

AN INVESTIGATION OF

MECHANISMS TO MITIGATE

ZERO-DAY COMPUTER WORMS

WITHIN COMPUTER

NETWORKS

KHURRAM SHAHZAD

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the Degree of Doctor of Philosophy

June 2015

 ii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

Declaration

I certify that this work has not been accepted in substance for any degree, and

is no concurrently being submitted for any degree other than that of Doctor of

Philosophy being studied at the University of Greenwich. I also declare that

this work is the result of my own investigations except where otherwise

identified by references and that I have not plagiarised the work of the others.

Student: Khurram Shahzad

Signature:

Date:

Supervisor: Dr. Steve Woodhead

Signature:

Date:

 iii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

Acknowledgments

This work would not have been possible without the invaluable advise,

encouragement, and support that I received from various people in the past six

years.

First and foremost, all credits to my adviser Dr. Steve Woodhead for his

unstinting moral support, guidance and encouragement in this research and life

in general. He has been my leading light and a role model to look up to. And

the one who stood by me in the times of crisis. My thanks are due to my

second supervisor Dr. Panos Bakalis for his help and support during my PhD

research.

I would like to thank University of Greenwich for funding this research. I

would also like to thank my colleagues Darren Smith, Luc J Tidy and Dr. A.A.

Adekunle in the Internet Security Research Lab (ISRL) for their help and

support.

Finally, I would like to deeply thank my family and friends for their

unconditional love, care and motivational support; I have received during the

whole course of my PhD studies.

 iv

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

Abstract

An Internet worm replicates itself by automatically infecting vulnerable

systems and may infect hundreds of thousands of hosts across the Internet in

tens of minutes. The speed of propagation of a worm is significantly higher

than many other types of malware, including viruses. The potential for

signification damage within a short time is therefore great. Worm detection

and response systems must, therefore, act quickly to identify and counter the

effects of worms. In this thesis, an investigation of mechanisms to mitigate

zero-day computer worms has been carried out, while defining the key

research questions to answer.

This thesis presents a novel distributed automated worm detection and

containment scheme, RL+LA, developed during the course of this research,

that is based on the correlation of Domain Name System (DNS) queries

against the destination IP address of outgoing TCP SYN and UDP datagrams

leaving the network boundary, while utilizing cooperation between different

communicating scheme members using a custom protocol, which has been

termed Friends. To the knowledge of author, this is the first implementation of

such a scheme. A set of tools i.e. a Pseudo-Worm Daemon (PWD), which

provides random scanning and hit-list worm like functionality; and a

Virtualized Malware Testbed (VMT) for testing of worm experiments, were

also developed in order to empirically evaluate the performance of the desired

countermeasure scheme, RL+LA.

A set of empirical experiments were conducted by using Pseudo-Slammer and

Pseudo-Witty worms with real world attributes of Slammer and Witty worms

in order to evaluate PWD. The experimental results are broadly comparable to

real worm outbreak reported data. Furthermore, these results are compared

with a biological epidemiological model (SI model) in order to explore the

applicability of SI model to cyber malware infections in general, as well as to

assess its usefulness in characterising the virulence of cyber malware. From

base comparison of Pseudo-Slammer and Pseudo-Witty worm experimental

 v

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

results with reported outbreak data of Slammer and Witty worms; and SI

model, it is concluded that: (a) PWD can be used as an effective tool to

empirically analyze the propagation behaviour of random scanning and hit-list

worms and to test potential countermeasures, (b) SI model can be effectively

used in characterising the virulence of random scanning worms. Another

comprehensive sets of empirical experiments were also conducted by using a

Slammer-like pseudo-worm on a small scale with class C networks and on

class A networks by using Pseudo-Slammer and Pseudo-Witty worms with

real attributes of Slammer and Witty worms, without any countermeasures and

by invoking RL and RL+LA countermeasures, in order to evaluate the

performance of the proposed scheme, RL+LA. The experimental results show

a significant reduction in the infection speed of the worms, when the

countermeasure scheme is invoked.

 vi

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

Contents

1 Introduction .. 15

1.1 Chapter Introduction .. 15

1.1.1 Chapter Layout ... 16

1.2 Problem Statement ... 16

1.3 Research Aim and Objectives .. 17

1.3.1 Research Aim ... 17

1.3.2 Research Objectives ... 18

1.4 Outline of the Thesis .. 18

1.5 Chapter Summary .. 19

2 Literature Review ... 20

2.1 Chapter Introduction .. 20

2.1.1 Chapter Layout ... 20

2.2 Taxonomy of Computer Worms .. 20

2.2.1 Definitions .. 20

2.2.1.1 Virus .. 20

2.2.1.2 Worm .. 21

2.2.1.3 Zero-Day Worm .. 21

2.2.1.4 Trojan Horse ... 21

2.2.1.5 Rootkit ... 21

2.2.1.6 Botnet .. 21

2.2.2 Type of Worms ... 22

2.2.2.1 Based on Target Finding Schemes 22

2.2.2.2 Based on Transmission Schemes .. 24

2.2.2.3 Based on Payloads .. 24

2.2.2.4 Based on Intent of Worm Developer 25

2.2.2.5 Based on Existence "In the Wild" 26

2.2.3 Major Worm Outbreaks ... 27

2.2.4 Wormable Vulnerabilities .. 30

2.2.5 Windows XP Opportunity .. 32

2.3 Worm Detection and Prevention Mechanisms 33

2.3.1 Resource Limiting (RL) solutions .. 33

 vii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

2.3.1.1 Williamson’s IP Throttling ... 34

2.3.1.2 Chen et al. Failed Connection Based Rate Limiting (FC) .. 36

2.3.1.3 Schechter et al. Credit-based Rate Limiting (CB) 38

2.3.1.4 Wong et al. DNS-Based Rate Limiting 38

2.3.2 Automatic Signature Generation (ASG) solutions 40

2.3.2.1 Autograph: Towards Automated, Distributed Worm

 Signature Detection ... 40

2.3.2.2 Automated Worm Fingerprinting using Earlybird 43

2.3.2.3 Polymorphic Worm Detection using Structural Information

 of Executables ... 44

2.3.2.4 Anomalous Payload-based Worm Detection and Signature

 Generation ... 46

2.3.2.5 PolyS: Network-based Signature Generation for Zero-day

 Polymorphic Worms ... 46

2.3.2.6 LESG: Thwarting Zero-Day Polymorphic Worms With

 Network-Level Length-Based Signature Generation 47

2.3.2.7 An Automated Signature Generation Method for Zero-day

 Polymorphic Worms Based on Multilayer Perceptron Model

 ... 47

2.3.2.8 Automated Signature Generation for Zero-day Polymorphic

 Worms Using a Double-honeynet 47

2.3.2.9 Efficient Hybrid Technique for Detecting Zero-Day

 Polymorphic Worms ... 48

2.3.3 Behavior Based Signature Detection (BSD) solutions 48

2.3.3.1 Network Application Architecture (NAA) - A Behavioral

 Approach for Worm Detection ... 49

2.3.3.2 DNS-based Detection of Scanning Worms in an Enterprise

 Network ... 50

2.3.3.3 ARP-based Detection of Worms within an Enterprise

 Network ... 52

2.3.4 Leap Ahead (LA) solutions .. 54

2.3.4.1 Cooperative Response Strategies for Large Scale Attack

 Mitigation .. 54

2.3.4.2 COVERAGE ... 55

 viii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

2.3.4.3 Very Fast Containment of Scanning Worms 55

2.3.4.4 Monitoring and Early Warning of Internet Worms 56

2.3.5 Predesigned-Preventative (PP) solutions 58

2.3.5.1 Epidemic Profiles and Defense of Scale-Free Networks 58

2.3.5.2 Least Effort Strategies for Cyber Security 58

2.3.5.3 A Virtual Honeypot Framework ... 59

2.3.5.4 Building and Deploying Billy Goat, Worm-Detection

 System ... 59

2.3.5.5 Boundary Detection and Containment of Local Worm

 Infections ... 60

2.3.5.6 Defending against Hit-list Worms using Network Address

 Space Randomization .. 62

2.3.6 Mobile Combat (MC) solutions ... 63

2.3.6.1 Predators: Good Mobile Code Combat against Computer

 Viruses .. 64

2.3.6.2 Models of Active Worm Defense 64

2.3.6.3 Mobile Combat /Beneficial worms "In the Wild" 64

2.3.7 Hybrid Quarantine Defense (HQD) solutions 65

2.3.7.1 A Hybrid Quarantine Defense... 65

2.3.8 Defensive Worms (DW) solutions ... 67

2.4 Worm Testing Environments ... 68

2.4.1 Physical Network Testbeds .. 68

2.4.2 Simulation Testbeds ... 68

2.4.3 Emulation Testbeds .. 69

2.4.4 Full System Virtualization Testbeds .. 69

2.5 Mathematical Models for Worm Propagation 70

2.6 Research Questions .. 71

2.6.1 Research Question 1 ... 71

2.6.2 Research Question 2 ... 72

2.7 Chapter Summary .. 72

3 The Rate Limiting + Leap Ahead (RL+LA) Scheme 74

3.1 Chapter Introduction .. 74

3.1.1 Chapter Layout ... 74

3.2 Basic Design and Methodology ... 75

 ix

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

3.3 The RL+LA: System Design and Implementation 76

3.4 Chapter Summary .. 79

4 The Pseudo-Worm Daemon (PWD) .. 80

4.1 Chapter Introduction .. 80

4.1.1 Chapter Layout ... 80

4.2 Basic Design and Methodology of Pseudo-Worm Daemon (PWD) . 81

4.3 Pseudo-Worm Daemon System Design and Implementation 81

4.4 Characteristics of the Pseudo-Worm Daemon (PWD) 85

4.4.1 UDP based Propagation ... 85

4.4.2 Pseudo Random Number Scanning .. 85

4.4.3 Hit-List ... 85

4.4.4 Containment ... 86

4.4.5 Scanning rate .. 86

4.4.6 Authentication .. 86

4.4.7 Logging and Reporting ... 86

4.5 Evaluation of Pseudo-Worm Daemon (PWD) 86

4.5.1 Pseudo-Slammer Worm Experiments .. 87

4.5.1.1 Slammer Worm Outbreak Attributes 87

4.5.1.2 Experimental Setup ... 87

4.5.1.3 Experimental Methodology .. 89

4.5.1.4 Experimental Results .. 89

4.5.2 Pseudo-Witty Worm Experiments ... 90

4.5.2.1 Witty Worm Outbreak Attributes 90

4.5.2.2 Experimental Setup ... 90

4.5.2.3 Experimental Methodology .. 92

4.5.3 Discussion .. 93

4.5.3.1 Empirical Analysis of Pseudo-Slammer Worm Results 93

4.5.3.2 Empirical Analysis of Pseudo-Witty Worm Results 93

4.5.4 Epidemiological Modelling .. 95

4.5.4.1 Classical Simple Epidemic Model 95

4.5.4.2 Modeling Methodology and Results 96

4.6 Virtualized Malware Testbed (VMT) .. 97

4.6.1 Introduction .. 97

4.6.2 VMT Architecture Design and Implementation 98

 x

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

4.6.3 Characteristics of the Virtualized Malware Testbed (VMT) ... 101

4.6.3.1 Scale .. 101

4.6.3.2 Cost ... 101

4.6.3.3 Flexible and Efficient Worm Experiment Control 102

4.6.3.4 Isolation ... 102

4.6.3.5 Remote Administration ... 102

4.6.3.6 Confinement .. 102

4.7 Chapter Summary .. 102

5 Experimental Results for The RL+LA Scheme on a Small Scale Network .

 .. 104

5.1 Introduction ... 104

5.1.1 Chapter Layout ... 104

5.2 Experimental setup .. 104

5.3 Experimental Methodology ... 105

5.4 Experimental Results ... 107

5.5 Discussion and Future Work ... 110

5.6 Chapter Summary .. 112

6 Experimental Results for The RL+LA Scheme on Class A Scale

 Networks with Real Worm Outbreak Attributes 113

6.1 Introduction ... 113

6.1.1 Chapter Layout ... 113

6.2 Pseudo-Slammer Worm Experiments ... 114

6.2.1 Slammer Worm .. 114

6.2.2 Experimental Setup .. 114

6.2.3 Experimental Methodology .. 116

6.2.4 Experimental Results .. 117

6.2.4.1 No Countermeasure .. 117

6.2.4.2 RL Countermeasure .. 117

6.2.4.3 RL+LA Countermeasure ... 118

6.3 Pseudo-Witty Worm Experiments ... 120

6.3.1 Witty Worm .. 120

6.3.2 Experimental Setup .. 120

6.3.3 Experimental Methodology .. 122

6.3.4 Experimental Results .. 122

 xi

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

6.3.4.1 No Countermeasure .. 122

6.3.4.2 RL Countermeasure .. 123

6.3.4.3 RL+LA Countermeasure ... 123

6.4 Discussion .. 125

6.4.1 Comparison of Pseudo-Slammer Worm Results 125

6.4.2 Comparison of Pseudo-Witty Worm Results 127

6.4.3 Alternative Network Topologies .. 130

6.4.4 RL+LA Countermeasure Overhead ... 130

6.4.5 Applicability of RL+LA Experimental Results on the Internet

 Scale ... 130

6.5 Chapter Summary .. 130

7 Conclusions .. 132

7.1 Chapter Introduction .. 132

7.1.1 Chapter Layout ... 132

7.2 Summary of Suggested Original Contributions 132

7.2.1 Research Question 1 ... 132

7.2.2 Research Question 2 ... 133

7.3 Recommendations for Future Work .. 134

7.3.1 The Rate Limiting + Leap Ahead (RL+LA) Scheme 134

7.4 List of Publications .. 134

7.4.1 Published Papers .. 134

7.5 Chapter Summary .. 135

8 Bibliography ... 136

9 Appendices ... 146

9.1 The RL+LA Source Code .. 146

9.2 Pseudo-Worm Daemon (PWD) Source Code 165

 xii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

List of Figures

Figure 2-1 Williamson IP throttling implementation in Windows

 (Williamson, 2002) ... 35

Figure 2-2 Distributed Anti-Worm Architecture (Chen and Tang, 2004) ... 37

Figure 2-3 Cascading bucket Rate limiting scheme (Wong et al., 2005) 39

Figure 2-4 Architecture of an Autograph Monitor (Kim and Karp, 2004) .. 41

Figure 2-5 DNS Anomaly-based Detection Deployment (Whyte, Kranakis

 and Oorschot, 2005) ... 51

Figure 2-6 ARP-based Detection of Worms within an Enterprise Network

 (Whyte, van Oorschot and Kranakis, 2005) 54

Figure 2-7 Worm Monitoring System (Zou et al., 2003) 57

Figure 2-8 The “unreachable destination” Behaviour using the RBG

 Architecture (Zamboni, Riordan and Yates, 2007) 61

Figure 2-9 Connection Rate Limitations and Friends Overview (Porras et

 al., 2004) ... 66

Figure 3-1 The RL+LA Proposed Design Architecture 77

Figure 3-2 Flow Chart for The RL+LA Prototype Algorithm 78

Figure 4-1 Worm Infection Process (Chen and Robert, 2004) 82

Figure 4-2 Design Architecture of PWD ... 83

Figure 4-3 Flow Diagram of PWD Algorithm ... 84

Figure 4-4 Slammer Worm Experimental Test Network 88

Figure 4-5 Experimental Results of Pesudo-Slammer Worm 90

Figure 4-6 Witty Worm Experimental Test Network 91

Figure 4-7 Experimental Results of Pesudo-Witty Worm 92

Figure 4-8 Pseudo-Slammer Experiments vs. Real Slammer Outbreak 93

Figure 4-9 Pseudo-Witty Experiments vs. Reported Witty Outbreak 94

Figure 4-10 Best Fit SI Model for Pseudo-Slammer Worm Experimental Data

 .. 96

Figure 4-11 Best Fit SI Model for Pseudo-Witty Worm Experimental Data

 .. 97

Figure 4-12 VMT Physical Network Setup .. 100

Figure 5-1 Experimental Test Network ... 106

 xiii

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

Figure 5-2 Experimental Results with 25 % of Hosts Vulnerable to Infection

 .. 107

Figure 5-3 Experimental Results with 20 % of Hosts Vulnerable to Infection

 .. 109

Figure 5-4 Experimental Results with 15 % of Hosts Vulnerable to Infection

 .. 109

Figure 5-5 Experimental Results with 10 % of Hosts Vulnerable to Infection

 .. 110

Figure 5-6 % of Susceptible Hosts Infected for Experimental Tests 1-9 ... 111

Figure 6-1 Slammer Worm Experimental Test Network 115

Figure 6-2 Experimental Results of Pseudo-Slammer Worm with No

 Countermeasures .. 117

Figure 6-3 Experimental Results of Pseudo-Slammer Worm with RL

 Countermeasure .. 118

Figure 6-4 Results of Pseudo-Slammer Worm with RL+LA Countermeasure

 Threshold I ... 119

Figure 6-5 Results of Pseudo-Slammer Worm with RL+LA Countermeasure

 Threshold II .. 119

Figure 6-6 Witty Worm Experimental Test Network 121

Figure 6-7 Results of Pseudo-Witty Worm .. 123

Figure 6-8 Results of Pseudo-Witty Worm with RL Countermeasure 124

Figure 6-9 Results of Pseudo-Witty Worm with RL+LA Countermeasure.....

 .. 124

Figure 6-10 Comparison of Pseudo-Slammer Worm Results 126

Figure 6-11 Time of Infection for Pseudo-Slammer Experimental Tests 126

Figure 6-12 Comparison of Pseudo-Witty Worm Results 128

Figure 6-13 Time of Infection for Pseudo-Witty Experimental Tests 129

 xiv

[AN INVESTIGATION OF MECHANISMS TO MITIGATE ZERO-DAY
COMPUTER WORMS WITHIN COMPUTER NETWORKS]

List of Tables

Table 2-1 Types of Worms ... 26

Table 2-2 Major Worm Outbreaks ... 27

Table 4-1 VMT Hardware and Operating System Infrastructure 100

Table 5-1 Summary of Initial Results ... 111

Table 6-1 Results of Pseudo-Slammer Worm .. 125

Table 6-2 Results of Pseudo-Witty Worm .. 128

 15

1. INTRODUCTION

1 INTRODUCTION

1.1 Chapter Introduction

Computer network worms are a very serious potential threat to computer

network security due to their high potential speed of propagation and their

ability to self-replicate. Zero-day worms such as SQL slammer (Moore et al.,

2003) and Witty (Shannon and Moore, 2004) represent a particularly

challenging class of such malware that exploits a vulnerability that has not

been patched at the point of an outbreak. Such network worms are hard to

prevent or contain due to their high speed of propagation and variant nature.

Modern hypothetical flash worms are even capable of infecting large

susceptible population of hosts on the Internet in a few seconds (Staniford et

al., 2004), thereby making human mediated response for worm detection and

prevention completely impractical.

Various techniques for worm detection, mitigation and containment have been

proposed by researchers, such as rate limiting: Williamson’s IP throttling

(Williamson, 2002), Wong et al. DNS based rate limiting (Wong et al., 2005),

automatic signature generation: Autograph (Kim and Karp, 2004), Earlybird

(Singh et al., 2004), behaviour signature detection: DNS based detection of

Scanning Worms (Whyte, Kranakis and Oorschot, 2005) and ARP based

detection of worms (Whyte, van Oorschot and Kranakis, 2005), but none

provide an effective and an efficient method of worm containment in the case

of a fast rapid zero day worm outbreak on a large network such as the Internet.

In order to defend against such zero-day worm attacks, it is desirable to

understand the propagation of worms, their propagation methods, and their

detection and prevention mechanisms. Hence, the research reported in this

thesis focuses on the empirical analysis of zero-day worms such as SQL

Slammer and Witty, and designing and testing a potential distributed

automated countermeasure for zero-day worm detection and containment,

capable of automatically containing and preventing worm spread without any

human intervention.

 16

1. INTRODUCTION

1.1.1 Chapter Layout

This chapter begins by presenting the problem statement and research question

present in the domain of computer network worms in section 1.2. Section 1.3

sets out the aim and key objectives of the research reported in this thesis.

Section 1.4 describes the overall structure of the thesis while section 1.5

provides the concluding statement.

1.2 Problem Statement

A network worm is a program that self-replicates and self-propagates across a

network, exploiting security or policy flaws in widely-used network services,

without any human intervention (Weaver et al., 2003), while zero-day worms

are a type of malware that exploits a vulnerability that has not been patched at

the time of the worm outbreak (Li, Salour and Su, 2008). Since the spread of

the Morris worm in 1988 (Chen and Robert, 2004), computer network worms

have become a persistent problem to the Internet infrastructure causing billions

of dollars in losses to businesses, governments, and service providers

(Chakrabarti and Manimaran, 2002). Melissa, Code Red, Blaster, SQL

Slammer (also called Sapphire), Conficker etc. (Weaver et al., 2003) did

considerable damage to the Internet community. SQL Slammer is considered

to be the fastest random scanning worm in history as its infected population

doubled in size every 8.5 seconds, with 90 % of vulnerable hosts infected

within 10 minutes (Moore et al., 2003). This worm achieved its full scanning

rate i.e. over 55 million scans per seconds, only 3 minutes after it was released.

It did not contain any malicious payload but the amount of traffic it generated,

halted small parts of the Internet for several hours. Flash, metamorphic and

polymorphic worms are evolving categories of network worms, and are

considered a serious threat to the Internet.

In 2004, Staniford et al. (Staniford et al., 2004) hypothesized the top speed of a

properly configured flash worm. Furthermore, they predicted that a UDP worm

could saturate 95% of one million vulnerable hosts on the Internet in 510

milliseconds. A similar worm using a TCP based service could saturate 95% of

one million vulnerable hosts in 1.3 seconds. Today, Internet bandwidth is

much greater than in 2004, whilst many constituent networks employ at least a

 17

1. INTRODUCTION

basic rate limiting countermeasure, with others using more sophisticated

methods. It is difficult, therefore, to judge whether Staniford’s figures are still

accurate.

Although, there has been no major random scanning worm outbreak since the

Witty event of 2004, a recent study by Tidy et al. (Tidy et al., 2014) provides a

list of recent wormable vulnerabilities (a vulnerability which worms may

exploit in order to propagate on the Internet), as well as highlighting the

number of Windows XP hosts still connected to the Internet as documented by

the Shodan search engine (SHODAN - Computer Search Engine, 2009). Some

details of recent wormable vulnerabilities and the Windows XP potential threat

are given in section 2.2.4 and 2.2.5 of this thesis. With the advent and increase

in prevalence of cyber warfare such as Stuxnet (Falliere and Murchu, 2011),

worms have again become weapon of choice for attackers, due to their fast

propagation and ability to cause considerable damage on the Internet. As

described previously, factors such as the availability of wormable

vulnerabilities with a large number of hosts susceptible to those vulnerabilities

and lack of Windows XP support with a large number of existing hosts, have

increased the chances of any future potential worm outbreak.

Due to the high speed and zero-day nature of many worms, traditional

intrusion detection methods (i.e. generation and deployment of attack

signatures) are ineffective (Moore et al., 2003). These countermeasures also

lack the ability to propagate malware warnings to uninfected sites in a timely

manner. Hence, in order to effect automatic detection and containment of zero-

day worms, a rapid, accurate and distributed worm detection and containment

method is required.

1.3 Research Aim and Objectives

1.3.1 Research Aim

The aim of this research is to develop a worm detection and prevention

mechanism that will detect and mitigate the propagation of zero-day worms.

 18

1. INTRODUCTION

1.3.2 Research Objectives

The following are the key research objectives which were defined at the start

of the research:

1) To conduct a comprehensive literature review in the field of computer

worms and their countermeasures.

2) To design, implement and empirically evaluate one countermeasure

mechanism for zero-day worm detection and mitigation.

3) To design and implement suitable tools such as a pseudo-worm daemon

and a virtualized testbed to allow the developed countermeasure to be

empirically tested and evaluated.

1.4 Outline of the Thesis

The overall structure of the thesis is as follows: Chapter 2 presents the

literature review detailing an existing taxonomy of malware, worm detection

and preventions mechanisms and malware testing environments, mathematical

models for worm propagation and thereby, defines the limitation of the

existing research work. Chapter 3 details a distributed automated worm

detection and containment scheme, termed RL+ LA (Rate Limiting + Leap

Ahead) that is based on the correlation of Domain Name System (DNS)

queries and the destination IP address of outgoing TCP SYN and UDP

datagrams leaving the network boundary; and, cooperation between different

communicating scheme members using a custom protocol, which we termed

Friends. Chapter 4 describes the architecture and design of a Pseudo-Worm

Daemon (PWD) having random and hit-list scanning capabilities; and details

the architecture and design of the malware testing environment, Virtualized

Malware Testbed (VMT), based on VMware technologies, as background to

chapter 4. This chapter also presents evaluation of PWD with Pseudo-Slammer

and Pseudo-Witty worms empirical experiments by comparing them with real

world reported data and with an epidemiological model. Chapter 5 details the

design and results of a series of empirical experiments conducted by

employing the RL+LA scheme on small scale network by using PWD and

VMT. The analysis of the results shows that the scheme is effective on a small

scale. Chapter 6 presents the design and results of a series of empirical

 19

1. INTRODUCTION

experiments conducted by employing the RL+LA scheme on a Class A scale

network by using a PWD (with real Slammer and Witty worm attributes) and

VMT. Furthermore, this chapter also presents the detailed analysis and

discussion of the experimental results. Chapter 7 concludes the thesis with the

list of contributions and a list of areas of possible further research work.

Finally appendices present the RL+LA and the PWD source codes.

1.5 Chapter Summary

This chapter has presented the introduction of the research domain by

highlighting the research problem present within the domain of computer

network worms. Furthermore, it describes the aim and objectives of the

research to be undertaken while finally detailing the overall structure of the

thesis. The next chapter will present the literature survey of worm detection

and prevention mechanisms, worm testing environments, and the mathematical

model used to describe the epidemiology of computer worm and will then set

out the research questions to carry out this research.

 20

2. LITERATURE REVIEW

2 LITERATURE REVIEW

2.1 Chapter Introduction

A detailed literature review was undertaken as an initial part of the work

reported in this thesis, which consists of different malware concepts, worm

taxonomy, key worm outbreaks, worm detection and prevention mechanisms,

worm testing environments and mathematical models for worm propagation.

This chapter reports the outcome of the review.

2.1.1 Chapter Layout

This chapter begins by introducing basic malware concepts and differentiates

between them in section 2.2. Furthermore, it categories different worms based

on the taxonomy of worms, summarizes some key worm outbreaks and their

characteristics, and provides details of wormable vulnerabilities and potential

threats posed by Windows XP. Section 2.3 presents and classifies different

worm detection and prevention mechanisms while section 2.4 explores

previously presented worm testing environments by classifying them into

different classes. Section 2.5 details various mathematical models for worm

propagation while section 2.6 presents the research questions developed as an

outcome of sections 2.3, 2.4 and 2.5. Finally section 2.7 presents the chapter

summary.

2.2 Taxonomy of Computer Worms

In order to understand the taxonomy of computer worms, first different

malware (short for malicious software) related terms such as virus, worm,

zero-day worm, trojan horse, rootkit and botnet need to be defined. The next

sub-section introduces these terms.

2.2.1 Definitions

2.2.1.1 Virus

A computer virus can be defined as a set of program instructions that attaches

itself to a file, reproduces itself and spreads to other files with the aid of human

 21

2. LITERATURE REVIEW

intervention (Parsons and Oja, 2010). For example, Chernobyl virus

(Symantec: W95.CIH, 1998), Bomber (F-Secure: Bomber, 1992) etc.

2.2.1.2 Worm

A computer worm is a program that self-replicates and self-propagates across a

network, exploiting security or policy flaws in widely-used network services,

without any human intervention (Weaver et al., 2003). For example, Code Red

(Zou, Gong and Towsley, 2002), Slammer (Moore et al., 2003), Witty

(Shannon and Moore, 2004) etc.

2.2.1.3 Zero-Day Worm

A zero-day worm is a type of worm that exploits a zero-day vulnerability that

has not been patched or widely acknowledged at the point of exploitation

(Tidy, Woodhead and Wetherall, 2013), (Weaver et al., 2003). For example,

Code Red (Zou, Gong and Towsley, 2002) and Slammer (Moore et al., 2003)

both exploit zero-day vulnerabilities.

2.2.1.4 Trojan Horse

A trojan horse, or trojan, is considered a malicious program that is non-self-

replicating, which appears to perform a desirable function but instead also

includes a malicious payload, often including a backdoor allowing

unauthorized access to the target computer (CERT: Trojan Horses, 1999). For

example, Beast (Beast 2.07, 2004) is a windows based backdoor program

which invisibly gives full control of an infected host.

2.2.1.5 Rootkit

A rootkit is a type of malware, designed to hide the existence of certain

processes or programs from normal methods of detection and enable continued

privileged access to a computer. The term rootkit is a concatenation of the

terms “root” (UNIX root account) and “kit” (software components which

implements the tool) (McAfee, 2006). For example, Extended Copy Protection

(XCP) (TIME Magazine, 2002)

2.2.1.6 Botnet

A botnet is a collection of Internet-connected programs communicating with

other similar programs in order to perform various malicious tasks, such as

keeping control of an Internet Relay Chat (IRC) channel, sending spam emails

or participating in distributed denial-of-service attack attacks (Ramneek,

 22

2. LITERATURE REVIEW

2003). The word botnet stems from the two words robot and network. For

example, Storm Botnet (Holz et al., 2008).

2.2.2 Type of Worms

Worms can be classified in different ways according to target discovery

schemes, transmission schemes, payloads, intents of worm developer and on

the basis of worm outbreaks as follows:

2.2.2.1 Based on Target Finding Schemes

Target discovery refers to mechanisms by which a worm discovers new targets

to infect. Schemes can be classified into: scanning, hit-list warhol and flash.

• Scanning worm: A scanning worm employs different scanning

strategies (random, sequential, permutation etc.) to spread. Scanning

refers to the process of probing a set of IP addresses to identify

vulnerable hosts. For example, SQL slammer (Moore et al., 2003),

Nimda (CERT: Nimda Worm, 2001), Code Red (CERT: Code Red,

2001) are random scanning worms. Following are different basic forms

of scanning which a worm will employ:

o Sequential: Working through an address block using an

ordered set of IP addresses.

o Random: Generating IP addresses out of a block in a pseudo-

random fashion.

o Permutation: This is a type of scanning where worm instances

coordinate between themselves so that each instance scans a

disjoint set of the address space.

These basic forms of scanning can be aggregated to form more

complex schemes as follows:

o Importance scanning worm: A worm employing this

technique spreads in two phases: in the first phase, random or

routing scanning is used to build an initial distribution of

vulnerable hosts and then in the second phase, it uses

importance sampling technique to reduce the number of scans

and attacks a large number of vulnerable hosts rapidly (Chen

and Ji, 2005).

 23

2. LITERATURE REVIEW

o Topological worm: A topological scanning worm uses an

internal target list which is created by finding local information

on networks such as the /etc/hosts file on UNIX hosts, or local

topological information by using ARP cache tables and netstat

(Weaver et al., 2003).

o BGP scanning worm: A BGP routing worm uses BGP

scanning techniques which employ BGP routing tables to

narrow the scanning addresses space. This type of worm is

capable of targeting particular hosts within specific geographic

location such as a specific country, ISP or autonomous system

and can spreads 2 to 3 times faster than traditional random

scanning worms (Zou et al., 2005).

o Search worms/ meta-server worm: A meta-server worm uses

an externally generated target list of vulnerable hosts, which is

maintained by a separate server, such as a matchmaking

service’s meta-server e-g. Gamespy (Gaespy Archade, 1999) or

web searches using Google in order to find vulnerable targets.

o Passive worm: Passive worm does not scan potential victims

instead it waits for target machines to contact the machine

where it resides. For example; Gnuman (Eset: Win32/Gnuman,

2008), CRClean (Weaver et al., 2003) etc.

o Hit-list worm: A worm that employs a pre-generated list of

vulnerable IP addresses to infect can be classified as hit-list

worm, such as Witty (Shannon and Moore, 2004). Witty uses

multiple spreading strategies including initial hit-list, botnet and

random scanning.

o Warhol worm: A Warhol worm (Staniford, Paxson and

Weaver, 2002) is a hypothetical very fast spreading worm that

uses a combination of a hit-list (which helps initial spread) and

permutation scanning (which keeps its infection rate higher than

random scanning).

o Flash worm: Staniford et al. (Staniford et al., 2004) proposed

an extension of the Warhol worm which they named the Flash

worm. The flash worm contains an initial global size hit-list.

 24

2. LITERATURE REVIEW

They hypothesized that a UDP based flash worm could infect

95 percent of one million vulnerable hosts in 510 ms, while a

TCP based flash worm could infect the same population in 1.3s.

2.2.2.2 Based on Transmission Schemes

The transmission scheme is a mechanism that a worm employs to transmit

itself to target hosts. A worm can employ either transmission control protocol

(TCP) or user datagram protocol (UDP) to transmit itself. TCP is a connection

oriented protocol and requires a 3-way handshake before connection

establishment, while UDP is a connectionless protocol.

• TCP based worm: A TCP based worm uses transmission control

protocol (TCP) as its transmission mechanism such as Code Red

(CERT: Code Red, 2001). A TCP based worm tends to have greater

latency than a UDP based worm as it uses a 3 way handshake for

connection establishment.

• UDP based worm: A UDP based worm uses user datagram protocol

(UDP) as its transmission mechanism such as SQL Slammer (Moore et

al., 2003). UDP worms are bandwidth limited and are generally

capable of spreading faster than TCP based worms.

2.2.2.3 Based on Payloads

Payload refers to the actual code carried by the worm apart from the

propagation routines. The worm payload can be used to perform different

functions such as using the target host as a spam relay as in the case of the

Sobig worm (CERT: W32/Sobig.F Worm, 2003), employing the target hosts

as HTML proxy as in the case of Sobig (CERT: W32/Sobig.F Worm, 2003),

creating a denial of service (DOS) attack against target hosts to deny legitimate

services, such as the W95/firkin.wom attack against 911 servers (McAffe:

W95/firkin.worm, 2000), or cyber warfare by creating physical world damage

such as Stuxnet (Falliere and Murchu, 2011) that has an ultimate goal to

sabotage Iranian nuclear facilities by reprogramming programmable logic

controllers (PLCs) in infected SCADA systems.

Based on worm payload itself, a worm can be classified into the following

three categories (Li, Salour and Su, 2008):

 25

2. LITERATURE REVIEW

• Monomorphic worm: A monomorphic worm uses a monomorphic

payload that does not change during worm propagation and exhibits a

consistent signature (Li, Salour and Su, 2008). A monomorphic

payload can easily be detected by a signature-based detection system

for non-zero day worms. Some monomorphic worms use a variable

size payload in different instances by padding the payload with garbage

data, but the same common signature usually applies.

• Polymorphic worms: Polymorphic worms use a polymorphic payload

which changes itself by scrambling the program in different worm

instances, whilst functioning in the same way. A traditional signature

based detection systems will not usually detect such polymorphic

worms (Li, Salour and Su, 2008). However, it may be possible to

define a signature based on a common part of such a worm binary or

another characteristic of the payload (see section 2.3.2).

• Metamorphic worms: Metamorphic worms use a metamorphic payload

which changes itself and its behavior by using encryption in different

instances of the worm (Li, Salour and Su, 2008). It is even harder to

detect metamorphic worms using signature-based techniques than

polymorphic worms.

2.2.2.4 Based on Intent of Worm Developer

Worms can be classified based on the intentions of the worm developer as

follows:

• Harmful worm: A worm can be considered harmful if the intention of

the worm writer was malicious or harmful, such as disrupting network

services, physical world damage, physical world DOS, economic

sabotage, terrorism, or cyber warfare etc. For example, Slammer, Code

Red, Witty, Stuxnet etc. are all considered harmful worms.

• Beneficial worm: A beneficial worm, defensive worm, or anti-worm

can be released with the intent of patching the vulnerabilities which can

be exploited by a harmful worm. However, a beneficial worm is illegal

as it patches network hosts without permission of the owner. For

example, Welchia worm (Symantec: W32.Welchia.Worm, 2003),

CRClean (Weaver et al., 2003) etc.

 26

2. LITERATURE REVIEW

2.2.2.5 Based on Existence "In the Wild"

Worms can be classified based on worm outbreaks as follows:

• Existing Implemented worm: An existing implemented worm is one

that has been released "In the Wild" on the Internet. For example, SQL

slammer, Witty, Code Red etc.

• Hypothetical worm: A hypothetical worm is one that is only proposed

and not released. For example, the importance scanning worm, the

BGP routing worm, the flash worm and the Warhol worm.

Table 2.1 summaries the different types of worms as described in section 2.2.2.

Table 2-1 Types of Worms

Type of Worms

Based on Target

Discovery

Scanning

worms

Random

Sequential

Permutation

Importance

Topological

BGP Scanning

Search worms/ meta-server worm

Passive worms

Hit-list worms

Warhol worm

Flash Worms

Based on Transmission

Scheme

TCP based worms

UDP based worms

Based on Payloads Monomorphic worms

Polymorphic worms

Metamorphic worms

Based on Intent of

Worm Developer

Harmful worms

Beneficial Worms

Based on Outbreaks Exiting Implemented worms

Hypothetical worms

27

2. LITERATURE REVIEW

2.2.3 Major Worm Outbreaks

Table 2.2 summarizes the major worm outbreaks along with their different attributes (Li, Salour and Su, 2008), (Xiang, Fan and Zhu, 2009),

(Falliere and Murchu, 2011):

Table 2-2 Major Worm Outbreaks

Major Worm Outbreaks

Worm Year of Release Target Finding

Scheme

Propagation

Scheme

Payload Format Platform/ Service Port Vulnerability

Morris November 1988 Random scanning TCP Monomorphic DECX, Sun 3/

sendmail, finger

25,79 Buffer overflow

vulnerability

Code Red I July 2001 Random scanning TCP Monomorphic Microsoft IIS web

service

80 Buffer Overflow In

IIS Indexing Service

DLL vulnerability

Code Red II August 2001 Local subnet

scanning

TCP Monomorphic Microsoft IIS web

service

80 Buffer Overflow In

IIS Indexing Service

DLL vulnerability

Nimda September 2001 Random scanning,

Network shares,

Passive

TCP , UDP Monomorphic Windows 95, 98,

Me, NT, 2000, XP,

Microsoft IIS web

service

80 Microsoft IIS 4.0 /

5.0 directory

traversal

vulnerabilities

Slammer January 2003 Random scanning UDP Monomorphic Microsoft SQL

Server 2000

1434 Buffer overflow

vulnerability

28

2. LITERATURE REVIEW

Witty March 2004 Random scanning,

Hit-list,Botnet

UDP Monomorphic Internet Security

Systems ISSs

Random destination

port

ISS protocol analysis

module (PAM)

vulnerability

Sasser April 2004 Second channel TCP Monomorphic Windows 2000/

Security Authority

Subsystem Service

(LSASS)

445,9996 Buffer overflow

vulnerability

Conficker November 22, 2008 Local network

scanning,

Nearby other

infected hosts.

Random scanning,

TCP Monomorphic Windows 2000,XP,

Server 2003, Vista,

Server 2008

445 Windows Server

service(MS08-067)

Stuxnet June 2010 USB,P2P RPC,

Network shares,

Botnet

TCP, UDP, RPC Monomorphic Windows, Siemens

PCS 7, WinCC and

STEP7 industrial

software applications

that run on

Windows, Siemens

S7 PLCs

80 to contact C&C

server

MS10-046 .LNK

Vulnerability,

MS10-061 Print

Spooler

Vulnerability,

MS10-073 Win32k

Keyboard Layout

Vulnerability, Un-

patched Task

Scheduler

Vulnerability,

MS08-067 Windows

29

2. LITERATURE REVIEW

Server Service

vulnerability,

Hardcoded username

and password in

WinCCMSSQL

database,

DLL preloading

attack in Step 7

Project files,

Windows rootkit to

hide Windows

binaries

 30

2. LITERATURE REVIEW

2.2.4 Wormable Vulnerabilities

A wormable vulnerability is the vulnerability which worms exploit in order to

propagate (Nazario, Ptacek and Song, 2004). According to Luc et al. (Tidy et

al., 2014), a wormable vulnerability can be summarized in the Boolean

equation (2.1), where a wormable vulnerability, Vw, is determined by not

requiring human interaction, H, is network reachable, Nr, provides remote

code execution, R, and provides network access Na once exploited.

 Vw = H' • Nr • R • Na (2.1)

Luc et al. reports that there are a number of resources that focus on providing

details for known vulnerabilities. One such source is the Common

Vulnerabilities and Exposures (CVE) system (CVE - Common Vulnerabilities

and Exposures, 2014), which provide details for a range of vulnerabilities. The

CVE system reports the access vector, for instance if the vulnerability is

network reachable or requires human interaction, and the impact if the

vulnerability were to be exploited, for instance providing remote code

execution or network access. These details provide information in order to

assess whether a vulnerability is wormable or not.

Luc et al. (Tidy et al., 2014) reports five wormable vulnerabilities along with

their CVE code (CVE - Common Vulnerabilities and Exposures, 2014), which

have the potential to be used as worm exploit on a large sale on the Internet as

detailed below:

• Microsoft Remote Desktop Protocol (RDP) - 13/03/2012 - CVE-

2012-0002: The Microsoft RDP is an application for users to remotely

access window based hosts in a network. This vulnerability was present

in Microsoft Windows XP SP2 and SP3, Windows Server 2003 SP2,

Windows Vista SP2, Windows Server 2008 SP2, R2, and R2 SP1, and

Windows 7 Gold and SP1. This vulnerability allows an attacker to send

a crafted packet on port 3389 to the host running vulnerable RDP

implementation, and then potentially gain remote code execution,

finally allowing attacker to send copies of the malicious packet across

 31

2. LITERATURE REVIEW

the network. W3Counter (W3Counter, 2014) reports that these recent

editions of Windows amount to approximately 3 billion Internet

connected hosts in 2012. The RDP application is disabled by default

and needs to be enabled manually. One estimate for the number of

RDP enabled hosts is one in every 10,000 or 3000,000 hosts

(KrebsonSecurity, 2012); which is exactly similar to proportion of

vulnerable hosts to the Code Red worm outbreak in 2001 (Zou, Gong

and Towsley, 2002). Such a large proportion of hosts could result in a

virulent worm outbreak.

• BigAnt Message Server- 09/01/2013 - CVE-2012-6275: The BigAnt

instant messaging (IM) software is an instant messaging solution

targeted towards business use. The attacker can cause buffer overflow

by exploiting this vulnerability and is able to send a crafted packet to

execute remote code on the targeted host. As the software links with

active directly, it can lead to comprise of all user accounts and thereby,

having potentially wider impact than just the host running the message

server. Although this vulnerability lack the install base like Microsoft

RDP vulnerability CVE-2012-0002, but this is of particular note owing

to its use in a corporate setting, as well as potentially allowing access to

further details which can be used to comprise hosts with active directly

user accounts details and thereby allowing remote code execution on

hosts. This process can also leads to create an initial hit-list of

comprised hosts.

• VMWare vCenter - 25/04/2013- VMSA-2013-0006.1: VMWare

vCenter is a management platform for VMware ESXi server running

virtualised hosts. VMWare vCenter is installed on Windows Server. A

number of CVEs reported under the VMWare security advisory

VMSA-2013-006.1 (VMware Security Advisories, 2013) which detail

how an attacker may leverage Microsoft Active Directory integration

in order to gain authentication on Windows-based servers running

VCenter (CVE-2013-3107), and then use this authentication in order to

execute remote code using another vulnerability (CVE-2013-3079).

This access grants the attacker administrative privileges to the host

 32

2. LITERATURE REVIEW

system, allowing the attacker to then send copies of the malicious

packets to other susceptible hosts. As VMware is being the largest

vendors of software, a vulnerability in VMWare management software

presents a scenario where a substantial number of management hosts

may be susceptible to an attack, while also providing further access to

the virtualised hosts, currently running on it. Although this

vulnerability has since been patched by VMware, however, it

demonstrates that virtualisation can present a potential scenario for

future virulent worm outbreak.

• ASUS RT-AC66U Router - 26/07/2013- CVE-2013-4659: The ASUS

RT-AC66U router has a vulnerability in the Broadcom ACSD service

that allows an attacker to send a crafted packet on port 5916 by causing

a buffer overflow attack, allowing administrative access on the target

host with the ability for remote code execution and sending copies of

the malicious packet to other susceptible hosts. This vulnerability

demonstrates that network devices such as routers, switches etc. can

also leads to potential worm outbreak.

• systemd 208 and prior - 20/09/2013- CVE-2013-4391: systemd is a

system management service, or daemon, designed specifically for

Linux-based operating systems, and forms part of the Linux start-up

process. CVE-2013-4391 allow an attacker to cause buffer overflow by

using a crafted packet, resulting in allowing remote code execution. In

addition with another vulnerability (CVE-2013-4394),an attacker can

gain administrative access, therefore allowing network access to send

copies of the malicious packets to other susceptible hosts. This

vulnerability demonstrates that other operating system such as Linux,

aside from Windows, can also be subject to a wormable vulnerability.

2.2.5 Windows XP Opportunity

It has been estimated that Windows XP still constitutes 23.87% of all

operating systems installed on desktop hosts (Net Market Share: Desktop

operating system market share, 2014) while a keyword "Windows XP" search

on Shodan search engine shows 7952 Windows XP live hosts, running

different services, are still connected to the Internet. As of the 8th April 2014

 33

2. LITERATURE REVIEW

extended support for Windows XP was discontinued, thereby, disallowing free

support and security patches. Only what is termed “critical patches” will be

made available to paying customers. Additionally, the built-in anti-malware

tools i.e. Security Essentials and the Malicious Software Removal Toolkit will

no longer be supported after the 14th July 2015. Given its lack of support, if

any wormable vulnerability will exist on Windows XP, it increase the

likelihood of future potential worm outbreak. This presents a particular

scenario, as SQL Slammer was able to cause disruption with less than 1% of

the hosts at the time being susceptible to its infection vector, therefore it is

reasonable that should a Windows XP vulnerability be exploited by a

Slammer-like attack, it could cause significant network disruption.

2.3 Worm Detection and Prevention Mechanisms

Worm detection and prevention has emerged as an active area of research over

the last few years. Researchers have proposed various techniques for worm

detection, mitigation and containment. Worm detection and prevention

mechanisms can be classified into the following general categories as set out

by Porras et al. (Porras et al., 2004) and Ziyad AL-Salloum (Ziyad, 2011):

� Resource Limiting (RL) or Containment solutions

� Automatic Signature Generation (ASG) solutions

� Behaviour Signature Detection (BSD) solutions

� Leap Ahead (LA) solutions

� Predesigned-Preventative (PP) solutions

� Mobile Combat (MC) solutions

� Hybrid Quarantine Defense (HQD) solutions

� Defensive Worms (DW) solutions

2.3.1 Resource Limiting (RL) solutions

Resource Limiting (RL) solutions explore ways in which local hosts or

gateways may delay worm propagation through limiting the availability of

resources that fast spreading worms are known to consume at high rates. For

example; IP throttling (Williamson, 2002), failed-connection-based scheme

 34

2. LITERATURE REVIEW

(Chen and Tang, 2004), credit-based rate limiting (Schechter, Jung and Berger,

2004), DNS based rate limiting (Wong et al., 2005).

2.3.1.1 Williamson’s IP Throttling

Williamson’s IP throttling scheme (Williamson, 2002) is based on the

observation that during scanning worm propagation, an infected host will

connect to as many different hosts as possible in unit time. An uninfected host

has a different behaviour: outgoing connections are made at a lower rate, and

are locally correlated (repeat connections to recently accessed hosts are likely.

For example, web servers, file servers). His theory is based on the principle

that restricting host-level contact rates to unique IP addresses can limit rapid

connections to random addresses (e.g. worm traffic).

Williamson accomplished this by keeping a working set of addresses for each

host, which models the normal contact behaviour of the host. The throttling

mechanism permits outgoing connections for addresses in the working set, but

delays other packets by placing them in a delay queue. If the delay queue is

full, further packets are simply dropped. The packets in the delay queue are

dequeued and processed at a constant rate (Williamson suggests, one per

second). At the same rate, the least recently used address in the working set is

removed to make room for the new connection. As a result, connections to

frequently contacted addresses are allowed through with a high probability

while connections to random addresses (such as those initiated by scanning

worms) are likely to be delayed and possibly dropped. The size of the working

set and the delay queue are important considerations for this scheme. A larger

working set permits a higher contact rate while the delay queue length

determines how liberal (or restrictive) the scheme is. Williamson recommends

a five-address working set and a delay queue length of 100 for host-based

implementations.

Williamson proposed that the worm throttle could be implemented on the

Windows platform, using a similar architecture to that used by “personal

firewall” software as shown in the figure 2.1. The network software of a PC

has a layered architecture while the filter is best implemented as an extra layer,

 35

2. LITERATURE REVIEW

or shim. Hence, all the traffic from the host can be processed by the filter. The

logical way to implement the delays is to delay the initial connection attempt

(e.g. the first SYN packet of the connect handshake in TCP). Since no packets

will leave the host while a connection is being delayed, any networking

timeouts will not be a problem. If the malicious code sets its own timeout and

restarts connection attempts, these will be added to the queue.

When an host is infected by a worm which is attempting to propagate rapidly,

the filter can detect this very quickly by monitoring the size or rate of increase

of the delay queue. A suitable response action is then to suspend the offending

application and pop up a window to alert the user. A windows service is

necessary for this functionality. This has two important functions: firstly the

spreading of the worm is stopped (the process in suspended); and secondly the

user can (hopefully) determine whether this is a real problem or an error.

Figure 2-1 Williamson IP throttling implementation in Windows (Williamson,

2002)

Williamson’s IP throttling can be deployed at an end-host as well as within an

edge-based router. But, its deployment as edge-based rate limiting exhibits

significantly higher false positive rates during normal operation. This is

primarily due to the fact that aggregate throttling penalizes hosts with atypical

traffic patterns, thereby contributing to a higher false positive rate. A possible

solution is to increase the working set size at the edge to reduce the false

positives, but false negatives will increase accordingly. Hence, Williamson’s

 36

2. LITERATURE REVIEW

throttling is best suited for end-host rate limiting where behaviour of the host

is somewhat predictable.

2.3.1.2 Chen et al. Failed Connection Based Rate Limiting (FC)

Chen et al. proposed a distributed anti-worm architecture (DAW) that

automatically slows down or even halts the worm propagation (Chen and

Tang, 2004). Their rate limiting scheme is based on the assumption that a host

infected by a scanning worm will generate a large number of failed TCP

requests. When a source host makes a connection request, a SYN packet is

sent to a destination address. The connection request fails if the destination

host does not exist or is not listening on the port that the SYN is sent to. In the

former case, an ICMP host-unreachable packet is returned to the source host;

in the latter case, a TCP RESET packet is returned provided that a network

firewall or router in the traffic path do not drop ICMP unreachable and TCP

RESET packets. So this scheme attempts to rate limit hosts that exhibit such

behaviour.

The failed connection rate limiting mechanism proposed by Chen et al. is

designed to be deployed at the edge router of an ISP which consists of two

software components: a DAW agent that is deployed on all edge routers of the

ISP and a management station that collects data from the agents as illustrated

in figure 2.2. Each agent monitors the connection-failure replies sent to the

customer network that the edge router connects to. It identifies the potential

offending hosts and measures their failure rates (The rate of failed connection

request from a host is called the failure rate, which can be measured by

monitoring the failure replies that are sent to it). If the failure rate of a host

exceeds a pre-configured threshold, the agent randomly drops a minimum

number of connection requests from that host in order to keep its failure rate

under the threshold. Chen defined a basic rate-limit algorithm and a temporal

rate-limit algorithm to constrain any worm activity to a low level over the long

term, while accommodating the temporary aggressive behaviour of normal

hosts.

 37

2. LITERATURE REVIEW

Figure 2-2 Distributed Anti-Worm Architecture (Chen and Tang, 2004)

The basic FC algorithm focuses on a short-term failure rate; λ. Chen

recommends a λ value of one failure per second. Once a hash entry exceeds λ,

the rate limiting engine attempts to limit the failure rate of each host in the

entry to at most λ, using a leaky bucket token algorithm—a token is removed

from the bucket for each failed connection and every λ seconds a new token is

added to the bucket. Once the bucket for a particular host is empty, further

connections from that host are dropped. Temporal FC attempts to limit both

the short term failure rate λ and a longer term rate Ω. Chen suggested Ω be a

daily rate and λ a per second rate. The value of Ω is intended to be

significantly smaller than λ * (seconds in a day). Hosts in a hash table entry are

subjected to rate limiting if the failure rate of the entry exceeds λ per second or

Ω per day. The objective of temporal FC is to catch prolonged but somewhat

less aggressive scanning behaviour—worms that spread under the short-term

rate of λ.

Wong et al. (Wong et al., 2005) have shown from experimental data that

temporal FC is more restrictive and result in higher false positives as compared

to other rate limiting mechanisms (Schechter, Jung and Berger, 2004) , (Wong

et al., 2005). One other limitation of Failed Connection Based Rate Limiting

(FC) is that it does not address the worm activity within the local customer

network. A worm-infected host is not restricted in any way from infecting

other vulnerable hosts on the same customer network.

 38

2. LITERATURE REVIEW

2.3.1.3 Schechter et al. Credit-based Rate Limiting (CB)

Schechter et al. (Schechter, Jung and Berger, 2004) proposed a credit-based

rate limiting mechanism that is based on the observation that a worm infected

host has a high rate of failed first contact connections. This technique performs

rate limiting exclusively on first contact connections—outgoing connections

for destination IPs that have not been visited previously while it also considers

both failed and successful connection statistics. Simply described, CB

allocates a certain number of connection credits per host; each failed first-

contact connection depletes one credit while a successful one adds a credit. A

host is only allowed to make first-contact connections if its credit balance is

positive. CB maintains a Previously Contacted Host (PCH) list for each host in

order to determine whether an outgoing TCP request is a first contact.

Additionally, a failure credit balance is maintained for each host. Schechter

suggested a 64 address PCH and a 10 credit initial balance.

Wong et al. (Wong et al., 2005) conclude that CB limits the first-contact

failure rate at each host, but does not restrict the number of successful

connections if the credit balance remains positive. Further, non-first-contact

connections (typically legitimate traffic) are permitted through irrespective of

the credit balance. Consequently, a scanning worm producing a large number

of failed first contacts will quickly exhaust its credit balance and be contained.

Legitimate applications typically contact previously seen addresses, and

thereby are largely unaffected by the rate limiting mechanism.

2.3.1.4 Wong et al. DNS-Based Rate Limiting

Wong et al. proposed a DNS-based rate limiting mechanism (Wong et al.,

2005) that is based on the rationale that worm activity shows visibly different

DNS statistics from those of legitimate applications. For instance, the non-

existence of DNS lookups is a tell-tale sign for scanning activity. The DNS

rate limiting scheme proposed by Wong et al. states that for every outgoing

TCP SYN packet, the rate limiting scheme permits it through if there exists a

prior DNS translation for the destination IP address, otherwise the SYN packet

is rate limited. The algorithm uses a cascading bucket scheme to contain

untranslated IP datagrams. A graphical illustration of the algorithm is shown in

Figure 2.3.

 39

2. LITERATURE REVIEW

In this scheme, there exists a set of n buckets, each capable of holding q

distinct IP addresses. The buckets are placed contiguously along the time axis

and each spans a time interval t. The algorithm works as follows: When a TCP

SYN packet is sent to an address that does not have a prior DNS translation,

the destination IP address is added into the bucket for the current time interval

and the packet is delayed.

Figure 2-3 Cascading bucket Rate limiting scheme (Wong et al., 2005)

When a bucket is filled with q distinct IP addresses, new connection requests

are placed into the subsequent bucket, thus each bucket cascades into the next

one. Requests in the i-th bucket are delayed until the beginning of the i+1 time

interval. The n-th bucket, the last in line, has no overflow bucket and once it is

full, new TCP SYN packets without DNS translations are simply dropped. At

the end of the n*t time periods, another n buckets are reinstated for the next

n*t time period. This algorithm permits a maximum of q distinct IP addresses

(without DNS translations) per time interval t and packets (if not dropped) are

delayed at most n*t.

This scheme can be implemented at the host level or at the edge router of a

network. A host-level implementation requires keeping DNS-related statistics

on each host. An edge-router-based implementation would require the border

router to keep a shadow DNS cache for the entire network.

 40

2. LITERATURE REVIEW

An attacker can attempt to circumvent the DNS rate limiting mechanism in a

number of ways: First, a worm could use reverse DNS-lookups (PTR lookups)

to “pretend” that it has received a DNS translation for a destination IP. Jung et

al. (Jung et al., 2002) characterizes that PTR lookups are primarily for

incoming TCP connections or lookups related to reverse blacklist services.

These types of lookups can be easily filtered and not considered as valid

entries in the DNS cache. In addition, a PTR lookup prior to an infection

attempt will significantly reduce the infection speed. Second, an attacker could

setup a fake external DNS server and issue a DNS query for each IP. This

threat can be alleviated by establishing a “white-list” of legitimate external

DNS servers. Also, the attacker needs a server with a substantial bandwidth to

accommodate the scan speed, which is not trivial.

One limitation of the DNS-based rate limiting scheme proposed by Wong et al.

is that it looks only for TCP datagrams as the connection initiation and does

not consider UDP based traffic. If a worm were to use UDP (such as SQL

slammer), the DNS-based rate liming as set out will not be effective.

2.3.2 Automatic Signature Generation (ASG) solutions

Automatic Signature Generation (ASG) solutions refer to approaches which

filter incoming traffic to a network and generate signatures on detecting

anomalous activity (such as a network worm). For example; Autograph (Kim

and Karp, 2004), Earlybird (Singh et al., 2004), Polymorphic Worm Detection

Using Structural Information of Executables (Kruegel et al., 2005), PAYL

(Wang, Cretu and Stolfo, 2005), PolyS (Paul and Mishra, 2013), LESG (Wang

et al., 2010), An Automated Signature Generation Method for Zero-day

Polymorphic Worms Based on Multilayer Perceptron Model (Mohammed et

al., 2013) etc.

2.3.2.1 Autograph: Towards Automated, Distributed Worm Signature

Detection

Kim and Karp (Kim and Karp, 2004) proposed a system which they named

Autograph, that automatically generates signatures for novel Internet worms

that propagate using TCP transport. Autograph generates signatures by

 41

2. LITERATURE REVIEW

analysing the prevalence of portions of flow payloads, and thus uses no

knowledge of protocol semantics above the TCP level. It is designed to

produce signatures that exhibit high sensitivity (high true positives) and high

specificity (low false positives). Kim et al. extend Autograph to share port scan

reports among distributed monitor instances, and using trace-driven

simulation, demonstrate the value of this technique in speeding the generation

of signatures for novel worms. Their results elucidate the fundamental trade-

off between early generation of signatures for novel worms and the specificity

of these generated signatures.

Autograph automatically, without foreknowledge of a worm’s payload or time

of introduction, detects the signature of any worm that propagates by randomly

scanning IP addresses. Kim and Karp assumed that the system monitors all

inbound network traffic at an edge network’s DMZ. Autograph consists of

three interconnected modules: a flow classifier, a content-based signature

generator, and tattler- a protocol through which multiple distributed Autograph

monitors may share information, in the interest of speeding detection of a

signature that matches a newly released worm. Figure 2.4 shows the

architecture of the autograph monitor as proposed by Kim and Karp.

Figure 2-4 Architecture of an Autograph Monitor (Kim and Karp, 2004)

The input of a single Autograph monitor is all traffic crossing the DMZ of an

edge network, and its output is a list of worm signatures. There are two main

stages in a single Autograph monitor’s analysis of traffic. First, a suspicious

flow selection stage uses heuristics to classify inbound TCP flows as either

suspicious or non-suspicious. After classification, packets for these inbound

 42

2. LITERATURE REVIEW

flows are stored on disk in a suspicious flow pool and non-suspicious flow

pool, respectively. Further processing occurs only on payloads in the

suspicious flow pool. Thus, flow classification reduces the volume of traffic

that must be processed subsequently. Kim et al. use a simple port-scanner

detection technique as a heuristic to identify malicious traffic; they classify all

flows from port-scanning sources as suspicious.

Autograph stores the source and destination addresses of each inbound

unsuccessful TCP connection it observes. Once an external host has made

unsuccessful connection attempts to more than s internal IP addresses, the flow

classifier considers it to be a scanner. All successful connections from an IP

address flagged as a scanner are classified as suspicious, and their inbound

packets written to the suspicious flow pool, until that IP address is removed

after a timeout (24 hours in the current prototype). Autograph next selects the

most frequently occurring byte sequences across the flows in the suspicious

flow pool as signatures. To do so, it divides each suspicious flow into smaller

content blocks, and counts the number of suspicious flows in which each

content block occurs. Kim and Karp term this count a content block’s

prevalence, and rank content blocks from most to least prevalent. The intuition

behind this ranking is that a worm’s payload appears increasingly frequently as

that worm spreads. When all worm flows contain a common, worm-specific

byte sequence, that byte sequence will be observed in many suspicious flows,

and so will be highly ranked. The content block with the greatest prevalence is

chosen as signature.

The following are some of the limitations of this approach:

• Overload: Autograph reassembles suspicious TCP flows. Flow

reassembly is costly in state in comparison with processing packets

individually, but defeats the subterfuge of fragmenting a worm’s

payload across many small packets. If Autograph tries to reassemble

every incoming suspicious flow, it may be susceptible to a DoS attack.

• Source-address-spoofed port scans: Source spoofed port scans can be

used to mount different attacks, more specific to Autograph: the Tattler

 43

2. LITERATURE REVIEW

mechanism must carry report traffic proportional to the number of port

scanners. An attacker could attempt to saturate tattler’s bandwidth limit

with spoofed scanner source addresses, and thus render tattler useless

in disseminating addresses of true port scanners. A source-spoofing

attacker could also cause a remote source’s traffic to be included by

Autograph in signature generation.

• Hit-list Scanning: If a worm propagates using a hit-list, rather than by

scanning IP addresses that may or may not correspond to listening

servers, Autograph’s port-scan-based suspicious flow classifier will fail

utterly to include that worm’s payloads in signature generation.

2.3.2.2 Automated Worm Fingerprinting using Earlybird

Singh et al. (Singh et al., 2004) proposed an automated worm fingerprinting

mechanism named Earlybird which detects previously unknown worms and

viruses based on two key behavioural characteristics: a common exploit

sequence together with a range of unique sources generating infections and

destinations being targeted. Singh et al. named their detection approach as

content sifting as it automatically generates precise signatures that can then be

used to filter or moderate the spread of the worms in the network. Content

sifting, is based on two observations: first, that some portion of the content in

existing worms is invariant- typically the code exploiting a latent host

vulnerability - and second, that the spreading dynamics of a worm are atypical

of Internet applications. Simply stated, it is rare to observe the same string

recurring within packets sent from many sources to many destinations. By

sifting through network traffic for content strings that are both frequently

repeated and widely dispersed, we can automatically identify new worms and

their precise signatures.

The Earlybird system consists of two major components: sensors and an

aggregator. Each sensor sifts through traffic on configurable address space

“zones” of responsibility and reports anomalous signatures. The aggregator

coordinates real-time updates from the sensors, coalesces related signatures,

activates any network-level or host level blocking services and is responsible

for administrative reporting and control. Earlybird is implemented in C

programming language and the aggregator also uses the MySQL database to

 44

2. LITERATURE REVIEW

log all events, the rrd-tools library for graphical reporting, and PHP scripting

for administrative control. Finally, in order to automatically block outbreaks,

the Earlybird system automatically generates and deploys precise content-

based signatures formatted for the Snort inline intrusion prevention system.

The prototype of an Earlybird sensor was executed on a 1.6 GHZ AMD

Opteron server configured with a standard Linux 2.6 kernel. The server was

equipped with two Broadcom Gigabit copper network interfaces for data

capture. The Earlybird sensor itself is a single threaded application which

executes at user-level and captures packets using the libpcap library.

The Earlybird system has the following limitations:

• If content sifting were to be widely deployed this could create an

incentive for worm writers to design worms with little or no invariant

content. For example, polymorphic worms encrypt their content in each

generation and so-called “metamorphic worms” have even

demonstrated the ability to mutate their entire instruction sequence

with semantically equivalent, but textually distinct code.

• As an attacker may attempt to evade content sifting algorithms by

creating metamorphic worms, he may also attempt to evade Earlybird

monitoring through traditional IDS evasion techniques.

2.3.2.3 Polymorphic Worm Detection using Structural Information of

Executables

Kruegel et al. (Kruegel et al., 2005) proposed a worm detection technique that

detects polymorphic worms. A polymorphic worm is one that mutates as it

spreads across the network. This detector technique is based on the structural

analysis of binary code that allows one to identify structural similarities

between different worm mutations. The approach is based on the analysis of a

worm’s control flow graph and introduces an original graph colouring

technique that supports a more precise characterization of the worm’s

structure. The technique has been used as a basis to implement a worm

detection system that is resilient to many of the mechanisms used to evade

approaches based on instruction sequences only.

 45

2. LITERATURE REVIEW

Polymorphic worms are able to change their binary representation as part of

the spreading process. This can be achieved by using self-encryption

mechanisms or semantics-preserving code manipulation techniques. As a

consequence, copies of a polymorphic worm might no longer share a common

invariant substring of sufficient length as observed by Singh et al. (Singh et al.,

2004)and the existing systems will not recognize the network streams

containing the worm copies as the manifestation of a worm outbreak.

Kruegel et al. observed the fact that some parts of worms contain executable

machine code. While it is also possible that certain regions of the code are

encrypted, others have to be directly executable by the processor of the victim

host (e.g. there will be a decryption routine to decrypt the rest of the worm).

Based on this assumption, Kruegel et al. analyze network flows for the

presence of executable code. If a network flow contains no executable code,

they discard it immediately. Otherwise, they derive a set of fingerprints for the

executable regions by using control flow graph extraction and graph coloring

techniques.

The worm detection technique presented by Kruegel et al. has the following

limitations:

• Firstly, worms that do not use executable code (e.g. worms written in

non-compiled scripting languages, for example, Net-Worm:

W32/Santy.A (F-Secure: Net-Worm:W32/Santy.A, 2004), written in

Perl,JS.Gigger.A@mm (Symantec: JS.Gigger.A@mm, 2002), written

in JavaScript) will not be detected by their worm detection system.

• Secondly, the proposed prototype of Kruegel et al. operates on offline

data. But this technique has one distinct advantage over Autograph

(Kim and Karp, 2004) and Earlybird (Singh et al., 2004) as it detects

polymorphic worms which other techniques are not designed to detect.

 46

2. LITERATURE REVIEW

2.3.2.4 Anomalous Payload-based Worm Detection and Signature

Generation

Wang et al. (Wang, Cretu and Stolfo, 2005) proposed a worm detection

system, which they named PAYL, for the detection of zero-day worms. The

principle behind PAYL is that a new zero-day attack will have content data

never before seen by the victim host, and will likely appear quite different

from normal data and be deemed anomalous. The approach proposed by Wang

et al. is based on ingress/egress anomalous payload correlation, and uses no

scan or probe information. The key idea is that a newly infected host will

begin sending outbound traffic that is substantially similar (if not exactly the

same) as the original content that attacked the victim (even if it is fragmented

differently across multiple packets). Correlating ingress/egress anomalous

payload alerts can detect worm propagation and stop the worm spread from the

very moment it first attempts to propagate itself, instead of waiting until the

volume of outgoing scans suggests full-blown propagation attempts.

Although PAYL is a fully automatic, “hands-free” online anomaly detection

sensor system but it has following limitations:

• PAYL is not a real time system and is based on analysing network

traces.

• The range of worms tested by Wang et al. is limited in number and

scope.

2.3.2.5 PolyS: Network-based Signature Generation for Zero-day

Polymorphic Worms

Paul and Mishra (Paul and Mishra, 2013) proposed PolyS, a network based

automated signature generation scheme to thwart zero-day polymorphic

worms. They presented a novel architecture for successfully matching a

polymorphic worm payload that reduces the noise in the suspicious traffic

pool, thus enhancing the accuracy of worm’s signature and a signature

generation algorithm for successfully matching polymorphic worm payload

with higher speed and memory efficiency.

 47

2. LITERATURE REVIEW

2.3.2.6 LESG: Thwarting Zero-Day Polymorphic Worms With Network-

Level Length-Based Signature Generation

Wang et al. (Wang et al., 2010) proposed network-based length-based

signature generator (LESG) for generating vulnerability-driven signatures for

buffer overflow worms at the network level without any host-level analysis of

worm execution or vulnerable programs. This is the first attempt to generate

vulnerability-driven signatures at network level. They build a field hierarchy

model, and formally define the length based signature generation problem

based on it. The proposed algorithm designed to solve that problem has good

accuracy even under deliberate noise injection attacks. Wang et al. evaluated

LESG against real-world vulnerabilities of various protocols and real network

traffic and demonstrated that LESG is fast, noise tolerant and has efficient

signature matching.

2.3.2.7 An Automated Signature Generation Method for Zero-day

Polymorphic Worms Based on Multilayer Perceptron Model

Mohammed et al. (Mohammed et al., 2013) proposed a signature generation

system for zero-day polymorphic worms based on the Double-honeynet

system, k-means clustering algorithm and a Multilayer Perceptron Model. The

Double-honeynet system is used to collect polymorphic worm samples as a

first step, while the second step is the signature generation for the collected

samples by using a k-means clustering algorithm and a Multilayer Perceptron

Model. The k-means clustering algorithm separates different types of collected

polymorphic worms into different clusters. The Multilayer Perceptron Model

then generates signatures for each cluster.

2.3.2.8 Automated Signature Generation for Zero-day Polymorphic

Worms Using a Double-honeynet

Mohssen M. Z. E. Mohammed (Mohammed, 2012) designed a system of

automated signature generation for zero-day polymorphic worms using a

double-honeynet, Modified Knuth-Morris-Pratt (MKMP) algorithm and a

Modified Principal Component Analysis (MPCA) algorithm. The polymorphic

worm instances are collected by designing a novel double honeynet system,

that allows unlimited honeynet outbound connections to collect all

polymorphic worm instances. Then, a Modified Knuth-Morris-Pratt (MKMP)

Algorithm, which is string matching based, and a Modified Principal

 48

2. LITERATURE REVIEW

Component Analysis (MPCA), which is statistics based, are used to generate

the signatures. The MKMP algorithm compares the polymorphic worms

substrings to find the multiple invariant substrings that are shared between all

polymorphic worm instances and uses them as signatures, where as the MPCA

determines the most significant substrings that are shared between

polymorphic worm instances and use them as signatures.

2.3.2.9 Efficient Hybrid Technique for Detecting Zero-Day Polymorphic

Worms

Ratinder Kaur and Maninder Singh (Kaur and Singh, 2014) presented a

technique for detecting zero-day polymorphic worms, which is based on both

signature detection and anomaly detection techniques. Honeynet is used as an

anomaly detector to identify and capture new attacks. After detection, the new

attacks are validated for polymorphism and finally signatures are generated for

discovered zero-day polymorphic worms to assist in containing them.

2.3.3 Behavior Based Signature Detection (BSD) solutions

Behaviour Signature Detection (BSD) solutions refer to approaches which

look for anomalous behaviour signatures in network traffic. A behavioural

signature describes aspects of behaviour of a particular worm that are common

across the manifestations of a given worm and that span its nodes in temporal

order. Characteristic patterns of worm behaviour in network traffic include

(Ellis et al., 2004), (Whyte, Kranakis and Oorschot, 2005):

• Sending similar data from one host to the next

• Tree-like propagation and reconnaissance

• Changing a server into a client

• Lack of DNS lookup

• Lack of ARP lookup

Various Behaviour Signature Detection (BSD) Solutions are: Network

Application Architecture (NAA) (Ellis et al., 2004), DNS based detection of

Scanning Worms (Whyte, Kranakis and Oorschot, 2005) and ARP based

detection of worms (Whyte, van Oorschot and Kranakis, 2005).

 49

2. LITERATURE REVIEW

2.3.3.1 Network Application Architecture (NAA) - A Behavioral

Approach for Worm Detection

Ellis et al. (Ellis et al., 2004)proposed a worm detection approach which they

term Network Application Architecture (NAA) and employs behavioural

signatures to detect worms. A behavioural signature describes aspects of

behaviour of any particular worm that are common across the manifestations

of a given worm and that span its nodes in temporal order. Characteristic

patterns of worm behaviour in network traffic include:(1) sending similar data

from one host to the next, (2) tree-like propagation and reconnaissance, and (3)

changing a server into a client.

The approach presented by Ellis et al. differs from those used in contemporary

enterprise postures in two ways. The first characteristic of contemporary

postures is the reliance on a particular type of signature-based intrusion

detection. In the contemporary case, a signature is a regular expression known

a priori. Most signatures deployed in current intrusion detection systems

(IDSs) focus on detecting specific regular expressions in network packets. The

use of a previously unknown version of an exploit will evade detection. The

behavioural detection approach contrasts from this form of signature-based

detection. Instead of looking for fixed regular expressions in payloads, the

behavioural approach focuses on detecting patterns at a higher level of

abstraction. Ideally, the patterns are inherent behaviours of worm spread and

distinct from normal network traffic. The frequency of and interrelationships

between behaviours improve detection accuracy. To evade a behavioural

signature requires a change in fundamental behaviour, not just its network

footprint. Modifying behaviours to evade detection may be much more

challenging.

Ellis et al. presented three behavioural signatures. The first is that the inputs

and outputs of a host are related for all non-discriminating worms that do not

have a polymorphic network footprint. The second is that non-discriminating

worms turn servers of a service into clients of the service. Together, these two

signatures identify behaviour, which, on a per-host basis indicates a change in

logic. The third signature is identifying a tree-like structure in communication

 50

2. LITERATURE REVIEW

patterns emerging from infected nodes. As the worm spreads, infected hosts

contact other hosts. The resulting tree-like communications have features in

common, possibly including the previous two signatures. NAA impacts the

sensitivity of this behavioural approach. That is, the distribution of hosts and

network applications across those hosts impacts the normal traffic patterns on

an enterprise network. Under certain NAAs, constraints are placed on traffic

patterns, which worm traffic patterns violate. Violations of these constraints

are straightforward to detect and hence provides the proof of worm activity.

The most significant advantage of NAA is its ability to detect classes of worms

without a priori information on any specific worm by employing behavioural

signatures. However, the NAA approach will not be effective in case of fast

spreading worms as it lacks the functionality of spreading malware warnings

to uninfected sites in a timely manner.

2.3.3.2 DNS-based Detection of Scanning Worms in an Enterprise

Network

Whyte et al. (Whyte, Kranakis and Oorschot, 2005) proposed DNS-based

detection of scanning worms in an enterprise network. DNS-based detection

relies on the correlation of Domain Name Service (DNS) queries with

outgoing connections from an enterprise network. Whyte et al. claim the

following improvements over existing scanning worm detection techniques:

(1) the possibility to detect worm propagation after only a single infection

attempt; (2) the capacity to detect zero-day worms; and (3) a low false positive

rate.

Whyte et al. divided the enterprise network into segments called cells. Each

cell contains a worm containment host to confine and contain worm infection.

Whyte et al. define a cell as all hosts within the same subnet serviced by a

distinct root DNS server. The propagation of fast-scanning worms can be

characterized as: local to local (L2L), local to remote (L2R), or remote to local

(R2L). In L2L propagation, a scanning worm targets hosts within the

boundaries (subnets) of the enterprise network. Topological scanning worms

employ this strategy. L2R propagation refers to a scanning worm within an

enterprise network targeting hosts outside of the network boundary. Finally,

2. LITERATURE REVIEW

R2L propagation refers to worm scanning from the

network. The DNS

Whyte et al. detects L2R worm propagation and worm propagation between

local cells.

Figure 2.5 shows an e

based detection system.

Figure 2-5 DNS Anomaly

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2

contains the sole ingress/egress point for the enterprise network. Prototype B,

from its vantage point in cell 2, monitors activity from all cells within the

enterprise network to ex

between cell 3 and cell 2.

scanning worm, the infected

hosts both within cell 2 and the

51

LITERATURE REVIEW

R2L propagation refers to worm scanning from the Internet into an enterprise

network. The DNS-based worm propagation detection method proposed by

Whyte et al. detects L2R worm propagation and worm propagation between

shows an example of an operational prototype of the DNS

based detection system.

DNS Anomaly-based Detection Deployment (Whyte, Kranakis and

Oorschot, 2005)

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2

contains the sole ingress/egress point for the enterprise network. Prototype B,

from its vantage point in cell 2, monitors activity from all cells within the

enterprise network to external hosts. Finally prototype C monitors activity

between cell 3 and cell 2. In the case that a host in cell1isinfected with

he infected host will begin scanning to locate susceptible

s both within cell 2 and the Internet. The prototype host

into an enterprise

based worm propagation detection method proposed by

Whyte et al. detects L2R worm propagation and worm propagation between

xample of an operational prototype of the DNS-anomaly

(Whyte, Kranakis and

Prototype A in cell 1 monitors activity between cell 1 and cell 2. Cell 2

contains the sole ingress/egress point for the enterprise network. Prototype B,

from its vantage point in cell 2, monitors activity from all cells within the

s. Finally prototype C monitors activity

infected with a

begin scanning to locate susceptible

host in cell 1 will

 52

2. LITERATURE REVIEW

detect the scanning activity to cell 2 and generate an alert. The prototype host

in cell 2, at the enterprise gateway, will detect scanning activity from cell 1 to

the Internet and generate an alert.

The software system design presented by Whyte et al. uses the libpcap library

(TCPDUMP & LIBPCAP, 2008) and is comprised of two logical components:

the PPE and DCE. The Packet Processing Engine (PPE) is responsible for

extracting the relevant features from the live network activity or saved network

traces. The DNS correlation engine (DCE) maintains in state all relevant DNS

information, a white-list (which contains applications which do not rely on

DNS lookup), and numeric IP addresses embedded in HTTP packets extracted

by the PPE. This information is used to verify both outgoing TCP connections

and UDP datagrams. In this context, verifying means ensuring that the

destination IP address of an outgoing TCP connection or UDP datagram can be

attributed to a DNS query, an HTTP packet, or an entry in the whitelist. The

software can process either live network traffic or saved network traces in pcap

file format. To detect L2R worm propagation, the software system must be

deployed at all external network egress/ingress points. To detect worm

propagation between network cells, a system would need to be deployed in

each cell at the internal ingress/egress points (see Figure 2.5).

This detection approach has two limitations as it cannot detect intra-cell and

Internet to enterprise (R2L) worm propagation.

2.3.3.3 ARP-based Detection of Worms within an Enterprise Network

Whyte et al. (Whyte, van Oorschot and Kranakis, 2005) proposed another

anomaly based worm detection technique that protects internal networks from

scanning worm infections. Implemented in software, this detection approach

relies on an aggregate anomaly score, derived from the correlation of Address

Resolution Protocol (ARP) activity from individual network attached hosts.

Whyte et al. divided the network into cells and seek to detect scanning worm

activity within cells. According to the authors, the scanning worm targeting

hosts within its own network cell exhibits anomalous behaviour distinct from

normal ARP activity; an infected host generates unusual ARP request activity

as it tries to infect susceptible hosts within its respective network cell. More

 53

2. LITERATURE REVIEW

specifically, intra-cell worm initiated scans result in discernible behavioural

changes in the amount and pattern of ARP request activity of the infected

hosts, because a scanning worm targeting same-cell hosts triggers the

broadcast of anomalous ARP “who has” requests.

The ARP-based technique proposed by Whyte et al. is based on the following

three factors; from them they derive an anomaly score for each individual host

and use this as an infection indicator for each host within a cell:

• Peer list: connections to hosts outside the set of internal hosts, a host

normally interacts with.

• ARP activity: increases in the average number of ARP requests each

host issues per unit time.

• Internal network dark space connections to vacant internal IP

addresses (i.e. addresses not bound to any active hosts): The greater

the anomaly score attributed to a network host, the more likely it is

infected with a scanning worm.

Figure 2.6 shows an enterprise network divided into cell structures. Hosts that

reside within the same network cell use ARP rather than the Domain Name

Service (DNS) to communicate.

The scheme proposed by Whyte et al. provides a novel approach for worm

detection but it has following limitations:

• It cannot detect R2L and L2R remote propagation. This technique is

probably therefore best suited to be used in combination with another

technique which covers R2L and L2R.

2. LITERATURE REVIEW

Figure 2-6 ARP

2.3.4 Leap Ahead (LA) solutions

Leap Ahead (LA) solutions, seek to spread malware warnings to network

segments not yet affected, and thus potentially stop the worm from reaching its

full saturation potential. These strategies share cooperative information either

hierarchically or using peer to pee

Alert Sharing Scheme

2003), COVERAGE

Scanning Worms (Weaver, Staniford and Paxson, 2004)

Warning on Internet

2.3.4.1 Cooperative Response Strategies for Large Scale Attack

Mitigation

Nojiri et al. (Nojiri, Rowe and Levitt, 2003)

sharing scheme using a “Friends protocol” under which each node (domain

gateway) pre-selects a set of friends with which to share worm detection

indicators, and is al

Although this technique provides an effective way of sharing worm warnings,

54

LITERATURE REVIEW

ARP-based Detection of Worms within an Enterprise Network

van Oorschot and Kranakis, 2005)

Leap Ahead (LA) solutions

(LA) solutions, seek to spread malware warnings to network

segments not yet affected, and thus potentially stop the worm from reaching its

full saturation potential. These strategies share cooperative information either

hierarchically or using peer to peer based models. For example C

cheme Using a “Friends protocol” (Nojiri, Rowe and Levitt,

COVERAGE (Anagnostakis et al., 2003), Very Fast C

(Weaver, Staniford and Paxson, 2004), Monitoring and Early

Internet Worms (Zou et al., 2003).

Cooperative Response Strategies for Large Scale Attack

Mitigation

(Nojiri, Rowe and Levitt, 2003) proposed a cooperative alert

sharing scheme using a “Friends protocol” under which each node (domain

selects a set of friends with which to share worm detection

indicators, and is also selected by other domains gateways to receive reports.

Although this technique provides an effective way of sharing worm warnings,

Detection of Worms within an Enterprise Network (Whyte,

(LA) solutions, seek to spread malware warnings to network

segments not yet affected, and thus potentially stop the worm from reaching its

full saturation potential. These strategies share cooperative information either

models. For example Cooperative

(Nojiri, Rowe and Levitt,

Containment of

Monitoring and Early

Cooperative Response Strategies for Large Scale Attack

proposed a cooperative alert

sharing scheme using a “Friends protocol” under which each node (domain

selects a set of friends with which to share worm detection

so selected by other domains gateways to receive reports.

Although this technique provides an effective way of sharing worm warnings,

 55

2. LITERATURE REVIEW

it is ineffective in the case of slow spreading worms and also lacks a good

worm detection mechanism.

2.3.4.2 COVERAGE

Anaganostaki et al. (Anagnostakis et al., 2003) proposed a variation of the LA

scheme called COVERAGE, in which a node randomly selects a set of remote

nodes to poll for worm reports at periodic intervals. The LA concept is

effective in spreading malware warnings to uninfected network segments, but

these solutions are limited in terms of their implementation in current

networks.

2.3.4.3 Very Fast Containment of Scanning Worms

Weaver et al. (Weaver, Staniford and Paxson, 2004) proposed a worm

detection technique by devising mechanisms for cooperation that enable

multiple containment hosts to more effectively detect and respond to an

emerging infection. A key problem in containment of scanning worms is

efficiently detecting and suppressing the scanning. Since containment blocks

suspicious hosts, it is critical that the false positive rate be very low.

Additionally, since a successful infection could potentially subvert any

software protection put on the host, containment is best effected on the

network gateway rather than on end-hosts. Weaver et al. developed a scan

detection and suppression algorithm based on a simplification of the Threshold

Random Walk (TRW) scan detector.

Weaver et al. augmented the containment system by employing cooperation

between the containment hosts that monitor different cells. By introducing

communication between these hosts, they can dynamically adjust their

thresholds to the level of infection. Weaver et al. showed that introducing a

very modest degree of bias that grows with the number of infected cells makes

a dramatic difference in the efficacy of containment above the epidemic

threshold. Thus, the combination of containment coupled with cooperation

holds great promise for protecting enterprise networks against worms that

spread by address-scanning.

Weaver et al. implemented the prototype on an ML300 demonstration platform

manufactured by Xilinx. This board contains 4 gigabit Ethernet interface, a

 56

2. LITERATURE REVIEW

small FPGA, and a single bank of DDR-DRAM. The DRAM bank is

sufficiently large to meet the design goals; while the DRAM’s internal banking

should enable both the address and connection tables to be implemented.

Although, Weaver et al. presented a novel approach for worm detection using

TRW algorithm, the system lacks enterprise level testing.

2.3.4.4 Monitoring and Early Warning of Internet Worms

Zou et al. (Zou et al., 2003) proposed a novel algorithm for early detection of

the presence of a worm and the corresponding monitoring system. Based on an

epidemic model and observation data from the monitoring system, by using the

idea of “detecting the trend, not the rate” of monitored illegitimate scan traffic,

Zou et al. used a Kalman filter to detect a worm’s propagation at its early stage

in real-time to detect the overall vulnerable population size.

The Kalman filter detects the propagation of a worm in its early stage based on

observed illegitimated scan traffic, which includes both real worm scans and

background noise. The Kalman filter will not only make use of the correlation

of the history trace of observation data (not just a burst of traffic at one time),

but also the dynamic trend of the propagation of a worm - at the beginning of a

worm’s spreading when there are little human counteractions or network

congestions, a worm propagates almost exponentially with a constant, positive

infection rate. The Kalman filter is activated when the monitoring system

encounters a surge of illegitimate scan activities. If the worm infection rate

estimated by the Kalman filter stabilizes and oscillates a little bit around a

constant positive value, it is claimed that the illegitimate scan activities are

mainly caused by a worm, even if the estimated value of the worm’s infection

rate is still not well converged. If the illegitimate scan traffic is caused by non-

worm noise, the traffic will not have the exponential growth trend, and the

estimated value of infection rate would oscillate around without a fixed central

point, or it would oscillate around zero. In other words, the Kalman filter is

used to detect the presence of a worm by detecting the trend, not the rate, of

the observed illegitimated scan traffic. In this way, the unpredictable, noisy,

illegitimate scan traffic we observe everyday will not cause many false alarms

2. LITERATURE REVIEW

to the detection system

challenges to traditional threshold

Figure 2.7 shows a schematic of the monitoring system proposed by Zou et al.

with two kinds of monitors:

• Ingress Scan Monitors:

or border routers of local networks. They can be the ingress filters on

border routers of local networks or separated passive network monitors.

The goal of an ingress scan monitor is to monitor scan traffic coming

into a local network by logging incoming traffic to unused IP addresses

in the network.

• Egress Scan Monitors

point of a local network. It can be set up as a part of the egress filter on

the routers of a loc

monitor the outgoing traffic from a network to infer a scan

of a potential worm. Ingress scan monitors listen to the global traffic on

the Internet

as a “network telescope” in

Figure

In order to achieve early warning of activity in real

are required to send observation data to the Malware warning centre (MWC)

continuously without significant delay, even when the worm scan traffic has

57

LITERATURE REVIEW

ction system - such background noise will cause

to traditional threshold-based detection methods.

shows a schematic of the monitoring system proposed by Zou et al.

two kinds of monitors:

Ingress Scan Monitors: Ingress scan monitors are located on gateways

or border routers of local networks. They can be the ingress filters on

border routers of local networks or separated passive network monitors.

The goal of an ingress scan monitor is to monitor scan traffic coming

into a local network by logging incoming traffic to unused IP addresses

in the network.

Egress Scan Monitors: An egress scan monitor is located at the egress

point of a local network. It can be set up as a part of the egress filter on

the routers of a local network. The goal of an egress scan monitor is to

monitor the outgoing traffic from a network to infer a scan

of a potential worm. Ingress scan monitors listen to the global traffic on

Internet; they are the sensors of global worm incident

as a “network telescope” in (Moore, 2002)).

Figure 2-7 Worm Monitoring System (Zou et al., 2003)

In order to achieve early warning of activity in real-time, distributed monitors

are required to send observation data to the Malware warning centre (MWC)

continuously without significant delay, even when the worm scan traffic has

such background noise will cause significant

shows a schematic of the monitoring system proposed by Zou et al.

ess scan monitors are located on gateways

or border routers of local networks. They can be the ingress filters on

border routers of local networks or separated passive network monitors.

The goal of an ingress scan monitor is to monitor scan traffic coming

into a local network by logging incoming traffic to unused IP addresses

An egress scan monitor is located at the egress

point of a local network. It can be set up as a part of the egress filter on

al network. The goal of an egress scan monitor is to

monitor the outgoing traffic from a network to infer a scan behaviour

of a potential worm. Ingress scan monitors listen to the global traffic on

; they are the sensors of global worm incidents (referred to

(Zou et al., 2003)

time, distributed monitors

are required to send observation data to the Malware warning centre (MWC)

continuously without significant delay, even when the worm scan traffic has

 58

2. LITERATURE REVIEW

caused congestion to the Internet. For this reason, a tree-like hierarchy of data

mixers can be set up between monitors and the MWC: the MWC is the root;

the leaves of the tree are monitors. The monitors close to a data mixer in the

network send observed data to the data mixer. After fusing the data together,

the data mixer passes the data to a higher level data mixer or directly to MWC.

An example of data fusion is the removal of redundant addresses from the list

of infected hosts. However, the tree structure of data mixers create single

points of failure, thus there is a trade-off in designing this hierarchical

structure.

The detection approach of Zou et al. has the following limitation:

• Although this approach provides an idea of setting up a monitoring

system with the help of simulations for worm detection, it clearly lacks

any enterprise level implementation and testing.

2.3.5 Predesigned-Preventative (PP) solutions

Predesigned-Preventative (PP) solutions are considered to be those approaches

which are designed to disrupt the discovery of susceptible nodes within an

address space, potentially by dynamically altering the connectivity of networks

or end nodes in the presence of worm propagation. For example, Epidemic

Profiles and Defense of Scale-Free Networks (Briesemeister, Lincoln and

Porras, 2003), Least Effort Strategies for Cyber Security (Gorman et al., 2003),

A Virtual Honeypot Framework (Provos, 2004), Honeypot worm detection

system “Billy Goat” (Riordan, Zamboni and Duponchel, 2006), Router-based

Billy Goat (RBG) (Zamboni, Riordan and Yates, 2007) and Network Address

Space Randomization (NASR) (Antonatos et al., 2007).

2.3.5.1 Epidemic Profiles and Defense of Scale-Free Networks

Briesemeister et al. (Briesemeister, Lincoln and Porras, 2003) discussed the

idea of percolation theory or, epidemic spread, in artificial scale-free networks

to suggest how networks could be designed to delay the spread of propagating

malware while still maintaining high reliability of network links.

2.3.5.2 Least Effort Strategies for Cyber Security

Gorman et al. (Gorman et al., 2003) studied the use of scale-free properties

within the autonomous system (AS) map of the Internet, and proposed that the

 59

2. LITERATURE REVIEW

concentration of worm filtering services on the nodes with the highest

connection density would yield the greatest return while disrupting the

minimum set of network hosts.

2.3.5.3 A Virtual Honeypot Framework

Provos (Provos, 2004) suggested the placement of honeypot hosts in a network

that engage in slow connection dialogs as a method to dramatically slow an

aggressive worm’s ability to discover susceptible hosts within an address

space. Provas presented “Honeyd”, a framework for virtual honeypots that

simulates virtual computer systems at the network level. The simulated

computer hosts appear to run on unallocated network addresses. To deceive

network fingerprinting tools, Honeyd simulates the networking stack of

different operating systems and can provide arbitrary routing topologies and

services for an arbitrary number of virtual hosts.

Honeyd, is an effective system to detect worms and spam. Its performance

measurements showed that a single 1.1 GHz Pentium III can simulate

thousands of virtual honeypots with an aggregate bandwidths of over 30

MBit/s and that it can sustain over two thousand TCP transactions per second.

But, it is ineffective in detecting against fast spreading zero-days worms.

2.3.5.4 Building and Deploying Billy Goat, Worm-Detection System

Riordan et al. (Riordan, Zamboni and Duponchel, 2006) proposed a honeypot

worm detection system “Billy Goat” which is widely deployed throughout

IBM. The deployment within IBM covers the entirety of the corporate

intranet, automatically gathering data from approximately 1.2 million virtual

sensors, centralizing the data to form a single coherent model of suspicious

network activity, and analysing this model for evidence of worm activity. Billy

Goat is designed to take advantage of the propagation strategies of worms. To

discover hosts to infect, most worms try to connect to IP addresses selected at

random or scan entire ranges of addresses. By doing so, they find most of the

hosts in a network, but they also try to connect to a large number of unused

addresses. The fundamental premise of Billy Goat is responding to traffic

directed to unused IP addresses.

 60

2. LITERATURE REVIEW

Billy Goat is implemented as a specialized Linux distribution, which self-

installs on standard PC requiring only basic configuration information. It was

the intention to make Billy Goat as appliance-like as possible, so that it can be

deployed with minimum effort throughout a large network. Billy Goat includes

extensive self-monitoring and recovery mechanisms that monitor host activity

and correct or reinitialize errant components, including the host itself (e.g.

reboot). Different deployment modes can be used and combined to direct such

traffic to Billy Goat.

• Static routes

• ARP Spoofing

• Billy Goat as default LAN route

• ICMP-based Billy Goat

In summary, Billy Goat is an effective approach for detection and prevention

of worms in an intranet; it lacks the capability to detect and mitigate fast

spreading zero-day worm outbreak on the Internet.

2.3.5.5 Boundary Detection and Containment of Local Worm Infections

Zamboni et al. (Zamboni, Riordan and Yates, 2007) proposed a system for

detecting scanning-worm infected hosts in a local network. Infected hosts are

detected after a few unsuccessful connection attempts such as by logging

ICMP unreachable messages, refused connections and timeouts, and in

cooperation with the border router, their traffic is redirected to a honeypot for

worm identification and capture.

Zamboni et al. used Router-based Billy Goat (RBG), a specialized worm-

detecting honeypot, as the host to which traffic is redirected. RBG is a

mechanism that adds dynamic discovery of external unused or unreachable IP

addresses and redirects traffic sent to such addresses to a honeypot for

processing and response. This dynamic assignment vastly extends the

monitoring abilities of the honeypot. The idea of RBG is to trigger traffic

redirection upon detection of failed connection attempts. Such attempts can be

detected by the following mechanisms:

• Receipt of ICMP unreachable messages

2. LITERATURE REVIEW

• Timed-out initial connections

• Detection of refused connections

Under normal conditions, when a host tries to contact an unreachable

destination or service, one of the thre

occurs. When using RBG, the error condition is intercepted. For example, in

the case of an ICMP error message, the following sequence (illustrated

Figure 2.8) takes place:

• The internal host sends the first packet of th

• The external router sends back an ICMP Unreachable message. The

local router intercepts it and automatically generates a rule to route

future packets to this unreachable destination, to the honeypot and also

sends the original packet to the

• The Billy Goat system receives the packet and replies to it, spoofing

the destination host. The internal host gets the reply he wanted and will

consider the destination host as being up.

Figure 2-8 The “unreachable destination” Behaviour using the RBG Architecture

The ideal place to put the RBG logic and mechanisms is in a border router as

described by Zamboni et al. They have used this approach in their

implementation using a Linux

61

LITERATURE REVIEW

out initial connections

Detection of refused connections

Under normal conditions, when a host tries to contact an unreachable

destination or service, one of the three error conditions mentioned above

occurs. When using RBG, the error condition is intercepted. For example, in

the case of an ICMP error message, the following sequence (illustrated

) takes place:

The internal host sends the first packet of the connection.

The external router sends back an ICMP Unreachable message. The

local router intercepts it and automatically generates a rule to route

future packets to this unreachable destination, to the honeypot and also

sends the original packet to the honeypot.

The Billy Goat system receives the packet and replies to it, spoofing

the destination host. The internal host gets the reply he wanted and will

consider the destination host as being up.

The “unreachable destination” Behaviour using the RBG Architecture

(Zamboni, Riordan and Yates, 2007)

The ideal place to put the RBG logic and mechanisms is in a border router as

described by Zamboni et al. They have used this approach in their

implementation using a Linux-based router. However, it would also be

Under normal conditions, when a host tries to contact an unreachable

e error conditions mentioned above

occurs. When using RBG, the error condition is intercepted. For example, in

the case of an ICMP error message, the following sequence (illustrated in

e connection.

The external router sends back an ICMP Unreachable message. The

local router intercepts it and automatically generates a rule to route

future packets to this unreachable destination, to the honeypot and also

The Billy Goat system receives the packet and replies to it, spoofing

the destination host. The internal host gets the reply he wanted and will

The “unreachable destination” Behaviour using the RBG Architecture

The ideal place to put the RBG logic and mechanisms is in a border router as

described by Zamboni et al. They have used this approach in their

based router. However, it would also be

 62

2. LITERATURE REVIEW

possible to implement RBG as a bridge placed between the border router and

the internal network, monitoring traffic and remotely reconfiguring routes.

This mode of deployment would make it easier to adopt RBG without

modifying deployed routers.

RBG offers the significant benefit of detecting local infections locally,

providing a valuable tool to network administrators, and it helps perform local

containment of worm infections, thereby preventing unwanted traffic from

leaving the local network. But it has following limitations:

• Detection of scanning worms only: By design, RBG will only detect

and redirect traffic produced by hosts that are scanning non-existent IP

addresses. Hit-list worms, and other types of malware that direct their

attacks against existing hosts and services will not be detected by RBG.

• IP spoofing: Using IP address spoofing, an attacker inside the local

network could abuse RBG and make it isolate a local IP address from

the outside, using the source flooding detection feature of RBG. This

attack may be mitigated using MAC address checking and filtering.

2.3.5.6 Defending against Hit-list Worms using Network Address Space

Randomization

Antonatos et al. (Antonatos et al., 2007) proposed a proactive worm defense

mechanism called Network Address Space Randomization (NASR) whose

objective is to harden networks specifically against hit-list worms. The idea

behind NASR is that hit-list information could be rendered stale very rapidly if

nodes are forced to frequently change their IP addresses on a regular basis.

NASR limits or slows down hit-list worms and forces them to exhibit features

that make them easier to contain at the perimeter.

A basic form of NASR can be implemented by configuring the DHCP server

to expire DHCP leases at intervals suitable for effective randomization. The

DHCP server would normally allow a host to renew the lease if the host issues

a request before the lease expires. Thus, forcing address changes even when a

host requests to renew the lease before it expires requires some minor

modifications to the DHCP server. Fortunately, it does not require any

 63

2. LITERATURE REVIEW

modifications to the protocol or the client. Antonatos et al. have implemented

an advanced NASR-enabled DHCP server, called Wuke-DHCP, based on the

ISC open-source DHCP implementation. To minimize the “collateral damage”

caused by address changes, Antonatos et al. introduced two modules in their

DHCP implementation: an activity monitoring module, and a service

fingerprinting module.

In the prototype implementation, Antonatos et al. used three timers on the

DHCP server for controlling host addresses. The refresh timer determines the

duration of the lease communicated to the client. The client is forced to query

the server when the timer expires. The server may or may not decide to renew

the lease using the same address. The soft-change timer is used internally by

the server to specify the interval between address changes, assuming that the

flow monitor does not report any activity for the host. A third, hard-change

timer is used to specify the maximum time that a host is allowed to keep the

same address. If this timer expires, the host is forced to change address, despite

the disruption that may be caused.

Antonatos et al. proposed a novel system for worm prevention but it has some

practical constraints as described below:

• It is not feasible to change the IP address of servers like Domain Name

Server (DNS), Web Servers as public DNS servers require a

considerable amount of time to replicate on the Internet.

• Many applications are not designed to tolerate connection failures. For

instance, NFS clients often hang when the server is lost, and do not

transparently re-resolve the NFS server address from DNS before

reconnecting.

2.3.6 Mobile Combat (MC) solutions

Mobile Combat (MC) solutions refer to approaches which involve an active

strategy of interception and rapid patching. These techniques eliminate

propagating malware by distributing a mobile self-replicating code module

that searches out for signs of a malicious resident code and vaccinates infected

hosts through patching or some other removal method. For example, Predators:

 64

2. LITERATURE REVIEW

Good Mobile Code Combat against Computer Viruses (Toyoizumi and Kara,

2002), Models of Active Worm Defense (Nicol and Liljenstam, 2005) and

Mobile combat / Beneficial worms "in the wild" (Symantec:

W32.Welchia.Worm, 2003), (Weaver et al., 2003) etc .

2.3.6.1 Predators: Good Mobile Code Combat against Computer Viruses

Toyozumi and Kara (Toyoizumi and Kara, 2002) presented an analysis of a

predatory vaccination application called Predator. They employed the

biologically inspired Lotka-Volterra equation (Lotka, 1925), (Volterra, 1926)

to model the interaction of the predator-prey relationship between the

malicious code and mobile predator vaccination, with the goal of minimizing

the number of predators required to eliminate the malware threat. Their paper

proposed that a small number of good predators, of the order of a few

thousand, could contain an aggressive large-scale worm such as Code-Red.

2.3.6.2 Models of Active Worm Defense

Nicol and Liljenstam (Nicol and Liljenstam, 2005) investigated different active

defense propagation models, from simple scanning systems that race against

worms to patch susceptible hosts, to sniper worms that behave in a similar way

to the Predator model. Using a discrete stochastic model, the author proved

that these approaches can be strongly ordered in terms of their worm fighting

capability. Using a continuous model, Nicoland and Liljenstam consider

effectiveness in terms of the number of hosts that are protected from infection,

the total network bandwidth consumed by the worms and the defences, and the

peak scanning rate the network endures while the worms and defences battle.

2.3.6.3 Mobile Combat /Beneficial worms "In the Wild"

The following are some examples of mobile combat or beneficial worms

which have been implemented and released in order to combat against harmful

worms:

• Welchia: It is Blaster worm variant (Symantec: W32.Welchia.Worm,

2003), released to mitigate the spread of the Blaster worm. It exploited

the same vulnerability at the same TCP port as Blaster to propagate and

immunized a susceptible host by exploiting the vulnerability and

downloading the MS03-026 patch then rebooting. But, the Welchia

 65

2. LITERATURE REVIEW

worm was unsuccessful in achieving its goals of stopping Blaster due

to fact that it utilized massive bandwidth on the Internet by

downloading patches from the vendor server (windowsupdate.com),

thereby, launching a denial of service attack at windowsupdate.com.

• CRClean: CRClean is a Code Red II variant (Weaver et al., 2003)

which exploits a buffer overflow vulnerability in the index server plug-

in in Microsoft IIS Server. It only spreads to hosts that have attempted

to attack it, referred to as passive scanning. It silently runs on a host,

waiting and listening for a Code Red attack. When CRClean intercepts

an attack scan from Code Red infected hosts, it launched a counter

attack at the host that has launched the attack, removes Code Red and

installs CRClean. CRClean was never released on the Internet.

Although MC solutions present an effective approaches for worm detection

and patching, these approaches are not effective in terms of fast spreading

worms like Slammer. Secondly, legality of such solutions will be a big issue as

it is illegal and unethical to launch a worm even for constructive purpose.

2.3.7 Hybrid Quarantine Defense (HQD) solutions

Hybrid Quarantine Defense (HQD) solutions use a combination of different

worm detection and prevention solutions. For example, A Hybrid Quarantine

Defense (Porras et al., 2004) uses combination of RL and LA solutions.

2.3.7.1 A Hybrid Quarantine Defense

Porras et al. (Porras et al., 2004) proposed a hybrid quarantine defense system

for worm detection and prevention by combining rate limiting mechanisms and

a leap-ahead solution using the friends quarantine strategy. The resource

limitation strategy proposed by Porras et al. focuses on limiting the number of

outbound nodes that an internal host may contact per unit time. This strategy is

motivated from the observation that during normal operation, the rate of

outbound connections to unique hosts is relatively small, and that rate

generally increases when a host is infected by a scan based worm in proportion

to the aggressiveness with which the worm seeks susceptible nodes.

2. LITERATURE REVIEW

Figure 2.9 illustrates the connection rate

by Porras et al. in

of each domain, rather than at the individual internal

is allowed to make

connections beyond N per

make any number of

worm enters the d

interference. A threshold limit of N = 10 addresses per unit time is selected as

the default parameter for this algorithm.

For their leap-ahead strategy,

Friends algorithm (Zou et al., 2003)

m ∈ M selects F = G

population M. The

domain head is a member of multiple groups, in which the other

selected this one as a friend. Under the Friends protocol, each gateway

activates port or content

friends (including itself) to

sufficient to trigger filtering, and thus Friends

amount of false alarms before

warning state proceeds to temporally decay

filtering is removed from the gateway, but may be raised indefinitely

worm activity indicators persist.

Figure 2-9 Connection Rate Limitations and Friends Overvie

66

LITERATURE REVIEW

illustrates the connection rate-limiting algorithm, as

in their simulation. Rate limiting is performed at

of each domain, rather than at the individual internal node. Each internal node

is allowed to make ≤ N outbound connections per time unit. Outbound

connections beyond N per unit time are dropped by the gateway. A host can

make any number of internal connections without interference, and thus once a

enters the domain, it may spread to all internal nodes without

interference. A threshold limit of N = 10 addresses per unit time is selected as

the default parameter for this algorithm.

ahead strategy, Porras et al. implemented a variation of the

(Zou et al., 2003). Essentially, each domain head (gateway)

M selects F = G − 1 friends. This selection defines group size G over the

 group memberships of one domain head overlap so that one

domain head is a member of multiple groups, in which the other

selected this one as a friend. Under the Friends protocol, each gateway

or content-based filtering, when it receives enough alert

friends (including itself) to indicate the presence of a worm. No single alert is

sufficient to trigger filtering, and thus Friends gateways tolerate an adjustable

amount of false alarms before they must react to an emerging worm threat. The

proceeds to temporally decay until it drops into a state in which

filtering is removed from the gateway, but may be raised indefinitely

worm activity indicators persist.

Connection Rate Limitations and Friends Overview (Porras et al., 2004)

limiting algorithm, as implemented

. Rate limiting is performed at the gateway

Each internal node

connections per time unit. Outbound

unit time are dropped by the gateway. A host can

internal connections without interference, and thus once a

omain, it may spread to all internal nodes without

interference. A threshold limit of N = 10 addresses per unit time is selected as

a variation of the

each domain head (gateway)

This selection defines group size G over the

group memberships of one domain head overlap so that one

domain head is a member of multiple groups, in which the other domain head

selected this one as a friend. Under the Friends protocol, each gateway

based filtering, when it receives enough alerts from

No single alert is

gateways tolerate an adjustable

they must react to an emerging worm threat. The

until it drops into a state in which

filtering is removed from the gateway, but may be raised indefinitely while

(Porras et al., 2004)

 67

2. LITERATURE REVIEW

In the combined defense strategy proposed by Porras et al., each gateway will

implement a connection rate limiting defense in parallel with the Friends

protocol. The objective is to employ each rate limiter to effectively slow down

the propagation of aggressive worms, allowing Friends messages to propagate

to groups and activate a defensive posture in time to halt infection growth

before full saturation is reached. The triggering of node rate limiting can itself

act as one indicator of worm activity, and extensions of this overlay solution

could include feedback loops in which the rate-limiting threshold maybe

adjusted by the accumulation of Friends messages at predefined thresholds.

The Hybrid strategy proposed by Porras et al. yields substantial performance

improvements, beyond what either technique provides independently but the

resource limiting technique is prone to high rate of false positives due to the

rate limiting algorithm.

2.3.8 Defensive Worms (DW) solutions

Defensive Worms (DW) solutions employ defensive worms to combat against

malicious worms. A defensive worm (Ziyad, 2011) refers to a controlled, self-

propagating, and self-contained network program that when released does not

violate the laws issued by a legislative body and whose purpose of release is

beneficial. Ziyad AL-Salloum (Ziyad, 2011) proposed two defensive worms

Seawave I and Seawave II.

• Seawave I: Seawave I is a novel controlled, topology-aware,

interactive, self-replicating, self-propagating, and self-contained

network vulnerability mitigation system (or vulnerability mitigation

worm), that utilizes CAM and STP information to propagate.

• Seawave II: Seawave II is based on STP, CAM, ARP, and OSPF, in

which they enhanced and improved the defensive worm by adding edge

node failure recovery, network backbone traversal, and intermittent

node detection and recovery.

Both these approaches were simulated on NS2 with 100 to 8000 nodes on a

LAN, an approach which in isolation, clearly lacks the real time testing.

Secondly, Seawave I and Seawave II do not address the mitigation technique

 68

2. LITERATURE REVIEW

on wide area networks i.e. the Internet, thus making them impractical to

deploy in case of a fast spreading zero-day worm.

2.4 Worm Testing Environments

Various network and malware testing environments have been built and

proposed in the past which can be classified into the following categories:

• Physical network testbeds

• Simulation testbeds

• Emulation testbeds

• Full system virtualization testbeds

2.4.1 Physical Network Testbeds

Physical network testbeds employ real physical hosts and network hardware

for conducting research experiments. Emulab (White et al., 2002) was a

distributed physical network setup, implemented for conducting research

experiments. It consists of 218 physical nodes distributed between two US

universities. Netbed (White et al., 2002) is a simulation environment

implemented on Emulab that provides time and space sharing and employs ns-

2 for research and development. Emulab evolved into DETER (Benzel et al.,

2007), which is a cluster based testbed, consisting of high end workstations

and a control software. It uses high-performance VLAN-capable switches to

dynamically create nearly arbitrary topologies among the nodes. It was the first

testbed to be remotely accessible through the public Internet infrastructure.

The 1998 DARPA off-line intrusion detection evaluation (Lippmann et al.,

2000) and LARIAT (Rossey et al., 2002) are also two physical network

testbeds sponsored by US Air Force and developed at the Lincoln Laboratory,

MIT.

2.4.2 Simulation Testbeds

Simulation testbeds employ simulation tools to conduct network experiments.

PDNS and GTNetS (Perumalla and Sundaragopalan, 2004) were two network

simulators for developing packet level worm models. These simulators allow

an arbitrary subject network configuration to be specified consisting of scan

rate, topology and background traffic. On the basis of defined input

 69

2. LITERATURE REVIEW

parameters, various types of outputs such as number of infected hosts in any

given instance, sub-millisecond granularity of network event statistics or a

global snapshot of the entire system are produced. Ediger reported the

development of the Network Worm Simulator (NWS) (Ediger, 2003), which

implements a finite state machine concept to simulate network worm

behaviour. Tidy et al (Tidy, Woodhead and Wetherall, 2013) have reported a

large scale network worm simulator aimed at the investigation of fast scanning

network worms and candidate countermeasures.

2.4.3 Emulation Testbeds

Emulation testbeds provide a compromise between simulation and real world

testing. ModelNet (Vahdat et al., 2002) is a emulated testbed, implemented for

general networking and distributed system experiments. In ModelNet,

unmodified applications run on edge nodes, configured to route all their

packets through a scalable core dedicated server cluster, by emulating the

characteristics of a special target topology. Honeypots such as Honeyd

(Provos, 2004) can also be classified as an emulation system as it has been

used in many recent security systems for malware detection and capture.

2.4.4 Full System Virtualization Testbeds

Full system virtualization testbeds employ full virtualization; a technique that

provides a type of virtual machine environment with complete simulation of

the underlying hardware. vGround (Jiang et al., 2006) has extended UML’s

virtual networking capabilities by supporting a VM-create-VM approach to

automatically extend the network size. It uses Snort (Snort, 1998) and Bro

(Paxson, 1998) as NIDS and Kernort (Jiang, Xu and Eigenmann, 2004) as a

HIDS to monitor worm target discovery and propagation. ViSe (Richmond,

2006) provides a virtualization platform where malware exploits can be tested

against the entire range of x86 based operating systems under controlled

conditions, while being monitored by a NIDS. V-NetLab (Sun et al., 2008) has

implemented a model based on DETER’s (Benzel et al., 2007) remote access

capability by utilizing data link layer virtualization and packet encapsulation,

thereby providing a more secure means of remote access to security related

testbeds. Golath (Fagen, Cangussu and Dantu, 2009) is a virtual network based

 70

2. LITERATURE REVIEW

on a Java Virtual Machine (JVM) and the Ultra-light-weight abstraction level

(ULAL). It provides a virtual environment to run any application written in

Java, independent of the type of host operating system. Host behaviour can be

monitored in this environment by adding different Java plug-in extensions.

2.5 Mathematical Models for Worm Propagation

Mathematical models for worm propagation helps us understand the

epidemiology of worm outbreaks (Chen and Robert, 2004), (Moore et al.,

2003), (Staniford et al., 2004). Various authors have proposed mathematical

models to describe worm propagation (Chen and Robert, 2004), (Moore et al.,

2003), (Staniford et al., 2004), (Zou, Gong and Towsley, 2002), (Liljenstam et

al., 2003); based on the models originally developed for biological

epidemiological studies (Kermack and McKendrick, 1927), (Frauenthal,

1980). The susceptible-infected (SI) (Kermack and McKendrick, 1927) model

is the most widely reported biological model, which models the epidemiology

of infection by assuming a population of hosts is of fixed size and relying on a

deterministic contact coefficient to govern the differential between each step of

the model. Variations of the SI model in the field of biological epidemiology

tend to add addition states (Frauenthal, 1980), for example the susceptible-

infected-recovered (SIR) model in which all hosts stay in one of only three

states at any time: ‘susceptible’ (denoted by ‘S’), ‘infectious’ (denoted by ‘I’)

or ‘recovered’ (denoted by ‘R’). The susceptible-infected-susceptible (SIS) is

another variation on the SI model that adds the ability of an infectious host to

transition back the susceptible state. Of note is another work undertaken by

Chen et al. (Chen, Gao and Kwiat, 2003) that reports a discrete time

deterministic model of active worms (the AAWP model), which characterizes

the propagation of worms that employ random scanning and local subnet

scanning. It uses a discrete time model and a deterministic approximation to

describe the spread of computer worms.

 71

2. LITERATURE REVIEW

2.6 Research Questions

2.6.1 Research Question 1

All the proposed solutions set out in section 2.3 of this chapter provide

potential or partial countermeasures against network worms. The following are

limitations in the above mentioned classes of solutions:

• RL or containment solutions (as described in section 2.3.1) are limited

in the efficient and effective detection of worms and lack the

functionality to spread malware warnings to unaffected networks.

• ASG solutions (as described in section 2.3.2) are prone to a high no of

false positives. They also lack the functionality to spread malware

warnings to unaffected networks.

• BSG solutions (as described in section 2.3.3) lack the distributed worm

detection and containment function that is effective in the case of fast

spreading worms.

• LA solutions (as described in section 2.3.4) lack effective worm

detection capabilities.

• PP solutions (as described in section 2.3.5) are prone to false positives,

impractical to implement in a real network and lack the functionality to

spread malware warnings to unaffected networks.

• MC solutions ((as described in section 2.3.6) are not efficient in the

case of fast scanning, flash or hit-list worms due to their bandwidth

usage, legality and limited zero- day vulnerability patching capabilities.

• HQD solutions (as described in section 2.3.7) lack an efficient

mechanism for worm detection.

• Defensive worms (as described in section 2.3.8) are ineffective in the

case of fast zero-day scanning flash and hit-list worms due to their

limited zero day vulnerability patching capabilities and legality to

release on the Internet.

From the above list, it is clear that none of these solutions, in isolation,

provides an effective and efficient approach for zero day worm detection and

 72

2. LITERATURE REVIEW

containment in a disturbed environment. Hence, research question 1 is defined

as follows:

• Is it possible to develop and evaluate a distributed, automated worm

detection, prevention and containment solution that will be more

effective against fast zero-day worms than the potential solutions

summarised in section 2.3? Such a countermeasure may be limited to

adding delay to the worm infection time so that system administrators

have additional time to patch infected hosts. It would be desirable

for such a countermeasure to be able to stop the worm infection

completely.

2.6.2 Research Question 2

To the knowledge of the author, no previous research has reported the design

and development of worm daemon which works in a similar way to a random

scanning and a hit-list worm such as SQL slammer and Witty, which is self-

contained within an isolated environment, which is self-configurable with

speed of propagation and hit-list. Hence there is a need to design and develop

a worm daemon, which can be employed to empirically investigate the spread

of a random scanning and hit-list worm in an isolated environment with real

world Slammer or Witty exploitable conditions and also to test potential

countermeasures.

Hence in order to address above limitations and characterising the virulence of

worms, the following research question is defined:

• Is it possible to develop a pseudo worm daemon with characteristics

such as random and hit-list scanning, configurable rate of

propagation and confinement within defined network space to allow

a developed countermeasure to be empirically tested and evaluated?

2.7 Chapter Summary

This chapter has presented the definitions of different types of malware, a

taxonomy of computer network worms and details of potential wormable

vulnerabilities. It has also summarised a wide range of previously reported

worm detection and prevention mechanisms, worm testing environments and

mathematical models for worm propagation, and classified them into different

 73

2. LITERATURE REVIEW

categories. Finally, two research questions have been defined based on the

limitations identified in the existing work. The next chapter will present the

details of a proposed distributed worm detection and containment

countermeasure.

 74

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

3 THE RATE LIMITING + LEAP AHEAD (RL+LA)

SCHEME

3.1 Chapter Introduction

The Rate Limiting + Leap Ahead (RL+LA) scheme is designed as a worm

detection and containment scheme, which is then implemented as a proof-of-

concept in the C programming language (Shahzad and Woodhead, 2014a). The

source code of RL+LA is given in Appendices of this thesis. The scheme can

be deployed on the routers of enterprise networks. It uses the absence of a

Domain Name System (DNS) (Mockapetris, 1987) lookup, prior to an

outgoing TCP SYN or UDP datagram to a new destination IP address as a

behavioural signature to detect worm scanning activity. Upon detection of

such behaviour, the scheme blocks further traffic from the originating host at

the network gateway and sends an alert message using a variation of the

Friends protocol (Nojiri, Rowe and Levitt, 2003) to peer routers which belong

to the scheme. To the author’s knowledge, this is the first implementation of a

hybrid worm detection and containment mechanism based on a combination of

Rate Limiting (RL) on the basis of behaviour signature detection and Leap

Ahead (LA) solutions. The novelty of this scheme is: its automated, distributed

behaviour based worm detection, containment and alerting to participating

peer networks in the scheme. A hybrid worm detection and containment

solution was designed and implemented as none of solutions described in

section 2.3, in isolation, provides an effective and efficient approach for zero-

day worm detection and containment in a disturbed environment.

3.1.1 Chapter Layout

This chapter starts by presenting the basis concept of the RL+LA scheme in

section 3.1. Section 3.2 defines the basic design and methodology of RL+LA

scheme. Section 3.3 discusses the RL+LA system design and implementation

by presenting its algorithm while section 3.4 provides the concluding

statement.

 75

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

3.2 Basic Design and Methodology

The DNS (Mockapetris, 1987) is a hierarchical globally distributed database

for computers, services or any resource connected to the Internet that translates

easily memorized domain names to the numerical IP addresses needed for the

purpose of locating computer services and devices worldwide. It can be

classified as phone book for the Internet by translating human-friendly

computer hostnames into IP addresses. Almost all network traffic leaving a

workstation host for another Internet host, with which it has not recently

communicated, requires a DNS lookup. It is quite usual for network segments

to be logically or physically separated in an enterprise network due to various

reasons including administration, security, geographical location etc. Whyte et

al. (Whyte, Kranakis and Oorschot, 2005) divides the different network

segments into cells as shown in Figure 3.1. According to Whyte et al., the

traffic generated by the propagation of fast scanning worms can be considered

under the following three classifications:

• Local to local (L2L): In L2L, scanning worm targets hosts within the

boundaries of the enterprise network in which the source host resides.

Topological worms employ this method to propagate.

• Local to remote (L2R): L2R refers to a scanning worm whose source

host is within an enterprise network but which is targeting the whole

Internet.

• Remote to local (R2L: While in R2L propagation, scanning worms

target hosts within an enterprise network from elsewhere within the

Internet.

The proposed worm detection and containment scheme: The RL+LA, detects

the L2R propagation of worms based on behaviour signature (lack of DNS

lookup), and alerts other peer networks, using a variation of the Friends

protocol (Nojiri, Rowe and Levitt, 2003) of the detected worm event. Ganger

et al. (Ganger, Economou and Bielski, 2002) first proposed that the lack of

DNS lookup from a host might be used as a tell-tale sign of worm scanning

activity. In the case of a worm infection like Slammer (Moore et al., 2003), an

infected

 76

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

host tries to send as many UDP datagrams as it can, per unit time, without

making any DNS requests. The RL+LA scheme uses this behavioural

signature (lack of DNS lookup) as an indicator of worm scanning activity and

alerts other participating peer networks.

Figure 3.1 shows the placement of the elements of proposed RL+LA scheme

in an enterprise network. The RL+LA prototype is deployed on the internal

network gateways of each cell, on the DMZ gateway to implement rate

limiting and to send internal Friends messages in case of worm scanning

activity. While RL+LA on the border gateway of each enterprise does not

implement rate limiting, it only forwards the Friends messages to external

Friends peers on the Internet if a worm malware warning is received. Each

host in any network cell is allowed to send up to N outbound TCP SYN or

UDP datagrams without a corresponding DNS lookup in a unit interval of

time. If a host sends more than a threshold value N, outbound datagrams

without appropriate DNS lookups in a specified time interval, the RL+LA

implementation flags this as a worm infection indicator, uses iptables (The

netfilter.org "iptables" project, 1998) to block further datagrams from the host

from exiting the network cell locally, reduces the threshold to N/2 and sends

an alert message to internal and external peers using the Friends protocol. On

receipt of such a message, each peer will reduce its trigger threshold to N/2.

3.3 The RL+LA: System Design and Implementation

The RL+LA proof-of-concept implementation is coded in the C programming

language. The C programming language was chosen to implement RL+LA

prototype due to its capability to access the system's low level functions and

easily available open source libraries like libpcap (TCPDUMP & LIBPCAP,

2008) and libpjlib (PJSIP: PJLIB Library, 2008). The libpcap library is used to

capture traffic and the libpjlib library is used for parsing incoming DNS

replies. Figure 3.2 shows the flowchart of the RL+LA algorithm. For any TCP

SYN or UDP datagram leaving the network, RL+LA looks for a corresponding

DNS lookup in Table A: Network DNS Cache. In the absence of a

corresponding entry, it adds the source IP address to Table B: Counters and

increments the counter value. The result of all DNS lookups along with the

 77

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

Figure 3-1 The RL+LA Proposed Design Architecture

Enterprise D Network

Enterprise A Network

Enterprise C Network

Friends Protocol Messages
to External Friends

Enterprise B Network

Friends Protocol Messages
to External Friends

 Friends Messages to External Friends over Internet

RL + LA

Enterprise B: Border GatewayEnterprise A: Border Gateway

Enterprise C: Border Gateway Enterprise D: Border Gateway

 Enterprise D Network

Enterprise D Internal Network

Cell3
Cell1 Cell2

Network: B.B.B.B/B

 DNS Server

Router B Router C

Enterprise D DMZ

Cell4
 DNS Server

Network: A.A.A.A/A Network: C.C.C.C/C

Router A

Friends Protocol Messages
 to Internal Friends

Router D

Enterprise D: Border Gateway

Friends Protocol Messages
 to External Friends

RL + LA

RL + LA
RL + LA

RL + LA RL + LA RL + LA

RL + LA RL + LA

 78

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

source IP address and the destination IP address is saved in Table A. Different

threshold values can be defined for different networks, depending on the

nature of the typical traffic of that network. Another time interval K is defined

in Table B to decrement the values in Table B. The higher the rate of

decrementing the value of K in Table B, the lower the probability of a false

positive being triggered.

Table A:
Network DNS Cache

Incoming data

Router with iptables
and RL+LA

prototype installed
Look up

source and destination
IPs in Table A: If there is a
hit, do nothing. If no hit,

increment element
in table B

Decrement
all counters once per

K seconds

If any counter
in Table B exceeds N,

 update iptables to block source
 IP and notify Friends

Outgoing
datagram
headers

Inbound DNS
lookup results

Table B:
Counters

Figure 3-2 Flow Chart for The RL+LA Prototype Algorithm

 79

3. THE RATE LIMITING + LEAP AHEAD (RL+LA) SCHEME

It should also be noted that some legitimate network services generate UDP

datagrams without a preceding DNS lookup, such as the DNS service itself. In

order to address this situation, a small number of destination IP addresses are

white listed in the system, such as those for the primary and secondary DNS

servers, and other can be added.

Once the threshold value is reached in Table B, the RL+LA application blocks

outgoing traffic from the offending host using iptables, reduces N to N/2 and

sends an alert message using the Friends protocol to internal peer routers and

to the border gateway, which in turn forwards the alert to external peers in the

scheme, again using the Friends protocol. Each alert message contains the

router user name, a predefined password, and a command to half the threshold

value in Table B.

3.4 Chapter Summary

This chapter has presented the architecture and design of the RL+LA scheme.

The RL+LA scheme uses the absence of a DNS lookup, prior to an outgoing

TCP SYN or UDP datagram to a new destination IP address as a behavioural

signature to detect worm scanning activity and then uses the Friends protocol

to send alert messages to other friends within the participating domain. This

scheme is subject to experimental verification in order to evaluate its

suitability in the case of a worm outbreak on a small scale (to show proof of

concept) and on a large scale networks. In order to achieve these goals, a

pseudo-worm daemon and a suitable worm countermeasure testing

environment are required, which will be presented in the following chapter.

 80

4. THE PSEUDO-WORM DAEMON (PWD)

4 THE PSEUDO-WORM DAEMON (PWD)

4.1 Chapter Introduction

The Pseudo-Worm Daemon (PWD) is designed to empirically evaluate the

developed countermeasure as set out in research question 2 in section 2.6.2.

The PWD performs random scanning and hit-list worm like functionality, and

is implemented as a proof-of-concept in the C programming language

(Shahzad and Woodhead, 2014b). The source code of PWD is given in

Appendices of this thesis. The C programming language was chosen to

implement PWD prototype due to its capability to access the system's low

level functions and easily available open source libraries, which makes it

platform independent. This PWD prototype can be deployed on any host in an

enterprise network and it functions in similar way to any random scanning and

hit-list worm. As reported in section 2.6.2 (to the knowledge of the author), no

previous reported research has presented the architecture and design of any

worm daemon which works in a similar way to a random scanning and a hit-

list worm such as SQL slammer, Witty etc, which is self-contained within an

isolated environment, which is self-configurable with speed of propagation and

contains a user defined hit-list. Hence, the novelty of this worm demon is its

UDP based propagation, user-configurable random scanning pool, ability to

contain a user defined hit-list, authentication before infecting vulnerable host

and efficient logging of time of infection.

4.1.1 Chapter Layout

This chapter begins by introducing the basic concept of PWD in section 4.1.

Section 4.2 presents the basic design and methodology of a random scanning

or a random scanning hit-list worm. Section 4.3 reports the system design and

architecture of the PWD, while section 4.4 explores its key characteristics.

Section 4.5 reports the evaluation of PWD by using Pseudo-Slammer and

Pseudo-Witty worms and the SI model, while section 4.6 by way of

background, presents the Virtualized Malware Testbed (VMT), which is

designed to evaluate PWD and RL+LA. Finally section 4.7 presents the

chapter summary.

 81

4. THE PSEUDO-WORM DAEMON (PWD)

4.2 Basic Design and Methodology of Pseudo-Worm Daemon

(PWD)

A random scanning worm such as Slammer, Code Red etc. (Moore et al.,

2003), (CERT:Code Red II, 2001) uses a pseudo random number generator to

scan random IP address whereas a hit-list worm such as Witty (Shannon and

Moore, 2004) uses an initially generated hit-list embedded into it to infect

vulnerable hosts on the Internet. Upon initial infection, a UDP based random

scanning worm such as Slammer generates a number of UDP datagrams,

whereas a TCP based worm such as Code Red initiates a number of

connections, (defined by an attacker in the worm algorithm) and sends them to

number of random IP addresses in a unit interval of time. Each new infected

host, upon infection, follows the same process and starts scanning further IP

addresses, thereby creating a chain reaction. Figure 4.1 shows this worm

infection process (Chen and Robert, 2004).

In each stage of infection, each infected host n, further scans m hosts. In the

case of a random scanning worm such as Slammer, at the first stage of

infection, one or two hosts starts the infection process, while in the case of a

hit-list such as Witty, at the first stage of infection, the worm contains an

initial list of vulnerable hosts. It is to be noted that an already infected host can

receive multiple copies of either UDP datagrams or TCP packet scans, as

shown by dotted arrow in figure 4.1.

4.3 Pseudo-Worm Daemon System Design and Implementation

The PWD is implemented in the C programming language. The C

programming language was chosen to implement the PWD due to its

capability to access the systems low level functions, easily available open

source compiler and ease of use. The basic design of PWD consists of three

key elements:

• UDP Server: The UDP server program is a single threaded application

and performs pseudo worm like functionality. It can be installed on any

platform host. Upon receiving a UDP datagram from a UDP client on a

user-defined port number and IP address, it looks for authentication

 82

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-1 Worm Infection Process (Chen and Robert, 2004)

 83

4. THE PSEUDO-WORM DAEMON (PWD)

string (user- defined) to authenticates the UDP client request, and upon

authentication, sends a UDP datagram containing local time of

infection to logging server and turns its behaviour to that of a client by

sending further UDP datagram to different destination IP addresses

(generated by a using pseudo random number generator or read from

text file already containing a list of vulnerable hosts). The rate of UDP

datagrams generated per second and the pool from which random

destination IP addresses are chosen (either by random scanning or hit-

list from local file) are user-configurable parameters.

• UDP Client: A UDP client program is used to launch the worm. It can

be installed on any platform host. It sends a UDP datagram to UDP

server with IP address of UDP server, port number on which UDP

server running and authentication string of UDP Server. UDP client in

used only once to start the worm infection process.

• Logging Server: The logging server program is installed on any

platform host in a network to log the time of infection from UDP

servers on the network. All hosts running the UDP server holds the IP

address of the central logging server and upon infection, sends the time

of infection to the logging server.

The following figure 4.2 shows design architecture of PWD. It can be seen that

there in only one UDP client presented, which is used to start the worm

infection process. After that, the UDP Server performs the functionality of a

true random scanning or hit-list worm.

Figure 4-2 Design Architecture of PWD

UDP Client UDP Server

 Logging Server

T
im

e
 o

f
In

fe
c

ti
o

n

 UDP Server

 UDP Server

 UDP Server

 84

4. THE PSEUDO-WORM DAEMON (PWD)

The following figure 4.3 shows flow diagram of the PWD algorithm, that

describe its process for only one instance of worm.

Figure 4-3 Flow Diagram of PWD Algorithm

 85

4. THE PSEUDO-WORM DAEMON (PWD)

4.4 Characteristics of the Pseudo-Worm Daemon (PWD)

Following are key characteristics of the Pseudo-Worm Daemon (PWD).

4.4.1 UDP based Propagation

The designed PWD uses UDP as its propagation mechanism, thereby making it

similar in functionality to the SQL Slammer and Witty worms. A UDP based

worm can propagate much faster than a TCP based worm (Staniford et al.,

2004), due to the fact that TCP based worm uses three way handshake for

connection establishment before infecting a new host, whereas a UDP based

worm uses a single datagram to infect another host. SQL Slammer is

considered to be the fastest random scanning worm in history as its infected

population doubled in size every 8.5 seconds, with 90 % of vulnerable host

infected within 10 minutes (Moore et al., 2003).

4.4.2 Pseudo Random Number Scanning

The PWD implementation prototype presented in this chapter uses pseudo

random number scanning to generate new IP addresses. A pseudo random

number generator (PRNG) is an algorithm for generating a sequence of

numbers that approximates the properties of random numbers (Marsaglia,

2003). A random seed is used to initialize the PRNG. Various types of PRNG

exist, but the PWD implementation prototype presented in this chapter, uses a

Complementary-multiply-with-carry (CMWC) type of pseudo random number

generator (Marsaglia and Zaman, 1991). CMWC method generates sequences

of random integers based on an initial set from two to many thousands of

randomly chosen seed values. The key advantages of the MWC method are:

(a) it invokes simple computer integer arithmetic, (b) leads to very fast

generation of sequences of random numbers with immense periods, ranging

from around 260 to 22000000.

4.4.3 Hit-List

A pre-generated list of vulnerable IP address can be provided to the PWD in

the form of a text file. The PWD reads the file and sends a single UDP

datagram to those IP addresses on a specific port, thereby imitating the

functionality of a hit-list worm such as the Witty.

 86

4. THE PSEUDO-WORM DAEMON (PWD)

4.4.4 Containment

The PWD has a user-configurable random scanning IP addresses pool, which

can be defined inside it code. For examples, generating IP addresses in one

class A or generating IP addresses in six class C networks or generating IP

addresses over the whole Internet space. Hence, its random IP generation can

be contained in any network size according to the needs of the experiment.

4.4.5 Scanning rate

The PWD can be configured to scan at different scanning rates. For example,

100 scans per seconds, 500 scans per seconds etc. The number of random IP

addresses scanned per second is defined as the scanning rate of the worm. For

example, on average, Slammer was reported to have scanned 4000 IP

addresses per second.

4.4.6 Authentication

An authentication mechanism is included into the PWD for safety reasons.

Any UDP datagram from the PWD contains an authentication string. Upon

receiving a UDP datagram, a host looks for authentication string, and if it finds

the authentication string, it starts scanning new hosts.

4.4.7 Logging and Reporting

The PWD prototype also includes a logging server, which can be installed on

any host. Upon infection, the UDP server sends the IP address of the newly

infected host and the time of infection (with resolution of 10-6 seconds) to the

central logging server. The central logging server stores this information in a

text file which can be processed to extract the time of infection of all

vulnerable hosts on the network.

4.5 Evaluation of Pseudo-Worm Daemon (PWD)

In order to evaluate the effectiveness of PWD as an effective tool to

empirically analyse the propagation behaviour of random scanning and hit-list

worms, and to test potential countermeasures, a Virtualized Malware Testbed

(VMT) has been setup (which is given as background in section 4.6) and a

series of experiments were conducted using the real worm attributes of

 87

4. THE PSEUDO-WORM DAEMON (PWD)

Slammer and Witty worms. The SQL Slammer and Witty worms were selected

for evaluating the PWD due to the fact that reliable empirical data from both

worm events are available from CAIDA (CAIDA: Center for Applied Internet

Data Analysis, 2014). Furthermore, Pseudo-Slammer and Pseudo-Witty worms

results are compared using the SI model. Hence, the effectiveness of PWD was

evaluated by using two ways:

• Comparing Pseudo-Slammer and Pseudo-Witty worms results with real

outbreak data (which is available from CAIDA).

• Mathematically modelling the Pseudo-Slammer and Pseudo-Witty

worms results by using SI model and comparing the infection process.

4.5.1 Pseudo-Slammer Worm Experiments

4.5.1.1 Slammer Worm Outbreak Attributes

Moore et al (Moore et al., 2003) reported some key characteristics of the

Slammer outbreak of 2003 which can be summarised as follows:

• 18 hosts per million of the entire IPv4 address space were susceptible

to infection.

• The maximum recorded scanning rate of Slammer was 26,000

datagrams per infected host per second. This figure seems reasonable

while considering the upper bound of 100BaseT interface and the

worm Ethernet frame size of 430 bytes.

• The average scanning rate of Slammer was 4000 datagrams per worm

instance per second during its entire infection period.

4.5.1.2 Experimental Setup

In order to empirically analyse the behaviour of the Slammer worm and to

validate the PWD prototype on a class A scale, an experimental test network

was configured on the Virtualized Malware Testbed (VMT) (reported in

section 4.6 of this chapter), comprising of a single Class A address space

10.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.64.0.0/10,

10.128.0.0/10 and 10.192.0.0/10 as shown in figure 4.1. These four subnets

were connected through a central router by using RIP, configured on Quagga.

Eight further Quagga based routers were implemented (two for each subnet).

The RL+LA prototype was installed on each of these eight routers. The

RL+LA prototype installed on routers A, B, C and D was configured to rate

 88

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-4 Slammer Worm Experimental Test Network

 Friends Protocol Messages to External Friends

Enterprise A Internal Network

Router A

RL + LA

RL + LA

Enterprise A: Border Gateway

Friends Protocol Messages
to External Friends

Enterprise C Internal Network

Network:10.128.0.0/10

Router C

RL + LA

Friends Protocol Messages
to External Friends

Enterprise C: Border Gateway

Enterprise D Internal Network

Network:10.192.0.0/10

Router D

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise C: Border Gateway

Enterprise B Internal Network

Router B

RL + LA

RL + LA

Enterprise B: Border Gateway

Friends Protocol Messages
to External Friends

RL + LA RL + LA

 89

4. THE PSEUDO-WORM DAEMON (PWD)

limit the outbound connection based on DNS anomalies and to send Friends

protocol messages whereas the RL+LA prototype installed on the border

routers only forwarded the Friends protocol messages received from internal

and external friends. One Linux based virtual host was running in each subnet

to provide a DHCP service and logging service for the Pseudo Worm Daemon

(PWD). DSL was installed with the PWD on each of the susceptible

virtualised hosts. All hosts in the network are time synchronized by using the

Network Time Protocol (NTP).

4.5.1.3 Experimental Methodology

As reported in section 4.5.1.1, approximately 18 hosts per million of the entire

IPv4 addresses space were susceptible to infection with Slammer and it

achieved an average scan rate of 4,000 datagrams per infected host per second.

A single class A network has 224 hosts, and so will contain 224 * 18/1,000,000

= 302 susceptible hosts. On this basis, 302 virtual hosts with the Slammer like

pseudo-worm daemon were deployed across the four subnets. Each worm

daemon was configured to scan within a single class A network (10.0.0.0/8).

In order to avoid overloading the server farm hardware (in which case the

experiments would have been measuring the effect of the hardware

restrictions, rather than the properties of the worm), the average worm

scanning rate was scaled down by a factor of 80. Therefore, based on an

average scan rate reported by Moore et al. of 4000 scans per second, the

Pseudo-Slammer network daemon was configured to scan at 50 scans per

second in the set of Slammer experiments.

4.5.1.4 Experimental Results

Figure 4.6 shows the results of a set of three experiments conducted without

implementing any countermeasures. In the first experiment, all 302 susceptible

hosts were infected in 15.07 minutes. In the seconds experiment, all 302

susceptible hosts were infected in 14.58 minutes. While in the third

experiment, all 302 susceptible hosts were infected in 14.45 minutes.

 90

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-5 Experimental Results of Pesudo-Slammer Worm

4.5.2 Pseudo-Witty Worm Experiments

4.5.2.1 Witty Worm Outbreak Attributes

Shannon et al. (Shannon and Moore, 2004) reported some key characteristics

of the Witty worm outbreak of 2004 which can be summarised as follows:

• The Susceptible population of the Witty worm was 12, 000or between

2 and 3hosts per million of the entire IPV4 address space.

• Witty worm had a variable datagram size, with an Ethernet frame size

between 796 and 1307 bytes.

• The average scanning rate of Witty was 357 datagrams per infected

host per second during its entire infection period while the maximum

recorded scanning rate was 970 datagrams per host per second.

• Witty also utilized an initial hit-list of 110 hosts which were reported to

have been infected in the first 10 seconds of launch. Of these110 hosts,

38 hosts were transferring 9700 datagrams per host per second

continuously for a period of an hour.

4.5.2.2 Experimental Setup

In order to empirically analyse the behaviour of the Witty worm and to

validate the PWD prototype, an experimental test network was configured on

the Virtualized Malware Testbed (reported in section 4.6 of this chapter),

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

RL Only Countermeasure Test 1

RL Only Countermeasure Test 2

RL Only Countermeasure Test 3

 91

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-6 Witty Worm Experimental Test Network

 Friends Protocol Messages to External Friends

Enterprise A Internal Network

Router A

RL + LA

RL + LA

Enterprise A: Border Gateway

Friends Protocol Messages
 to External Friends

Enterprise C Internal Network

Network:11.0.0.0/9

Router C

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise C: Border Gateway

Enterprise D Internal Network

Network:11.128.0.0/9

Router D

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise D: Border Gateway

Enterprise B Internal Network

Router B

RL + LA

RL + LA

Enterprise B: Border Gateway

Friends Protocol Messages
 to External Friends

 92

4. THE PSEUDO-WORM DAEMON (PWD)

comprising of a two Class A address space 10.0.0.0/8 and 11.0.0.0/8 but

divided into four subnets; 10.0.0.0/10, 10.128.0.0/9, 11.0.0.0/9 and

10.128.0.0/9 as shown in figure 4.7. All the other network elements of

experimental test network were the same as those defined previously in section

4.5.1.3.

4.5.2.3 Experimental Methodology

As reported in section 7.3.1, Witty had 3 hosts per million of the entire IPv4

addresses space were susceptible to infection with an average scan rate of 357

datagrams per infected host per second.

A single class A network has 224 hosts, and so 2 class A networks will contain

224 * 2(3/1,000,000) = 101susceptible hosts. On this basis, 101virtual hosts

with the Witty like pseudo-worm daemon were deployed across the four

subnets. Each worm daemon was configured to scan within two class A

networks (10.0.0.0/8, 11.0.0.0/8) at a scanning rate of 357 scans per host per

second while using an initial hit-list of one susceptible host held by the first

infected host.

Figure 4-7 Experimental Results of Pesudo-Witty Worm

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 T
w
o
 C
la
s
s
 A
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for Witty-like Worm

No Countermeasure Experiment 1

No Countermeasure Experiment 2

No Countermeasure Experiment 3

 93

4. THE PSEUDO-WORM DAEMON (PWD)

4.5.3 Discussion

4.5.3.1 Empirical Analysis of Pseudo-Slammer Worm Results

Figure 4.9 shows a comparison of real Slammer worm outbreak of 2003 with

the results of the Pseudo-Slammer worm experiments. The average data for

three Pseudo-Slammer worm experiments is plotted against the real outbreak

of 2003 where empirical data is only available for the first 4 minutes of

infection (Moore et al., 2003). The analysis conducted by Moore et al. states

that the real slammer worm infected more than 90 percent of vulnerable hosts

within 10 minutes (Moore et al., 2003). It is also observed from the Pseudo-

Slammer experiments conducted on the VMT platform that all three

experiments achieved infection of 90% of vulnerable hosts within

approximately 10 minutes, whereas 99% of infection is achieved in 14

minutes. Hence these experimental results are broadly comparable to the

available data for the real Slammer outbreak of 2003.

Figure 4-8 Pseudo-Slammer Experiments vs. Real Slammer Outbreak

4.5.3.2 Empirical Analysis of Pseudo-Witty Worm Results

Figure 4.10 shows a comparison of data from the real witty worm outbreak of

2004 with results of the Pseudo-Witty worm experiments. The average of the

three Pseudo-Witty worm experiments is plotted against the real witty worm

outbreak of 2004 as reported by Shannon et al. (Shannon and Moore, 2004).

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Number of Infected Hosts against Time for Pseudo-Slammer Worm

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Pseudo-Slammer Worm Experimental Data

Moore et al. Reported Data

 94

4. THE PSEUDO-WORM DAEMON (PWD)

Shannon et al. reported that the real Witty worm infected 90% of its

susceptible hosts with within 90 minutes while 100 % of infection took almost

140 minutes. But, the Pseudo-Witty experiments conducted by using VMT

took 90 minutes to reach its 90 % of infection and 97 minutes on average to

infect all hosts. Furthermore, the infection process for real Witty Worm was

quite fast at initial stage of worm spread. This difference is attributed to the

fact that the real Witty Worm outbreak contained an initial hit-list of 110 hosts,

out of which 38 infected hosts were transferring 9700 datagrams per host per

second continuously for a period of an hour; whereas the Pseudo-Witty worm

experiments used an average scan rate of the real Witty worm of 357

datagrams per host per second during its entire infection. The results of

Pseudo-Witty worm experiments are still broadly comparable to the available

data for the real Witty worm outbreak.

Figure 4-9 Pseudo-Witty Experiments vs. Reported Witty Outbreak

0 25 50 75 100
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m

b
e
r
o
f
In

fe
c
te

d
 H

o
s
ts

 i
n
 T

w
o
 C

la
s
s
 A

 N
e
tw

o
rk

s

Pseudo-Witty Worm Outbreak vs. Shannon et al. Witty Worm Reported Data

Pseudo-Witty Worm Experimental Data

Shannon et al. Witty Worm Reported Data

 95

4. THE PSEUDO-WORM DAEMON (PWD)

4.5.4 Epidemiological Modelling

4.5.4.1 Classical Simple Epidemic Model

In order to further analyse the spread of worm outbreaks, the reported research

employed classical simple epidemic model (Kermack and McKendrick, 1927),

(Daley and Gani, 1999), (Xiang, Fan and Zhu, 2009), in which all hosts exist

in one of only two states at any given time: ‘susceptible’ (denoted by ‘S’) or

‘infectious’ (denoted by ‘I’), and thus it is also called the SI model. This model

assumes that once a host is infected by a worm, it will stay in an ‘infectious’

state forever. For a finite population of size N, it could be defined by the

following single differential equation 4.1.

��(�)

��
= 	
�(�)[� − �(�)]		 (4-1)

Where I(t) denotes the number of infectious hosts at time t; and β = η (Average

worm scan rate) / Ω (The size of a worm’s scanning space) stands for the pair

wise rate of infection in epidemiology studies (Daley and Gani 1999). At the

beginning of the infection (t=0), I(0) hosts are infectious and the other N −

I(0) hosts are all susceptible.

Let i(t) stands for the fraction of the population that are infectious at time t,

and thus i(t) = I(t)/N, which yields I(t) = N*i(t). Substituting I(t) in equation

(4.1) with N*i(t) and then rearranging it leads to equation 4.2:

	��(�)

��
= 	�
�(�)[� − �(�)]					 	 (4-2)	

Equation (8.2) has following general analytical solution:

�(�) =
��
(���)

��	��
(���)
	 	 	 (4-3)	

Which is the logistic equation. For early t, i(t) grows exponentially. For large t,

i(t) converges from 0 to 1 (all susceptible hosts are infected). When t = 0,

 96

4. THE PSEUDO-WORM DAEMON (PWD)

�(�) = �(0) =
�����

��	�����
=

�(�)	

�
yields !�"# =

�(�)	

�!�(�)
 . Therefore, a particular

analytical solution of equation 8.2, given its initial conditions �(0) =
�(�)	

�
 is as

follows:

 �(�) =
�$

�$�[�!	�$]�
��
�	

 (4-4)

4.5.4.2 Modeling Methodology and Results

Best fit SI model curves were plotted against experimental test results of

Pseudo-Slammer and Pseudo-Witty Worm and values of Pearson’s correlation

coefficient r, (Pearson, 1895) as well as the value of β for SI model were

calculated. Different values of β were the tried to obtain the highest value of r.

This basic technique is similar to that employed by Tidy (Tidy 2014).

The figure 4.11 shows the best fit SI model against Pseudo-Slammer Worm

results, showing the values of β and Pearson’s correlation coefficient r.

Figure 4-10 Best Fit SI Model for Pseudo-Slammer Worm Experimental Data

The figure 4.12 shows the best fit SI model against Pseudo-Witty worm

results, showing the values of β and Pearson’s correlation coefficient r.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

Time (mins)

N
u
m

b
e
r
o
f
In

fe
c
te

d
 H

o
s
ts

 i
n
 a

 C
la

s
s
 A

 N
e
tw

o
rk

Best Fit SI Model for Average Pseudo-Slammer Worm Experimental Data

r = 0.99827

ββββ = 1.58

Pseudo-Slammer Worm

Best Fit SI Model

 97

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-11 Best Fit SI Model for Pseudo-Witty Worm Experimental Data

• It is worthy of note that the value of the correlation coefficient, r, is

quite close to 1 i.e. (r = 0.99186 as in case of Pseudo-Slammer and r =

0.99186 as in case of Pseudo-Witty), indicating the ability of the SI

model to represent the experimental data for random scanning worms

such as Slammer and Witty.

• Furthermore, obtained experimental results also proved that Pseudo-

Slammer and Pseudo-Witty Worm outbreak follows random constant

spread pattern and approximates to standard s-shaped curve as shown

by Moore et al. (Moore et al., 2003).

4.6 Virtualized Malware Testbed (VMT)

This section presents the architecture, design and implementation of

Virtualized Malware Testbed (VMT), which is included as background to

chapter 4.

4.6.1 Introduction

Design and development of malware test environments for security

experiments has been a key area of research over the last 10 years. Section 2.4

presented some existing malware testing environments. Based on the work, a

0 25 50 75 100 125 150
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m

b
e
r
o
f
In

fe
c
te

d
 H

o
s
ts

 i
n
 T

w
o
 C

la
s
s
 A

 N
e
tw

o
rk

s

Best Fit SI Model for Average Pseudo-Witty Worm Experimental Data

r = 0.99186

ββββ = 1.01

Pseudo-Witty Worm

Best Fit SI Model

 98

4. THE PSEUDO-WORM DAEMON (PWD)

Virtualized Malware Testbed (VMT) (Shahzad, Woodhead and Bakalis, 2013)

was setup by using virtualization technologies provided by VMware (VMware,

1998) and open source software such as Quagga (Quagga Routing Suite,

1999), Ubuntu (ubuntu, 2004), Damn Small Linux (Damn Small Linux (DSL),

2008). The key usage of VMT would be to conduct empirical experiments by

using the PWD with real worm characteristics such as Slammer, Witty and

contemporary potential worms such as those which might exploits Shell Shock

(CVE:CVE-2014-6271, 2014) etc. in order to closely observe their infection

and propagation behaviour. The same facility can also be employed in testing

candidate worm countermeasures such as RL+LA (reported in chapter 3 of this

thesis).

4.6.2 VMT Architecture Design and Implementation

VMT uses VMware ESXi (VMware ESXi, 2010) as the core virtualization

technology. VMware ESXi is bare-metal embedded hypervisor that run

directly on host server hardware without any additional underlying operating

system. Various virtualization technologies such as Virtual Box, KVM, Xen

etc. (Software Insider, 2013) exits but VMware was chosen as virtualization

platform due to the following characteristics: ease of use, reliability, scalability

of running virtualized hosts, remote administration of multiple servers from a

single desktop host and vSphere PowerCLI for scripting administrative tasks.

Damn Small Linux (DSL) (Damn Small Linux (DSL), 2008) was chosen to

run as the virtualized operating system with the PWD. Although various other

small Linux distributions such LINUXBBQ (LINIXBBQ, 2012), Puppy Linux

(Puppy Linux, 2003), Tiny Core Linux (Tiny Core Linux, 2009) etc. but the

main reason of selecting DSL as the virtual host operating system was its

minimum hardware requirements. Each DSL based VM was configured with

32 MB of RAM and 1 GB of hard disk space, thereby making it a scalable

solution with minimum reconfiguration time and ease of deployment.

VMT also uses a free and open source routing suite Quagga (Quagga Routing

Suite, 1999) to provide a software routing functionality. This routing suite

provides implementation of OSPFv2, OSPFv3, RIP v1 and v2, RIPng and

BGP-4 for Unix platforms, particularly FreeBSD, Linux, Solaris and NetBSD.

 99

4. THE PSEUDO-WORM DAEMON (PWD)

Various open source software routing packages exists such as BIRD (The

BIRD Internet Routing Daemon, 2008), GNU Zebra (GNU Zebra, 2005) but

Quaaga was chosen as routing package due to its software support and ease of

routing protocols configuration. It was installed on Ubuntu operating system

(chosen due to ease of use)to provide routing functionality between different

networks. Each Quagga based routing server, installed on top of Ubuntu used 2

GB of Ram and 5 GB of storage space. VMware vCenter Server (VMware

vCenter Server, 2012) provides a graphical user interface to manage the

VMware ESXi servers remotely. It also provides other functionality such as

the ability to clone virtual hosts, virtual network configuration etc. It was

installed on top of Windows Server 2003 R2. Ububtu based virtual hosts are

also configured on which network services, such as DHCP, NTP and Logging

server of PWD (reported in chapter 4.3) are configured. Each such virtual host

image used 512 MB of RAM and 5 GB of disk space.

Figure 4.12 illustrates the physical architecture of VMT. It consists of a server

farm with five servers, a management server, routing server with multiple

network interface cards, Ethernet switches and external storage. Each server in

the server farm is running ESXi while the management server is running

VMWare vCenter Server, installed on top of Windows Server 2003 R2. One

network interface card in each server farm host is connected to a logically

isolated management network along with the management server; thereby

allowing access to all resources from one graphical user interface. Multiple

virtual topologies can be created within the server farm by using virtual local

area networks (VLANs) connected to different NICs on the routing server,

installed with Quagga. 1 TB external storage is also connected with the

management server to take regular backup of the systems.

 100

4. THE PSEUDO-WORM DAEMON (PWD)

Figure 4-12 VMT Physical Network Setup

Table 4.1 summarizes the hardware and operating systems which make up the

VMT infrastructure.

Table 4-1 VMT Hardware and Operating System Infrastructure

 Processors No of

cores

Operating

System

Memory Storage VMs

Server 1 i7 6 ESXi 5.1 64 GB 1 TB DSL,

Ubuntu

Server 2 i7 4 ESXi 4.1 24 GB 1 TB DSL,

Ubuntu

Server 3 i7 4 ESXi 4.1 24 GB 1 TB DSL,

Ubuntu

Server 4 Xeon 4 ESXi 4.1 8 GB 512GB DSL,

Ubuntu

Server 5 Xeon 4 ESXi 5.1 8 GB 512GB DSL,

Ubuntu

Management

Server

i7 4 Windows

Server

2003 R2

8 GB 2 TB N.A

Routing

Server

i5 2 Ubuntu

Quagga

4 GB 512GB N.A

 101

4. THE PSEUDO-WORM DAEMON (PWD)

4.6.3 Characteristics of the Virtualized Malware Testbed (VMT)

Following are key characteristics of the Virtualized Malware Testbed (VMT).

4.6.3.1 Scale

The Virtualized Malware Testbed (VMT) reported in this chapter uses Damn

Small Linux as the operating system for the PWD hosts, it is capable of

running roughly 2000 virtual hosts, which can be deployed in 10 different

subnets. But, in different scenarios as reported in chapters 4, 5 and 6 a

maximum of 384 PWD based virtual hosts are configured according to the

needs of the security experiments.

4.6.3.2 Cost

The VMT reported in this chapter can provide 2000 virtual hosts running

PWD, with 10 fully routable networks. It has 3 i7 servers, 2 Xeon servers, 1 i7

management Server and 1 i5 routing host. The hardware costs of all these hosts

do not exceed £5,000. The VMT used open source software and VMT

products (VMware ESXi, VMware VCenter servers which are provided as part

of VMware Academic Program (VMware Academic Program (VMAP), 2010)

at nominal annual subscription fee of $250 to academic institutions.

In terms of the feasibility of scaling this architecture, a single i7 server can run

500 DSL based virtual hosts and can accommodate one or two class A

networks. Hence 126 i7 servers can be used to create a network with all class

A network address space 1.X.X.X-126.X.X.X, but with only 500 virtual hosts

on each i7serve. Hence, it would be not be feasible to create an address space

of the whole IPv4 Internet due to two reasons: (a) limitation of budget (b)

using a larger network would not provide results with any greater value. A

class A network has a 224 host address space, which is sufficient enough to

evaluate worm infection and to test potential countermeasure by using the

experimental methodology described in sections 4.5.1.3 and 4.5.2.3. Hence,

the experiments reported in sections 4.5.1 and 4.5.2 used one class A and two

class A network address space to empirically analyse the Pseudo-Slammer and

Pseudo-Witty worm respectively.

 102

4. THE PSEUDO-WORM DAEMON (PWD)

4.6.3.3 Flexible and Efficient Worm Experiment Control

A minimum rebuild and configuration time are key goals of any security

testing environment. VMware vCenter Server provides PowerCLI (VMware

vSphere PowerCLI 5.0, 2011); a command line interface tool that allows

administrators to create simple and robust scripts to automate the main tasks,

such as virtual hosts cloning, virtual hosts shutdown and reboot etc. PowerCLI

shell scripts have been written to clone multiple virtual hosts. TheVMware

vCenter Server graphical user interface also provides all of the above

mentioned facilities.

4.6.3.4 Isolation

One network interface card in each server farm host is connected to a logically

isolated management network (192.168.0/24) along with the management

server, whereas multiple network interface cards are connected to routing

servers with a different switch, thereby, completely isolating the VMT test

network from management network.

4.6.3.5 Remote Administration

As VMT infrastructure uses the ESXi operating systems for all servers in the

server farm of VMT, and uses VMWare VCenterServer installed on

Management Server in order to access resources on all ESXi based servers.

This provides remote administration of all servers in the server farm from

single desktop host.

4.6.3.6 Confinement

As VMT uses PWD, which can be contained in defined networks according to

the needs of the security experiment, and the Internet is completely isolated

from the test network, the VMT provides the complete confinement of worm

traffic within test networks. Furthermore, the PWD contains an authentication

string to infect a host, which makes PWD traffic completely benign if it leaked

on the Internet.

4.7 Chapter Summary

This chapter has presented the system architecture and design of the PWD. It

has also reported its key characteristics such as UDP based propagation,

pseudo random number scanning, ability to contain a user defined hit-list,

user- configurable random scanning pool, configurable scanning rate,

 103

4. THE PSEUDO-WORM DAEMON (PWD)

authentication before infecting vulnerable hosts and efficient logging of the

time of infection. Furthermore this chapter presents evaluation of PWD by (a)

conducting a series of Pseudo-Slammer and Pseudo-Witty worm experiments

with real outbreak attributes of Slammer and Witty worms; and comparing

Pseudo-Slammer and Pseudo-Witty worms results with real outbreak data

(which is available from CAIDA), (b) by mathematically modelling the results

of the Pseudo-Slammer and Pseudo-Witty worms using the SI model and

comparing the infection process. Finally, this chapter has presented (by way of

background) the architecture and design of a Virtualized Malware Testbed

(VMT), developed for worms testing, and based on VMware ESXi and open

source softwares. It has also reported the key characteristics of VMT, such as

scale, cost, flexible and efficient worm experiment control, isolation, remote

administration, and confinement.

From this chapter, it is concluded that PWD can be used as an effective tool to

empirically analyse the propagation behaviour of random scanning and hit-list

worms, and to test potential countermeasures such as RL+LA (presented in

chapter 3 of this thesis). However, in order to evaluate RL+LA, a

comprehensive set of initial empirical experiments need to designed and

performed, which will be presented in the following chapter.

 104

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

5 EXPERIMENTAL RESULTS FOR THE RL+LA

SCHEME ON A SMALL SCALE NETWORK

5.1 Introduction

This chapter builds on the work reported in the previous two chapters. Chapter

3 has presented the basic design and methodology of worm detection and

containment scheme, The Rate Limiting + Leap Ahead (RL+LA), whereas

chapter 4 has detailed the design and implementation of the Pseudo-Worm

Daemon (PWD), it evaluation by conducting Pseudo-Slammer and Pseudo-

Witty Worms and comparing the results with real worm outbreak data and SI

model and the design and architecture the Virtualized Malware Testbed

(VMT), designed to conduct security experiments in an isolated environment.

The next step was to design and conduct a series of experiments in order to

analyse the propagation behaviour of the PWD, and to analyse the

performance of the proposed RL+LA countermeasure scheme, in comparison

to other previously proposed countermeasure, such as RL only. Hence, a series

of initial experiments were conducted using the PWD in VMT, to initially

assess the effectiveness of the proposed RL+LA countermeasure. This chapter

reports the experimental results of this series of initial experiments and a

discussion of these results.

5.1.1 Chapter Layout

This chapter begins by presenting the experimental setup build for conducting

the initial set of experiments in section 5.2. Section 5.3 details the

experimental methodology used to conduct the experiments. Section 5.4

reports the results of the set of experiments by employing the defined

methodology and experimental setup. Section 5.5 presents a discussion on the

set of results with the need of future work. Finally section 5.6 concludes the

chapter with a summary.

5.2 Experimental setup

To validate the RL+LA prototype, an experimental test network was

configured in the VMT (reported in Chapter 4 of this thesis), consisting of six

 105

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

fully routable class C networks (192.168.0.0 to 192.168.5.0) as shown in the

figure 5.1.These six subnets were connected through three border routers

(Router 1, 2 & 3) running Routing Information Protocol (RIP), configured on

Quagga. Six further Quagga based routers (Router A-F) were implemented

(one for each subnet). The gateway for each network ran a Linux 2.6 kernel

along with iptables, the Quagga routing package and the RL+LA software.

One Linux based virtual host was running in each subnet to provide a DHCP

service, NTP service and Logging server of the PWD. Damn Small Linux

(DSL) was installed with the PWD on each of the susceptible virtualised hosts.

All hosts in the network were time synchronized by using the Network Time

Protocol (NTP). Border router, Router 1 contained a list of external scheme

peers (in this case Router 2 and Router 3). Internal routers (Routers A, B, C

and D) exchanged Friends protocol alert messages directly in the case of worm

scanning activity, whereas border router (Router 1) forwarded the alert

messages to external scheme peers (Router 2 and Router 3). A network size of

six class C networks was selected for experimentation due to undertake

experiments on a small scale (scale was 6 class C networks) to begin with in

order to get some initial sets of results of behaviour of PWD and impact of

invoking the RL+LA countermeasure.

5.3 Experimental Methodology

A range of empirical experiments were conducted by using the test network

and tools described. These experiments investigated the effect of two key

variables:

• The proportion of hosts in the network, which are vulnerable to

infection (i.e. are running the PWD): Values of 25%, 20%, 15% and

10% were investigated. These population values were selected to

investigate the effectiveness of the RL+LA scheme as an initial proof

of concept on a small scale.

• The level of countermeasure implemented: A series of experiments

were conducted with following settings:

� No countermeasure (to provide a base-line)

� Only the local rate limiting from infected hosts (RL only)

 106

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

� Rate limiting and the alerting protocol implemented with

reducing threshold (RL+LA).

For all the experimental tests, N was set to 15 datagrams in 5 seconds, and the

counter in Table B: Counters of figure 3.2 was decremented every 30 seconds.

These values were selected as a as an initial proof of concept to achieve

maximum countermeasure effect on a small scale. Each time, the experiment

was started by infecting the same host at IP address 192.168.0.10 with same

random number generator seed value while employing different seed value for

External Friend2 Internal Network

 Cell1

External Friend1-Internal Network

 Cell1

DMZ

Cell4

University of Greenwich Internet Security Research Laboratory (UoG-ISRL) Internal Network

Cell3Cell2Cell1

 Friends messages to External Friends

RL + LA

Protoype

Friends Protocol Messages

 DNS Server

 DNS Server

Friends Protocol
Messages

Friends Protocol
Messages

 DNS Server DNS Server

Router A Router B Router C

Router D
Router 1

Router 2 Router 3

Router F

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

RL + LA

Protoype

Router E

Figure 5-1 Experimental Test Network

 107

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

all subsequent infected hosts. Each worm infected host is capable of generating

10 UDP datagrams in 2.5 seconds, before it stops, choosing pseudo random

destination IP addresses in the pool of the 6 class C networks (192.168.0.0/24

to 192.168. 5.0/24) on port 1434. These pseudo-worm parameters were

selected due to the size of experimental networks.

5.4 Experimental Results

Figure 5.2 shows the results of experiments conducted with 25% of hosts

vulnerable to infection. Without any protection mechanism in place, all

vulnerable hosts are infected within approximately 18 seconds. In the second

experiment, with rate limiting only as the countermeasure (no alert messages

between peers), 91% (349) of vulnerable hosts are infected within

approximately 17 seconds. In the third experiment, rate limiting was

implemented with alert messages and 63% (242) of vulnerable hosts were

infected, again in around 17 seconds.

Figure 5-2 Experimental Results with 25 % of Hosts Vulnerable to Infection

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

Time (secs)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 S
ix
 C
la
s
s
 C
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for 25% Hosts Vulnerable

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 108

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

Figure 5.3 shows the results of the experiments conducted with 20% of hosts

vulnerable. Without any countermeasures in place, all vulnerable hosts were

infected within around 18 seconds. In the second experiment, with rate

limiting only as the countermeasure (no alert messages between peers), 88%

(271) of vulnerable hosts were infected in approximately 20 seconds. In the

third experiment, again, rate limiting was implemented with alert messages

and, 60% (185) of vulnerable hosts were infected in around 20 seconds.

Figure 5.4 shows the results of the experiments conducted with 15% of the

network hosts vulnerable to infection. Without any countermeasures in place,

all vulnerable hosts (231) were infected within approximately 17 seconds. In

the second experiment, with rate limiting only as the countermeasure (no alert

messages between peers), 87.5% (271) vulnerable hosts were infected in

approximately 17 seconds. In the third experiment, again, rate limiting was

implemented with alert messages and, 56.5% (131) of vulnerable hosts were

infected.

Figure 5.5 shows the results of the set of experiments conducted with 10 % of

the network hosts vulnerable to infection. Without any countermeasures in

place, 56.209% (81) of vulnerable hosts were infected within approximately 35

seconds. In the second experiment, with rate limiting only as the

countermeasure (no alert messages between peers), 5.228% (8) vulnerable

hosts were infected in approximately 15 seconds. In the third experiment,

again, rate limiting was implemented with alert messages and, 2.614% (4) of

vulnerable hosts were infected in 7 seconds. It is also noted that multiple runs

were required to start the infection process due to the smaller number of

vulnerable hosts and as one instance of infected PWD only generated 10 UDP

datagrams before it stopped. Hence, experimental results with 10 % of hosts

vulnerable to infection are not analyzed further

 109

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

Figure 5-3 Experimental Results with 20 % of Hosts Vulnerable to Infection

Figure 5-4 Experimental Results with 15 % of Hosts Vulnerable to Infection

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

Time (secs)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 S
ix
 C
la
s
s
 C
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for 20% Hosts Vulnerable

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Time (secs)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 S
ix
 C
la
s
s
 C
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for 15% Hosts Vulnerable

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 110

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

Figure 5-5 Experimental Results with 10 % of Hosts Vulnerable to Infection

5.5 Discussion and Future Work

In all four sets of experiments, it can be seen that rate limiting alone reduces

the speed of propagation of the worm as well as the number of hosts ultimately

infected. When the Friends protocol messages and the threshold reduction

were also implemented, the speed of propagating and the number of hosts

infected were further reduced.

Table 5.1 summarizes the results of the complete set of experiments as

follows:

• In the first scenario (25% of hosts vulnerable to infection), RL+LA

reduces the number of infected hosts to 63% as compared to the RL

with 91%.

• In the second scenario (20% of hosts vulnerable to infection), RL+LA

reduces the number of infected hosts to 60% as compared to the RL

only with 88%.

• In the third scenario (15% of hosts vulnerable to infection), RL+LA

reduces the number of infected hosts to 56.6 % as compared to the RL

only with 87.5%.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Time (secs)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 S
ix
 C
la
s
s
 C
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for 10% Hosts Vulnerable

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 111

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

Table 5-1 Summary of Initial Results

Susceptible

Population

Infected Population

No

Countermeasures

RL

Countermeasure

N=15, t=5

RL+LA

Countermeasure

Threshold I

N=15, t=5, K=30

reducing N to half

25 %

(384 of 1536 Hosts)

100 %

(384 Hosts)

91 %

(349 Hosts)

63 %

(242 Hosts)

20 %

(307 of 1536 Hosts)

100 %

(307 Hosts)

88 %

(271 Hosts)

60 %

(185 Hosts)

15 %

(231 of 1536 Hosts)

100 %

(231 Hosts)

87.5 %

(202 Hosts)

56.5 %

(131 Hosts)

10 %

(153 of 1536 Hosts)

56.209%

(81 Hosts)

5.228 %

(8 Hosts)

2.614 %

(4 Hosts)

• In the last scenario (10% of hosts vulnerable to infection), the number

of hosts ultimately infected with RL+LA is 2.164% as compared to the

RL only with 5.228%.

Figure 5.6 shows the % ssusceptible hosts infected for experimental test 1-9.

From this set of experiments, it is clearly observed that the lower the

percentage of susceptible population of worm, the more effective is the

countermeasure.

Figure 5-6 % of Susceptible Hosts Infected for Experimental Tests 1-9

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Test Number

P
e
rc
e
n
ta
g
e
 o
f
S
u
s
c
e
p
ti
b
le
 H
o
s
ts
 I
n
fe
c
te
d

Percentage of Susceptible Hosts Infected for Tests 1 to 9

1 = 25% hosts vuln., no c. measure

2 = 25% hosts vuln., RL only c. measure

3 = 25% hosts vuln., RL + LA c. measure

4 = 20% hosts vuln., no c. measure

5 = 20% hosts vuln., RL only c. measure

6 = 20% hosts vuln., RL + LA c. measure

7 = 15% hosts vuln., no c. measure

8 = 15% hosts vuln., RL only c. measure

9 = 15% hosts vuln., RL + LA c. measure

 112

5. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON A SMALL
SCALE NETWORK

Furthermore, it is empirically observed from the set of experiments without

any countermeasure, that infection process of PWD follows the s-shaped curve

pattern (Moore et al., 2003).

In terms of future work, the performance of the RL+LA scheme with different

threshold values needs to be explored on a large scale network, with real worm

conditions, which will be reported in the next chapter.

5.6 Chapter Summary

This chapter has presented the initial set of results of launching a pseudo

random scanning worm (PWD), on a small scale in an isolated experimental

testbed (VMT) and invoking a worm detection and containment scheme,

RL+LA. It has also reported the results of invoking rate limiting (RL)

countermeasure and its comparison with RL+LA. From this chapter, it is

concluded that RL+LA is an effective approach for worm detection and

containment. The next chapter will report the results of launching

countermeasures such as RL and RL+LA on large network by employing more

realistic test conditions.

 113

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

6 EXPERIMENTAL RESULTS FOR THE RL+LA

SCHEME ON CLASS A SCALE NETWORKS

WITH REAL WORM OUTBREAK ATTRIBUTES

6.1 Introduction

Chapter 5 presented the results and discussion of an initial set of experiments

conducted with countermeasures (RL and RL+LA) on a small scale. The

results showed that the RL+LA countermeasure performed significantly better

in comparison to the RL only countermeasure on a small scale with six class C

networks and with the limited scanning rate of Pseudo-Worm Daemon (PWD).

The thesis now considers how this work is comparable to worms with real

worm outbreak attributes on class A scale networks. Hence there is a need to

empirically analyse the propagation of different random scanning worms, and

to investigate the impact of the designed countermeasure (RL+LA) by using

the attributes of real worm outbreaks such as SQL Slammer and Witty on a

class A scale networks such as (class A network with address space of 16

million hosts). Therefore, a detailed set of experimental work has been

conducted to analyse the effectiveness of the RL+LA countermeasure. This

chapter presents the results and discussion of these experiments.

6.1.1 Chapter Layout

This chapter begins with the background to the experiments in section 6.1.

Section 6.2 details the SQL Slammer outbreak characteristics, experimental

setup and experimental methodology, used to conduct these experiments, and

experimental results of Pseudo-Slammer worm experiments; while section 6.3

presents the Witty outbreak characteristics, experimental setup and

experimental methodology, used to conduct these experiments, and

experimental results of Pseudo-Witty worm experiments. Section 6.4 presents

the detailed discussion of the experimental results by discussing the impact of

implementing different countermeasures (RL and RL+LA), impact of network

properties to RL and RL+LA countermeasure experimental test results,

RL+LA countermeasure overhead, and applicability of RL and RL+LA Class

A experimental test results to the Internet scale. Finally, a summary of this

 114

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

chapter is presented in section 6.5.

6.2 Pseudo-Slammer Worm Experiments

6.2.1 Slammer Worm

Moore et al (Moore et al., 2003) reported some key characteristics of the

Slammer outbreak of 2003 which can be summarised as follows:

• 18 hosts per million of the entire IPv4 address space were susceptible

to infection.

• The maximum recorded scanning rate of Slammer was 26,000

datagrams per infected host per second. This figure seems reasonable

while considering the upper bound of 100BaseT interface and the

worm Ethernet frame size of 430 bytes.

• The average scanning rate of Slammer was 4000 datagrams per worm

instance per second during its entire infection period.

6.2.2 Experimental Setup

In order to empirically analyse the behaviour of the Slammer worm and to

validate the RL+LA prototype on a class A scale, an experimental test network

was configured on the Virtualized Malware Testbed (VMT) (reported in

Chapter 4 of this thesis), comprising of a single Class A address space

10.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.64.0.0/10,

10.128.0.0/10 and 10.192.0.0/10 as shown in Figure 6.1. These four subnets

were connected through a central router by using RIP, configured on Quagga.

Eight further Quagga based routers were implemented (two for each subnet).

The RL+LA prototype was installed on each of these eight routers. The

RL+LA prototype installed on routers A,B,C and D was configured to rate

limit the outbound connection based on DNS anomalies and to send Friends

protocol messages whereas the RL+LA prototype installed on the border

routers only forwarded the Friends protocol messages received from internal

and external friends. One Linux based virtual host was running in each subnet

to provide a DHCP service and logging service for the PWD. DSL was

installed with the PWD on each of the susceptible virtualised hosts. All hosts

in the network are time synchronized by using Network Time Protocol (NTP).

 115

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-1 Slammer Worm Experimental Test Network

 Friends Protocol Messages to External Friends

Enterprise A Internal Network

Router A

RL + LA

RL + LA

Enterprise A: Border Gateway

Friends Protocol Messages
to External Friends

Enterprise C Internal Network

Network:10.128.0.0/10

Router C

RL + LA

Friends Protocol Messages
to External Friends

Enterprise C: Border Gateway

Enterprise D Internal Network

Network:10.192.0.0/10

Router D

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise C: Border Gateway

Enterprise B Internal Network

Router B

RL + LA

RL + LA

Enterprise B: Border Gateway

Friends Protocol Messages
to External Friends

RL + LA RL + LA

 116

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

6.2.3 Experimental Methodology

As reported in section 6.2.1, approximately 18 hosts per million of the entire

IPv4 addresses space were susceptible to infection with Slammer and it

achieved an average scan rate of 4,000 datagrams per infected host per second.

A single class A network has 224 hosts, and so will contain 224 * 18/1,000,000

= 302 susceptible hosts. On this basis, 302 virtual hosts with the Slammer like

pseudo-worm daemon were deployed across the four subnets. Each worm

daemon was configured to scan within a single class A network (10.0.0.0/8).

In order to avoid overloading the server farm hardware (in which case the

experiments would have been measuring the effect of the hardware

restrictions, rather than the properties of the worm), the average worm

scanning rate was scaled down by a factor of 80 (scaling factor of 80 was

chosen due to resource limitations on DSL based virtualized hosts) . Therefore,

based on an average scan rate reported by Moore et al of 4000 scans per

second, the Pseudo-Slammer network daemon was configured to scan at 50

scans per second in the set of Slammer experiments.

Four series of experiments were conducted:

• With no countermeasure (to provide a base-line),

• With only the local rate limiting from infected hosts,

• With both rate limiting and the alerting protocol implemented with

reducing threshold to half.

• With both rate limiting and the alerting protocol implemented with

further reducing threshold to approximately 27 % of the original value.

Each time, the experiment was started by infecting the same host with same

random number generator seed value while employing different seed value for

all subsequent infected hosts. The threshold values N in time t and counter in

Table B: Counters of figure 3.2 were also scaled up by a factor of 80. For the

purpose of clarity, the un-scaled values will be used henceforth in this thesis.

 117

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

6.2.4 Experimental Results

6.2.4.1 No Countermeasure

Figure 6.2 shows the results of a set of three experiments conducted without

implementing any countermeasures. In the first experiment, all 302 susceptible

hosts were infected in 15.07 minutes. In the seconds experiment, all 302

susceptible hosts were infected in 14.58 minutes. While in the third

experiment, all 302 susceptible hosts were infected in 14.45 minutes.

Figure 6-2 Experimental Results of Pseudo-Slammer Worm with No

Countermeasures

6.2.4.2 RL Countermeasure

Figure 6.3 shows the results of a set of three experiments conducted with the

RL countermeasure (local rate limiting from infected hosts). For all three tests,

N was set to 15 datagrams in 5 seconds, and the counter in Table B: Counters

of figure 3.2 being decremented every 30 seconds. In the first experiment, all

302 susceptible hosts were infected in 41.18 minutes. In the second

experiment, all 302 susceptible hosts were infected in 40.39 minutes. While in

the third experiment, all 302 susceptible hosts were infected in 41.24 minutes.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

No Countermeasure Test 1

No Countermeasure Test 2

No Countermeasure Test 3

 118

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-3 Experimental Results of Pseudo-Slammer Worm with RL

Countermeasure

6.2.4.3 RL+LA Countermeasure

Figure 6.4 shows the results of a set of three experiments conducted with the

RL+LA countermeasure (with both rate limiting and the alerting protocol

implemented with reducing threshold to half). For all three tests, N was set to

15 datagrams in 5 seconds, and the counter in Table B: Counters of figure 3.2

being decremented every 30 seconds. In the first experiment, all 302

susceptible hosts were infected in 64.54 minutes. In the second experiment, all

302 susceptible hosts were infected in 66.24 minutes. While in the third

experiment, all 302 susceptible hosts were infected in 64.36 minutes.

Figure 6.5 shows the results of a set of three experiments conducted with

RL+LA countermeasures (with both rate limiting and the alerting protocol

implemented with reducing threshold to half). For all three tests, N was set to 8

datagrams 5 seconds, and the counter in Table B: Counters of figure 3.2 being

decremented every 30 seconds. In the first experiment, all 302 susceptible

hosts were infected in 96.37 minutes. In the seconds experiment, all 302

susceptible hosts were infected in 101.38 minutes. While in the third

experiment, all 302 susceptible hosts were infected in 98.58 minutes.

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

RL Only Countermeasure Test 1

RL Only Countermeasure Test 2

RL Only Countermeasure Test 3

 119

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-4 Results of Pseudo-Slammer Worm with RL+LA Countermeasure

Threshold I

Figure 6-5 Results of Pseudo-Slammer Worm with RL+LA Countermeasure

Threshold II

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

RL + LA Countermeasure Test 1

RL + LA Countermeasure Test 2

RL + LA Countermeasure Test 3

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

RL + LA 2 Countermeasure Test 1

RL + LA 2 Countermeasure Test 2

RL + LA 2 Countermeasure Test 3

 120

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

From these four sets of experiments, following key points have been observed

in all three Pseudo-Slammer worm experiments:

• Firstly, the infection process in all three Pseudo-Slammer worm

experiments with No Countermeasure in figure 6.2 approximates to

standard s-shaped curve (Moore et al., 2003).

• Secondly, in the middle part of outbreaks of all the Pseudo-Slammer

worm experiments, the experimental curves diverge significantly, due

to statistical variations while in the last stage of the experiments, the

experimental curve form plateau to finish the infection process.

6.3 Pseudo-Witty Worm Experiments

6.3.1 Witty Worm

Shannon et al. (Shannon and Moore, 2004) reported some key characteristics

of the Witty worm outbreak of 2004 which can be summarised as follows:

• The Susceptible population of the Witty worm was 12, 000 or between

2 and 3 hosts per million of the entire IPV4 address space.

• Witty worm had a variable datagram size, with an Ethernet frame size

between 796 and 1307 bytes.

• The average scanning rate of Witty was 357 datagrams per infected

host per second during its entire infection period while the maximum

recorded scanning rate was 970 datagrams per host per second.

• Witty also utilized an initial hit-list of 110 hosts which were reported to

have been infected in the first 10 seconds of launch. Of these110 hosts,

38 hosts were transferring 9700 datagrams per host per second

continuously for a period of an hour.

6.3.2 Experimental Setup

In order to empirically analyse the behaviour of the Witty worm and to

validate the RL+LA prototype on a class A scale network, an experimental test

network was configured on the Virtualized Malware Testbed (reported in

Chapter 5 of this thesis), comprising of a two Class A address space 10.0.0.0/8

and 11.0.0.0/8 but divided into four subnets; 10.0.0.0/10, 10.128.0.0/9,

11.0.0.0/9 and 10.128.0.0/9 as shown in Figure 6.6. All the other network

 121

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-6 Witty Worm Experimental Test Network

 Friends Protocol Messages to External Friends

Enterprise A Internal Network

Router A

RL + LA

RL + LA

Enterprise A: Border Gateway

Friends Protocol Messages
 to External Friends

Enterprise C Internal Network

Network:11.0.0.0/9

Router C

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise C: Border Gateway

Enterprise D Internal Network

Network:11.128.0.0/9

Router D

RL + LA

Friends Protocol Messages
 to External Friends

Enterprise D: Border Gateway

Enterprise B Internal Network

Router B

RL + LA

RL + LA

Enterprise B: Border Gateway

Friends Protocol Messages
 to External Friends

 122

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

elements of experimental test network were the same as those defined

previously in section 6.2.1.

6.3.3 Experimental Methodology

As reported in section 6.3.1, Witty had 3 hosts per million of the entire IPv4

addresses space were susceptible to infection with an average scan rate of 357

datagrams per infected host per second.

A single class A network has 224 hosts, and so 2 class A networks will contain

224 * 2(3/1,000,000) = 101 susceptible hosts. On this basis, 101virtual hosts

with the Witty like pseudo-worm daemon were deployed across the four

subnets. Each worm daemon was configured to scan within two class A

networks (10.0.0.0/8, 11.0.0.0/8) at a scanning rate of 357 scans per host per

second while using an initial hit-list of one susceptible host held by the first

infected host.

Three series of experiments were conducted:

• With no countermeasure (to provide a base-line),

• With only the local rate limiting from infected hosts,

• With both rate limiting and the alerting protocol implemented with

reducing threshold to half.

Each time, the experiment was started by infecting the same host with same

random number generator seed value while employing different seed value for

all subsequent infected hosts.

6.3.4 Experimental Results

6.3.4.1 No Countermeasure

Figure 6.7 shows the results of a set of three experiments conducted without

implementing any countermeasures by utilizing the Pseudo-Witty worm. In the

first experiment, all 101 susceptible hosts were infected in 96.22 minutes. In

the second experiment, all 101 susceptible hosts were infected in 95.16

minutes. While in the third experiment, all 101 susceptible hosts were infected

in 94.46 minutes.

 123

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-7 Results of Pseudo-Witty Worm

6.3.4.2 RL Countermeasure

Figure 6.8 shows the results of a set of three experiments conducted with the

RL countermeasure (local rate limiting from infected hosts). For all three tests,

N was set to 15 datagrams in 5 seconds, and the counter in Table B: Counters

of figure 3.2 was decremented every 30 seconds without any scaling factor. In

the first experiment, all 101 susceptible hosts were infected in 312.21 minutes.

In the second experiment, all 101 susceptible hosts were infected in 309.56

minutes. While in the third experiment, all 101 susceptible hosts were infected

in 307.08 minutes.

6.3.4.3 RL+LA Countermeasure

Figure 6.9 shows the results of a set of three experiments conducted with the

RL+LA countermeasure (with both rate limiting and the alerting protocol

implemented by reducing the threshold to half). For all three tests, N was set to

15 datagrams in 5 seconds, and the counter in Table B: Counters of figure 3.2

was decremented every 30 seconds without any scaling factor. In the first

experiment, all 101 susceptible hosts were infected in 562.10 minutes. In the

second experiment, all 101 susceptible hosts were infected in 571.51 minutes.

While in the third experiment, all 101 susceptible hosts were infected in

585.50 minutes.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 T
w
o
 C
la
s
s
 A
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for Witty-like Worm

No Countermeasure Experiment 1

No Countermeasure Experiment 2

No Countermeasure Experiment 3

 124

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6-8 Results of Pseudo-Witty Worm with RL Countermeasure

Figure 6-9 Results of Pseudo-Witty Worm with RL+LA Countermeasure

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 T
w
o
 C
la
s
s
 A
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for Witty-like Worm

RL Countermeasure Only Experiment 1

RL Countermeasure Only Experiment 2

RL Countermeasure Only Experiment 3

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 T
w
o
 C
la
s
s
 A
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for Witty-like Worm

RL + LA Countermeasure Experiment 1

RL + LA Countermeasure Experiment 2

RL + LA Countermeasure Experiment 3

 125

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

From these three sets of experiments, following key points have been observed

in all three Pseudo-Witty worm experiments:

• Firstly, the infection process in all three Pseudo-Witty worm

experiments with No Countermeasure in figure 6.7 approximates to

standard s-shaped curve (Moore et al., 2003).

• Secondly, in the middle part of outbreaks of all the Pseudo-Witty worm

experiments, the experimental curves diverge significantly, due to

statistical variations while in the last stage of the experiments, the

experimental curve form plateau to finish the infection process.

6.4 Discussion

6.4.1 Comparison of Pseudo-Slammer Worm Results

Table 6.1 summarizes all of the experiments conducted by using the Pseudo-

Slammer worm with No countermeasures, with the RL countermeasure and the

RL+LA countermeasure with different 2 different thresholds and average of

each of three set of experiments.

Table 6-1 Results of Pseudo-Slammer Worm

Results of Pseudo-Slammer Worm

 No

Countermeasure

RL

Countermeasure

N=15, t=5

RL+LA

Countermeasure

Threshold I

N=15, t=5, K=30

reducing N to

half

RL+LA

Countermeasure

Threshold II

N=8, t=5, K=30

reducing N to

half

Experiment 1 15.07 min 41.18 min 64.54 min 96.37 min

Experiment 2 14.58 min 40.39 min 66.24 min 101.38 min

Experiment 3 14.45 min 41.24 min 64.36 min 98.58 min

Figure 6.12 shows the average of these results for all four set of experiments.

In the first scenario (No Countermeasure), all susceptible hosts were infected

in 14.45 minutes. In the second scenario (RL countermeasure), all susceptible

hosts were infected in 41.07 min minutes. In the third scenario (RL+LA

countermeasure Threshold I), all susceptible host were infected in 65.18

 126

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

minutes. In the fourth scenario (RL+LA countermeasure threshold II), all

susceptible host were infected in 99.07 minutes.

Figure 6-10 Comparison of Pseudo-Slammer Worm Results

Figure 6.13 shows the average time t, of these results for all four set of

Pseudo-Slammer worm experiments. It can be seen that values of t increase as

countermeasures are implemented; showing RL+LA with Threshold II is most

effective.

Figure 6-11 Time of Infection for Pseudo-Slammer Experimental Tests

0 10 20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

250

300

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 a
 C
la
s
s
 A
 N
e
tw
o
rk

Number of Infected Hosts Against Time for Slammer-like Worm

No Countermeasure

With Rate Limiting 1 Countermeasure Only

With Rate Limiting 1 and Look-Ahead Countermeasures

With Rate Limiting 2 and Look-Ahead Countermeasures

1 2 3 4
0

20

40

60

80

100

120

Test Number

T
im
e
 f
o
r
A
ll
S
u
s
c
e
p
tib
le
 H
o
s
ts
 t
o
 b
e
 I
n
fe
c
te
d
 (
m
in
s
)

Time for All Susceptible Hosts to be Infected for Slammer-like Experimental Tests

1 = No countermeasure

2 = RL only countermeasure

3 = RL + LA1 countermeasure

4 = RL + LA2 countermeasure

 127

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

From these results, the following points were observed:

• The RL countermeasure decreases the propagation rate of the Pseudo-

Slammer worm and increases the time required to infect all susceptible

hosts by 2.8 times in comparison to no countermeasure. But,

ultimately, all susceptible hosts were infected. Hence RL (rate limiting)

cannot stop the spread of Pseudo-Slammer worm.

• The RL+LA countermeasure with Threshold I (N=15, t=5, K=30)

further decreases the propagation rate of the Pseudo-Slammer worm

and increases the time required to infect all susceptible hosts by 4.5

times in comparison to no countermeasure. But, ultimately, all

susceptible hosts were infected.

• The RL+LA countermeasure with Threshold II (N=8, t=5, K=30)

further decreases the propagation rate of the Pseudo-Slammer worm

and increases the time required to infect all susceptible hosts by 6.8

times in comparison to no countermeasure. But, finally, all susceptible

hosts were infected.

• The RL+LA countermeasure with a more restricted threshold performs

the best in decreasing the propagation rate of the Pseudo-Slammer

worm while increasing the time to worm full infection.

• The RL+LA countermeasure with rate limiting on the gateways (edge

routers) itself is not enough to stop the propagation of the Pseudo-

Slammer worm, as it stops the infection process at the gateway but the

Pseudo-Slammer worm continues to spread in the internal LAN and

ultimately infects all the susceptible hosts in that LAN.

6.4.2 Comparison of Pseudo-Witty Worm Results

Table 6.2 summarizes all of the experiments conducted by using the Pseudo-

Witty worm with No countermeasures, with the RL countermeasure and the

RL+LA countermeasure and average of each of three set of experiments.

 128

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Table 6-2 Results of Pseudo-Witty Worm

Results of Pseudo-Witty Worm

 No Countermeasure RL Countermeasure

N=15, t=5, K=30

RL+LA

Countermeasure

N=15, t=5, K=30

reducing N to half

Experiment 1 96.22 min 312.21 min 562.10 min

Experiment 2 95.16 min 309.56 min 571.51 min

Experiment 3 94.46 min 307.08 min 585.50 min

Figure 6.14 shows the average of these results for all three set of experiments

(i-e; No countermeasures, the RL countermeasure, the RL+LA

countermeasure). In the first scenario (No countermeasure), all susceptible

hosts were infected in 95.28 minutes. In the second scenario (With RL

countermeasure), all susceptible host were infected in 309.48 minutes. In the

third scenario (With RL+LA countermeasure), all susceptible host were

infected in 573.18 minutes.

Figure 6-12 Comparison of Pseudo-Witty-Worm Results

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

110

Time (mins)

N
u
m
b
e
r
o
f
In
fe
c
te
d
 H
o
s
ts
 i
n
 T
w
o
 C
la
s
s
 A
 N
e
tw
o
rk
s

Number of Infected Hosts Against Time for Witty-like Worm

No Countermeasure

With Rate Limiting Countermeasure Only

With Rate Limiting and Look-Ahead Countermeasures

 129

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Figure 6.15 shows the average time t, of these results for all four set of

Pseudo- Witty worm experiments. It can be seen that values of t increase as

countermeasures are implemented; showing RL+LA countermeasure with

Threshold I is most effective.

Figure 6-13 Time of Infection for Pseudo-Witty Experimental Tests

From these results, the following points were observed:

• The RL countermeasure decreases the propagation rate of the Pseudo-

Witty worm and increases the time required to infect all susceptible

hosts by 3.2 times in comparison to no countermeasure. But,

ultimately, all hosts were infected. Hence RL (rate limiting) cannot

stop the spread of Pseudo-Witty worm.

• The RL+LA countermeasure with Threshold I (N=15, t=5, K=30)

further decreases the propagation rate of the Pseudo-Witty worm and

increases the time required to infect all susceptible hosts by 6.0 times

in comparison to no countermeasure. But, ultimately, all vulnerable

hosts were infected.

• The RL+LA countermeasure with rate limiting on the gateways (edge

routers) itself is not enough to stop the propagation of the Pseudo-

Witty worm, as it stops the infection process at the gateway but the

1 2 3
0

100

200

300

400

500

600

700

Test Number

M
e
a
n
 T
im
e
 f
o
r
A
ll
S
u
s
c
e
p
tib
le
 H
o
s
ts
 t
o
 b
e
 I
n
fe
c
te
d
 (
m
in
s
)

Mean Time for All Susceptible Hosts to be Infected for Witty-like Worm Experimental Tests

1 = No countermeasure

2 = RL only countermeasure

3 = RL + LA countermeasures

 130

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

Pseudo-Witty worm continues to spread in the internal LAN and

ultimately infects all the susceptible hosts in that LAN.

6.4.3 Alternative Network Topologies

It should be noted that the experimental results reported relate to the specific

network topologies employed for the experiments. In considering the general

applicability of the results, the following should be noted:

• More complex network topologies, particularly where WAN links are

included will exhibit higher network latency times and so the speed of

propagation of both a worm and the Friends Protocol messages would

be reduced to some extent, impacting on the performance of the

countermeasure.

• The experimental tests were conducted in a network where all of the

network segments were protected by the countermeasure scheme. In

network topologies where this is not the case, the effectiveness of the

countermeasure is likely to be reduced.

6.4.4 RL+LA Countermeasure Overhead

The RL+LA prototype adds memory and processing overhead to the gateway

routers on which it is installed, as it stores a copy of DNS A records on the

gateway. Hence, extra memory and processing power is needed on the each

gateway with RL+LA prototype.

6.4.5 Applicability of RL+LA Experimental Results on the Internet

Scale

The In general, the points set out in section 6.4.3 apply to the extrapolation of

the experimental results to the scale of the whole internet. In particular, it is

likely to be infeasible to deploy the proposed countermeasure scheme to all

autonomous systems (ASs) which make up the internet, and so the

countermeasure is likely to be less effective in this context.

6.5 Chapter Summary

This chapter has presented the results of launching the Pseudo-Slammer and

the Pseudo-Witty worm with specific outbreak conditions on class A scale

 131

6. EXPERIMENTAL RESULTS FOR THE RL+LA SCHEME ON CLASS A
SCALE NETWORKS WITH REAL WORM OUTBREAK ATTRIBUTES

networks to evaluate a worm detection and containment scheme, RL+LA.

From these results, it is concluded that the outcomes are broadly comparable to

the real worm outbreaks, thereby validating the authenticity of the

experiments. It has also been observed that the designed countermeasure

scheme, RL+LA decreased the propagation rate of the worms and increased

the time to reach full infection. But, the RL+LA scheme is limited in not

stopping the propagation of the worm in the internal LAN. Hence a more

sophisticated mechanism needs to be integrated into the RL+LA scheme in

order to completely stop the propagation of the worm. Furthermore, this

chapter has presented the discussion of the likely impact of network properties

on the RL+LA countermeasure experimental results, memory overhead in case

of deploying RL+LA countermeasure on the gateway devices and applicability

of RL+LA Class A experimental test results on the Internet scale. The next

chapter will conclude the research work reported in this thesis and will also set

out some possible directions for future work.

 132

7. CONCLUSIONS

7 CONCLUSIONS

7.1 Chapter Introduction

The research reported in this thesis sets out to answer two research questions

as set out in section 2.6. This chapter sets out the conclusions of the research

and also endeavours to document the extent to which original contributions

may have been generated, and the original research questions have been

addressed. It also provides some possible directions for future work and lists

the publications generated in the course of the reported research.

7.1.1 Chapter Layout

This chapter begins with the suggested original contributions of the thesis, set

out in section 7.2 based around the three research questions defined in section

2.6. Section 7.3 presents some possible directions for future work. Section 7.4

provides the list of publications generated during the research work, while

section 7.5 provides the concluding statement.

7.2 Summary of Suggested Original Contributions

7.2.1 Research Question 1

Is it possible to develop and evaluate a distributed, automated worm

detection, prevention and containment solution that will be more effective

against fast zero-day worms than the potential solutions summarised in

section 2.3? Such a countermeasure may be limited to adding delay to the

worm infection time so that system administrators have additional time to

patch infected hosts. It would be desirable for such a countermeasure to be

able to stop the worm infection completely.

• Chapter 3 of the thesis presents the architecture and design of a

distributed automated worm detection and containment scheme, termed

RL+LA, that is based on the correlation of Domain Name System

(DNS) queries and the destination IP address of outgoing TCP SYN

and UDP datagrams leaving the network boundary. The proposed

countermeasure scheme also utilizes cooperation between different

communicating scheme members using a custom protocol, which was

 133

7. CONCLUSIONS

termed as Friends. The absence of a DNS lookup action prior to an

outgoing TCP SYN or UDP datagram to a new destination IP addresses

is used as a behavioural signature for a rate limiting mechanism while

the Friends protocol spreads reports of the event to potentially

vulnerable uninfected peer networks within the scheme. A fully

functional prototype was developed in the C programming language.

• Chapters 5 and 6 of the thesis present a comprehensive set of

experimental work with a range of empirical experiments for

evaluating the proposed countermeasure and, compares the results with

those for a simple rate limiting (RL) mechanism, in the cases worm

outbreaks using the PWD with attributes similar to Slammer and Witty.

The results conclude that the proposed RL+LA scheme outperforms a

simple RL based mechanism on small scale and on class A scale

networks.

7.2.2 Research Question 2

Is it possible to develop a pseudo worm daemon with characteristics such as

random and hit-list scanning, configurable rate of propagation and

confinement within defined network space to allow a developed

countermeasure to be empirically tested and evaluated?

• Chapter 4 of the thesis presents the architecture and design of a

Pseudo-Worm Daemon (PWD) with random scanning and hit-list

worm like functionality, which is implemented in the C programming

language. The novelty of this worm demon is its UDP based

propagation, user-configurable random scanning pool, ability to

contain user defined hit-list, authentication before infecting vulnerable

hosts and efficient logging of time of infection.

• Chapter 4 of the thesis also presents evaluation of PWD by conducting

a series of Pseudo-Slammer and Pseudo-Witty worm experiments with

real outbreak attributes of Slammer and Witty worms; and comparing

Pseudo-Slammer and Pseudo-Witty worms results with real outbreak

data (which is available from CAIDA). It is concluded that PWD can

be used as an effective tool to empirically analyse the propagation

 134

7. CONCLUSIONS

behaviour of random scanning and hit-list worms, and to test potential

countermeasures.

7.3 Recommendations for Future Work

7.3.1 The Rate Limiting + Leap Ahead (RL+LA) Scheme

1) It will be useful to explore the effect of the designed countermeasure

scheme in the presence of background traffic with a view to assess the

false positive rate.

2) The containment scheme proposed by the author in chapter 3 of this thesis

does not detect worm scanning activity within the cell or L2L intra-cell

worm scanning activity. In order to address this limitation, ARP as a

behaviour signature could be applied in the prototype for detecting worm

scanning activity along with the Friends Protocol to send alerts to peer

networks.

3) The current RL+LA prototype spreads worm outbreak warnings to a set of

predefined friends. The Friends protocol algorithm could be enhanced to

define different types of warnings with different severity levels requiring

different automated responses.

4) The RL+LA prototype reported in this research uses simple username and

password based authentication for the Friends protocol warnings. This

could be enhanced to implement stronger security mechanisms such as

IPSec (Frankel and Krishnan, 2011).

7.4 List of Publications

The following is a list of publications which have been generated to

disseminate the research reported in this thesis:

7.4.1 Published Papers

[1] Shahzad K and Woodhead S, “Empirical Analysis of The Rate Limiting

+ Leap Ahead (RL+LA) Countermeasure against Witty Worm", in The

2015 IEEE International Symposium on Advances in Autonomic and

Secure Computing and Communications (ASCC-2015), Liverpool, UK,

2015.

 135

7. CONCLUSIONS

[2] Shahzad K and Woodhead S, “Empirical Analysis of An Improved

Countermeasure against Computer Network Worms", in The IEEE

Sixth International Conference on Computing, Communications and

Networking Technologies (6th ICCCNT), Texas, USA, 2015.

[3] Tidy L, Shahzad K, Ahmad M, and Woodhead S, “An Assessment of

the Contemporary Threat Posed by Network Worm Malware", in The

Ninth International Conference on Systems and Networks

Communications (ICSNC 2014), Nice, France, 12–16, October 2014.

[4] Shahzad K and Woodhead S, “A Pseudo-Worm Daemon (PWD) for

Empirical Analysis of Zero-Day Network Worms and Countermeasure

Testing", in The IEEE Fifth International Conference on Computing,

Communications and Networking Technologies (5th ICCCNT), Hefei,

Anhui, China, 2014.

[5] Shahzad K and Woodhead S, “Towards Automated Distributed

Containment of Zero-Day Network Worms", in The IEEE Fifth

International Conference on Computing, Communications and

Networking Technologies (5th ICCCNT), Hefei, Anhui, China, 2014.

[6] Shahzad K, Woodhead S, and Bakalis P, “A Virtualized Network

Testbed for Zero-Day Worm Analysis and Countermeasure Testing", in

Proceedings of Advances in Security of Information and

Communication Networks, Springer, Cairo, Egypt, 2013, pp. 54–64.

7.5 Chapter Summary

This chapter has presented the conclusions of the two research questions

undertaken and documented the summary of suggested original contributions.

It has also presented the key directions of future work and lists the publications

generated in the course of the reported research.

 136

8. BIBLIOGRAPHY

8 BIBLIOGRAPHY

Anagnostakis, K., Greenwald, M., Ioannidis, S., Keromytis, A. and Li, D.

(2003) 'A cooperative immunization system for an untrusting Internet', 11th

IEEE International Conference on Networks (ICON2003), Sydney, Australia,

pp. 403-408.

Antonatos, S., Akritidis, P., Markatos, E.P. and Anagnostakis, K. (2007)

'Defending against Hitlist Worms using network address space

randomization', ELSEVIER Computer Networks, vol. 51, no. 12, August, pp.

3471-3490.

Beast 2.07 (2004), [Online], Available:

https://sites.google.com/site/codenuker2k/beast207 [10th March 2015].

Benzel, T., Braden, R., Kim, D. and Neuman, C. (2007) 'Design, deployment

and Use of the DETER testbed', DETER Community Workshop on Cyber

Security Experimentation and Test 2007, Berkeley, CA, USA, pp. 1–8.

Briesemeister, L., Lincoln, P. and Porras, P. (2003) 'Epidemic profiles and

defense of scale-free networks', The 2003 ACM Workshop on Rapid Malcode

(WORM '03), Washington, DC, USA, pp. 67-75.

CAIDA: Center for Applied Internet Data Analysis (2014), [Online],

Available: http://www.caida.org/ [28th March 2014].

CERT: Code Red (2001), [Online], Available:

http://www.cert.org/advisories/CA-2001-19.html [16th September 2013].

CERT: Nimda Worm (2001), [Online], Available:

http://www.cert.org/advisories/CA-2001-26.html [16th September 2013].

CERT: Trojan Horses (1999), [Online], Available:

http://www.cert.org/historical/advisories/CA-1999-02.cfm [10th Septmber

2013].

CERT: W32/Sobig.F Worm (2003), [Online], Available:

http://www.cert.org/incident_notes/IN-2003-03.html [20th September 2013].

CERT:Code Red II (2001), [Online], Available:

http://www.cert.org/incident_notes/IN-2001-09.html [16th September 2013].

Chakrabarti, A. and Manimaran, G. (2002) 'Internet infrastructure security: a

taxonomy', IEEE Network, vol. 16, no. 6, December, pp. 13–21.

Chen, Z.C., Gao, L. and Kwiat, K. (2003) 'Modeling the spread of active

worms', IEEE INFOCOM 2003, San Francisco, USA, pp. 1890–1900.

 137

8. BIBLIOGRAPHY

Chen, Z. and Ji, C. (2005) 'A self-learning worm using importance scanning',

The 2005 ACM workshop on Rapid Malcode (WORM '05), Alexandria, VA,

USA, pp 22-29.

Chen, T.M. and Robert, J.-M. (2004) 'Worm epidemics in high-speed

networks', IEEE Computer, vol. 37, no. 6, June, pp. 48-53.

Chen, S. and Tang, Y. (2004) 'Slowing down internet worms', The 24th

International Conference on Distributed Computing Systems (ICDCS'04),

Tokyo, Japan, pp. 312-319.

CVE - Common Vulnerabilities and Exposures (2014), [Online], Available:

https://cve.mitre.org/ [14th July 2014].

CVE:CVE-2014-6271 (2014), [Online], Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-6271 [09th September 2014].

Daley, D.J. and Gani, J. (1999) Epidemic modelling: an introduction,

Cambridge: Cambridge University Press.

Damn Small Linux (DSL) (2008), [Online], Available:

http://www.damnsmalllinux.org [16th June 2014].

Ediger, B. (2003) Simulating Network Worms, [Online], Available:

http://www.stratigery.com/nws/ [16th June 2013].

Ellis, D.R., Aiken, J.G., Attwood, K.S. and Tenaglia, S.D. (2004) 'A

behavioral approach to worm detection', The 2004 ACM Workshop on Rapid

Malcode (WORM '04), Fairfax, VA, USA, pp. 43-53.

Eset: Win32/Gnuman (2008), [Online], Available:

http://www.eset.com/us/threat-center/encyclopedia/threats/gnuman/ [15th

July 2015].

Fagen, W., Cangussu, J. and Dantu, R. (2009) 'A virtual environment for

network testing', ELSEVIER Journal of Network and Computer Applications,

vol. 32, no. 1, January, pp. 184-214.

Falliere, N. and Murchu, .L.O. (2011) W32.Stuxnet Dossier, [Online],

Available:

http://www.symantec.com/content/en/us/enterprise/media/security_response/

whitepapers/w32_stuxnet_dossier.pdf [16th September 2013].

Frankel, S. and Krishnan, S. (2011) IP Security (IPsec) and Internet Key

Exchange (IKE) document roadmap, [Online], Available:

https://tools.ietf.org/html/rfc6071 [24th September 2014].

Frauenthal, J.C. (1980) Mathematical modeling in epidemiology, Springer-

Verlag.

 138

8. BIBLIOGRAPHY

F-Secure: Bomber (1992), [Online], Available: https://www.f-secure.com/v-

descs/bomber.shtml [23rd August 2015].

F-Secure: Net-Worm:W32/Santy.A (2004), [Online], Available: http://www.f-

secure.com/v-descs/santy_a.shtml [17th September 2013].

Gaespy Archade (1999), [Online], Available:

http://www.gamespyarcade.com/ [10th September 2013].

Ganger, G., Economou, G. and Bielski, S. (2002) Self-securing network

interfaces: what, why, and how, Pittsburgh, Pennsylvania, United States:

Carnegie Mellon University.

GNU Zebra (2005), [Online], Available: https://www.gnu.org/software/zebra/

[07th March 2015].

Gorman, S., Kulkarni, R., Schintler, L. and Stoug, R. (2003) Least effort

strategies for cybersecurity, George Mason University.

Holz, T., Steiner, M., Dahl, F., Biersack, E. and Freiling, F. (2008)

'Measurements and mitigation of peer-to-peer-based botnets: a case study on

Storm worm', First USENIX Workshop on Large-Scale Exploits and

Emergent Threats (LEET '08), San Francisco, CA, USA.

Jiang, X., Xu, D. and Eigenmann, R. (2004) 'Protection mechanisms for

application service hosting platforms', 4th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid 2004), Chicago,

Illinois, USA, pp. 633-639.

Jiang, X., Xu, D., Wang, H.J. and Spaffrod, E.H. (2006) 'Virtual playgrounds

for worm behavior investigation', 8th International Symposium on Recent

Advances in Intrusion Detection (RAID), Seattle, USA, pp. 1-21.

Jung, J., Sit, E., Balakrishnan, H. and Morris, R. (2002) 'DNS performance

and the effectiveness of caching', IEEE/ACM Transactions on Networking,

vol. 10, no. 5, October, pp. 589-603.

Kaur, R. and Singh, M. (2014) 'Efficient hybrid technique for detecting zero-

day polymorphic worms', Advance Computing Conference (IACC), Gurgaon,

India, pp. 95-100.

Kermack, W.O. and McKendrick, A.G. (1927) 'A contribution to

mathematical theory of epimedics', Royal Society of London, vol. 115, no.

772, August, pp. 700-721.

Kim, H.-A. and Karp, B. (2004) 'Autograph: toward automated, distributed

worm signature detection', The 13th conference on USENIX Security

Symposium (SSYM'04), San Diego, CA, USA, pp. 19-34.

 139

8. BIBLIOGRAPHY

KrebsonSecurity (2012), [Online], Available:

http://krebsonsecurity.com/2012/10/service-sells-access-to-fortune-500-firms/

[14th July 2014].

Kruegel, C., Kirda, E., Mutz, D., Robertson, W. and Vigna, G. (2005)

'Polymorphic worm detection using structural information of executables', 8th

international conference on Recent Advances in Intrusion Detection

(RAID'05), Seattle, WvA, USA, pp. 207-226.

Liljenstam, M., Nicol, D.M., Berk, V.H. and Gray, R.S. (2003) 'Simulating

realistic network worm traffic for worm warning system design and testing ',

ACM Workshop on Rapid Malcode 2003, Washington, DC, USA, pp. 24–33.

LINIXBBQ (2012), [Online], Available: http://linuxbbq.org/ [03rd March

2015].

Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung,

D., Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K. and

Zissman, M.A. (2000) 'Evaluating intrusion detection systems: the 1998

DARPA off-line intrusion detection evaluation', 2000 DARPA Information

Survivability Conference and Exposition (DISCEX), New York, USA, pp.

12-26.

Li, P., Salour, M. and Su, X. (2008) 'A survey Of Internet worm detection and

containment', IEEE Communication Surverys and Tutorials, vol. 10, no. 1,

April, pp. 20-35.

Lotka, A.J. (1925) Elements of physical biology, Williams and Wilkins

Company.

Marsaglia, G. (2003) 'Random number generators', Journal of Modern

Applied Statistical Methods, vol. 2, no. 1, pp. 2-13.

Marsaglia, G. and Zaman, A. (1991) 'A new class of random number

generators', Annals of Applied Probability, vol. 1, no. 3, August, pp. 462-480.

McAfee (2006), [Online], Available:

http://web.archive.org/web/20060823090948/http://www.mcafee.com/us/loca

l_content/white_papers/threat_center/wp_akapoor_rootkits1_en.pdf [15th

September 2013].

McAffe: W95/firkin.worm (2000), [Online], Available:

http://home.mcafee.com/virusinfo/virusprofile.aspx?key=98557 [16th

September 2013].

Mockapetris, P. (1987) Domain Name - Concept and Facilities, IETF,

[Online], Available: http://tools.ietf.org/html/rfc1034 [04th September 2013].

 140

8. BIBLIOGRAPHY

Mohammed, M.M.Z.E. (2012) Automated signature generation for zero-day

polymorphic worms using a double-honeynet, PhD Thesis edition, Cape

Town: University of Cape Town.

Mohammed, M.M.Z.E., Chan, H.A., Ventura, N. and Pathan, A.-S.K. (2013)

'An automated signature generation method for zero-day polymorphic worms

based on multilayer perceptron model', International Conference on

Advanced Computer Science Applications and Technologies, Kuching,

Malaysia, pp. 450-455.

Moore, D. (2002) 'Network telescopes: observing small or distant security

events', USENIX Security '02, San Francisco, USA.

Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S. and Weaver, N.

(2003) 'Inside the Slammer worm', IEEE Security and Privacy, vol. 1 , no. 4,

August, pp. pp. 33-39.

Moore, D., Shannon, C., Voelker, G. and Savage, S. (2003) 'Internet

quarantine: requirements for containing self-propagating code', Twenty-

Second Annual Joint Conference of the IEEE Computer and

Communications. IEEE Societies (INFOCOM 2003), San Francisco, USA,

pp. 1901-1910.

Nazario, J., Ptacek, T. and Song, D. (2004) Wormability: A description for

vulnerabilities, [Online], Available:

http://repo.hackerzvoice.net/depot_madchat/vxdevl/papers/avers/wormability

_researchOct04.pdf [15th October 2014].

Net Market Share: Desktop operating system market share (2014), [Online],

Available: http://www.netmarketshare.com/ [20 September 2014].

Nicol, D.M. and Liljenstam, M. (2005) 'Models and analysis of active worm

defense', The Third international conference on Mathematical Methods,

Models, and Architectures for Computer Network Security (MMM-ACNS'05

), St. Petersburg, Russia, pp. 38-53.

Nojiri, D., Rowe, J. and Levitt, K. (2003) 'Cooperative response strategies for

large scale attack mitigation', The 3rd DARPA Information Survivability

Conference and Exposition, Washington, DC, USA, pp. 293-302.

Parsons, J.J. and Oja, D. (2010) New perspectives on computer concepts

2011; Introductory, Boston, MA, USA: Course Technology Press.

Paul, S. and Mishra, B.K. (2013) 'PolyS: Network-based signature generation

for zero-day polymorphic worms', International Journal of Grid and

Distributed Computing, vol. 6, no. 4, August, pp. 63-74.

 141

8. BIBLIOGRAPHY

Paxson, V. (1998) 'Bro: A system for detecting network intruders in real-

time', 7th USENIX Security Symposium, Texas, USA, pp. 31–52.

Pearson, K. (1895) 'Notes on regression and inheritance in the Case of two

parents', Proceeding of the Royal Society of London, vol. 58, no. 1, January,

pp. 240-242.

Perumalla, K.S. and Sundaragopalan, S. (2004) 'High fidelity modeling of

computer network worms', 20th Annual Computer Security Applications

Conference (ACSAC), Tucson, AZ, USA, pp. 126–135.

PJSIP: PJLIB Library (2008), [Online], Available:

http://www.pjsip.org/pjlib/docs/html/ [13th September 2013].

Porras, P., Briesemeister, L., Skinner, K., Levitt, K., Rowe, J. and Ting, Y.-

C.A. (2004) 'A hybrid quarantine defense', The 2004 ACM workshop on

Rapid malcode (WORM '04), Fairfax, VA , USA, pp. 73-82.

Provos, N. (2004) 'A virtual honeypot framework', USENIX 13th security

symposium, San Diego, USA, pp. 1-14.

Puppy Linux (2003), [Online], Available: http://www.puppylinux.com/ [03rd

March 2015].

Quagga Routing Suite (1999), [Online], Available:

http://www.nongnu.org/quagga [16th June 2013].

Ramneek, P. (2003) Bots &; Botnet: An overview, [Online], Available:

http://www.sans.org/reading-room/whitepapers/malicious/bots-botnet-

overview-1299 [03rd August 2003].

Richmond, M. (2006) 'Digital forensic reconstruction and the virtual security

testbed ViSe', Conference on Detection of Intrusions and Malware, Paris,

France, pp. 144-163.

Riordan, J., Zamboni, D. and Duponchel, Y. (2006) 'Building and deploying

Billy Goat, a worm-detection system', The 18th Annual FIRST Conference,

Baltimore, USA, pp. 1-12.

Rossey, L.M., Cunningham, R.K., Fried, D.J., Rabek, J.C. and Lippmann,

R.P. (2002) 'LARIAT: Lincoln adaptable real time information assurance

testbed', IEEE Aerospace Conference, Big Sky, Montana, USA, pp. 2671-

2682.

Schechter, S.E., Jung, J. and Berger, A.W. (2004) 'Fast detection of scanning

worm infections', 7th International Symposium on Recent Advances in

Intrusion Detection, (RAID 2004), Sophia Antipolois, France, pp. 59-81.

Shahzad, K. and Woodhead, S. (2014a) 'Towards automated distributed

containment of zero-day network worms', The IEEE Fifth International

 142

8. BIBLIOGRAPHY

Conference on Computing, Communications and Networking Technologies

(5th ICCCNT), Hefei, Anhui, China.

Shahzad, K. and Woodhead, S. (2014b) 'A Pseudo-Worm Daemon (PWD) for

empirical analysis of zero-day network worms and countermeasure testing',

The IEEE Fifth International Conference on Computing, Communications

and Networking Technologies (5th ICCCNT), Anhui, China.

Shahzad, K., Woodhead, S. and Bakalis, P. (2013) 'A virtualized network

testbed for zero-day worm analysis and countermeasure testing', The First

International Coneferene on Advances in Security of Information and

Communication Networks (SecNet2013), Cario, Egypt, pp. 54-64.

Shannon, C. and Moore, D. (2004) 'The spread of the Witty worm', IEEE

Security and Privacy, vol. 2, no. 4, October, pp. 46-50.

SHODAN - Computer Search Engine (2009), [Online], Available:

http://www.shodanhq.com/ [10th July 2014].

Singh, S., Estan, C., Varghese, G. and Savage, S. (2004) 'Automated worm

fingerprinting', The 6th conference on Symposium on Opearting Systems

Design & Implementation (OSDI'04), San Franscisco, CA, USA, pp. 4-19.

Snort (1998), [Online], Available: http://www.snort.org/ [16th June 2013].

Software Insider (2013), [Online], Available:

http://virtualization.softwareinsider.com/ [16th June 2013].

Staniford, S., Moore, D., Paxson, V. and Weaver, N. (2004) 'The top speed of

flash worms', The 2004 ACM workshop on Rapid Malcode (WORM '04),

Fairfax, VA, USA, pp. 33-42.

Staniford, S., Paxson, V. and Weaver, N. (2002) 'How to own the Internet in

your spare time', The 11th USENIX Security Symposium, San francisco, CA,

USA, pp. 149-167.

Sun, W., Katta, V., Krishna, K. and Sekar, R. (2008) 'V-Netlab: An approach

for realizing logically isolated networks for security experiments', Conference

on Cyber Security Experimentation and Test (CSET ’08), Berkeley, CA,

USA, pp. 1-6.

Symantec: JS.Gigger.A@mm (2002), [Online], Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2002-

011011-3021-99 [17th September 2013].

Symantec: W32.Welchia.Worm (2003), [Online], Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2003-

081815-2308-99 [10th March 2014].

 143

8. BIBLIOGRAPHY

Symantec: W95.CIH (1998), [Online], Available:

http://www.symantec.com/security_response/writeup.jsp?docid=2000-

122010-2655-99 [23rd August 2015].

TCPDUMP & LIBPCAP (2008), [Online], Available:

http://www.tcpdump.org [16th June 2013].

The BIRD Internet Routing Daemon (2008), [Online], Available:

http://bird.network.cz/ [03rd March 2015].

The netfilter.org "iptables" project (1998), [Online], Available:

http://www.netfilter.org/projects/iptables/index.html [16th June 2013].

Tidy, L., Shahzad, K., Ahmad, M.A. and Woodhead, S. (2014) 'An

assessment of the contemporary threat posed by network worm malware', The

Ninth International Conference on Systems and Networks Communications

(ICSNC 2014), Nice, France, 12-16, pp. 92-98.

Tidy, L., Woodhead, S. and Wetherall, J. (2013) 'A large-scale zero-day

worm simulator for cyber-epidemiological analysis', International Journal of

Advances in Computer Networks and Security, vol. 3, pp. 69-73.

TIME Magazine (2002), [Online], Available:

http://content.time.com/time/specials/packages/article/0,28804,1991915_1991

909_1991762,00.html [10 March 2015].

Tiny Core Linux (2009), [Online], Available: http://tinycorelinux.net/ [03rd

March 2015].

Toyoizumi, H. and Kara, A. (2002) 'Predators: good mobile code combat

against computer viruses', The 2002 Workshop on New security Paradigms

(NSPW '02), Virginia Beach, Virginia, USA, pp. 11 -17.

ubuntu (2004), [Online], Available: http://www.ubuntu.com/ [10th September

2014].

Vahdat, A., Yocum, Y., Walsh, K. and Mahadev, P. (2002) 'Scalability and

accuracy in a large-scale network emulator', USENIX 5th symposium on

Operating Systems Design and Implementation (OSDI), Boston, MA,USA,

pp. 271–284.

VMware (1998), [Online], Available: http://www.vmware.com/uk/products/

[25th September 2014].

VMware Academic Program (VMAP) (2010), [Online], Available:

http://www.vmware.com/partners/academic/program-overview.html [10th

September 2014].

 144

8. BIBLIOGRAPHY

VMware ESXi (2010), [Online], Available:

http://www.vmware.com/products/vsphere/esxi-and-esx/index.html [16th

September 2013].

VMware Security Advisories (2013), [Online], Available:

https://www.vmware.com/security/advisories/VMSA-2013-0006.html [14th

July 2014].

VMware vCenter Server (2012), [Online], Available:

http://www.vmware.com/products/vcenter-server/overview.html [16th

September 2013].

VMware vSphere PowerCLI 5.0 (2011), [Online], Available:

http://communities.vmware.com/community/vmtn/server/vsphere/automationt

ools/powercli?view=overview [16th September 2013].

Volterra, V. (1926) Chapman R. N. 1931. Animal Ecology, pp. 409-448.

W3Counter (2014), [Online], Available:

http://www.w3counter.com/globalstats.php [14th July 2014].

Wang, K., Cretu, G. and Stolfo, S.J. (2005) 'Anomalous payload-based worm

detection and signature generation', The 8th international conference on

Recent Advances in Intrusion Detection (RAID'05), Seattle, WA, USA, pp.

227-246.

Wang, L., Li, Z., Chen, Y., Fu, Z.(. and Li, X. (2010) 'Thwarting zero-day

polymorphic worms with network-level length-based signature generation',

IEEE/ACM Transactions on Networking, vol. 18, no. 1, August , pp. 53-66.

Weaver, N., Paxson, V., Staniford, S. and Cunningham, R. (2003) 'A

taxonomy of computer worms', The 2003 ACM workshop on Rapid Malcode

(WORM '03), New York, NY, USA, pp. 11-18.

Weaver, N., Staniford, S. and Paxson, V. (2004) 'Very fast containment of

scanning worms', 13th USENIX Security Symposium, San Diego, CA, USA,

pp. 29–44.

White, B., Lepreau, J., Stoller, L., Ricci, R. and Gruprasad, S. (2002) 'An

integrated experimental environment for distributed systems and networks',

5th Symposium on Operating Systems Design and Implementation, Boston,

MA, USA, pp. 265–270.

Whyte, D., Kranakis, E. and Oorschot, P.C.v. (2005) 'DNS-based detection of

scanning worms in an enterprise network', 12th Annual Network and

Distributed Systems Symposium (NDSS), San Diego, California, USA.

Whyte, D., van Oorschot, P.C. and Kranakis, E. (2005) 'Detecting intra-

enterprise scanning worms based on address resolution', ACSAC '05

 145

8. BIBLIOGRAPHY

Proceedings of the 21st Annual Computer Security Applications Conference,

Tucson, Arizona, USA, pp. 371-380.

Williamson, M.M. (2002) 'Throttling viruses: restricting propagation to defeat

malicious mobile code', The 18th Annual Computer Security Applications

(ACSAC '02), Las Vegas, NV, USA, pp. 61-68.

Wong, C., Bielski, S., Studer, A. and Wang, C. (2005) 'Empirical analysis of

rate limiting mechanisms', 8th International Symposium on Recent Advances

in Intrusion Detection (RAID 2005), Seattle, WA, USA, pp. 22-42.

Xiang, Y., Fan, X. and Zhu, W.T. (2009) 'Propagation of active worms: a

survey', International Journal of Computer Systems Science and Engineering,

vol. 24, no. 3, May, pp. 157-172.

Zamboni, D., Riordan, J. and Yates, M. (2007) 'Boundary detection and

containment of a local worm infections', The 3rd USENIX Workshop on

Steps to Reducing Unwanted Traffic on the Internet (SRUTI'07), Santa Clara,

CA.

Ziyad, S.A.-S. (2011) Topology-aware vunerablity mitigation worms, PhD

Thesis edition, London: Royal Holloway, University of London.

Zou, C.C., Gao, L., Gong, W. and Towsley, D. (2003) 'Monitoring and early

warning for internet worms', The 10th ACM Conference on Computer and

Communications Security (CCS '03), Washington, DC, USA, pp. 190-199.

Zou, C.C., Gong, W. and Towsley, D. (2002) 'Code Red worm propagation

modeling and analysis', 9th ACM Conference on Computer and

Communication Security, Washington, DC, USA, pp. 138-147.

Zou, C.C., Towsley, D., Gong, W. and Cai, S. (2005) 'Routing worm: A fast,

selective attack worm based on IP address information', Workshop on

Principles of Advanced and Distributed Simulation (PADS 2005), Monterey,

CA, USA, pp 199-206.

 146

9. APPENDICES

9 APPENDICES

9.1 The RL+LA Source Code

db.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "db.h"
#include "dns_sniff.h"

List dns_table;
List tcp_udp_table;

unsigned int thresholdValue;

void dbInit(void)
{
 initList(&dns_table);
 initList(&tcp_udp_table);

 thresholdValue = THRCNT;
}

void insertNewDNSReq(struct in_addr ip_src)
{
 addEndUnique(&dns_table, ip_src.s_addr);
}

void insertNewTCP_UDPEntry(struct in_addr ip_src)
{
 char iptables_block_ip_cmd_in[128];
 char iptables_block_ip_cmd_out[128];

 struct in_addr dst_router;

 if(!containsElem(&dns_table, ip_src.s_addr))
 {
 addEndUnique(&tcp_udp_table, ip_src.s_addr);
 display(&tcp_udp_table);

 if(incrementCntElemt(&tcp_udp_table, ip_src.s_addr,
thresholdValue))
 {
 printf("Host: %s must be blocked \n",
inet_ntoa(ip_src));

 //snprintf(iptables_block_ip_cmd_in, 127, "iptables -I
INPUT -s %s -j DROP", inet_ntoa(ip_src));
 snprintf(iptables_block_ip_cmd_out, 127, "iptables -I
OUTPUT -s %s -j DROP", inet_ntoa(ip_src));

 #ifdef HALF_THR
 thresholdValue /= 2;
 #endif

 147

9. APPENDICES

 if(system(iptables_block_ip_cmd_in) != 0)
 {
 perror("cannot execute iptable block command !");
 }

 if(system(iptables_block_ip_cmd_out) != 0)
 {
 perror("cannot execute iptable block command !");
 }

 #ifdef SEND_FRIEND_MSG
 if((strcmp(if_address_str, IP_ROUTER_A)!=0))
 {
 inet_aton(IP_ROUTER_A, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }

 if((strcmp(if_address_str, IP_ROUTER_B)!=0))
 {
 inet_aton(IP_ROUTER_B, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }

 if((strcmp(if_address_str, IP_ROUTER_C)!=0))
 {
 inet_aton(IP_ROUTER_C, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }
 if((strcmp(if_address_str, IP_ROUTER_E)!=0))
 {
 inet_aton(IP_ROUTER_E, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }

 if((strcmp(if_address_str, IP_ROUTER_F)!=0))
 {
 inet_aton(IP_ROUTER_F, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }

 if((strcmp(if_address_str, IP_ROUTER_G)!=0))
 {
 inet_aton(IP_ROUTER_G, &dst_router);
 sendTheRequestToPeer(dst_router, ip_src);
 }
 #endif

 }
 }
}

void checkEntriesInTcpUdpTable(unsigned char cmd)
{
 #ifdef DUMP_MEM
 printf("DNS table: \n");
 display(&dns_table);
 printf("\n");

 printf("TCP_UDP table: \n");
 display(&tcp_udp_table);
 printf("\n");

 148

9. APPENDICES

 #endif

 if(cmd == UPDATE_CNT)
 {
 updateCntValue(&tcp_udp_table);
 }
}

db.h

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#ifndef DB_H
#define DB_H

#include <netinet/in.h>
#include "list.h"

#define UPDATE_CNT 0
#define BLOCK_ENTRIES 1

#define CNT_MAX 1000

void dbInit(void);
void insertNewDNSReq(struct in_addr ip_src);
void insertNewTCP_UDPEntry(struct in_addr ip_src);
void checkEntriesInTcpUdpTable(unsigned char cmd);

#endif

dns_sniff.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include "dns_sniff.h"

#ifdef IS_BORDER_ROUTER
char* external_interface;
#endif

int main(int argc, char* argv[])
{
#ifndef IS_BORDER_ROUTER

 if(argc < 2)
 {
 printf("\nUsage: ./dns_sniff.o eth_interface
<debug>\n\n");
 return(EXIT_FAILURE);
 }
#else
 if(argc < 3)
 {
 printf("\nUsage: ./dns_sniff.o
eth_internal_interface eth_external_interface <debug>\n\n");
 return(EXIT_FAILURE);
 }

 149

9. APPENDICES

 external_interface=argv[2];
#endif

 initProgram();
 open_device(argv[1]);

 return 0;
}

dns_sniff.h

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#ifndef DNS_SNIFF
#define DNS_SNIFF
#include <pcap.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <pjlib.h>
#include <pjlib-util.h>
#include <stdlib.h>
#include <time.h>
#include <signal.h>
#include <linux/if.h>
#include "db.h"

struct white_list_elem
{
#define NUMBER_OF_WHITE_LIST_ELEMS 1
 char white_ip_src[20];
 char white_ip_dst[20];
 int white_sport;
 int white_dport;
};

#define DUMP_MEM
#define SEND__MSG
#define HALF_THR

#define IS_NO_BORDER_ROUTER
#define DEBUG
//#define NO_DEBUG
#define NSEC 30
#define NSEC_BLOCK 15
#define THRCNT 5
#define SIGTIMER (SIGRTMAX)
#define MAX_BYTES_TO_CAPTURE 2048
#define DNS_TABLE_SIZE 1024
#define SIZE_ETHERNET 14
#define DNS_HEADER_SIZE 12
#define ETHER_ADDR_LEN 6
#define ENCR_KEY 0xBAF4
#define ROUTER_USERNAME "router"
#define ROUTER_PASSWORD "passwd"

 150

9. APPENDICES

#define ROUTER_COMMAND "half the threashold"
#define IP_ROUTER_A "10.0.0.1"
#define IP_ROUTER_B "10.64.0.1"
#define IP_ROUTER_C "10.128.0.1"
#define IP_ROUTER_E "10.192.0.1"
//#define IP_ROUTER_F "192.168.5.1"
//#define IP_ROUTER_G "192.168.6.1"

extern char* if_address_str;
extern unsigned int thresholdValue;

#ifdef IS_BORDER_ROUTER
 extern int number_of_friends;
 extern char* list_of_friends[];
 extern char* external_interface;
#endif

/* Ethernet header */
struct sniff_ethernet {
 u_char ether_dhost[ETHER_ADDR_LEN];
 u_char ether_shost[ETHER_ADDR_LEN];
 u_short ether_type;
};

/* IP header */
struct sniff_ip {
 u_char ip_vhl;
 u_char ip_tos;
 u_short ip_len;
 u_short ip_id;
 u_short ip_off;
 #define IP_RF 0x8000
 #define IP_DF 0x4000
 #define IP_MF 0x2000
 #define IP_OFFMASK 0x1fff
 u_char ip_ttl;
 u_char ip_p;
 u_short ip_sum;
 struct in_addr ip_src,ip_dst;
};
#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */
typedef u_int tcp_seq;

struct sniff_tcp {
 u_short th_sport;
 u_short th_dport;
 tcp_seq th_seq;
 tcp_seq th_ack;
 u_char th_offx2;
 #define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)
 u_char th_flags;
 #define TH_FIN 0x01
 #define TH_SYN 0x02
 #define TH_RST 0x04
 #define TH_PUSH 0x08
 #define TH_ACK 0x10
 #define TH_URG 0x20
 #define TH_ECE 0x40

 151

9. APPENDICES

 #define TH_CWR 0x80
 #define TH_FLAGS
(TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)
 u_short th_win;
 u_short th_sum;
 u_short th_urp;
};

/* UDP header */
struct sniff_udp {
 u_short th_sport;
 u_short th_dport;
 u_short th_length;
 u_short th_sum;
};
int open_device(char* dev);
int initProgram(void);
void processPacket(u_char* arg, const struct pcap_pkthdr*
pkthdr, const u_char* packet);
void printPayload(const u_char* packet, int indx, int length);

timer_t SetTimer(int signo, int sec, int mode);
void SignalHandler(int signo, siginfo_t * info, void *context);
void getLocalMACAddress(char* dev);
void getInterfaceIPAddress(char* dev);
void sendTheRequestToPeer(struct in_addr dst_router, struct
in_addr ip_to_block);
void encrypt(char* str,int key);
void decrypt(char* str,int key);
int isCommandFromFriends(char* ip_src_str);
void executeRemoteCommand(const u_char* packet, int
payload_begin, char* ip_src_str);
int isInTheWhiteList(char* ip_src_str, char* ip_dst_str, int
sport, int dport);

#endif

dns_sniff_func.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include "dns_sniff.h"

#include <sys/ioctl.h>

pcap_t *handle=NULL;

pj_pool_factory *mem;
pj_pool_t *pool;
pj_caching_pool caching_pool;

timer_t timerid;
int timer_cnt;

struct in_addr if_address;
unsigned char if_mac_str[13];
char* if_address_str;

struct white_list_elem whiteList[NUMBER_OF_WHITE_LIST_ELEMS] =
{{"64.4.9.254", "192.168.127.129", 80, -1},

 152

9. APPENDICES

 };

#ifdef IS_BORDER_ROUTER
 int number_of_friends=4;
 char*
list_of_friends[]={"10.0.0.1","10.64.0.1","10.128.0.1","10.192.
0.1"};
#endif

int initProgram(void)
{
 int i=0;
 timer_cnt = 0;
 struct sigaction sigact;

 dbInit();

 mem = &caching_pool.factory;
 pj_init();

 sigemptyset(&sigact.sa_mask);
 sigact.sa_flags = SA_SIGINFO;
 sigact.sa_sigaction = SignalHandler;

 if (sigaction(SIGTIMER, &sigact, NULL) == -1) {
 perror("sigaction failed");
 return -1;
 }

 sigaction(SIGINT, &sigact, NULL);

 timerid = SetTimer(SIGTIMER, NSEC*1000, 1);
}

int open_device(char* dev)
{
 int count=0;
 char errbuf[PCAP_ERRBUF_SIZE];
 bpf_u_int32 mask;
 bpf_u_int32 net;
 char filter_exp[]="ip";
 struct bpf_program dns_filter;
 struct in_addr router_ip;

 handle = pcap_open_live(dev, MAX_BYTES_TO_CAPTURE, 1,
512, errbuf);
 if (handle == NULL) {
 fprintf(stderr, "Couldn't open the device: %s\n",
errbuf);
 return(EXIT_FAILURE);
 }

 if (pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {
 fprintf(stderr, "Couldn't get netmask for device
%s: %s\n", dev, errbuf);
 net = 0;
 mask = 0;
 }

 if (pcap_compile(handle, &dns_filter, filter_exp, 0,

 153

9. APPENDICES

mask) == -1) {
 fprintf(stderr, "ERROR: %s\n",
pcap_geterr(handle));
 return(EXIT_FAILURE);
 }

 if (pcap_setfilter(handle, &dns_filter) == -1) {
 fprintf(stderr, "ERROR: %s\n",
pcap_geterr(handle));
 return(EXIT_FAILURE);
 }

 getLocalMACAddress(dev);
 getInterfaceIPAddress(dev);

 if_address_str=strdup(inet_ntoa(if_address));

 printf("Sniffing interface %s (%s) ...\n", dev,
if_address_str);

 if (pcap_loop(handle, -1, processPacket,
(u_char*)&count) < 0)
 {
 fprintf(stderr, "ERROR: %s\n",
pcap_geterr(handle));
 return(EXIT_FAILURE);
 }

 /* cleanup */
 pcap_freecode(&dns_filter);
 pcap_close(handle);
}

void processPacket(u_char* arg, const struct pcap_pkthdr*
pkthdr, const u_char* packet)
{
 static int count = 1;
 const struct sniff_ethernet *ethernet;
 const struct sniff_ip *ip;
 const struct sniff_tcp *tcp;
 const struct sniff_udp *udp;
 int size_payload;
 int size_ip;
 int size_tcp;
 int size_udp=8;
 int dport, sport;
 int domain_name_pos;
 int type_pos;
 unsigned short dns_type, ansrr_cnt, addrr_cnt;
 int result, i;

 char* dname;
 char* ip_dns_reply;
 char* ip_src_str;
 char* ip_dst_str;
 pj_status_t status;
 pj_dns_parsed_packet *dns_pkt;

 pj_caching_pool_init(&caching_pool,
&pj_pool_factory_default_policy, 0);
 pool = pj_pool_create(mem, NULL, 2000, 2000, NULL);

 154

9. APPENDICES

 #ifdef NO_DEBUG
 printf("\nPacket number %d:\n", count);
 #endif
 count++;

 /* define ethernet header */
 ethernet = (struct sniff_ethernet*)(packet);

 /* define/compute ip header offset */
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);
 size_ip = IP_HL(ip)*4;
 if (size_ip < 20) {
 #ifdef NO_DEBUG
 printf(" * Invalid IP header length: %u bytes\n",
size_ip);
 #endif
 return;
 }

 ip_src_str=strdup(inet_ntoa(ip->ip_src));
 ip_dst_str=strdup(inet_ntoa(ip->ip_dst));

 #ifdef NO_DEBUG
 printf(" From: %s\n", inet_ntoa(ip->ip_src));
 printf(" To: %s\n", inet_ntoa(ip->ip_dst));
 #endif

 /* determine protocol */
 switch(ip->ip_p) {
 case IPPROTO_TCP:
 tcp = (struct sniff_tcp*)(packet +
SIZE_ETHERNET + size_ip);

 sport=ntohs(tcp->th_sport);
 dport=ntohs(tcp->th_dport);

 size_tcp = TH_OFF(tcp)*4;
 #ifdef NO_DEBUG
 printf(" Protocol: TCP\n");
 printf(" From: %s on %d\n", ip_src_str,
sport);
 printf(" To: %s on %d\n", ip_dst_str,
dport);
 #endif

 #ifndef IS_BORDER_ROUTER

 if((isInTheWhiteList(ip_src_str, ip_dst_str,
sport, dport) == 1) || (strcmp(if_address_str, ip_src_str) ==
0))
 {
 return;
 }
 #endif

 break;
 case IPPROTO_UDP:
 udp = (struct sniff_udp*)(packet +
SIZE_ETHERNET + size_ip);

 155

9. APPENDICES

 sport=ntohs(udp->th_sport);
 dport=ntohs(udp->th_dport);

 size_payload = ntohs(ip->ip_len) - (size_ip +
size_udp);

 #ifdef NO_DEBUG
 printf(" Protocol: UDP\n");
 printf(" From: %s on %d\n", ip_src_str,
sport);
 printf(" To: %s on %d\n", ip_dst_str,
dport);
 #endif

 #ifndef IS_BORDER_ROUTER
 if((
isInTheWhiteList(ip_src_str, ip_dst_str, sport, dport) == 1)
|| (strcmp(if_address_str, ip_src_str) == 0))
 {
 return;
 }
 #endif

 break;
 case IPPROTO_ICMP:
 return;
 case IPPROTO_IP:
 #ifdef NO_DEBUG
 printf(" Protocol: IP\n");
 #endif
 break;
 default:
 #ifdef NO_DEBUG
 printf(" Protocol: unknown\n");
 #endif
 return;
 }

#ifndef IS_BORDER_ROUTER

 if ((dport == 53) && (ip->ip_p == IPPROTO_UDP))
 {
 return;
 }

 if ((sport == 53) && (ip->ip_p == IPPROTO_UDP))
 {

 status = -1;
 dns_pkt = NULL;

 status = pj_dns_parse_packet(pool,
(packet+SIZE_ETHERNET + size_ip +
size_udp),(unsigned)(size_payload), &dns_pkt); // plase
eloborate

 if(status == PJ_SUCCESS)
 {
 /* get the number of answers */
 ansrr_cnt=dns_pkt->hdr.anscount;

 156

9. APPENDICES

 addrr_cnt=dns_pkt->hdr.arcount;

 /* look into the answers list and check for
the ip */

 for (i=0; i<ansrr_cnt; i++)
 {
 //printf("%s -> ",dns_pkt-
>ans[i].name.ptr);

 if (dns_pkt->ans[i].type ==
PJ_DNS_TYPE_A)
 {
 //printf("%s\n",
pj_inet_ntoa(dns_pkt->ans[i].rdata.a.ip_addr));

 ip_dns_reply=strdup(pj_inet_ntoa(dns_pkt-
>ans[i].rdata.a.ip_addr));
 insertNewDNSReq(ip->ip_dst);
 }
 }

 for (i=0; i<addrr_cnt; i++)
 {
 //printf("%s -> ",dns_pkt-
>arr[i].name.ptr);

 if (dns_pkt->arr[i].type ==
PJ_DNS_TYPE_A)
 {
 //printf("%s\n",
pj_inet_ntoa(dns_pkt->arr[i].rdata.a.ip_addr));

 ip_dns_reply=strdup(pj_inet_ntoa(dns_pkt-
>arr[i].rdata.a.ip_addr));
 //insertNewDNSReq(ip_dst_str,
dns_pkt->arr[i].name.ptr, ip_dns_reply);
 insertNewDNSReq(ip->ip_dst);
 }
 }

 //pj_dns_dump_packet(dns_pkt);
 }

 }
 else if (ip->ip_p == IPPROTO_UDP) // some UDP package
 {

 if(strcmp(if_address_str, ip_dst_str) == 0 &&
isCommandFromFriends(ip_src_str))
 {

 //printf(" From: %s\n", ip_src_str);
 //printf(" To: %s\n", ip_dst_str);

 executeRemoteCommand(packet, (SIZE_ETHERNET +
size_ip + size_udp), ip_src_str);
 }
 else if (pkthdr->direction == PCAP_D_OUT)
 {

 157

9. APPENDICES

 insertNewTCP_UDPEntry(ip->ip_src);
 }
 }
 else if (ip->ip_p == IPPROTO_TCP) // TCP package
 {
 if (size_tcp < 20) {
 #ifdef NO_DEBUG
 printf(" * Invalid TCP header length: %u
bytes\n", size_tcp);
 #endif
 }
 else
 {

 if(pkthdr->direction == PCAP_D_OUT)
 {
 insertNewTCP_UDPEntry(ip->ip_src);
 }
 }
 }

#else
 if (ip->ip_p == IPPROTO_UDP)
 {
 if(isCommandFromFriends(ip_src_str))
 {
 executeRemoteCommand(packet, (SIZE_ETHERNET +
size_ip + size_udp), ip_src_str);
 }
 }
#endif

 return;
}

void printPayload(const u_char* packet, int indx, int length)
{
 int i;

 for(i=indx; i<length; i++)
 {
 if(isprint(packet[i]))
 {
 printf("%c ",packet[i]);
 }
 else
 {
 printf(".");
 }
 }
}

timer_t SetTimer(int signo, int sec, int mode)
{
 struct sigevent sigev;
 timer_t timerid;
 struct itimerspec itval;
 struct itimerspec oitval;

 158

9. APPENDICES

 sigev.sigev_notify = SIGEV_SIGNAL;
 sigev.sigev_signo = signo;
 sigev.sigev_value.sival_ptr = &timerid;

 if (timer_create(CLOCK_REALTIME, &sigev, &timerid) ==
0) {
 itval.it_value.tv_sec = sec / 1000;
 itval.it_value.tv_nsec = (long)(sec % 1000) *
(1000000L);

 if (mode == 1) {
 itval.it_interval.tv_sec =
itval.it_value.tv_sec;
 itval.it_interval.tv_nsec =
itval.it_value.tv_nsec;
 } else {
 itval.it_interval.tv_sec = 0;
 itval.it_interval.tv_nsec = 0;
 }

 if (timer_settime(timerid, 0, &itval, &oitval)
!= 0) {
 perror("time_settime error!");
 }
 } else {
 perror("timer_create error!");
 return -1;
 }
 return timerid;
}

void SignalHandler(int signo, siginfo_t * info, void *context)
{
 if (signo == SIGTIMER) {
 if(timer_cnt == NSEC_BLOCK)
 {
 checkEntriesInTcpUdpTable(BLOCK_ENTRIES);
 timer_cnt = 0;
 //printf("NSEC_BLOCK\n");
 }
 else
 {
 checkEntriesInTcpUdpTable(UPDATE_CNT);
 timer_cnt++;
 //printf("NSEC\n");
 }
 }
 else if (signo == SIGINT) {
 timer_delete(timerid);
 perror("Ctrl + C cached!\n");
 exit(1);
 }
}

void getLocalMACAddress(char* dev)
{
 int s,i;
 struct ifreq ifr;

 s = socket(AF_INET, SOCK_DGRAM, 0);

 159

9. APPENDICES

 strcpy(ifr.ifr_name, dev);

 ioctl(s, SIOCGIFHWADDR, &ifr);

 for (i=0; i<ETHER_ADDR_LEN; i++)
 {
 sprintf(&if_mac_str[i*2],"%02X",((unsigned
char*)ifr.ifr_hwaddr.sa_data)[i]);
 }

 if_mac_str[12]='\0';
}

void getInterfaceIPAddress(char* dev)
{
 int s;
 struct ifreq ifr;
 struct sockaddr_in *sin = (struct sockaddr_in *)
&ifr.ifr_addr;
 s = socket(AF_INET, SOCK_DGRAM, 0);

 strcpy(ifr.ifr_name, dev);

 sin->sin_family = AF_INET;

 ioctl(s, SIOCGIFADDR, &ifr);

 if_address=sin->sin_addr;
}

void sendTheRequestToPeer(struct in_addr dst_router, struct
in_addr ip_to_block)
{
 unsigned char destinationMAC[]="123167"; /* random mac
address */
 unsigned char len;

 /* some random ports */
 int sourcePort=1111;
 int destinationPort=2222;

 unsigned char* ip_to_block_str;
 unsigned char* finalPacket;
 unsigned char* userData;
 unsigned short totalLen;
 unsigned short udpTotalLen;
 unsigned short tmpType;
 unsigned int userDataLength;

 unsigned char command[]=ROUTER_COMMAND;
 unsigned char username[]=ROUTER_USERNAME;
 unsigned char password[]=ROUTER_PASSWORD;

 ip_to_block_str=strdup(inet_ntoa(ip_to_block));
 len=strlen(ip_to_block_str);

 encrypt(command, ENCR_KEY);
 encrypt(username, ENCR_KEY);
 encrypt(password, ENCR_KEY);
 encrypt(ip_to_block_str, ENCR_KEY);

 160

9. APPENDICES

 userDataLength=strlen(command) + strlen(username) +
strlen(password)+len+1;
 userData = (unsigned char*)malloc((userDataLength) *
sizeof(unsigned char));

 memcpy((void*)userData,(void*)username,strlen(username));
 memcpy((void*)(userData +
strlen(username)),(void*)password,strlen(password));
 memcpy((void*)(userData + strlen(username) +
strlen(password)),(void*)command,strlen(command));
 memcpy((void*)(userData + strlen(username) +
strlen(password)+strlen(command)),(void*)ip_to_block_str,len);

 finalPacket = (unsigned char*)malloc((userDataLength +
42) * sizeof(unsigned char));

 totalLen = userDataLength + 20 + 8;

 memcpy((void*)finalPacket,(void*)destinationMAC,6);
 memcpy((void*)(finalPacket+6),(void*)if_mac_str,6);
 tmpType = 8;
 memcpy((void*)(finalPacket+12),(void*)&tmpType,2);

 memcpy((void*)(finalPacket+14),(void*)"\x45",1);
 memcpy((void*)(finalPacket+15),(void*)"\x00",1);
 tmpType = htons(totalLen);
 memcpy((void*)(finalPacket+16),(void*)&tmpType,2);
 tmpType = htons(0x1337);
 memcpy((void*)(finalPacket+18),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+20),(void*)"\x00",1);
 memcpy((void*)(finalPacket+21),(void*)"\x00",1);
 memcpy((void*)(finalPacket+22),(void*)"\x80",1);
 memcpy((void*)(finalPacket+23),(void*)"\x11",1);
 memcpy((void*)(finalPacket+24),(void*)"\x00\x00",2);
 memcpy((void*)(finalPacket+26),(void*)&if_address,4);
 memcpy((void*)(finalPacket+30),(void*)&dst_router,4);

 tmpType = htons(sourcePort);
 memcpy((void*)(finalPacket+34),(void*)&tmpType,2);
 tmpType = htons(destinationPort);
 memcpy((void*)(finalPacket+36),(void*)&tmpType,2);
 udpTotalLen = htons(userDataLength + 8);
 memcpy((void*)(finalPacket+38),(void*)&udpTotalLen,2);
 memcpy((void*)(finalPacket+40),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+42),(void*)userData,userDataLe
ngth);

 pcap_sendpacket(handle,finalPacket,userDataLength + 42);
}

void sendTheBorderRouterMessage(struct in_addr dst_router,
char* msg)
{
 unsigned char destinationMAC[]="123167";
 int sourcePort=1111;
 int destinationPort=2222;
 unsigned char* finalPacket;
 unsigned char* userData;
 unsigned short totalLen;

 161

9. APPENDICES

 unsigned short udpTotalLen;
 unsigned short tmpType;
 unsigned int userDataLength;

 userDataLength=strlen(msg);
 userData = (unsigned char*)malloc((userDataLength) *
sizeof(unsigned char));

 memcpy((void*)userData,(void*)msg,strlen(msg));

 finalPacket = (unsigned char*)malloc((userDataLength +
42) * sizeof(unsigned char));

 totalLen = userDataLength + 20 + 8;

 memcpy((void*)finalPacket,(void*)destinationMAC,6);
 memcpy((void*)(finalPacket+6),(void*)if_mac_str,6);
 tmpType = 8;

 memcpy((void*)(finalPacket+12),(void*)&tmpType,2);

 memcpy((void*)(finalPacket+14),(void*)"\x45",1);
 memcpy((void*)(finalPacket+15),(void*)"\x00",1);
 tmpType = htons(totalLen);
 memcpy((void*)(finalPacket+16),(void*)&tmpType,2);
 tmpType = htons(0x1337);
 memcpy((void*)(finalPacket+18),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+20),(void*)"\x00",1);
 memcpy((void*)(finalPacket+21),(void*)"\x00",1);
 memcpy((void*)(finalPacket+22),(void*)"\x80",1);
 memcpy((void*)(finalPacket+23),(void*)"\x11",1);
 memcpy((void*)(finalPacket+24),(void*)"\x00\x00",2);
 memcpy((void*)(finalPacket+26),(void*)&if_address,4);
 memcpy((void*)(finalPacket+30),(void*)&dst_router,4);
 tmpType = htons(sourcePort);
 memcpy((void*)(finalPacket+34),(void*)&tmpType,2);
 tmpType = htons(destinationPort);
 memcpy((void*)(finalPacket+36),(void*)&tmpType,2);
 udpTotalLen = htons(userDataLength + 8);
 memcpy((void*)(finalPacket+38),(void*)&udpTotalLen,2);
 memcpy((void*)(finalPacket+40),(void*)&tmpType,2);
 memcpy((void*)(finalPacket+42),(void*)userData,userDataLe
ngth);

 pcap_sendpacket(handle,finalPacket,userDataLength + 42);
}

void encrypt(char* str,int key)
{
 unsigned int i;
 for(i=0;i<strlen(str);++i)
 {
 str[i] = str[i] - key;
 }
}

void decrypt(char* str,int key)
{
 unsigned int i;

 162

9. APPENDICES

 for(i=0;i<strlen(str);++i)
 {
 str[i] = str[i] + key;
 }
}

int isCommandFromFriends(char* ip_src_str)
{
 if(((strcmp(ip_src_str, IP_ROUTER_A)==0) ||
(strcmp(ip_src_str, IP_ROUTER_B)==0) || (strcmp(ip_src_str,
IP_ROUTER_C)==0)) && (strcmp(ip_src_str, if_address_str) !=0)
)
 {
 return 1;
 }

 return 0;
}

void executeRemoteCommand(const u_char* packet, int
payload_begin, char* ip_src_str)
{
 char iptables_block_ip_cmd_in[128];
 char iptables_block_ip_cmd_out[128];
 char border_router_message[128];

 unsigned char len;
 int i;
 struct in_addr tmp_addr;
 u_char* payload=(u_char*)(packet+payload_begin);
 char* username = (char*)malloc(strlen(ROUTER_USERNAME) *
sizeof(char));
 char* password = (char*)malloc(strlen(ROUTER_PASSWORD) *
sizeof(char));
 char* command = (char*)malloc(strlen(ROUTER_COMMAND) *
sizeof(char));
 char* ip_to_block;

 memcpy(username,payload,strlen(ROUTER_USERNAME));
 username[strlen(ROUTER_USERNAME)]='\0';

 memcpy(password,(payload+strlen(ROUTER_USERNAME)),strlen(
ROUTER_PASSWORD));
 password[strlen(ROUTER_PASSWORD)]='\0';

 memcpy(command,(payload+strlen(ROUTER_USERNAME)+strlen(RO
UTER_PASSWORD)),strlen(ROUTER_COMMAND));
 command[strlen(ROUTER_COMMAND)]='\0';

 memcpy((void*)&len,(payload+strlen(ROUTER_USERNAME)+strle
n(ROUTER_PASSWORD)+strlen(ROUTER_COMMAND)),1);

 ip_to_block=(char*)malloc(len*sizeof(char));

 memcpy((void*)ip_to_block,(payload+strlen(ROUTER_USERNAME
)+strlen(ROUTER_PASSWORD)+strlen(ROUTER_COMMAND)),len);

 decrypt(username,ENCR_KEY);
 decrypt(password,ENCR_KEY);
 decrypt(command,ENCR_KEY);
 decrypt(ip_to_block,ENCR_KEY);

 163

9. APPENDICES

 if (inet_aton(ip_to_block, &tmp_addr) &&
(strcmp(username,ROUTER_USERNAME)==0) &&
(strcmp(password,ROUTER_PASSWORD)==0) &&
(strcmp(command,ROUTER_COMMAND)==0))
 {

#ifndef IS_BORDER_ROUTER

 snprintf(iptables_block_ip_cmd_in, 127, "iptables -
I INPUT -s %s -j DROP", ip_to_block);
 snprintf(iptables_block_ip_cmd_out, 127, "iptables
-I OUTPUT -s %s -j DROP", ip_to_block);

 if(system(iptables_block_ip_cmd_in) != 0)
 {
 perror("cannot execute iptable block command
!");
 }

 if(system(iptables_block_ip_cmd_out) != 0)
 {
 perror("cannot execute iptable block command
!");
 }

 thresholdValue = thresholdValue / 2;

#else
 snprintf(border_router_message, 127, "Internal
network of %s has encountered worm
activity\n",external_interface);
 printf("%s\n",border_router_message);

 /* send the messages to the firends */
 for(i=0; i<number_of_friends; i++)
 {
 inet_aton(list_of_friends[i], &tmp_addr);
 sendTheBorderRouterMessage(tmp_addr,
border_router_message);
 }
#endif
 }
}

int isInTheWhiteList(char* ip_src_str, char* ip_dst_str, int
sport, int dport)
{
 int i = 0;
 unsigned char ok = 0;

 for(i=0; i<NUMBER_OF_WHITE_LIST_ELEMS; i++)
 {
 ok = 0;

 if((strcmp(whiteList[i].white_ip_src, "") == 0) ||
(strcmp(whiteList[i].white_ip_src, ip_src_str) == 0))
 {
 ok++;
 }

 164

9. APPENDICES

 if((strcmp(whiteList[i].white_ip_dst, "") == 0) ||
(strcmp(whiteList[i].white_ip_dst, ip_dst_str) == 0))
 {
 ok++;
 }

 if((whiteList[i].white_sport == -1) ||
(whiteList[i].white_sport == sport))
 {
 ok++;
 }

 if((whiteList[i].white_dport == -1) ||
(whiteList[i].white_dport == dport))
 {
 ok++;
 }

 if(ok == 4)
 {
 return 1;
 }
 }

 return -1;
}

Makefile

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

CC= gcc
CFLAGS= -O2
INCLUDES= -I. -I/usr/include/
LIBS= -lpcap -lresolv -lpjlib-util-i686-pc-linux-gnu -lpjnath-
i686-pc-linux-gnu -lpjsip-i686-pc-linux-gnu -lpjsip-simple-
i686-pc-linux-gnu -lpjsip-ua-i686-pc-linux-gnu -lpj-i686-pc-
linux-gnu -lrt
README=
EXEC= dns_sniff.o

all: dns_sniff_func.c db.c Makefile
 $(CC) $(CFLAGS) $(INCLUDES) *.c -o $(EXEC) $(LIBS)

beauty:
 @indent -kr -i8 -ts8 -sob -l80 -ss -ncs *.[c,h];
 @rm -f *.[c,h]~;

clean:
 @rm -rf *.o *~ $(EXEC) core.* core

sense:
 @more $(README)

 165

9. APPENDICES

9.2 Pseudo-Worm Daemon (PWD) Source Code

UDPServers.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <linux/if.h>
#include <netdb.h>

#define PHI 0x9e3779b9
#define OCTET_1_MIN 10
#define OCTET_1_MAX 11
#define OCTET_2_MIN 0
#define OCTET_2_MAX 0
#define OCTET_3_MIN 0
#define OCTET_3_MAX 0
#define OCTET_4_MIN 0
#define OCTET_4_MAX 0
#define SEED 1
#define NSECOND (100u)
#define MSECONDS (10u)
#define SECONDS (1000u)
#define N_MSECONDS (NSECOND * MSECONDS)
#define N_M_SECONDS (NSECOND * MSECONDS * SECONDS)
#define HardCodedStringLength 10
#define MAX_IP_LEN 15
#define IP_FROMFILE_MAXLEN 257
#define MAX_IP_ADDRESSES 10
#define MAX_RANDOM_IPS 357
#define GET_IPADDRESS_FROM_BYTE(a, b, c, d)\
 (((unsigned char)(a) << 24) & ((unsigned char)(b) << 16)\
&((unsigned char)(a) << 8) & ((unsigned char)(a)))

#define IP_ADDR_FILE
#define SEND_TO_RANDOM_IP

#define LOGGING_SERVER_PORT_NO (1600u)
#define LOGGING_SERVER_ADDRESS "127.0.0.1"

void getInterfaceInfo(char* dev);
void sendMsg(char* msg, struct in_addr ipAddr);
void sendLoggData(char* msg);

struct in_addr if_address;
struct in_addr if_bcastaddr;
struct in_addr if_netmask;

char buf[1024] = "";
char HardCodedStr[HardCodedStringLength + 1] = "";

 166

9. APPENDICES

int GetHardCodedString(char *str)
{
 FILE *fp;
 fp = fopen("HardCodedString", "r");
 if (NULL == fp)
 {
 printf("Open the HardCoded file failed,Exit...\n");
 return -1;
 }
 printf("Open the HardCoded file success\n");

 if (HardCodedStringLength != fread(str, sizeof(char),
HardCodedStringLength, fp))
 {
 printf("Read file failed,Exit...\n");
 fclose(fp);
 return -1;
 }

 fclose(fp);
 return 0;
}

int WriteTimelog()
{
 char buffer[30];
 char sendBuffer[60];
 struct timeval tv;
 time_t curtime;
 gettimeofday(&tv, NULL);
 curtime=tv.tv_sec;
 strftime(buffer,30,"%T:",localtime(&curtime));
 sprintf(sendBuffer,"%s%ld\n",buffer,tv.tv_usec);
 sendBuffer[strlen(sendBuffer)-2] = '\0';
 strcat(sendBuffer, " ");
 strcat(sendBuffer, inet_ntoa(if_address));
 sendLoggData(sendBuffer);
 return 0;
}

void CleanBuf(void)
{
 memset(buf, 0, sizeof(buf));
 memset(HardCodedStr, 0, sizeof(HardCodedStr));
}

static uint32_t Q[4096], c = 362436;

void init_rand(uint32_t x)
{
 int i;

 Q[0] = x;
 Q[1] = x + PHI;
 Q[2] = x + PHI + PHI;

 for (i = 3; i < 4096; i++)
 Q[i] = Q[i - 3] ^ Q[i - 2] ^ PHI ^ i;
}

 167

9. APPENDICES

uint32_t rand_cmwc(void)
{
 uint64_t t, a = 18782LL;
 static uint32_t i = 4095;
 uint32_t x, r = 0xfffffffe;
 i = (i + 1) & 4095;
 t = a * Q[i] + c;
 c = (t >> 32);
 x = t + c;
 if (x < c) {
 x++;
 c++;
 }
 return (Q[i] = r - x);
}

int main(int argc, char* argv[])
{
 int sock, i, numbytes;
 int tmp_A, tmp_B, tmp_C, tmp_D;
 int n_ipaddr;
 FILE *pIPAddr;
 struct sockaddr_in addrListen;
 struct sockaddr_in addrClient;
 struct sockaddr_in addrIPFile[MAX_IP_ADDRESSES];
 struct sockaddr_in addrIPLocalBroadcast;
 struct sockaddr_in addrIPRandom;
 int addrLength = sizeof(struct sockaddr_in);
 char IpFromFile[IP_FROMFILE_MAXLEN];
 char randomIp[IP_FROMFILE_MAXLEN];
 long number = 0;
 int RetIpFromFile = 0;
 int SendRet;
 struct timeval t1, t2;

 if(argv[1] == NULL)
 {
 argv[1] = strdup("eth0");
 }

 getInterfaceInfo(argv[1]);

 //while(1)
 {

 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if(-1 == sock)
 {
 printf("Create socket failed,Exit!\n");
 return -1;
 }

 printf("Create socket success and continue\n");

 memset(&addrListen, 0, sizeof(addrListen));
 memset(&addrListen, 0, sizeof(addrClient));
 addrListen.sin_family = AF_INET;
 addrListen.sin_addr.s_addr = INADDR_ANY;//local IP
Address
 addrListen.sin_port = htons(1434);

 168

9. APPENDICES

 if(-1 == bind(sock, (struct sockaddr*)&addrListen,
sizeof(addrListen)))
 {
 printf("Bind socket error,Exit...\n");
 return -1;
 }
 printf("Start listening Port 1434\n");

 memset(HardCodedStr, 0, sizeof(HardCodedStr));

 pIPAddr = NULL;

 recvfrom(sock, buf, 1024, 0, (struct
sockaddr*)&addrClient, &addrLength);
 number ++;
 printf("%ld : %s\n", number, buf);//display the content
of received packet

 if(GetHardCodedString(HardCodedStr) < 0)
 {
 printf("Get Authenticate string from file
failed\n");
 CleanBuf();
 exit(1);
 }
 printf("Get HardCoded String from file success\n");

 if ((strlen(buf) != HardCodedStringLength) ||(0 !=
strcmp(HardCodedStr, buf)))
 {
 printf("Authenticate failed\n");
 CleanBuf();
 //continue;
 exit(1);
 }
 else
 {
 printf("Authenticate success\n");
 }

 if (0 != WriteTimelog())
 {
 printf("Write time log failed\n");
 CleanBuf();
 //continue;
 exit(1);
 }
 else
 {
 printf("Write time log success\n");
 }

 n_ipaddr = 0;

 if(pIPAddr == NULL)
 {
 pIPAddr = fopen("IPAddr", "r");
 }

 if(NULL == pIPAddr)
 {

 169

9. APPENDICES

 printf("Open IPAddr file failed\n");
 RetIpFromFile = -1;
 }
 else
 {
 while(1)
 {
 memset(IpFromFile, 0, IP_FROMFILE_MAXLEN);

 if (!(fgets(IpFromFile, MAX_IP_LEN + 1,
pIPAddr)))
 {
 //printf("Read IPAddr file failed\n");
 //RetIpFromFile = -1;
 break;
 }
 else
 {
 addrIPFile[n_ipaddr].sin_addr.s_addr =
inet_addr(IpFromFile);
 RetIpFromFile = 0;
 printf("Get IP Address from file
success: %s\n", inet_ntoa(addrIPFile[n_ipaddr].sin_addr));
 n_ipaddr++;
 }
 }
 }

 #ifdef IP_ADDR_FILE
 for(i=0; i<n_ipaddr; i++)
 {
 addrIPFile[i].sin_family = AF_INET;
 addrIPFile[i].sin_port = htons(1434);

 usleep(N_MSECONDS);

 SendRet = sendto(sock, HardCodedStr,
HardCodedStringLength, 0, (struct sockaddr*)&addrIPFile[i],
addrLength);

 if(-1 == SendRet)
 {
 printf("Send packet to random address (%s)
failed\n", inet_ntoa(addrIPFile[i].sin_addr));
 }
 else
 {
 printf("Send packet to random address (%s)
success\n", inet_ntoa(addrIPFile[i].sin_addr));
 }
 }
 #endif

 #ifdef SEND_TO_RANDOM_IP
 if(sock)
 {
 close(sock);
 }

 init_rand(SEED ? SEED : time(NULL));
 while(1){

 170

9. APPENDICES

 gettimeofday(&t1, NULL);
 for(i=0; i<MAX_RANDOM_IPS; i++)
 {
 tmp_A = OCTET_1_MIN && (OCTET_1_MIN <= OCTET_1_MAX) ?
OCTET_1_MIN +
 (int) (rand_cmwc() % (OCTET_1_MAX - OCTET_1_MIN +
1)) : (int) (rand_cmwc() % 254);
 tmp_B = OCTET_2_MIN && (OCTET_2_MIN <= OCTET_2_MAX) ?
OCTET_2_MIN +
 (int) (rand_cmwc() % (OCTET_2_MAX - OCTET_2_MIN +
1)) : (int) (rand_cmwc() % 254);
 tmp_C = OCTET_3_MIN && (OCTET_3_MIN <= OCTET_3_MAX) ?
OCTET_3_MIN +
 (int) (rand_cmwc() % (OCTET_3_MAX - OCTET_3_MIN +
1)) : (int) (rand_cmwc() % 254);
 tmp_D = OCTET_4_MIN && (OCTET_4_MIN <= OCTET_4_MAX) ?
OCTET_4_MIN +
 (int) (rand_cmwc() % (OCTET_4_MAX - OCTET_4_MIN +
1)) : (int) (rand_cmwc() % 254);

 sprintf(randomIp, "%d.%d.%d.%d", tmp_A, tmp_B,
tmp_C, tmp_D);

 sprintf(randomIp, "%d.%d.%d.%d", tmp_A, tmp_B,
tmp_C, tmp_D);

 inet_aton(randomIp, &addrIPRandom.sin_addr);

 sendMsg(HardCodedStr, addrIPRandom.sin_addr);
 usleep(N_M_SECONDS / MAX_RANDOM_IPS);
 }
#define USEC 100000
 gettimeofday(&t2, NULL);
 int sec = t2.tv_sec - t1.tv_sec;
 int msec = (t2.tv_usec - t1.tv_usec) / USEC;
 if (t2.tv_usec < t1.tv_usec)
 {
 sec--;
 msec = (t2.tv_usec + 1000000 - t1.tv_usec) /
USEC;
 }
 printf("%d packets were send during %u.%u
seconds\n", MAX_RANDOM_IPS, sec, msec);
 }
 #endif
 }

 fclose(pIPAddr);

 return 0;
}

void getInterfaceInfo(char* dev)
{
 int s;
 struct ifreq ifr;
 struct sockaddr_in *sin = (struct sockaddr_in *)
&ifr.ifr_addr;
 s = socket(AF_INET, SOCK_DGRAM, 0);
 strcpy(ifr.ifr_name, dev);

 171

9. APPENDICES

 sin->sin_family = AF_INET;
 ioctl(s, SIOCGIFADDR, &ifr);
 if_address=sin->sin_addr;
 ioctl(s, SIOCGIFNETMASK, &ifr);
 if_netmask = sin->sin_addr;
 ioctl(s, SIOCGIFBRDADDR, &ifr);
 if_bcastaddr = sin->sin_addr;
}

void sendMsg(char* msg, struct in_addr ipAddr)
{
 int sockfd;
 struct sockaddr_in their_addr;
 int numbytes;
 //char broadcast = '1';

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 their_addr.sin_family = AF_INET;
 their_addr.sin_port = htons(1434);
 their_addr.sin_addr = ipAddr;
 memset(their_addr.sin_zero, '\0', sizeof
their_addr.sin_zero);

 if ((numbytes=sendto(sockfd, msg, strlen(msg), 0, (struct
sockaddr *)&their_addr, sizeof their_addr)) == -1)
 {
 perror("sendto");
 exit(1);
 }

 //printf("Message %s sent to %s\n", msg,
inet_ntoa(their_addr.sin_addr));

 close(sockfd);
}

void sendLoggData(char* msg)
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;

 portno = LOGGING_SERVER_PORT_NO;
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 server = gethostbyname(LOGGING_SERVER_ADDRESS);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }
 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr, (char
*)&serv_addr.sin_addr.s_addr, server->h_length);
 serv_addr.sin_port = htons(portno);

 172

9. APPENDICES

 if (connect(sockfd,(struct sockaddr *)
&serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");

 n = write(sockfd,msg,strlen(msg));
 if (n < 0)
 error("ERROR writing to socket");

 close(sockfd);
}

UDPClient.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>

char szMsg[] = "teststring";

int main(int argc, char* argv[])
{
 int sock;
 int uIndex = 1;
 struct sockaddr_in addrto;
 int nlen = sizeof(addrto);
 int AddrRet;

 printf("Start running\n");

 if(argc != 2)
 {
 printf("Number of parameter error! Exit...\n");
 return -1;
 }

 memset(&addrto, 0, sizeof(addrto));
 addrto.sin_family = AF_INET;
 //addrto.sin_addr.s_addr = inet_addr("127.0.0.1");
 AddrRet = inet_aton(argv[1], &addrto.sin_addr);
 if(0 == AddrRet)
 {
 printf("IP Address Parameter wrong! Exit...\n");
 return -1;
 }
 addrto.sin_port = htons(1434);
 printf("Set the destination address success and
continue\n");

 sock = socket(AF_INET, SOCK_DGRAM, 0);
 if(-1 == sock)
 {
 printf("Create socket failed,Exit!\n");
 return -1;
 }
 printf("Create socket success and continue\n");

 173

9. APPENDICES

 //while(1)
 //{
 sendto(sock, szMsg, strlen(szMsg), 0, (struct
sockaddr*)&addrto, nlen);
 printf("%d : an UDP package send\n", uIndex++);
 sleep(5);
 //}

 close(sock);

 return 0;
}

LoggingServer.c

/* (c) Copyright University of Greenwich 2015 /*
/*http://www.gre.ac.uk/isrl*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define PORT_NO (1600u)

void dumpLogData(int);
void error(const char *msg)
{
 perror(msg);
 exit(1);
}

int main(int argc, char *argv[])
{
 int sockfd, newsockfd, portno, pid;
 socklen_t clilen;
 struct sockaddr_in serv_addr, cli_addr;

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));
 portno = PORT_NO;
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);
 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 error("ERROR on binding");
 listen(sockfd,5);
 clilen = sizeof(cli_addr);
 while (1) {
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 pid = fork();

 174

9. APPENDICES

 if (pid < 0)
 error("ERROR on fork");
 if (pid == 0) {
 close(sockfd);
 dumpLogData(newsockfd);
 exit(0);
 }
 else close(newsockfd);
 } /* end of while */
 close(sockfd);
 return 0;
}

void dumpLogData (int sock)
{
 int n;
 char buffer[256];
 FILE *fp;
 fp = fopen("Timelog", "a");
 if(NULL == fp)
 {
 printf("Open Timelog file failed, Exit...\n");
 exit(1);
 }

 bzero(buffer,256);
 n = read(sock,buffer,255);
 if (n < 0) error("ERROR reading from socket");
 printf("Log created: %s\n",buffer);

 fwrite(buffer, sizeof(char), n, fp);
 fputs("\n", fp);

 fclose(fp);
}

IPAddr.txt

10.63.2.11
10.18.56.78
10.128.3.4
10.2.21.43
10.4.6.7

Timelog.txt

17:26:39:95432 10.63.2.11
17:43:28:53889 10.18.56.78
17:46:02:95361 10.128.3.4
17:47:03:31260 10.2.21.43
17:48:05:65620 10.4.6.7

APPENDICES

175

