worm experiments. The average data for 

three Pseudo-Slammer worm experiments is plotted against the real outbreak 

of 2003 where empirical data is only available for the first 4 minutes of 

infection (Moore et al., 2003). The analysis conducted by Moore et al. states 

that the real slammer worm infected more than 90 percent of vulnerable hosts 

within 10 minutes (Moore et al., 2003). It is also observed from the Pseudo-

Slammer experiments conducted on the VMT platform that all three 

experiments achieved infection of 90% of vulnerable hosts within 

approximately 10 minutes, whereas 99% of infection is achieved in 14 

minutes. Hence these experimental results are broadly comparable to the 

available data for the real Slammer outbreak of 2003.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8 Pseudo-Slammer Experiments vs. Real Slammer Outbreak 
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Shannon et al. reported that the real Witty worm infected 90% of its 

susceptible hosts with within 90 minutes while 100 % of infection took almost 

140 minutes. But, the Pseudo-Witty experiments conducted by using VMT 

took 90 minutes to reach its 90 % of infection and 97 minutes on average to 

infect all hosts. Furthermore, the infection process for real Witty Worm was 

quite fast at initial stage of worm spread. This difference is attributed to the 

fact that the real Witty Worm outbreak contained an initial hit-list of 110 hosts, 

out of which 38 infected hosts were transferring 9700 datagrams per host per 

second continuously for a period of an hour; whereas the Pseudo-Witty worm 

experiments used an average scan rate of the real Witty worm of 357 

datagrams per host per second during its entire infection. The results of 

Pseudo-Witty worm experiments are still broadly comparable to the available 

data for the real Witty worm outbreak. 

 

 

Figure 4-9 Pseudo-Witty Experiments vs. Reported Witty Outbreak 
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4.5.4 Epidemiological Modelling 

4.5.4.1 Classical Simple Epidemic Model 

In order to further analyse the spread of worm outbreaks, the reported research 

employed classical simple epidemic model (Kermack and McKendrick, 1927), 

(Daley and Gani, 1999), (Xiang, Fan and Zhu, 2009), in which all hosts exist 

in one of only two states at any given time: ‘susceptible’ (denoted by ‘S’) or 

‘infectious’ (denoted by ‘I’), and thus it is also called the SI model. This model 

assumes that once a host is infected by a worm, it will stay in an ‘infectious’ 

state forever. For a finite population of size N, it could be defined by the 

following single differential equation 4.1. 

��(�)

��
= 	
�(�)[� − �(�)]		  (4-1) 

Where I(t) denotes the number of infectious hosts at time t; and β = η (Average 

worm scan rate) / Ω (The size of a worm’s scanning space) stands for the pair 

wise rate of infection in epidemiology studies (Daley and Gani 1999). At the 

beginning of the infection (t=0), I(0) hosts are infectious and the other N − 

I(0) hosts are all susceptible. 

 

Let i(t) stands for the fraction of the population that are infectious at time t, 

and thus i(t) = I(t)/N, which yields I(t) = N*i(t). Substituting I(t) in equation 

(4.1) with N*i(t) and then rearranging it leads to  equation 4.2: 

	��(�)

��
= 	�
�(�)[� − �(�)]					 	 (4-2)	

 

Equation (8.2) has following general analytical solution: 

 

�(�) =
��
(���)

��	��
(���)
	 	 	 (4-3)	

 

Which is the logistic equation. For early t, i(t) grows exponentially. For large t, 

i(t) converges from 0 to 1 (all susceptible hosts are infected). When t = 0, 
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�(�) = �(0) =
�����

��	�����
=

�(�)	

�
yields  !�"# =

�(�)	

�!�(�)
 . Therefore, a particular 

analytical solution of equation 8.2, given its initial conditions �(0) =
�(�)	

�
 is as 

follows:  

  �(�) =
�$

�$�[�!	�$]�
��
�	

   (4-4) 

 

4.5.4.2 Modeling Methodology and Results 

Best fit SI model curves were plotted against experimental test results of 

Pseudo-Slammer and Pseudo-Witty Worm and values of Pearson’s correlation 

coefficient r, (Pearson, 1895) as well as the value of β for SI model were 

calculated. Different values of β were the tried to obtain the highest value of r. 

This basic technique is similar to that employed by Tidy (Tidy 2014). 

 

The figure 4.11 shows the best fit SI model against Pseudo-Slammer Worm 

results, showing the values of β and  Pearson’s correlation coefficient r. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 Best Fit SI Model for Pseudo-Slammer Worm Experimental Data 

 

The figure 4.12 shows the best fit SI model against Pseudo-Witty worm 

results, showing the values of β and  Pearson’s correlation coefficient r. 
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Figure 4-11 Best Fit SI Model for Pseudo-Witty Worm Experimental Data 

 

• It is worthy of note that the value of the correlation coefficient, r, is 

quite close to 1 i.e. (r = 0.99186 as in case of Pseudo-Slammer and r = 

0.99186 as in case of Pseudo-Witty), indicating the ability of the SI 

model to represent the experimental data for random scanning worms 

such as Slammer and Witty.  

• Furthermore, obtained experimental results also proved that Pseudo-

Slammer and Pseudo-Witty Worm outbreak follows random constant 

spread pattern and approximates to standard s-shaped curve as shown 

by Moore et al. (Moore et al., 2003).  

 

4.6 Virtualized Malware Testbed (VMT) 

This section presents the architecture, design and implementation of 

Virtualized Malware Testbed (VMT), which is included as background to 

chapter 4.  

4.6.1 Introduction   

Design and development of malware test environments for security 

experiments has been a key area of research over the last 10 years. Section 2.4 

presented some existing malware testing environments. Based on the work, a 
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Virtualized Malware Testbed (VMT) (Shahzad, Woodhead and Bakalis, 2013) 

was setup by using virtualization technologies provided by VMware (VMware, 

1998) and open source software such as Quagga (Quagga Routing Suite, 

1999), Ubuntu (ubuntu, 2004), Damn Small Linux (Damn Small Linux (DSL), 

2008). The key usage of VMT would be to conduct empirical experiments by 

using the PWD with real worm characteristics such as Slammer, Witty and 

contemporary potential worms such as those which might exploits Shell Shock 

(CVE:CVE-2014-6271, 2014) etc. in order to closely observe their infection 

and propagation behaviour. The same facility can also be employed in testing 

candidate worm countermeasures such as RL+LA (reported in chapter 3 of this 

thesis). 

4.6.2 VMT Architecture Design and Implementation 

VMT uses VMware ESXi (VMware ESXi, 2010) as the core virtualization 

technology. VMware ESXi is bare-metal embedded hypervisor that run 

directly on host server hardware without any additional underlying operating 

system. Various virtualization technologies such as Virtual Box, KVM, Xen 

etc. (Software Insider, 2013) exits but VMware was chosen as virtualization 

platform due to the following characteristics: ease of use, reliability, scalability 

of running virtualized hosts, remote administration of multiple servers from a 

single desktop host and vSphere PowerCLI for scripting administrative tasks. 

Damn Small Linux (DSL) (Damn Small Linux (DSL), 2008) was chosen to 

run as the virtualized operating system with the PWD. Although various other 

small Linux distributions such LINUXBBQ (LINIXBBQ, 2012), Puppy Linux 

(Puppy Linux, 2003), Tiny Core Linux (Tiny Core Linux, 2009) etc. but the 

main reason of selecting DSL as the virtual host operating system was its 

minimum hardware requirements. Each DSL based VM was configured with 

32 MB of RAM and 1 GB of hard disk space, thereby making it a scalable 

solution with minimum reconfiguration time and ease of deployment.  

 

VMT also uses a free and open source routing suite Quagga (Quagga Routing 

Suite, 1999) to provide a software routing functionality. This routing suite 

provides implementation of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and 

BGP-4 for Unix platforms, particularly FreeBSD, Linux, Solaris and NetBSD. 
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Various open source software routing packages exists such as BIRD (The 

BIRD Internet Routing Daemon, 2008), GNU Zebra (GNU Zebra, 2005) but 

Quaaga was chosen as routing package due to its software support and ease of 

routing protocols configuration. It was installed on Ubuntu operating system 

(chosen due to ease of use)to provide routing functionality between different 

networks. Each Quagga based routing server, installed on top of Ubuntu used 2 

GB of Ram and 5 GB of storage space. VMware vCenter Server (VMware 

vCenter Server, 2012) provides a graphical user interface to manage the 

VMware ESXi servers remotely. It also provides other functionality such as 

the ability to clone virtual hosts, virtual network configuration etc. It was 

installed on top of Windows Server 2003 R2. Ububtu based virtual hosts are 

also configured on which network services, such as DHCP, NTP  and Logging 

server of PWD (reported in chapter 4.3) are configured. Each such virtual host 

image used 512 MB of RAM and 5 GB of disk space. 

 

Figure 4.12 illustrates the physical architecture of VMT. It consists of a server 

farm with five servers, a management server, routing server with multiple 

network interface cards, Ethernet switches and external storage. Each server in 

the server farm is running ESXi while the management server is running 

VMWare vCenter Server, installed on top of Windows Server 2003 R2. One 

network interface card in each server farm host is connected to a logically 

isolated management network along with the management server; thereby 

allowing access to all resources from one graphical user interface. Multiple 

virtual topologies can be created within the server farm by using virtual local 

area networks (VLANs) connected to different NICs on the routing server, 

installed with Quagga. 1 TB external storage is also connected with the 

management server to take regular backup of the systems.  
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Figure 4-12 VMT Physical Network Setup 

 

Table 4.1 summarizes the hardware and operating systems which make up the 

VMT infrastructure. 

Table 4-1 VMT Hardware and Operating System Infrastructure 

 Processors No of 

cores 

Operating 

System 

Memory Storage VMs 

Server 1 i7 6 ESXi 5.1 64 GB 1 TB DSL, 

Ubuntu 

Server 2 i7 4 ESXi 4.1 24 GB 1 TB DSL, 

Ubuntu 

Server 3 i7 4 ESXi 4.1 24 GB 1 TB DSL, 

Ubuntu 

Server 4 Xeon 4 ESXi 4.1 8 GB 512GB DSL, 

Ubuntu 

Server 5 Xeon 4 ESXi 5.1 8 GB 512GB DSL, 

Ubuntu 

Management 

Server 

i7 4 Windows 

Server 

2003 R2 

8 GB 2 TB N.A 

Routing 

Server 

i5 2 Ubuntu 

Quagga 

4 GB 512GB N.A 
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4.6.3 Characteristics of the Virtualized Malware Testbed (VMT) 

Following are key characteristics of the Virtualized Malware Testbed (VMT).  

4.6.3.1 Scale 

The Virtualized Malware Testbed (VMT) reported in this chapter uses Damn 

Small Linux as the operating system for the PWD hosts, it is capable of 

running roughly 2000 virtual hosts, which can be deployed in 10 different 

subnets. But, in different scenarios as reported in chapters 4, 5 and 6 a 

maximum of 384 PWD based virtual hosts are configured according to the 

needs of the security experiments.  

4.6.3.2 Cost  

The VMT reported in this chapter can provide 2000 virtual hosts running 

PWD, with 10 fully routable networks. It has 3 i7 servers, 2 Xeon servers, 1 i7 

management Server and 1 i5 routing host. The hardware costs of all these hosts 

do not exceed £5,000. The VMT used open source software and VMT 

products (VMware ESXi, VMware VCenter servers which are provided as part 

of VMware Academic Program (VMware Academic Program (VMAP), 2010) 

at nominal annual subscription fee of $250 to academic institutions. 

 

In terms of the feasibility of scaling this architecture, a single i7 server can run 

500 DSL based virtual hosts and can accommodate one or two class A 

networks. Hence 126 i7 servers can be used to create a network with all class 

A network address space 1.X.X.X-126.X.X.X, but with only 500 virtual hosts 

on each i7serve. Hence, it would be not be feasible to create an address space 

of the whole IPv4 Internet due to two reasons: (a) limitation of budget (b) 

using a larger network would not provide results with any greater value. A 

class A network has a 224 host address space, which is sufficient enough to 

evaluate worm infection and to test potential countermeasure by using the 

experimental methodology described in sections 4.5.1.3 and 4.5.2.3. Hence, 

the experiments reported in sections 4.5.1 and 4.5.2 used one class A and two 

class A network address space to empirically analyse the Pseudo-Slammer and 

Pseudo-Witty worm respectively.  
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4.6.3.3 Flexible and Efficient Worm Experiment Control 

A minimum rebuild and configuration time are key goals of any security 

testing environment. VMware vCenter Server provides PowerCLI (VMware 

vSphere PowerCLI 5.0, 2011); a command line interface tool that allows 

administrators to create simple and robust scripts to automate the main tasks, 

such as virtual hosts cloning, virtual hosts shutdown and reboot etc. PowerCLI 

shell scripts have been written to clone multiple virtual hosts. TheVMware 

vCenter Server graphical user interface also provides all of the above 

mentioned facilities. 

4.6.3.4 Isolation 

One network interface card in each server farm host is connected to a logically 

isolated management network (192.168.0/24) along with the management 

server, whereas multiple network interface cards are connected to routing 

servers with a different switch, thereby, completely isolating the VMT test 

network from management network. 

4.6.3.5 Remote Administration 

As VMT infrastructure uses the ESXi operating systems for all servers in the 

server farm of VMT, and uses VMWare VCenterServer installed on 

Management Server in order to access resources on all ESXi based servers. 

This provides remote administration of all servers in the server farm from 

single desktop host.     

4.6.3.6 Confinement 

As VMT uses PWD, which can be contained in defined networks according to 

the needs of the security experiment, and the Internet is completely isolated 

from the test network, the VMT provides the complete confinement of worm 

traffic within test networks. Furthermore, the PWD contains an authentication 

string to infect a host, which makes PWD traffic completely benign if it leaked 

on the Internet.  

4.7 Chapter Summary 

This chapter has presented the system architecture and design of the PWD. It 

has also reported its key characteristics such as UDP based propagation, 

pseudo random number scanning, ability to contain a user defined hit-list, 

user- configurable random scanning pool, configurable scanning rate, 
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authentication before infecting vulnerable hosts and efficient logging of the 

time of infection. Furthermore this chapter presents evaluation of PWD by (a) 

conducting a series of Pseudo-Slammer and Pseudo-Witty worm experiments 

with real outbreak attributes of Slammer and Witty worms; and comparing 

Pseudo-Slammer and Pseudo-Witty worms results with real outbreak data 

(which is available from CAIDA), (b) by mathematically modelling the results 

of the Pseudo-Slammer and Pseudo-Witty worms using the SI model and 

comparing the infection process. Finally, this chapter has presented (by way of 

background) the architecture and design of a Virtualized Malware Testbed 

(VMT), developed for worms testing, and based on VMware ESXi and open 

source softwares. It has also reported the key characteristics of VMT, such as 

scale, cost, flexible and efficient worm experiment control, isolation, remote 

administration, and confinement.  

 

From this chapter, it is concluded that PWD can be used as an effective tool to 

empirically analyse the propagation behaviour of random scanning and hit-list 

worms, and to test potential countermeasures such as RL+LA (presented in 

chapter 3 of this thesis). However, in order to evaluate RL+LA, a 

comprehensive set of initial empirical experiments need to designed and 

performed, which will be presented in the following chapter. 
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5 EXPERIMENTAL RESULTS FOR THE RL+LA 

SCHEME ON A SMALL SCALE NETWORK 

5.1 Introduction 

This chapter builds on the work reported in the previous two chapters. Chapter 

3 has presented the basic design and methodology of worm detection and 

containment scheme, The Rate Limiting + Leap Ahead (RL+LA), whereas 

chapter 4 has detailed the design and implementation of the Pseudo-Worm 

Daemon (PWD), it evaluation by conducting Pseudo-Slammer and Pseudo-

Witty Worms and comparing the results with real worm outbreak data and SI 

model and the design and architecture the Virtualized Malware Testbed 

(VMT), designed to conduct security experiments in an isolated environment. 

The next step was to design and conduct a series of experiments in order to 

analyse the propagation behaviour of the PWD, and to analyse the 

performance of the proposed RL+LA countermeasure scheme, in comparison 

to other previously proposed countermeasure, such as RL only. Hence, a series 

of initial experiments were conducted using the PWD in VMT, to initially 

assess the effectiveness of the proposed RL+LA countermeasure. This chapter 

reports the experimental results of this series of initial experiments and a 

discussion of these results.  

5.1.1 Chapter Layout 

This chapter begins by presenting the experimental setup build for conducting 

the initial set of experiments in section 5.2. Section 5.3 details the 

experimental methodology used to conduct the experiments. Section 5.4 

reports the results of the set of experiments by employing the defined 

methodology and experimental setup. Section 5.5 presents a discussion on the 

set of results with the need of future work. Finally section 5.6 concludes the 

chapter with a summary.  

5.2 Experimental setup 

To validate the RL+LA prototype, an experimental test network was 

configured in the VMT (reported in Chapter 4 of this thesis), consisting of six 
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fully routable class C networks (192.168.0.0 to 192.168.5.0) as shown in the 

figure 5.1.These six subnets were connected through three border routers 

(Router 1, 2 & 3) running Routing Information Protocol (RIP), configured on 

Quagga. Six further Quagga based routers (Router A-F) were implemented 

(one for each subnet). The gateway for each network ran a Linux 2.6 kernel 

along with iptables, the Quagga routing package and the RL+LA software. 

One Linux based virtual host was running in each subnet to provide a DHCP 

service, NTP service and Logging server of the PWD. Damn Small Linux 

(DSL) was installed with the PWD on each of the susceptible virtualised hosts. 

All hosts in the network were time synchronized by using the Network Time 

Protocol (NTP). Border router, Router 1 contained a list of external scheme 

peers (in this case Router 2 and Router 3). Internal routers (Routers A, B, C 

and D) exchanged Friends protocol alert messages directly in the case of worm 

scanning activity, whereas border router (Router 1) forwarded the alert 

messages to external scheme peers (Router 2 and Router 3). A network size of 

six class C networks was selected for experimentation due to undertake 

experiments on a small scale (scale was 6 class C networks) to begin with in 

order to get some initial sets of results of behaviour of PWD and impact of 

invoking the RL+LA countermeasure.  

5.3 Experimental Methodology 

A range of empirical experiments were conducted by using the test network 

and tools described. These experiments investigated the effect of two key 

variables: 

• The proportion of hosts in the network, which are vulnerable to 

infection (i.e. are running the PWD): Values of 25%, 20%, 15% and 

10% were investigated. These population values were selected to 

investigate the effectiveness of the RL+LA scheme as an initial proof 

of concept on a small scale. 

• The level of countermeasure implemented: A series of experiments 

were conducted with following settings: 

� No countermeasure (to provide a base-line)  

� Only the local rate limiting from infected hosts (RL only) 
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� Rate limiting and the alerting protocol implemented with 

reducing threshold (RL+LA).  

 

For all the experimental tests, N was set to 15 datagrams in 5 seconds, and the 

counter in Table B: Counters of figure 3.2 was decremented every 30 seconds. 

These values were selected as a as an initial proof of concept to achieve 

maximum countermeasure effect on a small scale. Each time, the experiment 

was started by infecting the same host at IP address 192.168.0.10 with same 

random number generator seed value while employing different seed value for  
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Figure 5-1 Experimental Test Network 
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all subsequent infected hosts. Each worm infected host is capable of generating 

10 UDP datagrams in 2.5 seconds, before it stops, choosing pseudo random 

destination IP addresses in the pool of the 6 class C networks (192.168.0.0/24 

to 192.168. 5.0/24) on port 1434. These pseudo-worm parameters were 

selected due to the size of experimental networks. 

5.4 Experimental Results 

Figure 5.2 shows the results of experiments conducted with 25% of hosts 

vulnerable to infection. Without any protection mechanism in place, all 

vulnerable hosts are infected within approximately 18 seconds. In the second 

experiment, with rate limiting only as the countermeasure (no alert messages 

between peers), 91% (349) of vulnerable hosts are infected within 

approximately 17 seconds. In the third experiment, rate limiting was 

implemented with alert messages and 63% (242) of vulnerable hosts were 

infected, again in around 17 seconds.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Experimental Results with 25 % of Hosts Vulnerable to Infection 
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Figure 5.3 shows the results of the experiments conducted with 20% of hosts 

vulnerable. Without any countermeasures in place, all vulnerable hosts were 

infected within around 18 seconds. In the second experiment, with rate 

limiting only as the countermeasure (no alert messages between peers), 88% 

(271) of vulnerable hosts were infected in approximately 20 seconds. In the 

third experiment, again, rate limiting was implemented with alert messages 

and, 60% (185) of vulnerable hosts were infected in around 20 seconds.  

 

Figure 5.4 shows the results of the experiments conducted with 15% of the 

network hosts vulnerable to infection. Without any countermeasures in place, 

all vulnerable hosts (231) were infected within approximately 17 seconds. In 

the second experiment, with rate limiting only as the countermeasure (no alert 

messages between peers), 87.5% (271) vulnerable hosts were infected in 

approximately 17 seconds. In the third experiment, again, rate limiting was 

implemented with alert messages and, 56.5% (131) of vulnerable hosts were 

infected.  

 

Figure 5.5 shows the results of the set of experiments conducted with 10 % of 

the network hosts vulnerable to infection. Without any countermeasures in 

place, 56.209% (81) of vulnerable hosts were infected within approximately 35 

seconds. In the second experiment, with rate limiting only as the 

countermeasure (no alert messages between peers), 5.228% (8) vulnerable 

hosts were infected in approximately 15 seconds. In the third experiment, 

again, rate limiting was implemented with alert messages and, 2.614% (4) of 

vulnerable hosts were infected in 7 seconds. It is also noted that multiple runs 

were required to start the infection process due to the smaller number of 

vulnerable hosts and as one instance of infected PWD only generated 10 UDP 

datagrams before it stopped. Hence, experimental results with 10 % of hosts 

vulnerable to infection are not analyzed further 
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Figure 5-3 Experimental Results with 20 % of Hosts Vulnerable to Infection 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 Experimental Results with 15 % of Hosts Vulnerable to Infection 
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Figure 5-5 Experimental Results with 10 % of Hosts Vulnerable to Infection 

5.5 Discussion and Future Work 

In all four sets of experiments, it can be seen that rate limiting alone reduces 

the speed of propagation of the worm as well as the number of hosts ultimately 

infected. When the Friends protocol messages and the threshold reduction 

were also implemented, the speed of propagating and the number of hosts 

infected were further reduced.  

 

Table 5.1 summarizes the results of the complete set of experiments as 

follows: 

• In the first scenario (25% of hosts vulnerable to infection), RL+LA 

reduces the number of infected hosts to 63% as compared to the RL 

with 91%.  

• In the second scenario (20% of hosts vulnerable to infection), RL+LA 

reduces the number of infected hosts to 60% as compared to the RL 

only with 88%. 

• In the third scenario (15% of hosts vulnerable to infection), RL+LA 

reduces the number of infected hosts to 56.6 % as compared to the RL 

only with 87.5%. 
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Table 5-1 Summary of Initial Results 

 

Susceptible 

Population 

Infected Population 

No 

Countermeasures 

RL 

Countermeasure 

N=15, t=5 

RL+LA 

Countermeasure 

Threshold I 

N=15, t=5, K=30 

reducing N to half 

25 % 

(384 of 1536 Hosts) 

100 % 

(384 Hosts) 

91 % 

(349 Hosts) 

63 % 

(242 Hosts) 

20 % 

(307 of 1536 Hosts) 

100 % 

(307 Hosts) 

88 % 

(271 Hosts) 

60 % 

(185 Hosts) 

15 % 

(231 of 1536 Hosts) 

100 % 

(231 Hosts) 

87.5 % 

(202 Hosts) 

56.5 % 

(131 Hosts) 

10 % 

(153 of 1536 Hosts) 

56.209% 

(81 Hosts) 

5.228 % 

(8 Hosts) 

2.614 % 

(4 Hosts) 

 

• In the last scenario (10% of hosts vulnerable to infection), the number 

of hosts ultimately infected with RL+LA is 2.164% as compared to the 

RL only with 5.228%.  

 

Figure 5.6 shows the % ssusceptible hosts infected for experimental test 1-9. 

From this set of experiments, it is clearly observed that the lower the 

percentage of susceptible population of worm, the more effective is the 

countermeasure.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 % of Susceptible Hosts Infected for Experimental Tests 1-9 
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Furthermore, it is empirically observed from the set of experiments without 

any countermeasure, that infection process of PWD follows the s-shaped curve 

pattern (Moore et al., 2003). 

 

In terms of future work, the performance of the RL+LA scheme with different 

threshold values needs to be explored on a large scale network, with real worm 

conditions, which will be reported in the next chapter.  

5.6 Chapter Summary 

This chapter has presented the initial set of results of launching a pseudo 

random scanning worm (PWD), on a small scale in an isolated experimental 

testbed (VMT) and invoking a worm detection and containment scheme, 

RL+LA. It has also reported the results of invoking rate limiting (RL) 

countermeasure and its comparison with RL+LA. From this chapter, it is 

concluded that RL+LA is an effective approach for worm detection and 

containment. The next chapter will report the results of launching 

countermeasures such as RL and RL+LA on large network by employing more 

realistic test conditions. 
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6 EXPERIMENTAL RESULTS FOR THE RL+LA 

SCHEME ON CLASS A SCALE NETWORKS 

WITH REAL WORM OUTBREAK ATTRIBUTES 

6.1 Introduction 

Chapter 5 presented the results and discussion of an initial set of experiments 

conducted with countermeasures (RL and RL+LA) on a small scale. The 

results showed that the RL+LA countermeasure performed significantly better 

in comparison to the RL only countermeasure on a small scale with six class C 

networks and with the limited scanning rate of Pseudo-Worm Daemon (PWD). 

The thesis now considers how this work is comparable to worms with real 

worm outbreak attributes on class A scale networks. Hence there is a need to 

empirically analyse the propagation of different random scanning worms, and 

to investigate the impact of the designed countermeasure (RL+LA) by using 

the attributes of real worm outbreaks such as SQL Slammer and Witty on a 

class A scale networks such as (class A network with address space of 16 

million hosts). Therefore, a detailed set of experimental work has been 

conducted to analyse the effectiveness of the RL+LA countermeasure. This 

chapter presents the results and discussion of these experiments.   

6.1.1 Chapter Layout 

This chapter begins with the background to the experiments in section 6.1. 

Section 6.2 details the SQL Slammer outbreak characteristics, experimental 

setup and experimental methodology, used to conduct these experiments, and 

experimental results of Pseudo-Slammer worm experiments; while section 6.3 

presents the Witty outbreak characteristics, experimental setup and 

experimental methodology, used to conduct these experiments, and 

experimental results of Pseudo-Witty worm experiments. Section 6.4 presents 

the detailed discussion of the experimental results  by discussing the impact of 

implementing different countermeasures (RL and RL+LA), impact of network 

properties to RL and RL+LA countermeasure experimental test results, 

RL+LA countermeasure overhead, and applicability of  RL and RL+LA Class 

A  experimental  test  results to  the Internet scale. Finally, a  summary of  this  
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chapter is presented in section 6.5.  

6.2 Pseudo-Slammer Worm Experiments 

6.2.1 Slammer Worm 

Moore et al (Moore et al., 2003) reported some key characteristics of the 

Slammer outbreak of 2003 which can be summarised as follows: 

• 18 hosts per million of the entire IPv4 address space were susceptible 

to infection. 

• The maximum recorded scanning rate of Slammer was 26,000 

datagrams per infected host per second. This figure seems reasonable 

while considering the upper bound of 100BaseT interface and the 

worm Ethernet frame size of 430 bytes.  

• The average scanning rate of Slammer was 4000 datagrams per worm 

instance per second during its entire infection period.   

6.2.2 Experimental Setup 

In order to empirically analyse the behaviour of the Slammer worm and to 

validate the RL+LA prototype on a class A scale, an experimental test network 

was configured on the Virtualized Malware Testbed (VMT) (reported in 

Chapter 4 of this thesis), comprising of a single Class A address space 

10.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.64.0.0/10, 

10.128.0.0/10 and 10.192.0.0/10 as shown in Figure 6.1. These four subnets 

were connected through a central router by using RIP, configured on Quagga. 

Eight further Quagga based routers were implemented (two for each subnet). 

The RL+LA prototype was installed on each of these eight routers. The 

RL+LA prototype installed on routers A,B,C and D was configured to rate 

limit the outbound connection based on DNS anomalies and to send Friends 

protocol messages whereas the RL+LA prototype installed on the border 

routers only forwarded the Friends protocol messages received from internal 

and external friends. One Linux based virtual host was running in each subnet 

to provide a DHCP service and logging service for the PWD. DSL was 

installed with the PWD on each of the susceptible virtualised hosts. All hosts 

in the network are time synchronized by using Network Time Protocol (NTP).   
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Figure 6-1 Slammer Worm Experimental Test Network 
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6.2.3 Experimental Methodology 

As reported in section 6.2.1, approximately 18 hosts per million of the entire 

IPv4 addresses space were susceptible to infection with Slammer and it 

achieved an average scan rate of 4,000 datagrams per infected host per second.  

 

A single class A network has 224 hosts, and so will contain 224 * 18/1,000,000 

= 302 susceptible hosts. On this basis, 302 virtual hosts with the Slammer like 

pseudo-worm daemon were deployed across the four subnets.  Each worm 

daemon was configured to scan within a single class A network (10.0.0.0/8).  

In order to avoid overloading the server farm hardware (in which case the 

experiments would have been measuring the effect of the hardware 

restrictions, rather than the properties of the worm), the average worm 

scanning rate was scaled down by a factor of 80 ( scaling factor of 80 was 

chosen due to resource limitations on DSL based virtualized hosts) . Therefore, 

based on an average scan rate reported by Moore et al of 4000 scans per 

second, the Pseudo-Slammer network daemon was configured to scan at 50 

scans per second in the set of Slammer experiments. 

 

Four series of experiments were conducted: 

• With no countermeasure (to provide a base-line),  

• With only the local rate limiting from infected hosts,  

• With both rate limiting and the alerting protocol implemented with 

reducing threshold to half.  

• With both rate limiting and the alerting protocol implemented with 

further reducing threshold to approximately 27 % of the original value. 

 

Each time, the experiment was started by infecting the same host with same 

random number generator seed value while employing different seed value for 

all subsequent infected hosts. The threshold values N in time t and counter in 

Table B: Counters of figure 3.2 were also scaled up by a factor of 80. For the 

purpose of clarity, the un-scaled values will be used henceforth in this thesis.  
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6.2.4 Experimental Results 

6.2.4.1 No Countermeasure 

Figure 6.2 shows the results of a set of three experiments conducted without 

implementing any countermeasures. In the first experiment, all 302 susceptible 

hosts were infected in 15.07 minutes. In the seconds experiment, all 302 

susceptible hosts were infected in 14.58 minutes. While in the third 

experiment, all 302 susceptible hosts were infected in 14.45 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2 Experimental Results of Pseudo-Slammer Worm with No 

Countermeasures 

6.2.4.2 RL Countermeasure 

Figure 6.3 shows the results of a set of three experiments conducted with the 

RL countermeasure (local rate limiting from infected hosts). For all three tests, 

N was set to 15 datagrams in 5 seconds, and the counter in Table B: Counters 

of figure 3.2 being decremented every 30 seconds. In the first experiment, all 

302 susceptible hosts were infected in 41.18 minutes. In the second 

experiment, all 302 susceptible hosts were infected in 40.39 minutes. While in 

the third experiment, all 302 susceptible hosts were infected in 41.24 minutes. 
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Figure 6-3 Experimental Results of Pseudo-Slammer Worm with RL 

Countermeasure 

6.2.4.3 RL+LA Countermeasure 

Figure 6.4 shows the results of a set of three experiments conducted with the 

RL+LA countermeasure (with both rate limiting and the alerting protocol 

implemented with reducing threshold to half). For all three tests, N was set to 

15 datagrams in 5 seconds, and the counter in Table B: Counters of figure 3.2 

being decremented every 30 seconds. In the first experiment, all 302 

susceptible hosts were infected in 64.54 minutes. In the second experiment, all 

302 susceptible hosts were infected in 66.24 minutes. While in the third 

experiment, all 302 susceptible hosts were infected in 64.36 minutes. 

 

Figure 6.5 shows the results of a set of three experiments conducted with 

RL+LA countermeasures (with both rate limiting and the alerting protocol 

implemented with reducing threshold to half). For all three tests, N was set to 8 

datagrams 5 seconds, and the counter in Table B: Counters of figure 3.2 being 

decremented every 30 seconds. In the first experiment, all 302 susceptible 

hosts were infected in 96.37 minutes. In the seconds experiment, all 302 

susceptible hosts were infected in 101.38 minutes. While in the third 

experiment, all 302 susceptible hosts were infected in 98.58 minutes.  
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Figure 6-4 Results of Pseudo-Slammer Worm with RL+LA Countermeasure 

Threshold I 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-5 Results of Pseudo-Slammer Worm with RL+LA Countermeasure 

Threshold II 
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From these four sets of experiments, following key points have been observed 

in all three Pseudo-Slammer worm experiments:  

• Firstly, the infection process in all three Pseudo-Slammer worm 

experiments with No Countermeasure in figure 6.2 approximates to 

standard s-shaped curve (Moore et al., 2003). 

• Secondly, in the middle part of outbreaks of all the Pseudo-Slammer 

worm experiments, the experimental curves diverge significantly, due 

to statistical variations while in the last stage of the experiments, the 

experimental curve form plateau to finish the infection process. 

6.3 Pseudo-Witty Worm Experiments 

6.3.1 Witty Worm 

Shannon et al. (Shannon and Moore, 2004)  reported some key characteristics 

of the Witty worm outbreak of 2004 which can be summarised as follows: 

• The Susceptible population of the Witty worm was 12, 000 or between 

2 and 3 hosts per million of the entire IPV4 address space. 

• Witty worm had a variable datagram size, with an Ethernet frame size 

between 796 and 1307 bytes.  

• The average scanning rate of Witty was 357 datagrams per infected 

host per second during its entire infection period while the maximum 

recorded scanning rate was 970 datagrams per host per second.  

• Witty also utilized an initial hit-list of 110 hosts which were reported to 

have been infected in the first 10 seconds of launch. Of these110 hosts, 

38 hosts were transferring 9700 datagrams per host per second 

continuously for a period of an hour.  

6.3.2 Experimental Setup 

In order to empirically analyse the behaviour of the Witty worm and to 

validate the RL+LA prototype on a class A scale network, an experimental test 

network was configured on the Virtualized Malware Testbed (reported in 

Chapter 5 of this thesis), comprising of a two Class A address space 10.0.0.0/8 

and 11.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.128.0.0/9, 

11.0.0.0/9  and  10.128.0.0/9 as shown in  Figure 6.6.  All  the  other  network  
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Figure 6-6 Witty Worm Experimental Test Network 
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elements of experimental test network were the same as those defined 

previously in section 6.2.1. 

6.3.3 Experimental Methodology 

As reported in section 6.3.1, Witty had 3 hosts per million of the entire IPv4 

addresses space were susceptible to infection with an average scan rate of 357 

datagrams per infected host per second.  

 

A single class A network has 224 hosts, and so 2 class A networks will contain 

224 * 2(3/1,000,000) = 101 susceptible hosts. On this basis, 101virtual hosts 

with the Witty like pseudo-worm daemon were deployed across the four 

subnets. Each worm daemon was configured to scan within two class A 

networks (10.0.0.0/8, 11.0.0.0/8) at a scanning rate of 357 scans per host per 

second while using an initial hit-list of one susceptible host held by the first 

infected host.   

 

Three series of experiments were conducted: 

• With no countermeasure (to provide a base-line),  

• With only the local rate limiting from infected hosts,  

• With both rate limiting and the alerting protocol implemented with 

reducing threshold to half.  

 

Each time, the experiment was started by infecting the same host with same 

random number generator seed value while employing different seed value for 

all subsequent infected hosts. 

6.3.4 Experimental Results 

6.3.4.1 No Countermeasure 

Figure 6.7 shows the results of a set of three experiments conducted without 

implementing any countermeasures by utilizing the Pseudo-Witty worm. In the 

first experiment, all 101 susceptible hosts were infected in 96.22 minutes. In 

the second experiment, all 101 susceptible hosts were infected in 95.16 

minutes. While in the third experiment, all 101 susceptible hosts were infected 

in 94.46 minutes.  
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Figure 6-7 Results of Pseudo-Witty Worm 

6.3.4.2 RL Countermeasure 

Figure 6.8 shows the results of a set of three experiments conducted with the 

RL countermeasure (local rate limiting from infected hosts). For all three tests, 

N was set to 15 datagrams in 5 seconds, and the counter in Table B: Counters 

of figure 3.2 was decremented every 30 seconds without any scaling factor. In 

the first experiment, all 101 susceptible hosts were infected in 312.21 minutes. 

In the second experiment, all 101 susceptible hosts were infected in 309.56 

minutes. While in the third experiment, all 101 susceptible hosts were infected 

in 307.08 minutes. 

6.3.4.3 RL+LA Countermeasure 

Figure 6.9 shows the results of a set of three experiments conducted with the 

RL+LA countermeasure (with both rate limiting and the alerting protocol 

implemented by reducing the threshold to half). For all three tests, N was set to 

15 datagrams in 5 seconds, and the counter in Table B: Counters of figure 3.2 

was decremented every 30 seconds without any scaling factor. In the first 

experiment, all 101 susceptible hosts were infected in 562.10 minutes. In the 

second experiment, all 101 susceptible hosts were infected in 571.51 minutes. 

While in the third experiment, all 101 susceptible hosts were infected in 

585.50 minutes. 
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Figure 6-8 Results of Pseudo-Witty Worm with RL Countermeasure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9 Results of Pseudo-Witty Worm with RL+LA Countermeasure 
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From these three sets of experiments, following key points have been observed 

in all three Pseudo-Witty worm experiments:  

• Firstly, the infection process in all three Pseudo-Witty worm 

experiments with No Countermeasure in figure 6.7 approximates to 

standard s-shaped curve (Moore et al., 2003). 

• Secondly, in the middle part of outbreaks of all the Pseudo-Witty worm 

experiments, the experimental curves diverge significantly, due to 

statistical variations while in the last stage of the experiments, the 

experimental curve form plateau to finish the infection process. 

6.4 Discussion 

6.4.1 Comparison of Pseudo-Slammer Worm Results 

Table 6.1 summarizes all of the experiments conducted by using the Pseudo-

Slammer worm with No countermeasures, with the RL countermeasure and the 

RL+LA countermeasure with different 2 different thresholds and average of 

each of three set of experiments.   

Table 6-1 Results of Pseudo-Slammer Worm 

Results of Pseudo-Slammer Worm 

 No 

Countermeasure 

RL 

Countermeasure 

N=15, t=5 

RL+LA 

Countermeasure 

Threshold I 

N=15, t=5, K=30 

reducing N to 

half 

RL+LA 

Countermeasure 

Threshold II 

N=8, t=5, K=30 

reducing N to 

half 

Experiment 1 15.07 min 41.18 min 64.54 min 96.37 min 

Experiment 2 14.58 min 40.39 min 66.24 min 101.38 min 

Experiment 3 14.45 min 41.24 min 64.36 min 98.58 min 

 

Figure 6.12 shows the average of these results for all four set of experiments.  

In the first scenario (No Countermeasure), all susceptible hosts were infected 

in 14.45 minutes. In the second scenario (RL countermeasure), all susceptible 

hosts were infected in 41.07 min minutes. In the third scenario (RL+LA 

countermeasure Threshold I), all susceptible host were infected in 65.18 
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minutes. In the fourth scenario (RL+LA countermeasure threshold II), all 

susceptible host were infected in 99.07 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-10 Comparison of Pseudo-Slammer Worm Results 

Figure 6.13 shows the average time t, of these results for all four set of 

Pseudo-Slammer worm experiments. It can be seen that values of t increase as 

countermeasures are implemented; showing RL+LA with Threshold II is most 

effective. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11 Time of Infection for Pseudo-Slammer Experimental Tests 

 

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r 
o
f 
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

 

 

No Countermeasure

With Rate Limiting 1 Countermeasure Only

With Rate Limiting 1 and Look-Ahead Countermeasures

With Rate Limiting 2 and Look-Ahead Countermeasures

1 2 3 4
0

20

40

60

80

100

120

Test Number

T
im
e
 f
o
r 
A
ll 
S
u
s
c
e
p
tib
le
 H
o
s
ts
 t
o
 b
e
 I
n
fe
c
te
d
 (
m
in
s
)

Time for All Susceptible Hosts to be Infected for Slammer-like Experimental Tests

1 = No countermeasure

2 = RL only countermeasure

3 = RL + LA1 countermeasure

4 = RL + LA2 countermeasure



 

 127 

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A 
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES 

From these results, the following points were observed:  

• The RL countermeasure decreases the propagation rate of the Pseudo-

Slammer worm and increases the time required to infect all susceptible 

hosts by 2.8 times in comparison to no countermeasure. But, 

ultimately, all susceptible hosts were infected. Hence RL (rate limiting) 

cannot stop the spread of Pseudo-Slammer worm.  

• The RL+LA countermeasure with Threshold I (N=15, t=5, K=30) 

further decreases the propagation rate of the Pseudo-Slammer worm 

and increases the time required to infect all susceptible hosts by 4.5 

times in comparison to no countermeasure. But, ultimately, all 

susceptible hosts were infected.  

• The RL+LA countermeasure with Threshold II (N=8, t=5, K=30) 

further decreases the propagation rate of the Pseudo-Slammer worm 

and increases the time required to infect all susceptible hosts by 6.8 

times in comparison to no countermeasure. But, finally, all susceptible 

hosts were infected.  

• The RL+LA countermeasure with a more restricted threshold performs 

the best in decreasing the propagation rate of the Pseudo-Slammer 

worm while increasing the time to worm full infection. 

• The RL+LA countermeasure with rate limiting on the gateways (edge 

routers) itself is not enough to stop the propagation of the Pseudo-

Slammer worm, as it stops the infection process at the gateway but the 

Pseudo-Slammer worm continues to spread in the internal LAN and 

ultimately infects all the susceptible hosts in that LAN.  

6.4.2 Comparison of Pseudo-Witty Worm Results 

Table 6.2 summarizes all of the experiments conducted by using the Pseudo-

Witty worm with No countermeasures, with the RL countermeasure and the 

RL+LA countermeasure and average of each of three set of experiments.  
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Table 6-2 Results of Pseudo-Witty Worm 

Results of Pseudo-Witty Worm 

 No Countermeasure RL Countermeasure 

N=15, t=5, K=30 

RL+LA 

Countermeasure 

N=15, t=5, K=30 

reducing N to half 

Experiment 1 96.22 min 312.21 min 562.10 min 

Experiment 2 95.16 min 309.56 min 571.51 min 

Experiment 3 94.46 min 307.08 min 585.50 min 

 

 

Figure 6.14 shows the average of these results for all three set of experiments 

(i-e; No countermeasures, the RL countermeasure, the RL+LA 

countermeasure). In the first scenario (No countermeasure), all susceptible 

hosts were infected in 95.28 minutes. In the second scenario (With RL 

countermeasure), all susceptible host were infected in 309.48 minutes. In the 

third scenario (With RL+LA countermeasure), all susceptible host were 

infected in 573.18 minutes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-12 Comparison of Pseudo-Witty-Worm Results 
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Figure 6.15 shows the average time t, of these results for all four set of 

Pseudo- Witty worm experiments. It can be seen that values of t increase as 

countermeasures are implemented; showing RL+LA countermeasure with 

Threshold I is most effective. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-13 Time of Infection for Pseudo-Witty Experimental Tests 
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Pseudo-Witty worm continues to spread in the internal LAN and 

ultimately infects all the susceptible hosts in that LAN.  

6.4.3 Alternative Network Topologies 

It should be noted that the experimental results reported relate to the specific 

network topologies employed for the experiments.  In considering the general 

applicability of the results, the following should be noted: 

• More complex network topologies, particularly where WAN links are 

included will exhibit higher network latency times and so the speed of 

propagation of both a worm and the Friends Protocol messages would 

be reduced to some extent, impacting on the performance of the 

countermeasure. 

• The experimental tests were conducted in a network where all of the 

network segments were protected by the countermeasure scheme.  In 

network topologies where this is not the case, the effectiveness of the 

countermeasure is likely to be reduced.  

6.4.4 RL+LA Countermeasure Overhead 

The RL+LA prototype adds memory  and processing overhead to the gateway 

routers on which it is installed, as it stores a copy of DNS A records on the 

gateway. Hence, extra memory and processing power is needed on the each 

gateway with RL+LA prototype.   

6.4.5  Applicability of RL+LA Experimental Results on the Internet 

Scale  

The In general, the points set out in section 6.4.3 apply to the extrapolation of 

the experimental results to the scale of the whole internet.  In particular, it is 

likely to be infeasible to deploy the proposed countermeasure scheme to all 

autonomous systems (ASs) which make up the internet, and so the 

countermeasure is likely to be less effective in this context.   

6.5 Chapter Summary 

This chapter has presented the results of launching the Pseudo-Slammer and 

the Pseudo-Witty worm with specific outbreak conditions on class A scale 
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networks to evaluate a worm detection and containment scheme, RL+LA. 

From these results, it is concluded that the outcomes are broadly comparable to 

the real worm outbreaks, thereby validating the authenticity of the 

experiments. It has also been observed that the designed countermeasure 

scheme, RL+LA decreased the propagation rate of the worms and increased 

the time to reach full infection. But, the RL+LA scheme is limited in not 

stopping the propagation of the worm in the internal LAN. Hence a more 

sophisticated mechanism needs to be integrated into the RL+LA scheme in 

order to completely stop the propagation of the worm. Furthermore, this 

chapter has presented the discussion of the likely impact of network properties 

on the RL+LA countermeasure experimental results, memory overhead in case 

of deploying RL+LA countermeasure on the gateway devices and applicability 

of RL+LA Class A experimental test results on the Internet scale. The next 

chapter will conclude the research work reported in this thesis and will also set 

out some possible directions for future work.  
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7 CONCLUSIONS 

7.1 Chapter Introduction 

The research reported in this thesis sets out to answer two research questions 

as set out in section 2.6. This chapter sets out the conclusions of the research 

and also endeavours to document the extent to which original contributions 

may have been generated, and the original research questions have been 

addressed. It also provides some possible directions for future work and lists 

the publications generated in the course of the reported research. 

7.1.1 Chapter Layout 

This chapter begins with the suggested original contributions of the thesis, set 

out in section 7.2 based around the three research questions defined in section 

2.6. Section 7.3 presents some possible directions for future work. Section 7.4 

provides the list of publications generated during the research work, while 

section 7.5 provides the concluding statement. 

7.2 Summary of Suggested Original Contributions 

7.2.1 Research Question 1 

Is it possible to develop and evaluate a distributed, automated worm 

detection, prevention and containment solution that will be more effective 

against fast zero-day worms than the potential solutions summarised in 

section 2.3? Such a countermeasure may be limited to adding  delay to the 

worm infection time so that system administrators have additional time to 

patch  infected hosts.  It would be desirable for such a countermeasure to be 

able to stop the worm infection completely.   

• Chapter 3 of the thesis presents the architecture and design of a 

distributed automated worm detection and containment scheme, termed 

RL+LA, that is based on the correlation of Domain Name System 

(DNS) queries and the destination IP address of outgoing TCP SYN 

and UDP datagrams leaving the network boundary. The proposed 

countermeasure scheme also utilizes cooperation between different 

communicating scheme members using a custom protocol, which was 
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termed as Friends. The absence of a DNS lookup action prior to an 

outgoing TCP SYN or UDP datagram to a new destination IP addresses 

is used as a behavioural signature for a rate limiting mechanism while 

the Friends protocol spreads reports of the event to potentially 

vulnerable uninfected peer networks within the scheme. A fully 

functional prototype was developed in the C programming language. 

• Chapters 5 and 6 of the thesis present a comprehensive set of 

experimental work with a range of empirical experiments for 

evaluating the proposed countermeasure and, compares the results with 

those for a simple rate limiting (RL) mechanism, in the cases worm 

outbreaks using the PWD with attributes similar to Slammer and Witty. 

The results conclude that the proposed RL+LA scheme outperforms a 

simple RL based mechanism on small scale and on class A scale 

networks. 

7.2.2 Research Question 2 

Is it possible to develop a pseudo worm daemon with characteristics such as 

random and hit-list scanning, configurable rate of propagation and 

confinement within defined network space  to allow a developed 

countermeasure to be empirically tested and evaluated? 

• Chapter 4 of the thesis presents the architecture and design of a 

Pseudo-Worm Daemon (PWD) with random scanning and hit-list 

worm like functionality, which is implemented in the C programming 

language. The novelty of this worm demon is its UDP based 

propagation, user-configurable random scanning pool, ability to 

contain user defined hit-list, authentication before infecting vulnerable 

hosts and efficient logging of time of infection.  

• Chapter 4 of the thesis also presents evaluation of PWD by conducting 

a series of Pseudo-Slammer and Pseudo-Witty worm experiments with 

real outbreak attributes of Slammer and Witty worms; and comparing 

Pseudo-Slammer and Pseudo-Witty worms results with real outbreak 

data (which is available from CAIDA). It is concluded that PWD can 

be used as an effective tool to empirically analyse the propagation 
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behaviour of random scanning and hit-list worms, and to test potential 

countermeasures. 

7.3 Recommendations for Future Work 

7.3.1 The Rate Limiting + Leap Ahead (RL+LA) Scheme 

1) It will be useful to explore the effect of the designed countermeasure 

scheme in the presence of background traffic with a view to assess the 

false positive rate.  

2) The containment scheme proposed by the author in chapter 3 of this thesis 

does not detect worm scanning activity within the cell or L2L intra-cell 

worm scanning activity. In order to address this limitation, ARP as a 

behaviour signature could be applied in the prototype for detecting worm 

scanning activity along with the Friends Protocol to send alerts to peer 

networks.  

3) The current RL+LA prototype spreads worm outbreak warnings to a set of 

predefined friends. The Friends protocol algorithm could be enhanced to 

define different types of warnings with different severity levels requiring 

different automated responses.  

4) The RL+LA prototype reported in this research uses simple username and 

password based authentication for the Friends protocol warnings. This 

could be enhanced to implement stronger security mechanisms such as 

IPSec (Frankel and Krishnan, 2011).  

7.4 List of Publications 

The following is a list of publications which have been generated to 

disseminate the research reported in this thesis: 

7.4.1 Published Papers 

[1] Shahzad K and Woodhead S, “Empirical Analysis of  The Rate Limiting 

+ Leap Ahead (RL+LA) Countermeasure against Witty Worm", in The 

2015 IEEE International Symposium on Advances in Autonomic and 

Secure Computing and Communications (ASCC-2015), Liverpool, UK, 

2015.  



 

 135 

7. CONCLUSIONS 

[2] Shahzad K and Woodhead S, “Empirical Analysis of An Improved 

Countermeasure against Computer Network Worms", in The IEEE 

Sixth International Conference on Computing, Communications and 

Networking Technologies (6th ICCCNT), Texas, USA, 2015.  

[3] Tidy L, Shahzad K, Ahmad M, and Woodhead S, “An Assessment of 

the Contemporary Threat Posed by Network Worm Malware", in The 

Ninth International Conference on Systems and Networks 

Communications (ICSNC 2014), Nice, France, 12–16, October 2014. 

[4] Shahzad K and Woodhead S, “A Pseudo-Worm Daemon (PWD) for 

Empirical Analysis of Zero-Day Network Worms and Countermeasure 

Testing", in The IEEE Fifth International Conference on Computing, 

Communications and Networking Technologies (5th ICCCNT), Hefei, 

Anhui, China, 2014.  

[5] Shahzad K and Woodhead S, “Towards Automated Distributed 

Containment of Zero-Day Network Worms", in The IEEE Fifth 

International Conference on Computing, Communications and 

Networking Technologies (5th ICCCNT), Hefei, Anhui, China, 2014.  

[6] Shahzad K, Woodhead S, and Bakalis P, “A Virtualized Network 

Testbed for Zero-Day Worm Analysis and Countermeasure Testing", in 

Proceedings of Advances in Security of Information and 

Communication Networks, Springer, Cairo, Egypt, 2013, pp. 54–64.  

7.5 Chapter Summary 

This chapter has presented the conclusions of the two research questions 

undertaken and documented the summary of suggested original contributions. 

It has also presented the key directions of future work and lists the publications 

generated in the course of the reported research.  
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9 APPENDICES 

9.1 The RL+LA Source Code 

db.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include "db.h" 
#include "dns_sniff.h" 
 
List dns_table; 
List tcp_udp_table; 
 
unsigned int thresholdValue; 
 
void dbInit(void)  
{ 
  initList(&dns_table); 
  initList(&tcp_udp_table); 
 
  thresholdValue = THRCNT; 
} 
 
void insertNewDNSReq(struct in_addr ip_src) 
{  
  addEndUnique(&dns_table, ip_src.s_addr); 
} 
 
void insertNewTCP_UDPEntry(struct in_addr ip_src) 
{ 
    char iptables_block_ip_cmd_in[128]; 
    char iptables_block_ip_cmd_out[128];   
 
    struct in_addr dst_router; 
 
    if(!containsElem(&dns_table, ip_src.s_addr)) 
    {         
      addEndUnique(&tcp_udp_table, ip_src.s_addr);      
      display(&tcp_udp_table); 
 
      if(incrementCntElemt(&tcp_udp_table, ip_src.s_addr, 
thresholdValue)) 
      {  
   printf("Host: %s must be blocked \n", 
inet_ntoa(ip_src)); 
 
   //snprintf(iptables_block_ip_cmd_in, 127, "iptables -I 
INPUT -s %s -j DROP", inet_ntoa(ip_src)); 
   snprintf(iptables_block_ip_cmd_out, 127, "iptables -I 
OUTPUT -s %s -j DROP", inet_ntoa(ip_src)); 
 
  #ifdef HALF_THR 
  thresholdValue /= 2; 
  #endif 
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   if( system(iptables_block_ip_cmd_in) != 0 ) 
   { 
    perror("cannot execute iptable block command !"); 
   } 
 
   if( system(iptables_block_ip_cmd_out) != 0 ) 
   { 
    perror("cannot execute iptable block command !"); 
   }  
 
   #ifdef SEND_FRIEND_MSG 
   if( (strcmp(if_address_str, IP_ROUTER_A)!=0) )  
   { 
    inet_aton(IP_ROUTER_A, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
 
   if( (strcmp(if_address_str, IP_ROUTER_B)!=0) ) 
   { 
    inet_aton(IP_ROUTER_B, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
 
   if( (strcmp(if_address_str, IP_ROUTER_C)!=0) ) 
   { 
    inet_aton(IP_ROUTER_C, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
   if( (strcmp(if_address_str, IP_ROUTER_E)!=0) )  
   { 
    inet_aton(IP_ROUTER_E, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
 
   if( (strcmp(if_address_str, IP_ROUTER_F)!=0) ) 
   { 
    inet_aton(IP_ROUTER_F, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
 
   if( (strcmp(if_address_str, IP_ROUTER_G)!=0) ) 
   { 
    inet_aton(IP_ROUTER_G, &dst_router); 
    sendTheRequestToPeer(dst_router, ip_src); 
   } 
   #endif 
  
      } 
    } 
} 
 
void checkEntriesInTcpUdpTable(unsigned char cmd) 
{ 
 #ifdef DUMP_MEM 
 printf("DNS table: \n"); 
 display(&dns_table); 
 printf("\n"); 
  
 printf("TCP_UDP table: \n"); 
 display(&tcp_udp_table); 
 printf("\n");  
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 #endif 
 
 if(cmd == UPDATE_CNT) 
 { 
   updateCntValue(&tcp_udp_table); 
 } 
} 
 

db.h 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
 
#ifndef DB_H 
#define DB_H 
 
#include <netinet/in.h> 
#include "list.h" 
 
#define UPDATE_CNT 0 
#define BLOCK_ENTRIES 1 
 
#define CNT_MAX 1000 
 
void dbInit(void); 
void insertNewDNSReq(struct  in_addr ip_src); 
void insertNewTCP_UDPEntry(struct in_addr ip_src); 
void checkEntriesInTcpUdpTable(unsigned char cmd); 
 
#endif 

dns_sniff.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
 
#include "dns_sniff.h" 
 
 
#ifdef IS_BORDER_ROUTER 
char* external_interface; 
#endif 
 
int main(int argc, char* argv[]) 
{ 
#ifndef IS_BORDER_ROUTER 
  
 if(argc < 2)  
 { 
  printf("\nUsage: ./dns_sniff.o eth_interface 
<debug>\n\n"); 
  return(EXIT_FAILURE); 
 } 
#else 
 if(argc < 3) 
 { 
  printf("\nUsage: ./dns_sniff.o 
eth_internal_interface eth_external_interface <debug>\n\n"); 
  return(EXIT_FAILURE); 
 }  
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 external_interface=argv[2]; 
#endif 
 
 initProgram(); 
 open_device(argv[1]); 
  
 return 0; 
} 

dns_sniff.h 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
#ifndef DNS_SNIFF 
#define DNS_SNIFF 
#include <pcap.h> 
#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include <ctype.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <arpa/inet.h> 
#include <pjlib.h> 
#include <pjlib-util.h> 
#include <stdlib.h> 
#include <time.h> 
#include <signal.h> 
#include <linux/if.h> 
#include "db.h" 
 
struct white_list_elem 
{ 
#define NUMBER_OF_WHITE_LIST_ELEMS 1   
 char white_ip_src[20]; 
 char white_ip_dst[20]; 
 int white_sport; 
 int white_dport;  
}; 
 
#define DUMP_MEM 
#define SEND__MSG 
#define HALF_THR 
 
#define IS_NO_BORDER_ROUTER 
#define DEBUG   
//#define NO_DEBUG 
#define NSEC 30 
#define NSEC_BLOCK 15 
#define THRCNT 5 
#define SIGTIMER     (SIGRTMAX) 
#define MAX_BYTES_TO_CAPTURE 2048 
#define DNS_TABLE_SIZE 1024 
#define SIZE_ETHERNET 14 
#define DNS_HEADER_SIZE 12 
#define ETHER_ADDR_LEN 6 
#define ENCR_KEY 0xBAF4 
#define ROUTER_USERNAME "router" 
#define ROUTER_PASSWORD "passwd" 
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#define ROUTER_COMMAND  "half the threashold" 
#define IP_ROUTER_A "10.0.0.1" 
#define IP_ROUTER_B "10.64.0.1" 
#define IP_ROUTER_C "10.128.0.1" 
#define IP_ROUTER_E "10.192.0.1" 
//#define IP_ROUTER_F "192.168.5.1" 
//#define IP_ROUTER_G "192.168.6.1" 
 
extern char* if_address_str; 
extern unsigned int thresholdValue; 
 
#ifdef IS_BORDER_ROUTER 
 extern int number_of_friends; 
 extern char* list_of_friends[]; 
 extern char* external_interface; 
#endif 
 
/* Ethernet header */ 
struct sniff_ethernet { 
        u_char  ether_dhost[ETHER_ADDR_LEN];     
        u_char  ether_shost[ETHER_ADDR_LEN];     
        u_short ether_type;                      
}; 
 
/* IP header */ 
struct sniff_ip { 
        u_char  ip_vhl;                  
        u_char  ip_tos;                  
        u_short ip_len;                  
        u_short ip_id;                   
        u_short ip_off;                  
        #define IP_RF 0x8000            
        #define IP_DF 0x4000             
        #define IP_MF 0x2000             
        #define IP_OFFMASK 0x1fff        
        u_char  ip_ttl;                  
        u_char  ip_p;                    
        u_short ip_sum;                  
        struct  in_addr ip_src,ip_dst;   
}; 
#define IP_HL(ip)               (((ip)->ip_vhl) & 0x0f) 
#define IP_V(ip)                (((ip)->ip_vhl) >> 4) 
 
/* TCP header */ 
typedef u_int tcp_seq; 
 
struct sniff_tcp { 
        u_short th_sport;                
        u_short th_dport;                
        tcp_seq th_seq;                  
        tcp_seq th_ack;                  
        u_char  th_offx2;                
 #define TH_OFF(th)   (((th)->th_offx2 & 0xf0) >> 4) 
        u_char  th_flags; 
        #define TH_FIN  0x01 
        #define TH_SYN  0x02 
        #define TH_RST  0x04 
        #define TH_PUSH 0x08 
        #define TH_ACK  0x10 
        #define TH_URG  0x20 
        #define TH_ECE  0x40 
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        #define TH_CWR  0x80 
        #define TH_FLAGS        
(TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR) 
        u_short th_win;                  
        u_short th_sum;                  
        u_short th_urp;                  
}; 
 
/* UDP header */ 
struct sniff_udp { 
        u_short th_sport;                
        u_short th_dport;                
 u_short th_length;               
 u_short th_sum;                  
}; 
int open_device(char* dev); 
int initProgram(void); 
void processPacket(u_char* arg, const struct pcap_pkthdr* 
pkthdr, const u_char* packet); 
void printPayload(const u_char* packet, int indx, int length); 
 
timer_t SetTimer(int signo, int sec, int mode); 
void SignalHandler(int signo, siginfo_t * info, void *context); 
void getLocalMACAddress(char* dev); 
void getInterfaceIPAddress(char* dev); 
void sendTheRequestToPeer(struct in_addr dst_router, struct 
in_addr ip_to_block); 
void encrypt(char* str,int key); 
void decrypt(char* str,int key); 
int isCommandFromFriends(char* ip_src_str); 
void executeRemoteCommand(const u_char* packet, int 
payload_begin, char* ip_src_str); 
int isInTheWhiteList(char* ip_src_str, char* ip_dst_str, int 
sport, int dport); 
 
#endif 

dns_sniff_func.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
 
#include "dns_sniff.h" 
 
#include <sys/ioctl.h> 
 
pcap_t *handle=NULL;    
 
pj_pool_factory *mem; 
pj_pool_t *pool; 
pj_caching_pool caching_pool; 
 
timer_t timerid; 
int timer_cnt;  
 
struct in_addr if_address;  
unsigned char if_mac_str[13];  
char* if_address_str; 
 
struct white_list_elem whiteList[NUMBER_OF_WHITE_LIST_ELEMS] = 
{{"64.4.9.254", "192.168.127.129", 80, -1},   
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     }; 
 
#ifdef IS_BORDER_ROUTER 
 int number_of_friends=4;                        
 char* 
list_of_friends[]={"10.0.0.1","10.64.0.1","10.128.0.1","10.192.
0.1"};  
#endif 
 
int initProgram(void) 
{ 
 int i=0; 
 timer_cnt = 0; 
 struct sigaction sigact; 
 
 dbInit(); 
  
 mem = &caching_pool.factory; 
 pj_init(); 
 
   sigemptyset(&sigact.sa_mask); 
        sigact.sa_flags = SA_SIGINFO; 
        sigact.sa_sigaction = SignalHandler; 
 
        if (sigaction(SIGTIMER, &sigact, NULL) == -1) { 
                perror("sigaction failed"); 
                return -1; 
        } 
 
        sigaction(SIGINT, &sigact, NULL); 
 
        timerid = SetTimer(SIGTIMER, NSEC*1000, 1); 
} 
 
int open_device(char* dev) 
{ 
 int count=0;  
 char errbuf[PCAP_ERRBUF_SIZE];   
 bpf_u_int32 mask;    
 bpf_u_int32 net;    
 char filter_exp[]="ip";  
 struct bpf_program dns_filter;     
 struct in_addr router_ip; 
 
 handle = pcap_open_live(dev, MAX_BYTES_TO_CAPTURE, 1, 
512, errbuf); 
 if (handle == NULL) { 
  fprintf(stderr, "Couldn't open the device: %s\n", 
errbuf); 
  return(EXIT_FAILURE); 
 } 
 
  
 if (pcap_lookupnet(dev, &net, &mask, errbuf) == -1) { 
  fprintf(stderr, "Couldn't get netmask for device 
%s: %s\n", dev, errbuf); 
  net = 0; 
  mask = 0; 
 } 
 
 if (pcap_compile(handle, &dns_filter, filter_exp, 0, 
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mask) == -1) { 
  fprintf(stderr, "ERROR: %s\n", 
pcap_geterr(handle)); 
  return(EXIT_FAILURE); 
 } 
 
  if (pcap_setfilter(handle, &dns_filter) == -1) { 
  fprintf(stderr, "ERROR: %s\n", 
pcap_geterr(handle)); 
  return(EXIT_FAILURE); 
 } 
  
 getLocalMACAddress(dev); 
 getInterfaceIPAddress(dev); 
 
 if_address_str=strdup(inet_ntoa(if_address)); 
 
 printf("Sniffing interface %s (%s) ...\n", dev, 
if_address_str); 
 
 if ( pcap_loop(handle, -1, processPacket, 
(u_char*)&count) < 0 ) 
 { 
  fprintf(stderr, "ERROR: %s\n", 
pcap_geterr(handle)); 
  return(EXIT_FAILURE); 
 } 
 
 /* cleanup */ 
 pcap_freecode(&dns_filter); 
 pcap_close(handle); 
} 
 
void processPacket(u_char* arg, const struct pcap_pkthdr* 
pkthdr, const u_char* packet) 
{ 
 static int count = 1;                     
 const struct sniff_ethernet *ethernet; 
 const struct sniff_ip *ip;               
 const struct sniff_tcp *tcp;             
 const struct sniff_udp *udp;            
 int size_payload; 
 int size_ip; 
 int size_tcp; 
 int size_udp=8; 
 int dport, sport; 
 int domain_name_pos; 
 int type_pos; 
 unsigned short dns_type, ansrr_cnt, addrr_cnt; 
 int result, i; 
 
 char* dname; 
 char* ip_dns_reply; 
 char* ip_src_str; 
 char* ip_dst_str; 
 pj_status_t status; 
 pj_dns_parsed_packet *dns_pkt; 
 
 pj_caching_pool_init( &caching_pool, 
&pj_pool_factory_default_policy, 0 ); 
 pool = pj_pool_create(mem, NULL, 2000, 2000, NULL); 
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 #ifdef NO_DEBUG  
 printf("\nPacket number %d:\n", count); 
 #endif 
 count++; 
  
 /* define ethernet header */ 
 ethernet = (struct sniff_ethernet*)(packet); 
  
 /* define/compute ip header offset */ 
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET); 
 size_ip = IP_HL(ip)*4; 
 if (size_ip < 20) { 
  #ifdef NO_DEBUG 
  printf("   * Invalid IP header length: %u bytes\n", 
size_ip); 
  #endif 
  return; 
 } 
  
 ip_src_str=strdup(inet_ntoa(ip->ip_src)); 
 ip_dst_str=strdup(inet_ntoa(ip->ip_dst)); 
 
 #ifdef NO_DEBUG 
 printf("       From: %s\n", inet_ntoa(ip->ip_src)); 
 printf("         To: %s\n", inet_ntoa(ip->ip_dst)); 
 #endif  
 
 /* determine protocol */  
 switch(ip->ip_p) { 
  case IPPROTO_TCP: 
   tcp = (struct sniff_tcp*)(packet + 
SIZE_ETHERNET + size_ip); 
 
   sport=ntohs(tcp->th_sport); 
   dport=ntohs(tcp->th_dport); 
 
   size_tcp = TH_OFF(tcp)*4; 
   #ifdef NO_DEBUG 
   printf("   Protocol: TCP\n"); 
   printf("       From: %s on %d\n", ip_src_str, 
sport); 
   printf("         To: %s on %d\n", ip_dst_str, 
dport); 
   #endif 
 
   #ifndef IS_BORDER_ROUTER 
    
   if(( isInTheWhiteList(ip_src_str, ip_dst_str, 
sport, dport) == 1 ) || (strcmp(if_address_str, ip_src_str) == 
0)) 
   { 
    return; 
   } 
   #endif  
 
   break; 
  case IPPROTO_UDP: 
   udp = (struct sniff_udp*)(packet + 
SIZE_ETHERNET + size_ip); 
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   sport=ntohs(udp->th_sport); 
   dport=ntohs(udp->th_dport); 
 
   size_payload = ntohs(ip->ip_len) - (size_ip + 
size_udp); 
 
   #ifdef NO_DEBUG 
   printf("   Protocol: UDP\n"); 
   printf("       From: %s on %d\n", ip_src_str, 
sport); 
   printf("         To: %s on %d\n", ip_dst_str, 
dport); 
   #endif 
 
   #ifndef IS_BORDER_ROUTER 
      if(( 
isInTheWhiteList(ip_src_str, ip_dst_str, sport, dport) == 1 ) 
|| (strcmp(if_address_str, ip_src_str) == 0)) 
   { 
    return; 
   } 
   #endif  
 
   break; 
  case IPPROTO_ICMP: 
   return;  
  case IPPROTO_IP: 
   #ifdef NO_DEBUG 
   printf("   Protocol: IP\n"); 
   #endif 
   break; 
  default: 
   #ifdef NO_DEBUG 
   printf("   Protocol: unknown\n"); 
   #endif 
   return; 
 } 
 
#ifndef IS_BORDER_ROUTER 
 
 if ( (dport == 53) && (ip->ip_p == IPPROTO_UDP) ) 
 { 
  return;   
 } 
 
 if ( (sport == 53) && (ip->ip_p == IPPROTO_UDP) )  
 { 
  
 status = -1; 
  dns_pkt = NULL; 
 
  status = pj_dns_parse_packet(pool, 
(packet+SIZE_ETHERNET + size_ip + 
size_udp),(unsigned)(size_payload), &dns_pkt); // plase 
eloborate 
   
  if( status == PJ_SUCCESS ) 
  { 
   /* get the number of answers */ 
   ansrr_cnt=dns_pkt->hdr.anscount;  
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   addrr_cnt=dns_pkt->hdr.arcount; 
   
   /* look into the answers list and check for 
the ip */ 
    
   for (i=0; i<ansrr_cnt; i++) 
   { 
    //printf("%s -> ",dns_pkt-
>ans[i].name.ptr); 
     
    if ( dns_pkt->ans[i].type == 
PJ_DNS_TYPE_A )  
    { 
     //printf("%s\n", 
pj_inet_ntoa(dns_pkt->ans[i].rdata.a.ip_addr)); 
    
 ip_dns_reply=strdup(pj_inet_ntoa(dns_pkt-
>ans[i].rdata.a.ip_addr));  
 insertNewDNSReq(ip->ip_dst); 
    } 
   } 
    
   for (i=0; i<addrr_cnt; i++) 
   { 
    //printf("%s -> ",dns_pkt-
>arr[i].name.ptr); 
 
    if ( dns_pkt->arr[i].type == 
PJ_DNS_TYPE_A )  
    { 
     //printf("%s\n", 
pj_inet_ntoa(dns_pkt->arr[i].rdata.a.ip_addr)); 
    
 ip_dns_reply=strdup(pj_inet_ntoa(dns_pkt-
>arr[i].rdata.a.ip_addr)); 
     //insertNewDNSReq(ip_dst_str, 
dns_pkt->arr[i].name.ptr, ip_dns_reply); 
     insertNewDNSReq(ip->ip_dst); 
    } 
   } 
 
   //pj_dns_dump_packet(dns_pkt); 
  } 
 
        } 
 else if ( ip->ip_p == IPPROTO_UDP ) // some UDP package 
 { 
   
   
  if( strcmp(if_address_str, ip_dst_str ) == 0 && 
isCommandFromFriends(ip_src_str) ) 
  { 
    
   //printf("       From: %s\n", ip_src_str); 
   //printf("         To: %s\n", ip_dst_str); 
 
   executeRemoteCommand(packet, (SIZE_ETHERNET + 
size_ip + size_udp), ip_src_str); 
  } 
  else if (pkthdr->direction == PCAP_D_OUT)  
  { 
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  insertNewTCP_UDPEntry(ip->ip_src); 
  } 
 } 
 else if ( ip->ip_p == IPPROTO_TCP ) // TCP package 
 { 
  if (size_tcp < 20) { 
   #ifdef NO_DEBUG 
   printf("   * Invalid TCP header length: %u 
bytes\n", size_tcp); 
   #endif 
  } 
  else 
  {  
    
   if(pkthdr->direction == PCAP_D_OUT)  
   { 
   insertNewTCP_UDPEntry(ip->ip_src); 
   } 
  }   
 } 
 
#else  
 if ( ip->ip_p == IPPROTO_UDP )  
 { 
  if( isCommandFromFriends(ip_src_str) ) 
  { 
   executeRemoteCommand(packet, (SIZE_ETHERNET + 
size_ip + size_udp), ip_src_str); 
  } 
 }  
#endif 
 
 
 return; 
} 
 
 
void printPayload(const u_char* packet, int indx, int length) 
{ 
 int i; 
 
 for( i=indx; i<length; i++ ) 
 { 
  if( isprint(packet[i]) ) 
  { 
   printf("%c ",packet[i]); 
  } 
  else 
  { 
   printf("."); 
  } 
 } 
} 
 
timer_t SetTimer(int signo, int sec, int mode) 
{ 
        struct sigevent sigev; 
        timer_t timerid; 
        struct itimerspec itval; 
        struct itimerspec oitval; 
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        sigev.sigev_notify = SIGEV_SIGNAL; 
        sigev.sigev_signo = signo; 
        sigev.sigev_value.sival_ptr = &timerid; 
 
        if (timer_create(CLOCK_REALTIME, &sigev, &timerid) == 
0) { 
                itval.it_value.tv_sec = sec / 1000; 
                itval.it_value.tv_nsec = (long)(sec % 1000) * 
(1000000L); 
 
                if (mode == 1) { 
                        itval.it_interval.tv_sec = 
itval.it_value.tv_sec; 
                        itval.it_interval.tv_nsec = 
itval.it_value.tv_nsec; 
                } else { 
                        itval.it_interval.tv_sec = 0; 
                        itval.it_interval.tv_nsec = 0; 
                } 
 
                if (timer_settime(timerid, 0, &itval, &oitval) 
!= 0) { 
                        perror("time_settime error!"); 
                } 
        } else { 
                perror("timer_create error!"); 
                return -1; 
        } 
        return timerid; 
} 
 
 
void SignalHandler(int signo, siginfo_t * info, void *context) 
{ 
        if (signo == SIGTIMER) { 
  if(timer_cnt == NSEC_BLOCK) 
  { 
   checkEntriesInTcpUdpTable(BLOCK_ENTRIES); 
   timer_cnt = 0; 
   //printf("NSEC_BLOCK\n"); 
  } 
  else  
  {      
   checkEntriesInTcpUdpTable(UPDATE_CNT); 
   timer_cnt++; 
   //printf("NSEC\n"); 
  } 
        } 
        else if (signo == SIGINT) { 
                timer_delete(timerid); 
                perror("Ctrl + C cached!\n"); 
                exit(1); 
        } 
} 
 
void getLocalMACAddress(char* dev) 
{ 
    int s,i; 
    struct ifreq ifr; 
 
    s = socket(AF_INET, SOCK_DGRAM, 0); 
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    strcpy(ifr.ifr_name, dev); 
 
    ioctl(s, SIOCGIFHWADDR, &ifr); 
 
    for (i=0; i<ETHER_ADDR_LEN; i++) 
    { 
        sprintf(&if_mac_str[i*2],"%02X",((unsigned 
char*)ifr.ifr_hwaddr.sa_data)[i]); 
    } 
 
    if_mac_str[12]='\0'; 
} 
 
void getInterfaceIPAddress(char* dev) 
{ 
 int s; 
 struct ifreq ifr; 
 struct sockaddr_in *sin = (struct sockaddr_in *) 
&ifr.ifr_addr; 
 s = socket(AF_INET, SOCK_DGRAM, 0); 
 
 strcpy(ifr.ifr_name, dev); 
 
 sin->sin_family = AF_INET; 
 
 ioctl(s, SIOCGIFADDR, &ifr); 
 
 if_address=sin->sin_addr; 
} 
 
void sendTheRequestToPeer(struct in_addr dst_router, struct 
in_addr ip_to_block) 
{ 
 unsigned char destinationMAC[]="123167"; /* random mac 
address */ 
 unsigned char len; 
 
 /* some random ports */ 
 int sourcePort=1111; 
 int destinationPort=2222; 
 
 unsigned char* ip_to_block_str; 
 unsigned char* finalPacket; 
 unsigned char* userData; 
 unsigned short totalLen; 
 unsigned short udpTotalLen; 
 unsigned short tmpType; 
 unsigned int userDataLength; 
 
 unsigned char command[]=ROUTER_COMMAND; 
 unsigned char username[]=ROUTER_USERNAME; 
 unsigned char password[]=ROUTER_PASSWORD; 
 
 ip_to_block_str=strdup(inet_ntoa(ip_to_block)); 
 len=strlen(ip_to_block_str); 
 
 encrypt(command, ENCR_KEY); 
 encrypt(username, ENCR_KEY); 
 encrypt(password, ENCR_KEY); 
 encrypt(ip_to_block_str, ENCR_KEY); 
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 userDataLength=strlen(command) + strlen(username) + 
strlen(password)+len+1; 
 userData = (unsigned char*)malloc( (userDataLength) * 
sizeof(unsigned char)); 
 
 memcpy((void*)userData,(void*)username,strlen(username)); 
 memcpy((void*)(userData + 
strlen(username)),(void*)password,strlen(password)); 
 memcpy((void*)(userData + strlen(username) + 
strlen(password)),(void*)command,strlen(command)); 
 memcpy((void*)(userData + strlen(username) + 
strlen(password)+strlen(command)),(void*)ip_to_block_str,len); 
 
 finalPacket = (unsigned char*)malloc( (userDataLength + 
42) * sizeof(unsigned char)); 
 
 totalLen = userDataLength + 20 + 8;  
  
 memcpy((void*)finalPacket,(void*)destinationMAC,6); 
 memcpy((void*)(finalPacket+6),(void*)if_mac_str,6); 
 tmpType = 8; 
 memcpy((void*)(finalPacket+12),(void*)&tmpType,2);  
 
 memcpy((void*)(finalPacket+14),(void*)"\x45",1);  
 memcpy((void*)(finalPacket+15),(void*)"\x00",1);  
 tmpType = htons(totalLen); 
 memcpy((void*)(finalPacket+16),(void*)&tmpType,2); 
 tmpType = htons(0x1337); 
 memcpy((void*)(finalPacket+18),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+20),(void*)"\x00",1);
 memcpy((void*)(finalPacket+21),(void*)"\x00",1);
 memcpy((void*)(finalPacket+22),(void*)"\x80",1); 
 memcpy((void*)(finalPacket+23),(void*)"\x11",1);     
 memcpy((void*)(finalPacket+24),(void*)"\x00\x00",2);
 memcpy((void*)(finalPacket+26),(void*)&if_address,4);
 memcpy((void*)(finalPacket+30),(void*)&dst_router,4); 
 
 tmpType = htons(sourcePort); 
 memcpy((void*)(finalPacket+34),(void*)&tmpType,2); 
 tmpType = htons(destinationPort); 
 memcpy((void*)(finalPacket+36),(void*)&tmpType,2); 
 udpTotalLen = htons(userDataLength + 8);
 memcpy((void*)(finalPacket+38),(void*)&udpTotalLen,2); 
 memcpy((void*)(finalPacket+40),(void*)&tmpType,2);  
 memcpy((void*)(finalPacket+42),(void*)userData,userDataLe
ngth);  
 
 pcap_sendpacket(handle,finalPacket,userDataLength + 42); 
} 
 
 
void sendTheBorderRouterMessage(struct in_addr dst_router, 
char* msg) 
{ 
 unsigned char destinationMAC[]="123167";  
 int sourcePort=1111; 
 int destinationPort=2222; 
 unsigned char* finalPacket; 
 unsigned char* userData; 
 unsigned short totalLen; 
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 unsigned short udpTotalLen; 
 unsigned short tmpType; 
 unsigned int userDataLength; 
 
 userDataLength=strlen(msg); 
 userData = (unsigned char*)malloc( (userDataLength) * 
sizeof(unsigned char)); 
 
  
 memcpy((void*)userData,(void*)msg,strlen(msg)); 
 
 finalPacket = (unsigned char*)malloc( (userDataLength + 
42) * sizeof(unsigned char)); 
 
 totalLen = userDataLength + 20 + 8;  
  
 memcpy((void*)finalPacket,(void*)destinationMAC,6); 
 memcpy((void*)(finalPacket+6),(void*)if_mac_str,6); 
 tmpType = 8; 
  
 memcpy((void*)(finalPacket+12),(void*)&tmpType,2);  
 
 memcpy((void*)(finalPacket+14),(void*)"\x45",1);  
 memcpy((void*)(finalPacket+15),(void*)"\x00",1);  
 tmpType = htons(totalLen); 
 memcpy((void*)(finalPacket+16),(void*)&tmpType,2); 
 tmpType = htons(0x1337); 
 memcpy((void*)(finalPacket+18),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+20),(void*)"\x00",1);
 memcpy((void*)(finalPacket+21),(void*)"\x00",1);
 memcpy((void*)(finalPacket+22),(void*)"\x80",1);  
 memcpy((void*)(finalPacket+23),(void*)"\x11",1);    
 memcpy((void*)(finalPacket+24),(void*)"\x00\x00",2);  
 memcpy((void*)(finalPacket+26),(void*)&if_address,4);  
 memcpy((void*)(finalPacket+30),(void*)&dst_router,4); 
 tmpType = htons(sourcePort); 
 memcpy((void*)(finalPacket+34),(void*)&tmpType,2); 
 tmpType = htons(destinationPort); 
 memcpy((void*)(finalPacket+36),(void*)&tmpType,2); 
 udpTotalLen = htons(userDataLength + 8);
 memcpy((void*)(finalPacket+38),(void*)&udpTotalLen,2); 
 memcpy((void*)(finalPacket+40),(void*)&tmpType,2);  
 memcpy((void*)(finalPacket+42),(void*)userData,userDataLe
ngth);  
 
 pcap_sendpacket(handle,finalPacket,userDataLength + 42); 
} 
 
 
void encrypt(char* str,int key) 
{ 
    unsigned int i; 
    for(i=0;i<strlen(str);++i) 
    { 
          str[i] = str[i] - key; 
    } 
} 
 
void decrypt(char* str,int key) 
{ 
    unsigned int i; 
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    for(i=0;i<strlen(str);++i) 
    { 
          str[i] = str[i] + key; 
    } 
} 
 
int isCommandFromFriends(char* ip_src_str) 
{ 
 if( ((strcmp(ip_src_str, IP_ROUTER_A)==0) || 
(strcmp(ip_src_str, IP_ROUTER_B)==0) || (strcmp(ip_src_str, 
IP_ROUTER_C)==0)) && (strcmp(ip_src_str, if_address_str) !=0 ) 
) 
 { 
  return 1; 
 }  
 
 return 0; 
} 
 
void executeRemoteCommand(const u_char* packet, int 
payload_begin, char* ip_src_str) 
{ 
 char iptables_block_ip_cmd_in[128]; 
 char iptables_block_ip_cmd_out[128]; 
 char border_router_message[128]; 
 
 unsigned char len; 
 int i; 
 struct in_addr tmp_addr; 
 u_char* payload=(u_char*)(packet+payload_begin); 
 char* username = (char*)malloc(strlen(ROUTER_USERNAME) * 
sizeof(char)); 
 char* password = (char*)malloc(strlen(ROUTER_PASSWORD) * 
sizeof(char)); 
 char* command = (char*)malloc(strlen(ROUTER_COMMAND) * 
sizeof(char)); 
 char* ip_to_block; 
 
 memcpy(username,payload,strlen(ROUTER_USERNAME)); 
 username[strlen(ROUTER_USERNAME)]='\0'; 
 
 memcpy(password,(payload+strlen(ROUTER_USERNAME)),strlen(
ROUTER_PASSWORD)); 
 password[strlen(ROUTER_PASSWORD)]='\0'; 
 
 memcpy(command,(payload+strlen(ROUTER_USERNAME)+strlen(RO
UTER_PASSWORD)),strlen(ROUTER_COMMAND)); 
 command[strlen(ROUTER_COMMAND)]='\0'; 
 
 memcpy((void*)&len,(payload+strlen(ROUTER_USERNAME)+strle
n(ROUTER_PASSWORD)+strlen(ROUTER_COMMAND)),1); 
 
 ip_to_block=(char*)malloc(len*sizeof(char)); 
 
 memcpy((void*)ip_to_block,(payload+strlen(ROUTER_USERNAME
)+strlen(ROUTER_PASSWORD)+strlen(ROUTER_COMMAND)),len); 
 
 decrypt(username,ENCR_KEY); 
 decrypt(password,ENCR_KEY); 
 decrypt(command,ENCR_KEY); 
 decrypt(ip_to_block,ENCR_KEY); 
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 if ( inet_aton(ip_to_block, &tmp_addr) && 
(strcmp(username,ROUTER_USERNAME)==0) && 
(strcmp(password,ROUTER_PASSWORD)==0) && 
(strcmp(command,ROUTER_COMMAND)==0) ) 
 { 
 
#ifndef IS_BORDER_ROUTER 
 
  snprintf(iptables_block_ip_cmd_in, 127, "iptables -
I INPUT -s %s -j DROP", ip_to_block); 
  snprintf(iptables_block_ip_cmd_out, 127, "iptables 
-I OUTPUT -s %s -j DROP", ip_to_block); 
  
 if( system(iptables_block_ip_cmd_in) != 0 ) 
  { 
   perror("cannot execute iptable block command 
!"); 
  } 
 
  if( system(iptables_block_ip_cmd_out) != 0 ) 
  { 
   perror("cannot execute iptable block command 
!"); 
  } 
 
  thresholdValue = thresholdValue / 2; 
 
#else 
  snprintf(border_router_message, 127, "Internal 
network of %s has encountered worm 
activity\n",external_interface); 
  printf("%s\n",border_router_message); 
  
  /* send the messages to the firends */ 
  for(i=0; i<number_of_friends; i++) 
  { 
   inet_aton(list_of_friends[i], &tmp_addr); 
   sendTheBorderRouterMessage(tmp_addr, 
border_router_message); 
  } 
#endif 
 }  
} 
 
int isInTheWhiteList(char* ip_src_str, char* ip_dst_str, int 
sport, int dport) 
{ 
 int i = 0; 
 unsigned char ok = 0; 
 
 for(i=0; i<NUMBER_OF_WHITE_LIST_ELEMS; i++) 
 { 
  ok = 0; 
 
  if((strcmp(whiteList[i].white_ip_src, "") == 0) || 
(strcmp(whiteList[i].white_ip_src, ip_src_str) == 0)) 
  { 
   ok++;    
  } 
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  if((strcmp(whiteList[i].white_ip_dst, "") == 0) || 
(strcmp(whiteList[i].white_ip_dst, ip_dst_str) == 0)) 
  { 
   ok++;    
  } 
 
  if((whiteList[i].white_sport == -1) || 
(whiteList[i].white_sport == sport)) 
  { 
   ok++;    
  } 
 
  if((whiteList[i].white_dport == -1) || 
(whiteList[i].white_dport == dport)) 
  { 
   ok++;    
  } 
 
  if( ok == 4 ) 
  { 
   return 1; 
  } 
 } 
 
 return -1;  
} 

Makefile 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
 
CC= gcc 
CFLAGS= -O2 
INCLUDES= -I. -I/usr/include/ 
LIBS= -lpcap -lresolv -lpjlib-util-i686-pc-linux-gnu -lpjnath-
i686-pc-linux-gnu -lpjsip-i686-pc-linux-gnu -lpjsip-simple-
i686-pc-linux-gnu -lpjsip-ua-i686-pc-linux-gnu -lpj-i686-pc-
linux-gnu -lrt 
README= 
EXEC= dns_sniff.o 
 
all:    dns_sniff_func.c db.c Makefile 
 $(CC) $(CFLAGS) $(INCLUDES) *.c -o $(EXEC) $(LIBS) 
 
beauty: 
 @indent -kr -i8 -ts8 -sob -l80 -ss -ncs *.[c,h]; 
 @rm -f *.[c,h]~; 
 
clean: 
 @rm -rf *.o *~ $(EXEC) core.* core 
 
sense: 
 @more $(README) 
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9.2 Pseudo-Worm Daemon (PWD) Source Code 

UDPServers.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <unistd.h> 
#include <time.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <arpa/inet.h> 
#include <netinet/in.h> 
#include <sys/ioctl.h> 
#include <linux/if.h> 
#include <netdb.h> 
 
#define PHI 0x9e3779b9 
#define OCTET_1_MIN 10 
#define OCTET_1_MAX 11 
#define OCTET_2_MIN 0 
#define OCTET_2_MAX 0 
#define OCTET_3_MIN 0 
#define OCTET_3_MAX 0 
#define OCTET_4_MIN 0 
#define OCTET_4_MAX 0 
#define SEED 1 
#define NSECOND (100u) 
#define MSECONDS (10u) 
#define SECONDS (1000u) 
#define N_MSECONDS (NSECOND * MSECONDS) 
#define N_M_SECONDS (NSECOND * MSECONDS * SECONDS) 
#define HardCodedStringLength 10 
#define MAX_IP_LEN  15 
#define IP_FROMFILE_MAXLEN 257 
#define MAX_IP_ADDRESSES 10 
#define MAX_RANDOM_IPS 357 
#define GET_IPADDRESS_FROM_BYTE(a, b, c, d)\ 
    (((unsigned char)(a) << 24) & ((unsigned char)(b) << 16)\ 
&((unsigned char)(a) << 8) & ((unsigned char)(a))) 
 
#define IP_ADDR_FILE 
#define SEND_TO_RANDOM_IP 
 
#define LOGGING_SERVER_PORT_NO (1600u) 
#define LOGGING_SERVER_ADDRESS "127.0.0.1" 
 
void getInterfaceInfo(char* dev); 
void sendMsg(char* msg, struct in_addr ipAddr); 
void sendLoggData(char* msg); 
 
struct in_addr if_address; 
struct in_addr if_bcastaddr; 
struct in_addr if_netmask; 
 
char buf[1024] = ""; 
char HardCodedStr[HardCodedStringLength + 1] = ""; 
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int GetHardCodedString(char *str) 
{ 
    FILE *fp; 
    fp = fopen("HardCodedString", "r"); 
    if (NULL == fp) 
    { 
        printf("Open the HardCoded file failed,Exit...\n"); 
        return -1; 
    } 
    printf("Open the HardCoded file success\n"); 
 
    if (HardCodedStringLength != fread(str, sizeof(char), 
HardCodedStringLength, fp)) 
    { 
        printf("Read file failed,Exit...\n"); 
        fclose(fp); 
        return -1; 
    } 
 
    fclose(fp); 
    return 0; 
} 
 
 
int WriteTimelog() 
{ 
 char buffer[30]; 
 char sendBuffer[60]; 
 struct timeval tv; 
 time_t curtime; 
 gettimeofday(&tv, NULL); 
 curtime=tv.tv_sec; 
 strftime(buffer,30,"%T:",localtime(&curtime)); 
 sprintf(sendBuffer,"%s%ld\n",buffer,tv.tv_usec); 
 sendBuffer[strlen(sendBuffer)-2] = '\0'; 
 strcat(sendBuffer, " "); 
 strcat(sendBuffer, inet_ntoa(if_address)); 
 sendLoggData(sendBuffer); 
 return 0; 
} 
 
void CleanBuf(void) 
{ 
    memset(buf, 0, sizeof(buf)); 
    memset(HardCodedStr, 0, sizeof(HardCodedStr)); 
} 
 
static uint32_t Q[4096], c = 362436; 
 
void init_rand(uint32_t x) 
{ 
        int i; 
 
        Q[0] = x; 
        Q[1] = x + PHI; 
        Q[2] = x + PHI + PHI; 
 
        for (i = 3; i < 4096; i++) 
                Q[i] = Q[i - 3] ^ Q[i - 2] ^ PHI ^ i; 
} 
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uint32_t rand_cmwc(void) 
{ 
        uint64_t t, a = 18782LL; 
        static uint32_t i = 4095; 
        uint32_t x, r = 0xfffffffe; 
        i = (i + 1) & 4095; 
        t = a * Q[i] + c; 
        c = (t >> 32); 
        x = t + c; 
        if (x < c) { 
                x++; 
                c++; 
        } 
        return (Q[i] = r - x); 
} 
 
int main(int argc, char* argv[]) 
{ 
 int sock, i, numbytes; 
 int tmp_A, tmp_B, tmp_C, tmp_D; 
 int n_ipaddr; 
 FILE *pIPAddr; 
 struct sockaddr_in addrListen; 
 struct sockaddr_in addrClient; 
 struct sockaddr_in addrIPFile[MAX_IP_ADDRESSES]; 
 struct sockaddr_in addrIPLocalBroadcast; 
 struct sockaddr_in addrIPRandom; 
 int addrLength = sizeof(struct sockaddr_in); 
 char IpFromFile[IP_FROMFILE_MAXLEN]; 
 char randomIp[IP_FROMFILE_MAXLEN]; 
 long number = 0; 
 int RetIpFromFile = 0; 
 int SendRet; 
 struct timeval t1, t2; 
 
 if(argv[1] == NULL) 
 { 
  argv[1] = strdup("eth0"); 
 } 
 
 getInterfaceInfo(argv[1]); 
 
    //while(1) 
    { 
 
 sock = socket(AF_INET, SOCK_DGRAM, 0); 
 if(-1 == sock) 
 { 
  printf("Create socket failed,Exit!\n"); 
  return -1; 
 } 
 
 printf("Create socket success and continue\n"); 
 
 memset(&addrListen, 0, sizeof(addrListen)); 
 memset(&addrListen, 0, sizeof(addrClient)); 
 addrListen.sin_family = AF_INET; 
 addrListen.sin_addr.s_addr = INADDR_ANY;//local IP 
Address 
 addrListen.sin_port = htons(1434); 
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 if(-1 == bind(sock, (struct sockaddr*)&addrListen, 
sizeof(addrListen))) 
 { 
  printf("Bind socket error,Exit...\n"); 
  return -1; 
 } 
 printf("Start listening Port 1434\n"); 
 
 memset(HardCodedStr, 0, sizeof(HardCodedStr)); 
 
 pIPAddr = NULL; 
 
        recvfrom(sock, buf, 1024, 0, (struct 
sockaddr*)&addrClient, &addrLength); 
        number ++; 
        printf("%ld : %s\n", number, buf);//display the content 
of received packet 
 
         if(GetHardCodedString(HardCodedStr) < 0) 
        { 
            printf("Get Authenticate string from file 
failed\n"); 
   CleanBuf(); 
   exit(1); 
        } 
        printf("Get HardCoded String from file success\n"); 
 
    if ((strlen(buf) != HardCodedStringLength) ||(0 != 
strcmp(HardCodedStr, buf))) 
 { 
  printf("Authenticate failed\n"); 
  CleanBuf(); 
  //continue; 
  exit(1); 
 } 
 else 
 { 
  printf("Authenticate success\n"); 
 } 
 
         if (0 != WriteTimelog()) 
  { 
   printf("Write time log failed\n"); 
   CleanBuf(); 
   //continue; 
   exit(1); 
  } 
  else 
  { 
   printf("Write time log success\n"); 
  } 
 
 n_ipaddr = 0; 
 
    if(pIPAddr == NULL) 
 { 
     pIPAddr = fopen("IPAddr", "r"); 
 } 
 
        if(NULL == pIPAddr) 
        { 
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            printf("Open IPAddr file failed\n"); 
     RetIpFromFile = -1; 
        } 
        else 
        { 
  while(1) 
  { 
   memset(IpFromFile, 0, IP_FROMFILE_MAXLEN); 
 
   if (!(fgets(IpFromFile, MAX_IP_LEN + 1, 
pIPAddr))) 
   { 
    //printf("Read IPAddr file failed\n"); 
    //RetIpFromFile = -1; 
    break; 
   } 
   else 
   { 
    addrIPFile[n_ipaddr].sin_addr.s_addr = 
inet_addr(IpFromFile); 
    RetIpFromFile = 0; 
    printf("Get IP Address from file 
success: %s\n", inet_ntoa(addrIPFile[n_ipaddr].sin_addr)); 
    n_ipaddr++; 
   } 
  } 
        } 
 
 #ifdef IP_ADDR_FILE 
 for(i=0; i<n_ipaddr; i++) 
 { 
  addrIPFile[i].sin_family = AF_INET; 
  addrIPFile[i].sin_port = htons(1434); 
 
  usleep(N_MSECONDS); 
 
  SendRet = sendto(sock, HardCodedStr, 
HardCodedStringLength, 0, (struct sockaddr*)&addrIPFile[i], 
addrLength); 
 
  if(-1 == SendRet) 
  { 
      printf("Send packet to random address (%s) 
failed\n", inet_ntoa(addrIPFile[i].sin_addr)); 
  } 
  else 
  { 
   printf("Send packet to random address (%s) 
success\n", inet_ntoa(addrIPFile[i].sin_addr)); 
  } 
 } 
 #endif 
 
 #ifdef SEND_TO_RANDOM_IP 
 if(sock) 
 { 
  close(sock); 
 } 
 
 init_rand(SEED ? SEED : time(NULL)); 
        while(1){ 
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  gettimeofday(&t1, NULL); 
 for(i=0; i<MAX_RANDOM_IPS; i++) 
 { 
        tmp_A = OCTET_1_MIN && (OCTET_1_MIN <= OCTET_1_MAX) ? 
OCTET_1_MIN + 
            (int) (rand_cmwc() % (OCTET_1_MAX - OCTET_1_MIN + 
1)) : (int) (rand_cmwc() % 254); 
        tmp_B = OCTET_2_MIN && (OCTET_2_MIN <= OCTET_2_MAX) ? 
OCTET_2_MIN + 
            (int) (rand_cmwc() % (OCTET_2_MAX - OCTET_2_MIN + 
1)) : (int) (rand_cmwc() % 254); 
        tmp_C = OCTET_3_MIN && (OCTET_3_MIN <= OCTET_3_MAX) ? 
OCTET_3_MIN + 
            (int) (rand_cmwc() % (OCTET_3_MAX - OCTET_3_MIN + 
1)) : (int) (rand_cmwc() % 254); 
        tmp_D = OCTET_4_MIN && (OCTET_4_MIN <= OCTET_4_MAX) ? 
OCTET_4_MIN + 
            (int) (rand_cmwc() % (OCTET_4_MAX - OCTET_4_MIN + 
1)) : (int) (rand_cmwc() % 254); 
 
 
  sprintf(randomIp, "%d.%d.%d.%d", tmp_A, tmp_B, 
tmp_C, tmp_D); 
 
  sprintf(randomIp, "%d.%d.%d.%d", tmp_A, tmp_B, 
tmp_C, tmp_D); 
 
  inet_aton(randomIp, &addrIPRandom.sin_addr); 
 
  sendMsg(HardCodedStr, addrIPRandom.sin_addr); 
  usleep(N_M_SECONDS / MAX_RANDOM_IPS); 
 } 
#define USEC 100000 
  gettimeofday(&t2, NULL); 
  int sec = t2.tv_sec - t1.tv_sec; 
  int msec = (t2.tv_usec - t1.tv_usec) / USEC; 
  if (t2.tv_usec < t1.tv_usec) 
  { 
      sec--; 
      msec = (t2.tv_usec + 1000000 - t1.tv_usec) / 
USEC; 
  } 
  printf("%d packets were send during %u.%u 
seconds\n", MAX_RANDOM_IPS, sec, msec); 
 } 
 #endif 
  } 
 
    fclose(pIPAddr); 
 
    return 0; 
} 
 
void getInterfaceInfo(char* dev) 
{ 
 int s; 
 struct ifreq ifr; 
 struct sockaddr_in *sin = (struct sockaddr_in *) 
&ifr.ifr_addr; 
 s = socket(AF_INET, SOCK_DGRAM, 0); 
 strcpy(ifr.ifr_name, dev); 
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 sin->sin_family = AF_INET; 
 ioctl(s, SIOCGIFADDR, &ifr); 
 if_address=sin->sin_addr; 
 ioctl(s, SIOCGIFNETMASK, &ifr); 
 if_netmask = sin->sin_addr; 
 ioctl(s, SIOCGIFBRDADDR, &ifr); 
 if_bcastaddr = sin->sin_addr; 
} 
 
 
void sendMsg(char* msg, struct in_addr ipAddr) 
{ 
    int sockfd; 
    struct sockaddr_in their_addr; 
    int numbytes; 
    //char broadcast = '1'; 
 
    if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) { 
        perror("socket"); 
        exit(1); 
    } 
 
    their_addr.sin_family = AF_INET; 
    their_addr.sin_port = htons(1434); 
    their_addr.sin_addr = ipAddr; 
    memset(their_addr.sin_zero, '\0', sizeof 
their_addr.sin_zero); 
 
    if ((numbytes=sendto(sockfd, msg, strlen(msg), 0, (struct 
sockaddr *)&their_addr, sizeof their_addr)) == -1) 
    { 
        perror("sendto"); 
        exit(1); 
    } 
 
    //printf("Message %s sent to %s\n", msg, 
inet_ntoa(their_addr.sin_addr)); 
 
    close(sockfd); 
} 
 
void sendLoggData(char* msg) 
{ 
    int sockfd, portno, n; 
    struct sockaddr_in serv_addr; 
    struct hostent *server; 
 
    portno = LOGGING_SERVER_PORT_NO; 
    sockfd = socket(AF_INET, SOCK_STREAM, 0); 
    if (sockfd < 0) 
        error("ERROR opening socket"); 
    server = gethostbyname(LOGGING_SERVER_ADDRESS); 
    if (server == NULL) { 
        fprintf(stderr,"ERROR, no such host\n"); 
        exit(0); 
    } 
    bzero((char *) &serv_addr, sizeof(serv_addr)); 
    serv_addr.sin_family = AF_INET; 
    bcopy((char *)server->h_addr, (char 
*)&serv_addr.sin_addr.s_addr, server->h_length); 
    serv_addr.sin_port = htons(portno); 
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    if (connect(sockfd,(struct sockaddr *) 
&serv_addr,sizeof(serv_addr)) < 0) 
        error("ERROR connecting"); 
 
    n = write(sockfd,msg,strlen(msg)); 
    if (n < 0) 
         error("ERROR writing to socket"); 
 
    close(sockfd); 
} 

UDPClient.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <arpa/inet.h> 
 
char szMsg[] = "teststring"; 
 
int main(int argc, char* argv[]) 
{ 
    int sock;    
    int uIndex = 1; 
    struct sockaddr_in addrto; 
    int nlen = sizeof(addrto); 
    int AddrRet; 
 
    printf("Start running\n"); 
 
    if(argc != 2) 
    { 
        printf("Number of parameter error! Exit...\n"); 
        return -1; 
    } 
 
    memset(&addrto, 0, sizeof(addrto)); 
    addrto.sin_family = AF_INET; 
    //addrto.sin_addr.s_addr = inet_addr("127.0.0.1"); 
    AddrRet = inet_aton(argv[1], &addrto.sin_addr); 
    if(0 == AddrRet) 
    { 
        printf("IP Address Parameter wrong! Exit...\n"); 
        return -1; 
    } 
     addrto.sin_port = htons(1434); 
    printf("Set the destination address success and 
continue\n"); 
 
    sock = socket(AF_INET, SOCK_DGRAM, 0); 
    if(-1 == sock) 
    { 
        printf("Create socket failed,Exit!\n"); 
        return -1; 
    } 
    printf("Create socket success and continue\n"); 
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    //while(1) 
    //{    
        sendto(sock, szMsg, strlen(szMsg), 0, (struct 
sockaddr*)&addrto, nlen); 
        printf("%d : an UDP package send\n", uIndex++); 
        sleep(5); 
    //} 
 
    close(sock); 
 
    return 0; 
} 

LoggingServer.c 

/* (c) Copyright University of Greenwich 2015 /* 
/*http://www.gre.ac.uk/isrl*/ 
 
#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
 
#define PORT_NO (1600u) 
 
void dumpLogData(int);  
void error(const char *msg) 
{ 
    perror(msg); 
    exit(1); 
} 
 
int main(int argc, char *argv[]) 
{ 
     int sockfd, newsockfd, portno, pid; 
     socklen_t clilen; 
     struct sockaddr_in serv_addr, cli_addr; 
 
     sockfd = socket(AF_INET, SOCK_STREAM, 0); 
     if (sockfd < 0)  
        error("ERROR opening socket"); 
     bzero((char *) &serv_addr, sizeof(serv_addr)); 
     portno = PORT_NO; 
     serv_addr.sin_family = AF_INET; 
     serv_addr.sin_addr.s_addr = INADDR_ANY; 
     serv_addr.sin_port = htons(portno); 
     if (bind(sockfd, (struct sockaddr *) &serv_addr, 
              sizeof(serv_addr)) < 0)  
              error("ERROR on binding"); 
     listen(sockfd,5); 
     clilen = sizeof(cli_addr); 
     while (1) { 
         newsockfd = accept(sockfd,  
               (struct sockaddr *) &cli_addr, &clilen); 
         if (newsockfd < 0)  
             error("ERROR on accept"); 
         pid = fork(); 
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         if (pid < 0) 
             error("ERROR on fork"); 
         if (pid == 0)  { 
             close(sockfd); 
             dumpLogData(newsockfd); 
             exit(0); 
         } 
         else close(newsockfd); 
     } /* end of while */ 
     close(sockfd); 
     return 0;  
} 
 
void dumpLogData (int sock) 
{ 
   int n; 
   char buffer[256]; 
   FILE *fp; 
   fp = fopen("Timelog", "a"); 
   if(NULL == fp) 
   { 
 printf("Open Timelog file failed, Exit...\n"); 
        exit(1); 
   } 
 
   bzero(buffer,256); 
   n = read(sock,buffer,255); 
   if (n < 0) error("ERROR reading from socket"); 
   printf("Log created: %s\n",buffer); 
 
   fwrite(buffer, sizeof(char), n, fp); 
   fputs("\n", fp); 
 
   fclose(fp); 
} 

IPAddr.txt 

10.63.2.11 
10.18.56.78 
10.128.3.4 
10.2.21.43 
10.4.6.7 

Timelog.txt 

17:26:39:95432 10.63.2.11 
17:43:28:53889 10.18.56.78 
17:46:02:95361 10.128.3.4 
17:47:03:31260 10.2.21.43 
17:48:05:65620 10.4.6.7 
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