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                  ABSTRACT 

The shortcomings of diffusion models in representing the risk related to 

large market movements have led to the development of various option 

pricing models with jumps. These models allow for a more realistic 

representation of price dynamics and greater flexibility in modelling and 

have therefore been the focus of much recent work. In this thesis the 

development of a robust finite difference method for the option pricing 

under jump-diffusion and Lévy processes is presented and its effectiveness 

is demonstrated on a range of pricing models. 
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1. Introduction 

 

In this introductory section, we discuss the motivation underpinning the 

work presented in this thesis, starting from the Black-Scholes model’s 

(Section 1.1) shortcomings which led to the development of various models 

which try to capture more accurately the pricing dynamics of financial 

derivatives. One of those models, the jump-diffusion one, is the focus of this 

work. We summarize (Section 1.2) the work of our research peers and 

discuss the contribution of our work. Finally the structure of this document 

is presented (Section 1.3). 

 

1.1  Jump-diffusion processes:  Motivation 

The Black-Scholes paper (Black, 1973) published in 1973, presented the 

derivation of a partial differential equation for option prices, where the 

dynamics of prices 𝑋𝑡 = (𝑋𝑡
1, … , 𝑋𝑡

𝑚) of the underlying asset were 

described by a diffusion process, driven by a Geometric Brownian Motion: 

𝑑𝑋𝑡 = 𝑋𝑡𝜎(𝜏, 𝛸𝜏)𝑑𝑊𝑡 + 𝑋𝑡𝜇𝑡𝑑𝑡 (1.1) 

The pricing formula obtained in that paper, presented a major breakthrough 

in understanding the way financial derivatives behave within the capital 

markets and for that reason this methodology and its generalizations were 

immediately adapted by financial institutions and are still widely used for 

the modelling of derivative products. Despite the success of the Black-

Scholes model, its main characteristics, as described below, were linked to 

its fundamental drawbacks in trying to capture asset price behavior. In what 

follows we discuss those inefficiencies.  

In continuous path models (e.g. diffusion models) the price process behaves 

locally like a Brownian motion. This implies that the price is unlikely to 

move by large amount in a short period of time, unless the input volatility 

parameter over the same time period is set unrealistically high. For example, 

in the case of a short-term out-of-the money option, this would mean that 

there is small probability of the option expiring in-the-money. However, in 

the market, it is possible to observe a sudden sharp change in the price of 

the underlying asset that would result in the option expiring in-the-money 

(and the opposite is true for an in-the-money short-term option close to 

expiry). 
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From the hedging point of view, continuous models for describing asset 

price dynamics lead to complete markets or to markets that can be made 

complete by introducing additional instruments (Zhang, 2007). 

Under the assumption of stochastic volatility this property is lost, but even 

in this case the market can be made complete by the addition of vanilla 

options. Under the complete market assumption any derivative product can 

be dynamically replicated via cash and the underlying asset. From a 

probabilistic point of view, this means that in such models, every contingent 

claim 𝐶 is attainable, in other words, under a unique equivalent martingale 

measure 𝑄; there exists a self-financing trading strategy 𝜃, whose value 

process: 

 

 

satisfies  𝑉𝑇 = 𝐶. In this case any change in the portfolio value will be due 

to capital gain or losses within the portfolio and not due to the addition or 

withdrawal of funds.  

However, real markets are incomplete and asset prices exhibit sudden sharp 

movements. The existence of jumps in asset price movements in the real 

market forces the market participants to hedge for risks that cannot be 

hedged only by using cash and the underlying asset and therefore make 

perfect hedging impossible. Even in portfolio valuation theory, the 

assumption of continuous price movements neglects the asymmetric 

correlation in the portfolio assets imposed by jumps or correlated signs 

across markets.  

   𝑉𝑇 = 𝑉0 +∑𝜃𝑇
𝑖 (𝑆𝑇

𝑖 − 𝑆0
𝑖)

𝑁

𝑖=0

 (1.2) 
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Figure 1-1 Evolution of Historical Prices and Implied Volatility-UKX Index 
(2007-2011) 

 

Famous market crashes along with the more recent financial crisis in 2008-

2010, prove that the continuous models used by financial institutions are not 

able to predict the high volatility levels. Figure 1-1 shows the extreme 

market movements observed during periods of adverse macroeconomic 

conditions. It is therefore widely acknowledged that the behavior of 

speculative fluctuations deviated from the standard Geometric Brownian 

Motion (GBM) in several ways. That realization prompted the study of 

statistical properties of the financial times series and has revealed a range of 

interesting stylized facts which seem to be common to a wide range of 

instruments, time periods and markets.  

 

Lack of log normality in the returns:  An important property of the 

Brownian motion process is the continuity of its sample paths: a typical path 

𝑡 → 𝐵𝑡 will be a continuous function of time. Figure 1-2 shows the daily log 

returns of the SPX index.  

The daily log returns are defined as: 𝑅𝑡 = {𝑙𝑛
𝑆(𝑡)

𝑆(𝑡−1)
}, at time 𝑡, where 𝑆(𝑡) 

denotes the asset price. It is obvious from the figure below that big spikes 
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occurred during 1987 and 2008. That highlights the fact that extreme 

movements in asset price paths (in this work referred to as jumps) that have 

been observed in the markets are considered highly unlikely when modelled 

by a Gaussian distribution. In Figure 1-3 the normal probability 𝑄 − 𝑄 plot 

for the FTSE 100 Index, further reveals the deviation of the data sample 

from the normal probability distribution.  

 

Figure 1-2 Daily log returns of S&P 500 Index (1982-2012) 

 

Scale invariance: Another important property of the Brownian motion is its 

scale invariance. That means that the statistical properties characterizing a 

Brownian motion do not change at all-time resolutions. In other words in 

any small time interval of the random walk the Brownian motion limit will 

still look like a Brownian motion. However, while Brownian motion does 

not distinguish between time scales, the observed market price behavior 

does. If stock price paths are analyzed on an intraday scale basis, it will be 

observed that they move essentially by jumps and still exhibit discontinuous 

behavior at the scale of months. Only under longer time horizons do the 

stock price paths resemble the paths of a Brownian motion processes. 
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Figure 1-3 Normal Probability plot for FTSE 100 Index 

 

Excess Volatility: It is a market accepted fact that it is difficult to justify the 

observed level of variability in asset returns by variations in fundamental 

economic factors driving the returns of the securities. In (Summers, 1989) it 

is argued that the occurrence of large negative or positive returns is not 

always attributable to the arrival of unexpected news. The volatility levels 

can be affected by the supply or demand for securities and can be positively 

correlated to trading volumes.  

 

Volatility Clustering: In practice, it is often found that for financial time 

series (assuming log returns) the volatility fluctuation seems to change over 

time. More specifically, large changes tend to be followed by large changes, 

of either sign and small changes tend to be followed by small changes 

(Marcozzi, 2003).  From Figure 1 2 it can be observed that long periods of 

high volatility are interspersed with periods or relative calm. This type of 

pattern is known as volatility clustering - while returns themselves are 

uncorrelated, absolute returns |𝑟𝑡| or their squares show positive, significant 

and slowly decaying autocorrelation function 𝑐𝑜𝑟𝑟(|𝑟𝑡|, |𝑟𝑡+1|), for 𝑡 

ranging from a few minutes to several weeks. 
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Figure 1-4 Histogram of daily log returns of FTSE 350 Electricity Index 
(1985-2012) 

 

Heavy Tails, Excess Kurtosis and Leptokurtic characteristics: Figure 

1-4 presents the histogram of FTSE 350 electricity index, along with the 

standard normal density function. It can be observed that the histogram 

displays a high peak (i.e. kurtosis, sometimes referred to as elongation) and 

asymmetric heavy tails. This is true, not only for the particular index, but is 

a commonly observed characteristic across the spectrum of financial asset 

prices (e.g. US and worldwide stock indices, individual stocks, foreign 

exchange rates, interest rates, commodities, etc.). More precisely, the 

kurtosis and skewness are defined as 𝐾𝑢𝑟𝑡 = 𝐸(
(𝑋−𝜇)4

𝜎4
), 𝛾1 = 𝐸(

(𝑋−𝜇)3

𝜎3
). 

For the standard normal density  𝐾𝑢𝑟𝑡 = 3. If 𝐾𝑢𝑟𝑡 > 3 then the 

distribution will be leptokurtic and will have a higher peak and two heavier 

tails than those of the normal distribution. The Black-Scholes Brownian 

motion model ignores this well observed feature. 

The purpose behind the introduction of a continuous time stochastic process 

aiming to capture empirical properties of asset prices was ultimately the 

development of an option price model, which would be able to envisage the 

state of options market at a given time. For any model, this is achieved 

through its calibration with market data. More specifically, the parameters 

of the model are chosen to fit the observed market option prices and will 

produce modelled option prices not significantly different from the observed 

ones. The efficiency of the model is usually tested through backtesting 

methodologies developed and mostly utilized for the validation of Value at 
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Risk (VaR) models and exposure estimates like Potential Future Exposures 

(PFE) (Hull, 1989). 

The Black-Scholes partial differential equation for a European or American 

call option on the underlying stock 𝑆 with exercise price 𝐾 is given by the 

following formula:  

 

 

With 𝑆𝑚𝑖𝑛 < 𝑆 < 𝑆𝑚𝑎𝑥 ,  𝑡𝑚𝑖𝑛 < 𝑡 < 𝑡𝑚𝑎𝑥 where 𝑟 is the risk free interest 

rate, 𝑞 is the continuous dividend, 𝑇 is the time to maturity of the option and 

𝜎 is the volatility of the underlying stock price. The value of a European or 

American call option that pays zero dividends is defined as a contingent 

claim with payoff at maturity 𝑚𝑎𝑥 (0, 𝑆𝑇 − 𝐾)
𝑇. 

 The Black-Scholes formula for the value of a European call option is: 

 

 

Where 𝑚 = 𝐾/𝑆𝑡  is the moneyness
1
 of the option and: 

 

  

One attractive feature of the Black-Scholes model is that its parameters are 

unambiguously observable. That makes the model easily calibrated to 

market prices. A very important parameter in the Black-Scholes option-

pricing model is the volatility of the underlying asset. The level of volatility 

used in the model has significant impact on the option price behavior and 

                                                           
1 Moneyness is a measure of the degree to which a derivative is likely to have a positive monetary value at its 

expiration under the risk neutral measure. Here, moneyness is defined as the fraction of the option strike over 

the spot value of the underlying (𝑀 =
𝐾

𝑆
) 

 

 𝜕𝑓

𝜕𝑡
+ (𝑟 − 𝑞)𝑆

𝜕𝑓

𝜕𝑆
+
1

2
𝜎2𝑆

𝜕2𝑓

𝜕𝑆2
= 𝑟𝑓 (1.3) 

  𝐶𝐵𝑆(𝑆𝑡, 𝐾, 𝜏, 𝜎) =  𝑆𝑡𝑁(𝑑1) − 𝐾𝑒
−𝑟𝜏𝑁(𝑑2) (1.4) 

𝑑1 =
−ln(𝑚)+𝜏(𝑟+

𝜎2

2
)

𝜎√𝜏
,                        𝑑2 =

−ln(𝑚)+𝜏(𝑟−
𝜎2

2
)

𝜎√𝜏
 (1.5) 

𝑁(𝑥) = (2𝜋)−
1
2∫ 𝑒𝑥𝑝

𝑥

−∞

(−
𝑧2

2
)𝑑𝑧 (1.6) 
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understanding the price-volatility dynamic (i.e. relationship between 

directional changes of the underlying and directional changes in the 

volatility) can help cushion against losses. Fortunately, this relationship in 

equity markets is easily observable. One can calculate the volatility implied 

by the option prices in the market, by solving the inverse Black-Scholes 

problem. The implied volatility 𝜎𝐶 = 𝑔((𝐶) ,   . ) of an option 𝐶 will depend 

on the characteristics of the option. Those are the strike price 𝐾 and the 

maturity 𝑇. However, the Black-Scholes model predicts a flat profile for the 

implied volatility surface: 

𝜎𝐶 = 𝑔 ((𝐶), . ) = 𝜎 (1.7) 

It is a well observed empirical fact that the volatility implied by options 

traded in the market is not constant as a function of strike nor as a function 

of time to maturity. This dependency is easily observed when looking at the 

shape of implied volatility surfaces, where the non-flat instantaneous profile 

of the surface points out the existence of term structure volatility and its 

deforming shape confirms the change of levels of implied volatilities over 

time, capturing the evolution of prices in the options market.  

Figure 1-5 top presents the average implied volatilities for DJ 

EUROSTOXX index for the period of [01/2008-11/2011]. Maturities range 

from 1 to 24 months and moneyness levels range from 90% to 100%.  

Figure 1-5 bottom shows the surface obtained for DJ EUROSTOXX when 

logarithmic changes of implied volatility are taken before averaging. The 

volatility skew and term structure characteristics persist. The sample 

standard deviation of implied volatilities shown in Figure 1-6 illustrates that 

the surface is not static and fluctuates around its average profile. It is 

observed that the daily standard deviation of the implied volatility can be as 

large as one half of its typical value for out-of-the money options, resulting 

in an important impact on option prices and prices of other financial 

derivatives (e.g. variance swaps). The above highlights the main weakness 

behind the assumption of constant volatility as implied by the Black-Scholes 

formulae which is further exacerbated in the case of short term options, 

where utilizing continuous models of diffusion type with constant or even 

stochastic volatility, cannot capture observed discontinuities in the 

underlying price path unless the volatility of volatility is set to be 

unrealistically high.  
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Figure 1-5 Average Implied (top) and log-implied (bottom) Volatility 
Surface DJ EUROSTOXX (2008-2011) 

 

Those findings regarding the ability of the Black-Scholes model to capture 

the real market asset price dynamics, created the need for the development 

and integration with the existing pricing methodologies of a model that will 

be able to account for unexpected large price movements due to the arrival 

of information regarding unforeseen market events. An efficient option 

pricing model should be able to replicate the prices observed in the market, 

but should also assign values to complex derivative products without 

allowing for arbitrage opportunities. Several generalizations of the Black-

Scholes model have been proposed in order to deal with the smile shaped 

implied volatilities problem. In (Dupire, 1994) a time dependent local 

volatility is inferred from the term structure of implied volatilities, 

essentially inducing a unique diffusion process. However for options with 

longer maturities the resulting local volatilities are roughly constant, 

predicting a future smile that is much flatter than smiles observed in the 

market. Proposed diffusion based stochastic volatility models (Heston, 

1993a), (Papanicolaou, 2000), can reproduce the profile of implied 

volatilities at given maturities but fail to do so across maturities (Hull, 

1989). 
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Figure 1-6 Standard Deviation of Implied Volatility DJ EUROSTOXX (2008-
2011) 

 

In contrast to the above, models with jumps can lead to a variety of smile 

and skew patterns since they account for discontinuities in the asset price 

paths and provide a way of capturing the fear of unexpected changes in the 

price of underlying assets, which is the main source of the skewness 

observed in diffusion models, even in the case of the short term options. 

Therefore, those models allow market participants to perform efficient risk 

management by quantifying and accounting for the risk of stock price 

shocks over a short interval of time, something not possible in a diffusion 

type model.  

 

1.2 Relation to literature and contribution 

Since the Geometric Brownian motion model was commonly accepted to be 

inconsistent with the market behavior, many studies have been conducted in 

order to modify the existent model to produce a pricing formula which will 

effectively capture the market behavior. A number of extensions have been 

proposed. Stochastic volatility and ARCH models (Hull, 1987); 

(Papanicolaou, 2000); normal jump models (Merton, 1975); affine 

stochastic-volatility and affine jump-diffusion models (Dupire); (Heston, 

1993b); infinite activity Lévy models (Madan, 2002); (Madan, 1998). Jump-

diffusion and Lévy models are the most attractive ones, since they can 

capture the jump patterns exhibited by stock prices and are more realistic 

when closer to maturity.  

In particular, models with jumps are considered to be more representative of 

the actual market. Over the last decade research departments of major 

investment banks began to accept jump-diffusions as a valuable tool in their 

day-to-day modelling. The acceptance of jump-diffusion models compared 
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to the Black-Scholes is mostly supported by the following reasons: (1) in 

diffusion models and as discussed previously, the price process behaves 

locally like a Brownian motion and the probability that the stock price 

moves by a large amount over a short period of time is very small, (2) from 

the hedging point of view, jumps allow the practitioner to quantify and take 

into account the risk of strong price movements over short time intervals.  

Starting with Merton’s paper (Merton, 1975), and up to present date, various 

types of jump-diffusion models have been studied across the academic 

community. A number of finite difference methods for valuing options 

under jump-diffusion and Lévy processes have been published, (Cont, 

2004), (d' Halluin, 2004), (Oosterlee, 2007), (Kou, 2004). These valuations 

require the numerical solution of a partial-integro-differential equation 

(PIDE), which involves, in addition to a possible degenerate second order 

differential operator, a non-local term that requires specific treatment at both 

a theoretical and numerical level. Various numerical methods for solving 

such parabolic integro-differential equations have been proposed.  

Lévy models and in particular exponential Lévy models, where the market 

price of an asset is modelled as the exponential 𝑆𝑡 = 𝑆0exp (𝑟𝑡 + 𝑋𝑡) of a 

Lévy process 𝑋𝑡, provide a convenient framework to model the behavior of 

an asset price, as it appears both in the “real” and the “risk-neutral” world. 

This is because the sample paths can have jumps, the generating 

distributions can be fat-tailed and skewed and the volatilities implied from 

option prices can have “smile” shape, due to the flexibility of choice of the 

Lévy process 𝑋𝑡. Option pricing under exponential Lévy models has been 

discussed in (Dupire, 2000), (Voltchkova, 2005a). 

In parallel with jump-diffusion and finite activity models another category 

of formulation was developed. Processes with infinite activity without a 

diffusion component, represent a family of models where all paths have 

infinitely many jumps along any time interval of finite length. However, the 

pricing equations in that case, are numerically more challenging and the 

market turns out to be incomplete in the sense that a hedging strategy 

leading to instantaneous risk free portfolio does not, in general, exist 

(Madan, 2002). The numerical approximation technique that is presented as 

part of this thesis is implemented in two models of this category: (i) 

Variance Gamma model (VG) (Madan, 1998) and (ii) the CGMY model 

(Madan, 2002) model.  

In (Voltchkova, 2005b), the authors propose a finite difference scheme for 

solving PIDE’s for the case of European and barrier options when the 

underlying is following a jump-diffusion model. Their numerical solution is 
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based on splitting the operator into a local and non-local part, treating the 

local term using an implicit step and the non-local term using an explicit 

term respectively.  

For jump-diffusion models with finite intensity, Andersen and Andreasen in 

(Andreasen, 2000) propose an operator splitting method where the 

differential part is treated using a Crank-Nicholson step and the jump 

integral is computed using an explicit timestep.  

Almendral and Oosterlee in (Oosterlee, 2007), solve for the value of a 

European contingent claim option, localizing and discretizing the PIDE in 

space using finite differences and finite elements and in time by using the 

second order backward differentiation formula, (BDF2). Then they use an 

iterative method based on the Fourier Transformation to solve the resulting 

system, based on the splitting of the matrix.  

d’ Halluin, Forsyth and Labahn (d' Halluin, 2004) discretize explicitly the 

jump-diffusion term and treat the usual PDE with a fully implicit method, 

proving unconditional stability for the resulting timestepping method. A 

fixed point iteration scheme is then used to solve the discretized algebraic 

equations. The correlation integral term is computed with FFT methods. 

They apply the proposed method to a variety of contingent claims.  

Carr and Madan in (Madan, 1999) develop a simple analytic expression for 

the Fast Fourier Transformation (FFT) of the European option price or its 

time value for the Variance Gamma case. 

Hirsa and Madan in (Madan, 2002) derive a PIDE for pricing American 

options when log-price dynamics of the underlying asset are given by the 

variance Gamma (VG) law. For the evaluation of the integral term, they 

expand the integrand near its singularity of 𝑦 = 0 and treat this part 

implicitly, while the rest of the integral is treated explicitly.  

Almendral and Oosterlee in (Oosterlee, 2006) propose a second order 

accurate finite-difference method for the computation of an American 

option price and its exercise boundary under the VG case. They formulate 

the problem as a linear complementarity problem and they solve it 

numerically using a splitting method. FFT is also used to accelerate the 

computations.  

CGMY in (Madan, 2002) develop a continuous time model that allows for 

both diffusion and jumps of both finite/ infinite activity. In their article a 

pure jump process is defined that is of finite/ infinite activity if the number 
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of price jumps in any interval of time is finite/ infinite. The parameters of 

the process developed, allow the jump component to have either finite of 

infinite variation. A closed-form expression for the characteristic function of 

log-prices is generated but not for the return density. The Fourier inversion 

with the FFT is used as a technique to determine numerically the statistical 

and risk-neutral densities. On the empirical side, they conclude that one can 

dispense with the diffusion in describing the fine structure of asset returns as 

long as the jump process that is used is of infinite activity and finite 

variation.  

Wang, Wan and Forsyth in (Wang, 2007) develop an implicit discretization 

method for pricing European and American options under the CGMY 

process. Taylor expansion approximation is used to treat the jump 

component in the neighborhood that the log-jump size equals zero and the 

drift term is dealt with using a semi-Langrangian scheme. The resulting 

PIDE is then solved using a preconditioned BiCGSTAB method coupled 

with FFT.  

Almendral and Oosterlee in (Oosterlee, 2007) use a finite difference method 

for pricing European and American options under the CGMY process. The 

equations are discretized in space by the collocation method and in time by 

an explicit backward differentiation formula. Also the FFT transformation is 

used in the computation.  

Ikonen and Toivanen (Toivanen, 2004), propose an operating splitting 

method for the timestepping and demonstrate it on the case of American 

options with stochastic volatility. This results to the decoupling of the early 

exercise constraint treatment and the solution of the resulting (from the 

discretization system) linear equations into separate fractional timesteps. 

They show that this enables the application of any efficient numerical 

method for the solution of the linear equations. Their method is proved to 

have same accuracy with Crank-Nicolson and its efficiency is tested on a 

multigrid period.  

In (Toivanen, 2014) the authors define by a convex combination parameter, 

a set of implicit-explicit schemes for the solution of the PIDE resulting from 

the pricing of options following a jump-diffusion process. Those schemes 

lead to tridiagonal systems that are shown to be solved efficiently.  

In the work presented here a finite difference scheme for solving the pre-

mentioned PIDE is explored. An extension to jump-diffusion processes of 

the coordinate transformation approach (Parrott, 1999) is being developed 

along with a compact mesh based quadrature approach to the integral term. 



25 
 

The quadrature formulation is effective, has good localization properties and 

results to second-order accurate prices and Greeks for Merton’s classical 

jump-diffusion pricing model. An implicit time discretization is used and 

early exercise is treated by classical iterative projection approach. The 

accuracy of the method presented, will be compared with results for 

Merton’s model, VG, and CGMY processes published in (d' Halluin, 2005); 

(Madan, 2002) and (Wang, 2007). The effectiveness of the approach is also 

tested with the IT splitting method (Toivanen, 2004).  
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1.3 Thesis structure 

This thesis contains of 4 main chapters excluding the introductory one, the 

conclusion and the appendix (Chapter 7). The contents of the chapters are 

described briefly in this section.  

Chapter 2: This chapter summarizes the basic financial mathematics 

notions which will help us construct the building blocks of the research 

subject of this work
2
. Section 2.1 presents the basic definitions from 

stochastic calculus, the Brownian motion, the Markov property and their 

linkage to financial mathematics. The section then touches upon the 

properties of Martingale processes, a tool extremely important in the 

financial engineering field. Section 2.2 discuses Lévy processes, their main 

characteristic properties and several important results about them. We then 

turn our attention to their application in financial modelling and option 

pricing, with examples of Lévy processes that are widely used in the field 

discussing their activity and variation.  

Chapter 3: In this chapter we present the PIDE whose efficient solution via 

finite difference approximation will be the focus of this work. In Section 3.1  

we focus on the PIDE derived from the pricing of options following 

Merton’s jump-diffusion process. We discuss the challenges arising in its 

numerical approximation and present our proposal for the efficient 

numerical solution for the case of European options.  In Section 3.2 we 

present the changes in the approach to account for the early exercise in the 

American option case. Finally in Section 3.3 we present the results derived 

from the implementation of our proposed approach in the Merton case for a 

European and an American put option.  

Chapter 4 In this section we discuss the changes in the PIDE when 

singularities arise for the Variance Gamma and CGMY process (Section 

4.1) and derive the amended numerical approximation to treat those 

singularities. Results are presented and discussed (Section 4.2). 

Chapter 5 In this chapter we present the numerical approximation 

described in Chapter 3, incorporating the IT splitting iterative method 

instead of PSOR. We re-calculate results for Merton’s classical model, VG 

and CGMY and comment on the performance of IT splitting compared to 

PSOR.  

                                                           
2
 Important theorems will be presented, while the proofs of those theorems are not provided, as this is outside 

the scope of this work. The reader is referred to stochastic calculous literature instead.   
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2. Modelling the Stock price movements: 

Basic tools and Theorems 

 

In this chapter we review the basic definitions and theorems, essential for 

the understanding of stochastic calculus tools and their application in 

financial engineering. Proofs of theorems widely available in the financial 

engineering literature will be omitted. Section 2.1 summarizes the basic 

stochastic calculus notions (σ-algebras, Brownian motion, Markov 

properties, martingales), Section 2.2 provides definitions and the main 

properties of Lévy processes. It then expands on their application in 

financial engineering and provides characteristic examples of Lévy 

processes that are of interest for the work presented here.  

 

2.1 Stochastic processes-main notions and theorems 

This work is aiming to numerically explore the dynamics of the arrival of 

random jumps in stock price paths. Those arrivals could be thought of as 

probabilistic events. In order to define mathematically the notion of a 

probabilistic event we need to define σ-algebras.  

Definition 2.1 (𝝈-algebra) Let 𝛺 be a set. A σ-algebra ℱ on the set 𝛺 is a 

family of subsets of 𝛺 with the following properties.  

(i) Ø ∈  ℱ 

(ii) 𝐹 ∈ ℱ ⇒ 𝐹𝐶 ≡ 𝛺\𝐹 ∈ ℱ 

(iii) 𝐴1, 𝐴2, … ∈ ℱ ⇒ 𝐴 ≔ ⋃ 𝐴𝑖 ∈ ℱ
∞
𝑖=1  

From the above definition we can derive the following property:  

If ℱ is a σ-algebra and 𝐴𝑖 ∈ ℱ then: 

⋂𝐴𝑖 = (⋂𝐴𝑖
𝐶

∞

𝑖=1

)𝐶 ∈ ℱ

∞

𝑖=1

 (2.1) 

We can think of σ-algebras as information structures. 𝛺 contains all  

possible outcomes of an experiment. Since by definition a σ-algebra is a 

collection of 𝛺’s subsets, we can interpret it as a set containing all the 

possible questions one could pose for the experiment. The subsets of 𝛺 are 
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called events. The properties of a σ-algebra are such that one could pose the 

questions: 

(i) Could the event 𝐴 ⊂ 𝛺 occur, and: 

(ii) Could event 𝐵 ⊂ 𝛺 occur, and: 

(iii) Could both events 𝐴 and 𝐵 (𝐴 ∩ 𝐵) occur, or 

(iv) Could only event 𝐴 or event 𝐵 (𝐴 ∪ 𝐵) occur, or 

(v) Could event 𝐴 not occur at all (𝐴𝐶). 

Definition 2.2 (Smallest 𝝈-algebra) The smallest σ-algebra defined from a 

set 𝐴 is the smallest σ-algebra that contains set 𝐴. This algebra is denoted 

as 𝜎(𝐴).   

For example, we can assume the algebra {Ø, 𝛺, 𝐴, 𝐴𝐶}. This is the smallest 

σ-algebra that contains the set 𝐴, so this is the algebra 𝜎(𝐴).   

Definition 2.3 (Borel sigma Algebra) The smallest σ-algebra that contains 

the class 𝐶 of all intervals (−∞, 𝑥) that can been seen as subsets of the real 

line is called Borel sigma Algebra and is denoted as ℬ. The elements of σ-

algebra are called Borel sets. 

Definition 2.4 The Borel σ-algebra, ℬ(ℝ𝑑) is the smallest σ-algebra that 

contains all the parallelograms (𝑎, 𝑏], or in other words the σ-algebra that is 

created by parallelograms. 

ℬ(ℝ𝑑) contains all the subsets of ℝ𝑑 relevant to the work presented here. 

Having defined the notion of a probabilistic event, the question that comes 

naturally is regarding the likelihood of this event occurring. This likelihood, 

is linked to a set belonging to an appropriately defined σ-algebra. The next 

step is to introduce the notion of a function that will link a set to a 

likelihood. Such functions are called measures. In what follows we will 

define the probability measure.  

Definition 2.5 (Probability measure) A probability measure 𝑃 on a 

measurable space (𝛺, ℱ) is a mapping 𝑃:ℱ → [0,1] with the properties: 

(i) 𝑃(Ø) = 0, 𝑃(𝛺) = 1 

(ii) If 𝐴1, 𝐴2, … ∈ ℱ and {𝐴𝑖} are pairwise disjoined, then 
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𝑃(⋃𝐴𝑖) =∑𝑃(𝐴𝑖)

∞

𝑖=1

∞

𝑖=1

 (2.2) 

 

Definition 2.6 (Counting measure) Let (𝛺, ℱ) be a measurable space. For 

every set 𝐴 ∈ ℱ we can define the function 𝛿: ℱ → ℕ ⊂ ℝ in such a way so 

𝜇(𝛢) will denote the number of the elements contained in set 𝐴. Function 𝜇 

is a measure on space (𝛺, ℱ), called a counting measure. If we amend 

slightly the definition and define function 𝑃:ℱ → ℕ ⊂ ℝ such that 𝑃(𝐴) =

𝜇(𝐴)/#𝛺, where #𝛺 is the number of elements in 𝛺. Function 𝑃 is then a 

probability measure.  

For example, let Ω = ℝ and ℱ = ℬ. We can define measure 𝑃:ℬ → [0,1] 

such that the image of the space 𝐼 = (−∞, 𝑥] is given by: 

𝑃(𝐼) =
1

√2𝜋
∫ exp (−

−𝑦2

2

𝑥

−∞

)𝑑𝑦 (2.3) 

We can easily see that measure 𝑃 is a probability measure on ℝ.  

Definition 2.7 (Probability space) Assume a σ-algebra on set Ω and a 

probability measure 𝑃. The triplet (Ω,ℱ, 𝑃) is called a probability space.  

For example, let’s assume Ω = ℝ, ℱ = ℬ and 𝑃 probability measure as 

defined in (2.3) above. The triplet  (ℝ, ℬ, 𝑃) is a probability space.  

 

Definition 2.8 (Measurable space) Subsets 𝐹 of set Ω in the σ-algebra ℱ are 

called ℱ-measurable. Measurable sets are always defined in relation to a 

specific σ-algebra. 

For example, assume Ω = ℝ, ℱ = ℬ. Every interval [𝑎, 𝑏] where 𝑎, 𝑏 ∈ ℝ 

is ℬ-measurable.  

Before moving on with the definition of stochastic processes, we will 

attempt to summarize the definitions provided above and provide their link 

to probability theory notions.  

An experiment that contains a random element could be described as a 

probability space (Ω, ℱ, 𝑃).  

More specifically: 
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 Ω is the sample space. This set contains all possible outcomes of the 

experiment. 

 An element 𝜔 ∈ Ω is called a sample point and is a specific outcome 

of the experiment.  

 The σ-algebra ℱ is called a family of events. This algebra contains 

all possible questions one could pose in relation to the experiment. 

 An event is an element of ℱ, in other words it is an ℱ-measurable 

subset of Ω. Those events could be more complex than a simple 

outcome of the experiment.  

 Probability space 𝑃 contains information on how likely is the 

occurrence of an event. In particular 𝑃(𝐹) contains information on 

how easy is for event 𝐹 ∈ ℱ to occur. For example if 𝑃(𝐹1) > 𝑃(𝐹2) 

for two sets 𝐹1, 𝐹2 ∈ ℱ then we can say that event 𝐹1is more likely to 

occur than event 𝐹2. 

Definition 2.9 (𝓕-measurable function) For a set Ω, the function 𝑌:Ω →

 ℝ𝑑 is called ℱ-measurable if for any measurable set 𝑈 ∈ ℱ the following 

holds: 

𝑌−1(𝑈) = {𝜔 ∈ Ω; 𝑌(𝜔) ∈ 𝑈 (2.4) 

 

for every open set 𝑈 ∈ ℝ𝑑. 

In order to answer the question whether the function 𝑌 takes a value in 𝑈 we 

need to know the information contained in ℱ. 

 

We can now define random variables. 

Definition 2.10 (Random variable) A real random variable is an ℱ- 

measurable function 𝑋:Ω → ℝ𝑑 where  (Ω, ℱ, 𝑃) is a probability space.  

We can think of random variable 𝑋 as a variable whose value depends on 

the outcome of a random experiment.  

Every random variable is linked to a measure 𝜇𝑋(𝐵) = 𝑃(𝑋
−1(𝐵)) for a 

Borel set 𝐵 ∈ ℬ(ℝ𝑑). This measure is called the distribution or law of the 

random variable. Setting 𝑑 = 1 and ℱ = ℬ we can define the distribution 

function of a random variable 𝑋 as: 
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𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋(𝑥) 

𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) 

(2.5) 

𝐹𝑋 defines the probability measure 𝑃. It also satisfies the following: 

 𝐹𝑋 is an increasing function 

 𝐹𝑋 is right continuous: (lim𝑥→−∞ 𝐹𝑋(𝑥) = 0) and lim𝑥→∞ 𝐹𝑋(𝑥) = 1 

 It holds:  

 

𝐹𝑋(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 = 1
+∞

−∞

 (2.6) 

 

for 𝑓(𝑥) the probability density function.   

We can now move on to defining stochastic processes. 

Definition 2.11 (Stochastic process) A stochastic process is a parametric set 

of random variables {𝑋𝑡}𝑡𝜖𝑇 which are defined in a probability space 

(𝛺, ℱ, 𝑃) and take values at ℝ𝑑. A stochastic process has two variables, 𝑡 

and 𝜔. 

1. For any given and constant 𝑡 ∈  𝑇  there is a random variable 𝜔 that 

satisfies: 

𝜔 → 𝑋𝑡(𝜔);𝜔 ∈ 𝛺 (2.7) 

2. For a constant 𝜔 ∈ 𝛺 the function:  

 

𝑡 → 𝑋𝑡(𝜔);  𝑡 ∈ 𝑇 (2.8) 

presents the path of 𝑋𝑡. 

 

In order to understand the notion of the stochastic process we need to 

consider a set of particles which are observed in time. 𝑡 presents time and 

can be either continuous or discrete. Let 𝜔 represent a specific particle. A 

specific 𝜔 is called a realization of the stochastic process. Then 𝑋𝑡(𝜔) is the 

position of the particle 𝜔 at time 𝑡. We can identify each 𝜔 with the function 

𝜏 → 𝛸𝑡(𝜔) that reflects 𝑇 → ℝ𝑑. Then the 𝜎-algebra ℱ will include the 𝜎-

algebra ℬ that is derived from sets of the following format:  
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{𝜔,𝜔(𝑡1) ∈  𝐹1; … ;𝜔(𝑡𝑘) ∈ 𝐹𝑘}  𝐹𝑖 ∈  ℝ
𝑑 Borel sets (2.9) 

Stochastic processes that are commonly used by researchers and market 

practitioners in order to model stock price behavior are the continuous-

variable, continuous-time stochastic processes. While in the real market it is 

not observed that stock prices follow continuous-variable, continuous-time 

processes, an understanding of these types of processes is the first step 

towards the understanding of option pricing models and of pricing models 

for more complicated derivative products.   

 

2.1.1 Brownian motion in financial modelling  

 

The Brownian motion is undoubtedly the most commonly used tool 

amongst the stochastic processes for modelling price fluctuations. It is the 

most widely studied stochastic process and the cornerstone of the modern 

stochastic analysis. It is the simplest continuous-time stochastic process and 

it is a limit of both simpler and more complicated stochastic processes. 

Definition 2.12 (Brownian motion) A Brownian motion is a stochastic 

process 𝐵𝑡 that takes values in ℝ and satisfies the following properties:  

1. The process has independent increments, i.e: 

 For all times 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 , the increments:  

𝐵(𝑡𝑛) − 𝐵(𝑡𝑛−1), 𝐵(𝑡𝑛−1) − 𝐵(𝑡𝑛−2),… , 𝐵(𝑡2) − 𝐵(𝑡1) (2.10) 

are independent random variables.  

2. If 𝑠, 𝑡 ≥ 0, then   

𝑃{(𝐵𝑠+𝑡 − 𝐵𝑠) ∈ 𝐴} = ∫
1

2𝜋𝑡1/2
exp (−

|𝑥|2

2𝑡
)

𝐴

𝑑𝑥 (2.11) 

with 𝐴 denoting a Borel set, so changes in the Brownian motion follow the 

Normal Distribution (Gaussian distribution). 
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3. The paths followed by the Brownian motion are continuous with 

probability 1. So,  𝑡 → 𝐵(𝑡) is a continuous function.  

 

An important feature of the Brownian motion is that is satisfies the Markov 

property and the strong Markov property
3
, both important properties in the 

calculations involving Brownian motion, such us estimation of conditional 

expectations with respect to filtrations defining various types of stochastic 

processes that appear in the modelling of financial derivatives.  

 

2.1.2 The Markov property 

 

The Markov process is a particular type of stochastic process where only the 

present value of a variable is relevant to its future path. Predictions of the 

future movements of the variable are uncertain and must be expressed in 

terms of probability distributions. The Markov property implies that the 

probability distribution of the underlying variable at any particular future 

point is not dependent on the path followed by the variable in the past. This 

property is closely related to the weak form of market efficiency
4
, which 

implies that the present price of a stock contains all information of the price 

path in the past.  

 

Theorem 2.1 (Markov Process) Let ℱ𝑠 = 𝜎(𝐵𝑢, 𝑢 ≤ 𝑠), the 𝜎-algebra 

created by the Brownian motion up to time 𝑠. This is the smallest 𝜎-algebra 

where the random variable 𝐵𝑟 , 𝑟 ≤ 𝑠 is countable. ℱ𝑠 contains all the 

information of the Brownian motion path up to 𝑠. If 𝑓 is a bounded function, 

then for every 𝑥 ∈  ℝ𝑑: 

𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠)|ℱ𝑠] = 𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠)] = ∫ 𝑓(𝑦)
1

√2𝜋𝑡
exp (−

−𝑦2

2𝑡
)𝑑𝑦

∞

−∞

 (2.12) 

due to the independence of the Brownian motion. We can therefore write: 

𝐸𝑥[𝑓(𝐵𝑡+𝑠)|ℱ𝑠] = 𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠 + 𝐵𝑠)|ℱ𝑠] (2.13) 

                                                           
3
 Here, only the Markov property will be discussed as this section serves as a primer of the basic stochastic tools.  

4
 In the weak form of market efficiency, prices reflect all information contained in the market trading data. 

Historical pricing data are efficiently digested by millions of competing market participants, making the 
information useless in identifying mispriced securities. It is therefore impossible for a single investor to 
consistently outperform the market.  
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Since 𝐵𝑡+𝑠 − 𝐵𝑠 is independent of the ℱ𝑠 algebra and 𝐵𝑠 fully known until 

time 𝑠, we can assume that 𝐵𝑠 = 𝑧. Then:  

𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠 + 𝐵𝑠)|ℱ𝑠] = 𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠 + 𝑧)] (2.14) 

However, 𝐵𝑡+𝑠 − 𝐵𝑠 is also a Brownian motion that starts at 0 and runs for 

time 𝑡 = 𝑠 − 𝑠 = 𝑡. Therefore, the process 𝐵𝑡+𝑠 − 𝐵𝑠 + 𝑧 has the same 

distribution with a Brownian motion that starts at time 𝑧 and runs for time 𝑡, 

so that: 

𝐸𝑥[𝑓(𝐵𝑡+𝑠 − 𝐵𝑠) + 𝑧]

= ∫ 𝑓(𝑦 + 𝑧)
1

√2𝜋𝑡
exp(−

−𝑦2

2𝑡
)𝑑𝑦

∞

−∞

= ∫ 𝑓(𝑦)
1

√2𝜋𝑡
exp (−

(𝑦 − 𝑧)2

2𝑡
)𝑑𝑦 =

∞

−∞

𝐸𝑧[𝑓(𝐵𝑡)]

= 𝐸𝐵𝑠[𝑓(𝐵𝑡)] 

(2.15) 

We therefore conclude that: 

𝐸𝑥[𝑓(𝐵𝑡+𝑠)|ℱ𝑠] = 𝐸𝐵𝑠[𝑓(𝐵𝑡)] = ∫ 𝑓(𝑦)
1

√2𝑡
exp 

∞

−∞

 (−
(𝑦 − 𝐵𝑠)

2

2𝑡
)𝑑𝑦 (2.16) 

This property is an expression of the Markov Property for the Brownian 

motion. An equivalent expression for the Markov Property is: 

 

𝐸𝑥[𝑓(𝐵𝑡)|ℱ𝑠] = 𝐸𝐵𝑠(𝑓(𝐵𝑡−𝑠)), 𝑠 ≤ 𝑡 (2.17) 

 

The above implies that in order to calculate the expectation at time 𝑡 of a 

Brownian motion, conditional on its history up to time 𝑠, we can simply 

calculate the expectation of a new Brownian motion that starts at the 

position that the initial Brownian motion reached at time 𝑠 , i.e. 𝐵𝑠, and runs 

for time 𝑡 − 𝑠. In other words, the entire history of the initial Brownian 

motion prior to time 𝑠 does not contain any useful information. 
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2.1.3 Martingales and arbitrage Theory  

Martingales are a special class of stochastic processes which play an 

important role in probability theory, stochastic calculus and financial 

engineering. Here we present the basic notions of martingale theory. 

Definition 2.13 (Martingale) Let (Ω, ℱ, 𝑃) be a probability space with ℱ𝑡 

the filtration of ℱ(ℱ𝑡 ⊂ ℱ) and 𝑋𝑡 a group of real, integrable (𝐸[|𝑋𝑡|] <

∞]) random variables of the ℱ𝑡 filtration. Then:  

1. 𝑋𝑡 is a martingale if: 

𝐸[𝑋𝑡|ℱ𝑠] = 𝑋𝑠 , 𝑠 ≤ 𝑡 
 

2. 𝑋𝑡 is a supermartingale if: 

𝐸[𝑋𝑡|ℱ𝑠] ≤ 𝑋𝑠, 𝑠 ≤ 𝑡 
 

  

3.  𝑋𝑡 is a submartingale if: 

𝐸[𝑋𝑡|ℱ𝑠] ≥ 𝑋𝑠, 𝑠 ≤ 𝑡 
 

Where 𝑡 can be a continuous indicator 𝑡 ∈  ℝ or a discrete indicator ∈  𝒩. 

If for a Martingale the information contained in ℱ𝑠 is known, then the best 

prediction that can be made for the value of 𝑋𝑡 is  𝑋𝑠. If  𝑋𝑡 is a 

supermartingale then the best prediction that can be made about the value of 

𝑋𝑡 based on the information contained in the filtration ℱ𝑠, will be greater 

than the value of  𝑋𝑠. Accordingly if  𝑋𝑡 is a submartingale then the best 

prediction will be less than  𝑋𝑠.  

Definition 2.14 If 𝑋𝑡 is a Martingale then: 

1. 𝐸[𝑋𝑡] = 𝐸[𝑋0] 

 

2. 𝐸[𝑋𝑡 − 𝑋𝑠] = 0 

 

Let 𝑋𝑡 a stochastic process with 𝑡 denoting time. ℱ𝑡 can be any filtration. A 

possible choice that can be made is the normal filtration ℱ𝑡 = 𝜎(𝛸𝑢, 𝑢 ≤ 𝑡), 

which is the filtration produced from the trajectories of the random process. 
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In this case ℱ𝑡 can be viewed as the information derived from the behavior 

of the stochastic process 𝑋𝑡 from time 𝑡 = 0 up to time 𝑡.  

Theorem 2.2 (Arbitrage) A portfolio can be an arbitrage portfolio if it is 

self-financing
5
 and if the following holds: 

𝑉0(𝑎) = 0, 𝑉𝑡(𝑎) ≥ 0∀ 𝑡  and 𝐸[𝑉𝑇(𝑎)] > 0 

Arbitrage implies that an investor can have sure profit from a portfolio 

without imposing him/ herself to any risk. The absence of arbitrage 

opportunities in the market is equivalent to the existence of an equivalent 

probability measure under which the discounted price process is a 

martingale. The existence of a martingale measure allows for the fair pricing 

of the contingent claims.  

The theorem below presents the first fundamental theorem in asset pricing.  

Theorem 2.3 There are no arbitrage opportunities in the market if and only 

if there exists an equivalent martingale measure.  

The value of a self-financing portfolio is given from: 

 

𝑉𝑡 = 𝑉0 +∑𝑎𝑢𝛥𝛸𝑢 

𝑡

𝑢=1

 (2.18) 

 where  

𝑎𝑢𝛥𝑋𝑢 = ∑𝑎𝑛,𝑢𝑋𝑢
𝑛

𝑁

𝑛=0

 (2.19) 

We assume that under the 𝑄 probability measure the discounted stochastic 

process 𝑋 describes the price change under filtration  ℱ. 𝑉 is a martingale 

transformation of the process 𝑋. Consequently 𝑉 is also a martingale under 

the measure 𝑄. The martingale property implies that:  

𝐸𝑄[𝑉𝑡] = 𝐸𝑄[𝑉0] (2.20) 

with 𝑉0 = 0 and 𝑉𝑇 ≥ 0 under 𝑄. Using the martingale property 𝐸𝑄[𝑉𝑇] 

combined with the fact that 𝑉𝑇 ≥ 0 under 𝑄, we can conlclude that 𝑉𝑇 = 0 

under  𝑄.  

                                                           
5 Please see Section 7.1 for a definition of a self-financing portfolio.  
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Remark 2.1 The 𝑃 measure is the probability measure derived from the 

stochastic process 𝑋𝑡. The above theorem also holds for continuous time 

models. In that case there are specific stochastic calculus tools that can be 

used to test the existence of equivalent probability measures (Girsanov’s 

theorem). Under the equivalent martingale measure all asset prices 

discounted by the current interest rate process are martingales. This result is 

used extensively in derivative’s pricing.  

The theorem below plays an important role in defining derivative hedging 

strategies. In its simplified form it states that for a one asset model where 

the evolution of its price is modelled by a Browning motion, the existence 

of a hedging strategy depends on the following: 

Theorem 2.4 (Martingale representation, one dimension) Let 𝐵𝑡, 0 ≤ 𝑡 ≤

𝑇, be a Brownian motion on a probability space (Ω, ℱ, 𝑃) and let 𝐵(𝑡) be a 

filtration generated by this Brownian motion. Let 𝑀(𝑡), 0 ≤ 𝑡 ≤ 𝑇, be a 

martingale with respect to this filtration. That is for every 𝑡,𝑀(𝑡) is 𝐵(𝑡)-

measurable and for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇, (𝔼[𝑀(𝑡)|𝐵(𝑠)] = 𝑀(𝑠)). Then there is 

an adapted process 𝛤(𝑢), 0 ≤ 𝑢 ≤ 𝑇, such that: 

𝑀(𝑡) = 𝑀(0) + ∫ 𝛤(𝑢)𝑑𝑊(𝑢), 0 ≤ 𝜏 ≤ 𝛵
𝑡

0

 (2.21) 

Defining this adapted process 𝛤(𝑢) poses a challenge in the solution of any 

Brownian motion based model.  

Below we present another major breakthrough in the stochastic calculus 

field relating to stochastic integration.  

Definition 2.15 (Itô processes) An Itô process is a stochastic process 𝑋𝑡 of 

the following form:  

𝑋𝑡 = 𝑋0 +∫ 𝑢(𝑠, 𝜔)𝑑𝑠 + ∫ 𝑣(𝑠, 𝜔)𝑑𝐵𝑠

𝑡

0

𝑡

0

 (2.22) 

Where 𝑢 and 𝑣 satisfy the conditions: 

∫ 𝑣2(𝑠, 𝜔)𝑑𝑠 <  ∞ ,∫ 𝑢(𝑠, 𝜔)𝑑𝑠 <  ∞ ,   
𝑡

0

   
𝑡

0

 (2.23) 

This process can be also written in the differential form: 

𝑑𝑋𝑇 = 𝑢𝑑𝑡 + 𝑣𝑑𝐵𝑡 (2.24) 
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From the above we can see that an Itô process can break into two parts: 

The 𝑀𝑡 ≔ ∫ 𝑣𝑑𝐵𝑡
𝑡

0
 part, which is a martingale and the 𝐴𝑡 ≔ ∫ 𝑢𝑑𝑠

𝑡

0
 part, 

which is a process of finite variation.  

It is important to explore whether a function of an Itô process is going to be 

an Itô process itself. If this it true, then the question that arises is which is 

the exact form of this function, as a summation of a Riemann integral and an 

Itô integral. Itô’s Lemma provides an answer to that question suggesting a 

change of variable formula that also holds for stochastic integrals.  

Definition 2.16 (Itô-Doeblin Lemma) Let 𝑋𝑡 represent an Itô process that 

can also be expressed as: 

𝑋𝑡 = 𝑋0 +∫ 𝑢(𝑠, 𝜔)𝑑𝑠 + ∫ 𝑣(𝑠, 𝜔)𝑑𝐵𝑠

𝑡

0

𝑡

0

 (2.25) 

Then, any function of the process 𝑋𝑡, of the form 𝑔(𝑡, 𝑥) ∈  𝐶1,2, can be 

expressed as a stochastic integral of the following form: 

𝑔(𝑡, 𝑋𝑡) = 𝑔(0, 𝑋0) + ∫ (
𝜕𝑔

𝜕𝑠
+ 𝑢

𝜕𝑔

𝜕𝑥
+
1

2
𝑣2
𝜕2𝑔

𝜕𝑥2
)𝑑𝑠 + ∫ 𝑣

𝜕𝑔

𝜕𝑥
𝑑𝐵𝑠

𝑡

0

𝑡

0

 (2.26) 

The above result can be written as: 

𝑑𝑔(𝑡, 𝑋𝑡) = (
𝜕𝑔

𝜕𝑡
+ 𝑢

𝜕𝑔

𝜕𝑥
+
1

2
𝑣2
𝜕2𝑔

𝜕𝑥2
)𝑑𝑡 + 𝑣

𝜕𝑔

𝜕𝑥
𝑑𝐵𝑡 (2.27) 

With 𝐶1,2 denoting the space of the 𝑔(𝑡, 𝑥) functions that have continuous 

first derivative of the first variable and continuous second derivative of the 

second variable.  

Remark 2.2 In the above the following notation has been used: 

𝜕𝑔

𝜕𝑠
≔

𝜕𝑔

𝜕𝑡
(𝑠, 𝑋𝑠), 𝑢

𝜕𝑔

𝜕𝑥
≔ 𝑢(𝑠, 𝑋𝑠)

𝜕𝑔

𝜕𝑥
(𝑠, 𝑋𝑠), etc (2.28) 

A more tractable form of the Itô Lemma is the following:  

Let 𝑌𝑡 = 𝑔(𝑡, 𝑋𝑡) be a function of an Itô process. Then: 

𝑑𝑌𝑡 =
𝜕𝑔

𝜕𝑡
𝑑𝑡 +

𝜕𝑔

𝜕𝑥
𝑑𝑋𝑡 +

1

2

𝜕2𝑔

𝜕𝑥2
(𝑑𝑋𝑡)

2 (2.29) 
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In what follows we provide a summary on Girsanov’s theorem and build up 

to the first option pricing PDE. Girsanov’s theorem, also known as the 

measure change theorem, is essential in understanding the connection of two 

stochastic processes defined under different probability measures.  

Before presenting the theorem, the equivalent martingale measure is 

presented.   

Definition 2.17 (Equivalent probability measure) Let 𝑄 and 𝑃 two 

probability measures. These measures are called equivalent probability 

martingale measures if for every event 𝐴, 𝑃(𝐴) = 0 if and only if 𝑄(𝐴) = 0. 

In this case there always exists a random variable 𝜉 which is called Radon-

Nikodym derivative of 𝑄 in respect to 𝑃. 𝜉 satisfies the following property: 

Let a stochastic process 𝑍𝑡. Ιf 𝑍 satisfies 𝐸𝑄[|𝑍|] < ∞, then  𝐸𝑄[𝑍] =

𝐸𝑃[𝜉𝑍]. The above assumption is established by the Radon-Nikodym 

theorem.  

Theorem 2.5 (Radon-Nikodym) Let a probability space (𝛺, ℱ, 𝑃) and 𝑄 and 

𝑃 finite probability measures defined in 𝜎-algebra ℱ. The following two 

statements are equivalent:  

1. For every 𝐴 ∈  ℱ, 𝑃(𝐴) = 0 ⇒ 𝑄(𝐴) = 0 

2. There exists a 𝑘 ∈  𝐿1(𝑃), 𝑘 ≥ 0 such that 𝑄(𝐴)=∫ 𝑘𝑑𝑃
𝐴

 

 

The density factor  𝑘 is called Random-Nikodym derivative and is defined 

as 𝑘 =
𝑑𝑄

𝑑𝑃
. 

Theorem 2.6 (Girsanov’s) Let 𝑢𝑡 = (𝑢1𝑡 , … , 𝑢𝑛𝑡) a vector that consists of 

(square integrable) stochastic processes which satisfy the Novikov 

condition: 

𝐸[exp(
1

2
∫ 𝑢𝑠. 𝑢𝑠𝑑𝑠
𝑇

0

)] < ∞ (2.30) 

Let 𝐵𝑡 be a typical Brownian motion under the measure 𝑃. We define the 

stochastic process:  

𝑀𝑡
𝑢 = exp [−∫ 𝑢𝑠𝑑𝐵𝑠

𝑡

0

−
1

2
∫ 𝑢𝑠. 𝑢𝑠𝑑𝑠
𝑡

0

] , 𝑡 ∈ [0, 𝑇] (2.31) 
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This process is a Martingale under the measure 𝑃. 

If we assume that 𝑄𝑢 is the equivalent probability measure defined as: 

𝑑𝑄𝑢

𝑑𝑃
= 𝑀𝑡

𝑢 (2.32) 

then the stochastic process 𝐵𝑡
𝑢, defined by: 

𝐵𝑡
𝑢 = 𝐵𝑡 +∫ 𝑢𝑠𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇 

𝑡

0

 (2.33) 

is a typical Brownian motion and a Martingale under the measure 𝑄𝑢. 

Moreover, 𝐵𝑡
𝑢 has the following property:  

for every local 𝑄𝑢 − martingale there is a 𝜑 stochastic process which is 

square integrable and satisfies:   

𝐿𝑡 = 𝐿0 +∫ 𝜑𝑠𝑑𝐵𝑠
𝑢,

𝑡

0

 𝑡 ≤ 𝑇          (2.34) 

Collaterally the following theorem is extracted:  

Theorem 2.7 Let 𝑋 an Itô process defined in ℝ𝑛: 

𝑋𝑡 = 𝑥 +∫ 𝜇𝑠𝑑𝑠 + ∫ 𝜎𝑠𝑑𝐵𝑠

𝑡

0

𝑡

0

    (2.35) 

Let 𝑣𝑡 a vector of integrable stochastic processes and let’s also assume that 

there is a vector that consists of stochastic processes 𝑢𝑡 which are square 

integrable and satisfy:  

𝑢𝑡𝜎𝑡 = 𝜇𝑡 − 𝑣𝑡 (2.36) 

Then if 𝑋𝑡  is a martingale under measure 𝑃 (for which measure the Novikov 

property holds), the process 𝑋𝑡 is also and Itô process with:  

𝑋𝑡 = 𝑥 +∫ 𝑣𝑡𝑑𝑠
𝑡

0

+∫ 𝜎𝑠𝑑𝐵𝑠
𝑢

𝑡

0

 (2.37) 

where 𝐵𝑠
𝑢 is the typical Brownian motion under the measure 𝑄𝑢 which is 

defined as:  
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𝐵𝑡
𝑢 = 𝐵𝑡 +∫ 𝑢𝑠𝑑𝑠

𝑡

0

 (2.38) 

The proof of this theorem is an implementation of Girsanov’s theorem 

presented above. In an effort to interpret Girsanov’s theorem, let’s assume 

that we keep the trajectories of the stochastic process 𝐵𝑡 as they are. We 

actually keep a collection of functions of the form 𝐵𝑡(𝜔) and we change the 

frequency of the occurrence of different realisations of 𝜔. This equals to the 

change of measure 𝑃 to the equivalent measure 𝑄. Girsanov’s theorem 

allows us to change the velocity of a stochastic process. In a way it 

combines the solutions of the stochastic processes. Furthermore, by using 

the Feynman-Kac representation we can combine the solutions of the 

stochastic processes with their partial derivatives.  

Lastly, we will present  the Feynman-Kac format which offers a useful tool 

towards the solution of parabolic problems.  

Let the operator:  

𝐴 =∑𝑏𝑖(𝑥)
𝜕

𝜕𝑥𝑖
+

𝑖

 
1

2
∑(𝜎𝜎)𝑇

𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖𝑗

 (2.39) 

The Feynman-Kac format implies that the solution of the Cauchy problem: 

 

 

𝑢(𝑡, 𝑥) ∈ 𝐶1,2([0,∞ × ℝ𝑛]) (2.41) 

 

 

for continuous 𝑐 and bounded function 𝑓 ∈  𝐶0
2, can be written as the mean 

value over the trajectories of the Itô process 𝑋𝑡 which has the operator 𝐴 as 

a generator operator.  

𝜕𝑢

𝜕𝑡
= 𝐴𝑈 + 𝑐𝑈 (2.40) 

𝑢(𝑥, 0) = 𝑓(𝑥) (2.42) 
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Theorem 2.8 (Feynman-Kac representation) The solution of the Cauchy 

problem can be written as: 

𝑢(𝑡, 𝑥) = 𝐸𝑥[𝑓(𝑋𝑡)exp (∫ 𝑐(𝑋𝑠)𝑑𝑠
𝑡

0

)] (2.43) 

Let’s assume that we want to estimate the solution of the Cauchy problem at 

the point (𝑥, 𝑡). We then take a number of  𝑋𝑡(𝜔𝑖) diffusions, which have 𝐴 

as an operator and share the same starting point (𝑥, 0). We allow the 

diffusion to run for time 𝑡 and for each one of the trajectories we estimate 

the quantity 𝑓(𝑋𝑡(𝜔𝑖))exp (∫ 𝑐(𝑋𝑠(𝜔𝑖))𝑑𝑠
𝑡

0
). We then take the mean value 

over all the trajectories (for all the  𝜔𝑖). This mean is the solution to the 

equation.  

 

2.2 Lévy processes 

 

This section will present key examples of continuous-time stochastic 

processes-Lévy processes-an important tool in describing the asset price 

behavior observed in financial markets. We will summarize basic theorems 

and transition to their application in financial engineering. For a 

comprehensive read on Lévy processes and their properties the reader is 

referred to (Cont, 2004) and (Papantoleon, 2000). 

Let (Ω, ℱ, 𝐹, 𝑃) be a filtered probability space, where ℱ = 𝐹 and the 

filtration 𝐹 = (ℱ𝑡)𝑡∈[0,𝑇] satisfies the usual conditions. Let 𝑇 ∈ [0,∞] 

denote the time horizon which in general can be infinite.   

Definition 2.18 (Lévy process) A cadlag, adapted, real valued stochastic 

process 𝐿 = (𝐿𝑡)𝑡≥0 with 𝐿0 = 0 is a Lévy process if the following 

conditions are satisfied: 

1. 𝐿 has independent increments, i.e. 𝐿𝑡 − 𝐿𝑠 is independent of ℱ𝑠 for 

any 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 

2. 𝐿 has stationary increments, i.e.for any 0 ≤ 𝑠, 𝑡 ≤ 𝑇 the distribution 

of 𝐿𝑡+𝑠 − 𝐿𝑡 does not depend on 𝑡. 
3.  𝐿  is stochastically continuous, i.e. for every 𝑡 ≥ 0 and 𝜀 >
0: 𝑙𝑖𝑚𝑠→𝑡𝑃(|𝐿𝑡 − 𝐿𝑠| > 𝜀) = 0 
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There is a strong interplay between Lévy processes and random walk 

models. By sampling a Lévy process at regular time intervals 

 0, Δt, 2Δt, … , nΔt we obtain a random walk.  

For any sampling interval 𝛥, and by defining 𝑆𝑛(𝛥) = 𝑋𝑛𝛥 we can write 

𝑆𝑛(𝛥) = ∑ 𝑌𝑘
𝑛−1
𝑘=0  where 𝑌𝑘 = 𝑋(𝑘+1)𝛥 − 𝑋𝑘𝛥 are i.i.d random variables 

whose distribution is the same as the distribution of 𝑋𝛥. We can therefore 

conclude that for any interval 𝛥, 𝑛 > 1 and time 𝑡 > 0 the distribution 

𝑆𝑛(𝛥) can be broken into 𝑛 i.i.d parts. In other words, by sampling a Lévy 

process at regular time intervals  0, Δt, 2Δt, … , nΔt we obtain a random 

walk.  

This property is called infinite divisibility: 

Let 𝑋 be a real valued random variable with characteristic function: 

𝜑𝑋(𝑢) = ∫𝑒
𝑖𝑢𝑥𝑃𝑋(𝑑𝑥)

ℝ

 (2.44) 

where 𝑃𝑋 denotes the distribution law. Let 𝜇 ∗ 𝑣 denote the convolution of 

the measures 𝜇 and 𝑣, given by: 

(𝜇 ∗ 𝑣)(𝐴) = ∫𝑣(𝐴 − 𝑥)𝜇(𝑑𝑥)
ℝ

 (2.45) 

Definition 2.19 (Infinite Divisibility) The law 𝑃𝑋 of random variables is 

infinitely divisible if for all 𝑛 ∈ ℕ there exist i.i.d. random variables 

𝑋1
(1/𝑛)

, … , 𝑋𝑛
(1/𝑛)

 such that: 

𝑋 = 𝑋1
(1/𝑛)

+⋯+ 𝑋𝑛
(1/𝑛)

 (2.46) 

Equivalently, we can say that the law 𝑃𝑋 of a random variable 𝑋 is infinitely 

divisible is for 𝑛 ∈ ℕ there exists another law 𝑃𝑋1/𝑛 of a random variable 

𝑋(1/𝑛) such that: 

𝑃𝑋 = 𝑃𝑋(1/𝑛)∗…∗𝑃𝑋(1/𝑛)⏟          
𝑛 𝑡𝑖𝑚𝑒𝑠

 
(2.47) 

Another way to characterize an infinitely divisible random variable is via its 

characteristic function. 

Definition 2.20 The law of a random variable 𝑋 is infinitely divisible, if for 

all 𝑛 ∈ ℕ, there exists a random variable 𝑋(1/𝑛), such that: 
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𝜑𝑋(𝑢) = (𝜑𝑋(1/𝑛)(𝑢))
𝑛 (2.48) 

The simplest example of an infinite divisible process is the linear drift, 

which is a deterministic process. Brownian motion is the only (non-

deterministic) Lévy process with continuous sample paths. Other famous 

examples of infinitely divisible  processes are the Poisson and Compound 

Poisson process. The sum of a linear drift, a Brownian motion and a 

compound Poisson process is again a Lévy process; this summation presents 

a so called “jump-diffusion” model or Lévy jump-diffusion model which 

will be the focus of this work.  

 

Next, we provide a complete characterization of random variables with 

infinitely divisible distributions via their characteristic functions. This is the 

Lévy-Khintchine formula.  

 

Theorem 2.9 The law 𝑃𝑋 of a random variable 𝑋 is infinitely divisible if and 

only if there exists a triplet (𝑐, 𝑣, 𝑏), with 𝑏 ∈ ℝ , 𝑐 ∈ ℝ, 𝑐 ≥ 0 and a 

measure satisfying 𝑣({0}) = 0, and ∫ (1 ∧ |𝑥|2𝑣(𝑑𝑥))
ℝ

< ∞, such that:  

𝔼[𝑒𝑖𝑢𝑋] = exp [𝑖𝑏𝑢 −
𝑢2𝑐

2
∫(𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1{|𝑥|<1})𝑣(𝑑𝑥)
ℝ

] (2.49) 

The above is based on the following Lemma presented in (Sato, 1999). 

Lemma 2.1 If (𝑃𝑘)𝑘≥0 is a sequence of infinitely divisible laws and 𝑃𝑘 → 𝑃, 

then 𝑃 is also infinitely divisible.  

 

The full proof of the theorem can be found in (Sato, 1999).  

 The exponent in equation (2.49): 

 

𝑖𝑏𝑢 −
𝑢2𝑐

2
∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1{|𝑥|<1})𝑣(𝑑𝑥)
ℝ

 (2.50) 

 

is called the Lévy or characteristic exponent, with the triplet (𝑐, 𝑣, 𝑏) called 

the Lévy or characteristic triplet. Moreover, 𝑏 ∈ ℝ is called the drift term, 

𝑐 ∈ ℝ, 𝑐 ≥ 0 the Gaussian or diffusion coefficient and 𝑣 the Lévy measure.  

 

This leads us to the following theorem: 
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Theorem 2.10 For every Lévy process 𝐿 = (𝐿𝑡)0≤𝑡≤𝑇 we have that: 

 

𝔼[𝑒𝑖𝑢𝐿𝑡] = 𝑒𝑡𝜓(𝑢) 

 

= exp [𝑡(𝑖𝑏𝑢 −
𝑢2𝑐

2
+ ∫(𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1{|𝑥|<1}

ℝ

𝑣(𝑑𝑥))] 

(2.51) 

with 𝜓(𝑢), the characteristic exponent of 𝐿𝑖, 𝑖 ∈  ℕ-a random variable with 

an infinitely divisible distribution. 

 

The quantity 𝑣 presents the Lévy measure, which gives the expected number 

per unit of time of jumps that are of size 𝑥. If the measure 𝑣 presents a 

density with respect to the Lebesque measure
6
, then it can be called the 

Lévy density of 𝑋 devoted as 𝑣(𝑥). 

 

We have previously seen that every Lévy process can be associated with the 

law of an infinitely divisible distribution. The opposite, i.e. that given any 

random variable 𝑋, whose law is infinitely divisible, we can construct a 

Lévy process 𝐿 = (𝐿𝑡)0≤𝑡≤𝑇 such that ℒ𝑎𝑤(𝐿𝑖) ≔ ℒ𝑎𝑤(𝑋), is also true. 

 

 

2.2.1 Jumps and poisson processes  

 

The two basic tools for building a jump-diffusion process are the Brownian 

motion, which represents the diffusion part and the Poisson process, which 

represents the jump part. In the following section some primer information 

about the Poisson process is going to be presented.  

 

Definition 2.21 (The Poisson Process) A sequence {𝜏𝜄}𝜄≥1 of independent 

exponential random variables with parameter 𝜆 and the process (𝑁𝑡, 𝑡 ≥ 0) 

defined by:  

𝑁𝑡 =∑1𝑡≥𝑇𝑛
𝑛≥1

 

is called Poisson process with intensity 𝜆. 

                                                           
6
 Given a set 𝐴 of real numbers, μ(A) will denote its Lebesque measure if it’s defined.  
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The trajectories of a Poisson process are piecewise constant, with jump size 

1 only. The (𝑁𝑡, 𝑡 ≥ 0) process can also be described as a counting process.  

Proposition 2.1 Let (𝑁𝑡, 𝑡 ≥ 0) be a Poisson process. Then:  

1. For any 𝑡 > 0,  𝑁𝑡 is almost surely finite.  

 

2. For any 𝜔, the sample path 𝑡 → 𝑁𝑡 is piecewise constant and increases 

by jumps of size 1.  

 

3. The sample paths 𝑡 → 𝑁𝑡  are right continuous with left limit (cadlag 

process). 

 

4. For any 𝑡 > 0, 𝑁𝑡− = 𝑁𝑡 with probability 1.  

 

5. (𝑁𝑡) is continuous in probability:  

 

∀𝑡 > 0,𝑁𝑠  
𝑠→𝑡
→   𝑁𝑡 

 

6. For any 𝑡 > 0, 𝑁𝑡 follows a Poisson distribution with parameter 𝜆𝑡: 

 

∀𝑛 ∈ 𝑁, 𝑃(𝑁𝑡 = 𝑛) = 𝑒
−𝜆𝑡
(𝜆𝑡)𝑛

𝑛!
 

 

7. The characteristic function of 𝑁𝑡 is given by: 

 

     𝐸[𝑒𝑖𝑢𝑁𝑡] = exp{𝜆𝑡(𝑒𝑖𝑢 − 1)},  for every 𝑢 ∈  ℝ. 

 

8. 𝑁𝑡 has independent increments: for any 𝑡1 < ⋯ < 𝑡𝑛, 𝑁𝑡𝑛 −

𝑁𝑡𝑛−1 , … , 𝑁𝑡2 −  𝑁𝑡1 , 𝑁𝑡1 are independent random variables. 

 

9. The increments of N are homogeneous: for any 𝑡 > 𝑠, 𝑁𝑡 − 𝑁𝑠 has the 

same distribution as 𝑁𝑡−𝑠. 

 

10. (𝑁𝑡) satisfies the Markov property:  

 

∀𝑡 > 𝑠, 𝐸[𝑓(𝑁𝑡)|𝑁𝑢, 𝑢 ≤ 𝑠] = 𝐸[𝑓(𝑁𝑡)|𝑁𝑠] 

 

Properties 1 and 2 actually imply that any path of Poisson process is almost 

surely discontinuous and moves only by jumps. On the other hand property 

4 implies that for every given point in time 𝑡 the sample function of a 

Poisson process is continuous with probability 1. This paradox is due to the 
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fact that as for all jump processes the points of discontinuity of the process 

form a set of zero numbers.  

 

Moreover the cadlag property of the Poisson process is actually chosen to be 

like that, as then the jumps in the process are interpreted as sudden events, a 

feature that we will use in this work (i.e. unpredictable jumps in option 

pricing dynamics).  

 

When it comes to the study of jump-diffusion processes, the notion of the 

characteristic function plays an essential role.  

 

It is possible not to know the distribution function of a jump-diffusion 

process in a closed form, while knowing explicitly its characteristic 

function. The characteristic function of a random variable 𝑋 is defined by: 

 

𝜑𝛸(𝑢) ≡ 𝐸[𝑒
𝑖𝑢𝑋]    ∀𝑢 ∈ ℝ𝑑    (2.52) 

  

For the Poisson process, this gives: 

 

𝐸[𝑒𝑖𝑢𝑁𝑡] = exp{𝜆𝑡(𝑒𝑖𝑢−1)} ∀𝑢 ∈ ℝ    (2.53) 

 

Let 𝛥𝐿 = 𝛥𝐿𝑡0≤𝑡≤𝑇 present the jump process associated to a Lévy process 𝐿  

which is defined for each 0 ≤ 𝑡 ≤ 𝑇, via: 

 

𝛥𝐿𝑡 = 𝐿𝑡 − 𝐿𝑡−1 (2.54) 

 

where  𝐿𝑡−1 = lim𝑠↑𝑡 𝐿𝑠. Given the condition of stochastic continuity of a 

Lévy process, we can immediately derive that for any Lévy process 𝐿 and 

any fixed 𝑡 > 0, then 𝛥𝐿𝑡 = 0, i.e. a Lévy process has no fixed times of 

discontinuity.  

 

Generally, the sum of the jumps of a Lévy process does not converge. It is 

therefore possible that: 

 

∑|𝛥𝐿𝑠| = ∞

𝑠≤𝑡

  

 

But the below equality will always hold:  

 

∑|𝛥𝐿𝑠|
2

𝑠≤𝑡

< ∞  

 

This property allows us to handle Lévy process using martingale techniques.  
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In order to analyse the jumps of a Lévy process we need to understand the 

nature of the measure of those jumps.  

 

We first define a process that counts the jumps of the process 𝐿.   

 

 

Definition 2.22 (Counting process) A counting process counts the number 

of random times 𝑇𝑛 which occur between (0, 𝑇), where (𝑇𝑛 − 𝑇𝑛−1)𝑛≥1 is a 

sequence of i.i.d. exponential variables. Given an increasing sequence of 

random times 𝑇𝑛, 𝑛 ≥ 1 with 𝑃(𝑇𝑛 → ∞) = 1, we can define the associated 

counting process (𝑋𝑡)𝑡≥0 as: 

 

𝑋𝑡 =∑1𝑡≥𝑇𝑛 = # { 𝑛 ≥ 1,   𝑇𝑛 ≥ 𝑡}

𝑛≥1

 (2.55) 

 

 𝑋𝑡 is actually the number of random times 𝑇𝑛, 𝑛 ≥ 1 that occur in the time 

interval [0, 𝑡]. By imposing the condition 𝑃(𝑇𝑛 → ∞) = 1 we guarantee that 

with probability 1 the process 𝑋𝑡 is finite for every 𝑡 ≥ 0 and like the 

Poisson process it is a cadlag process with piecewise constant trajectories, 

with sample paths moving also by jumps of size +1.  

 

 

Definition 2.23 (Compensated Poisson process) Let Ñ𝑡 = 𝑁𝑡 − 𝜆𝑡 be a 

centred version of the Poisson process 𝑁𝑡. 𝑁𝑡 follows this centred version of 

Poisson law with the characteristic function: 

 

𝛷Ñ𝑡(𝑧) = exp [𝜆𝑡(𝑒
𝑖𝑧 − 1 − 𝑖𝑧)] (2.56) 

 

Like the Poisson process also Ñ𝑡 has independent increments and it follows 

that: 

 

𝐸[𝑁𝑡|𝑁𝑠, 𝑠 ≤ 𝑡] = 𝐸[𝑁𝑡 −𝑁𝑠 +𝑁𝑠|𝑁𝑠] (2.57) 

 

= 𝐸[𝑁𝑡 −𝑁𝑠] + 𝑁𝑠 = 𝜆(𝑡 − 𝑠) + 𝑁𝑠  

 

So the process (Ñ𝑡)  has the martingale property: 

 

∀𝑡 > 𝑠, 𝐸[Ñ𝑡|Ñ𝑠] =  Ñ𝑠 (2.58) 
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The process (Ñ𝑡)𝑡≥0 is a compensated Poisson process and (𝜆𝑡)𝑡≥0 is the 

compensator of (𝑁_𝑡)𝑡≥0 and is actually the quantity that needs to be 

subtracted from 𝑁𝑡 to get a martingale.  

 

Definition 2.24 (Compound Poisson Process) Let 𝑁𝑡, a Poisson process 

with parameter 𝜆 and 𝑌𝑖 ≥ 1 a sequence of i.i.d random variables with 

distribution𝑓. Then, the process: 

𝑋𝑡 =∑𝑌𝑖

𝑁𝑡

𝑖=1

 (2.59) 

is called a compound Poisson process.  

 

Its trajectories are right continuous with left limits and piecewise constant 

and the jump sizes are now random with distribution 𝑓. The compound 

Poisson process has independent and stationary increments. Its characteristic 

function has the following form: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = exp {𝑡𝜆∫ (𝑒𝑖𝑢𝑥 − 1)𝑓(𝑑𝑥)
ℝ

} ∀ 𝑢 ∈ ℝ𝑑 (2.60) 

where 𝜆 denotes the jump intensity and 𝑓 the jump size distribution.  

By comparing the characteristic function of the compound Poisson process 

to the characteristic function of the Poisson process we conclude that a 

compound Poisson random variable can be understood as a superposition of 

independent Poisson processes with different jump sizes. The total intensity 

of a Poisson process with jump sizes in the interval [𝑥, 𝑥 + 𝑑𝑥] is 

determined by density 𝜆𝑓(𝑑𝑥).  

Proposition 2.2 (X𝑡)t≥0 is a compound Poisson process if and only if it is a 

Lévy process and its sample paths are piecewise constant functions
7
. 

Definition 2.25 (Jump measure of a compound Poisson process) Let 

(𝑋𝑡)𝑡≥0 be a compound Poisson process with 𝜆 intensity and jump size 

distribution 𝑓. The jump measure 𝐽𝑋 is a Poisson random measure counting 

the number of jumps occurring per unit of time with jump sizes in 𝐴 ⊂

ℝ𝑑 × [0,∞): 

                                                           
7
 Proof in (Cont, 2004) 
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𝐽𝑥(𝐴) = #{(𝑡, 𝑋𝑡 − 𝑋𝑡− ∈ 𝐴} (2.61) 

This leads to the following proposition: 

Proposition 2.3 Let (𝑋𝑡)≥0 be a compound Poisson process with intensity 𝜆 

and jump size distribution 𝑓. Its jump measure 𝐽𝑋 is a Poisson random 

measure on ℝ𝑑  × [0,∞) with intensity measure 𝜇(𝑑𝑥 × 𝑑𝑡) = 𝑣(𝑑𝑥)𝑑𝑡 =

𝜆𝑓(𝑑𝑥)𝑑𝑡. 

This proposition actually suggests another way of interpreting the Lévy 

measure of a compound Poisson process as the average number of jumps 

per unit of time. It can be used to define the Lévy measure for all Lévy 

processes. 

 

Definition 2.26 (Lévy measure) Measure 𝑣 of a (𝑋𝑡)≥0 Lévy process on ℝ𝑑 

defined as: 

𝑣(𝐴) = 𝐸[#{𝑡 ⋲ [0,1]: 𝛥𝑋𝑡 ≠ 0, 𝛥𝑋𝑡 ∈ 𝐴}], 𝐴 ∈ 𝓑(ℝ
𝑑) (2.62) 

is called the  Lévy  measure of 𝑋 and denotes the expected number per unit 

of time of jump sizes in 𝐴.  

Generally 𝑣 is not a probability measure and ∫𝑣(𝑑𝑥) need not to be finite. 

In the case where 𝜆 = ∫ 𝑣(𝑑𝑥) < +∞
ℝ𝑑

, the measure 𝑣 can be normalized 

to define a probability measure 𝜇 which can now be interpreted as the 

distribution of jump size 𝑥:  

𝜇(𝑑𝑥) =
𝜈(𝑑𝑥)

𝜆
 (2.63) 

The jumps of 𝛸 are then described by a compound Poisson process with 𝜆 as 

a jump intensity (average number of jumps per unit of time) and jump 

distribution 𝜇(. ). Generally, if ∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≤1

, the sum of jumps is 

absolutely convergent with probability 1 and 𝑋𝑡 can be represented as a 

path-wise sum of a Brownian motion plus jumps: 

𝑋𝑡 = 𝜎𝑊𝑡 + 𝛾0𝑡 + ∑ 𝛥𝑋𝑡
0<𝑠≤𝑡

 (2.64) 
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where 𝛾0 = 𝛾 − ∫ 𝑥𝑣(𝑑𝑥)
|𝑥|≤1

. In this case the compensation of small jumps 

is not needed and the Lévy-Khintchine representation reduces to: 

𝐸[𝑒𝑖𝑧𝑥] = exp {𝑡(−
1

2
𝑎𝑧2 + 𝑖𝛾𝑧 + ∫ (𝑒𝑖𝑧𝑥 − 1)𝑣(𝑑𝑥)

∞

−∞

)} (2.65) 

 

In the case where ∫ |𝑥|𝑣(𝑑𝑥) = ∞
|𝑥|≤1

 the jumps have infinite variation and 

small jumps need to be compensated.  

As noted in the previous section, to every compound process (𝑋𝑡)𝑡≥0 we can 

associate a random measure on ℝ𝑑 × [0,∞), which describes the jumps of 

process 𝑋.  

Theorem 2.11 (Lévy-Itô decomposition)  

Consider a triple (𝑐, 𝑣, 𝑏) where 𝑏 ∈ ℝ, 𝑐 ∈ ℝ, 𝑐 ≥ 0, and 𝑣 is a measure 

satisfying 𝑣({0}) = 0 and ∫ (1 ∧ |𝑥|2𝑣(𝑑𝑥) < ∞)
ℝ

. Then, there exists a 

probability space (Ω,ℱ, 𝑃) on which four independent Lévy processes exist: 

𝐿(1), 𝐿(2), 𝐿(3), 𝐿(4), where 𝐿(1) is a constant drift, 𝐿(2) is a Brownian motion, 

𝐿(3) is a compound Poisson process and 𝐿(4), is a square integrable (pure 

jump) martingale with a countable number of jumps of magnitude less than 

1 on each finite time interval. Taking 𝐿(1) + 𝐿(2) + 𝐿(3) + 𝐿(4) we have that 

there exists a probability space on which a Lévy process 𝐿 = (𝐿𝑡)0≤𝑡≤𝑇 with 

characteristic exponent:  

𝜓(𝑢) = 𝑖𝑢𝑏 −
𝑢2𝑐

2
+ ∫ (𝑒𝑖𝑢𝑥 − 1 − 𝑖𝑢𝑥1{|𝑥|<1})𝑣(𝑑𝑥)

ℝ

 (2.66) 

for all 𝑢 ∈ ℝ, is defined.  

We can therefore decompose any Lévy process into four independent Lévy 

processes 𝐿(1) + 𝐿(2) + 𝐿(3) + 𝐿(4) as follows:  

𝐿𝑡 = 𝑏𝑡 + √𝑐𝑊𝑡 + 𝑋𝑡
𝐿 + lim

𝜀→0
�̃�𝑡
𝜀 (2.67) 

or,  
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𝐿𝑡 = 𝑏𝑡 + √𝑐𝑊𝑡

+∫ ∫ 𝑥𝐽𝐿(𝑑𝑠 × 𝑑𝑥)
|𝑥|≥1

𝑡

0

+∫ ∫ 𝑥{𝐽𝐿(𝑑𝑠 × 𝑑𝑥) − 𝑣(𝑑𝑥)𝑑𝑠}
|𝑥|<1

𝑡

0

≡ ∫ ∫ 𝑥𝐽𝐿(𝑑𝑠 × 𝑑𝑥)
|𝑥|<1

𝑡

0

 

(2.68) 

The terms of (2.67) are independent and convergence in the last term is 

almost sure and uniform in 𝑡 on [0, T].  

The Lévy-Itô decomposition entails that for every Lévy process there exists 

a vector 𝑏, a positive definite matrix 𝑐 and a positive measure 𝑣 that 

uniquely determines its distribution. This triplet (𝑐, 𝑣, 𝑏) is called 

characteristic triplet or Lévy triplet of the process 𝑋𝑡.  

The Lévy-Itô decomposition therefore suggests that it is possible that every 

Lévy process is a combination of a Brownian motion with drift and a 

possibly infinite sum of independent Poisson processes. This also means 

that every Lévy process can be approximated with arbitrary precision by a 

jump-diffusion process-that is by the sum of a Brownian motion with drift 

and a compound Poisson process.  

 

2.2.2 Activity and variation of Lévy processes 

 

Let 𝐿 be a Lévy process with triplet (𝑐, 𝑣, 𝑏). 

1. If 𝑣(ℝ) < ∞ then almost all paths of 𝐿 have a finite number of jumps on 

every compact interval. In this case, the Lévy process is said to have 

finite activity.  

 

2. If 𝑣(ℝ) = ∞ then almost all paths of 𝐿 have an infinite number of jumps 

on every compact interval. In this case, the Lévy process is said to have 

infinite activity.  

 

Proposition 2.4 Let 𝐿 be a Lévy process with triplet (𝑐, 𝑣, 𝑏). 
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1. If 𝑐 = 0 and ∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≤1

 then almost all paths of 𝐿 have finite 

variation. 

 

2. If 𝑐 ≠ 0 or ∫ |𝑥|𝑣(𝑑𝑥) = ∞
|𝑥|≤1

 then almost all paths of 𝐿 have infinite 

variation.  

A Lévy process is a strong Markov process: The associated semigroup is a 

convolution semigroup and its infinitesimal generator 𝐿𝑋:→ 𝐿𝑋𝑓 is an 

integro-differential operator given by: 

 

𝐿𝑋𝑓(𝑥) = 𝑙𝑖𝑚𝑡→0
𝐸[𝑓(𝑥 + 𝑋𝑡)] − 𝑓(𝑥)

𝑡
 = 

𝜎2

2

𝜕2𝑓

𝜕𝑥
+ 𝛾

𝜕𝑓

𝜕𝑥
+ ∫𝑣(𝑑𝑦)[𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − 𝑦1{|𝑦|≤1}

𝜕𝑓

𝜕𝑥
(𝑥)] 

(2.69) 

 

which is well defined for 𝑓 ∈  𝐶2(ℝ) with compact support.  

 

2.2.3 Exponential Lévy models 

 

It is more convenient to model the asset price processes as exponential Lévy 

processes, where log returns are independent and stationary increments are 

distributed according to an infinitely divisible law, estimated from the data. 

Let (𝑆𝑡)𝑡∈[0,𝑇] be the price of a financial asset, modelled as a stochastic 

process on a filtered probability space (𝛺, ℱ, ℱ𝑡, 𝑃). ℱ𝑡 contains the price 

history up to 𝑡. Under the hypothesis of absence of arbitrage opportunities, 

there exists a measure 𝑄 equivalent to 𝑃 under which the discounted prices 

of all traded financial assets are 𝑄-martingales. In particular the discounted 

underlying (𝑒−𝑟𝑡𝑆𝑡)𝑡∈[0,𝑇] is a 𝑄 martingale. 

In exponential Lévy models, the risk-neutral dynamics of 𝑆𝑡 under 𝑄 are 

presented as the exponential of a Lévy process:  

𝑆𝑡 = 𝑆0𝑒
𝑟𝑡+𝑋𝑡  

 

(2.70) 
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In that case 𝑋𝑡  is a Lévy process (under 𝑄) with the characteristic 

triplet (𝜎, 𝑣, 𝛾). The absence of arbitrage imposes that �̂�𝑡 = 𝑆𝑡𝑒
−𝑟𝑡 =

𝑒𝑥𝑝(𝑋𝑡) is a martingale, which is equivalent to the following conditions on 

the characteristic triplet (𝜎, 𝑣, 𝛾): 

 

∫ 𝑣(𝑑𝑦)𝑒𝑦 < ∞
|𝑦|>1

,  

 𝛾 = 𝛾(𝜎, 𝑣) = −
𝜎2

2
∫(𝑒𝑦 − 1 − 𝑦1|𝑦|≤1)𝑣(𝑑𝑦) 

(2.71) 

 

Then the infinitesimal generator 𝐿 becomes:  

𝐿𝑓(𝑥) = 

𝜎2

2
[
𝜕2𝑓

𝜕𝑥2
−
𝜕𝑓

𝜕𝑥
] (𝑥) + ∫ 𝑣(𝑑𝑦)[𝑓(𝑥 + 𝑦) − 𝑓(𝑥) − (𝑒𝑦 − 1)

𝜕𝑓

𝜕𝑥
(𝑥)]

∞

−∞

 

(2.72) 

 

The notation 𝑌𝑡 = 𝑟𝑡 + 𝑋𝑡 is used, where 𝑌𝑡 is a strong Markov process with 

infinitesimal generator:  

𝐿𝑓 = 𝐿𝑋𝑓 + 𝑟
𝜕𝑓

𝜕𝑥
 (2.73) 

 

2.2.4 Examples of Lévy processes in finance  

While in principle one can have both a non-zero diffusion component 

(𝜎 ≠ 0) and an infinite activity jump component, in practice the models 

encountered in the financial literature fall into two categories.  

 

In the first category, the jump-diffusion one, the normal evolution of prices 

is given by a diffusion process, punctuated by jumps at random intervals. In 

this case the total change in the stock price is due to both normal and 

abnormal vibrations. The normal component is modelled by a standard 

geometric Brownian motion with a constant variance per unit of time and 

has continuous sample paths. In this case the jumps present rare events, 

crashes and large drawdowns and reflect the non-marginal impact of 

information. This means that there can be active and quiet times which are 

totally random-discrete points in time. Examples of those models are the 

Merton jump-diffusion models with Gaussian jumps (Merton, 1975) and the 

Kou et. Al. model with double exponential jumps (Kou, 2004).   
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The second category consists of models with an infinite number of jumps in 

every interval, which are called infinite activity models. In those models 

there is no need to introduce a Brownian motion component since the 

dynamics of the jumps are such so they can generate nontrivial small 

diffusion behaviour (Voltchkova, 2005b) and it has been argued (Madan, 

2002), (Oosterlee, 2006), (Wang, 2007) that these models give a more 

realistic description of the price process at various time scales. There are 

also models (Oosterlee, 2007) that allow for both diffusions and for jumps 

of both finite and infinite activity.  

 

Generally finite activity processes are said to be more useful if one is aiming 

to group assets by their activity levels. On the other hand, infinitely activity 

models are more suitable when one deals with highly liquid markets with 

large activity. However, it is important to keep in mind that since the piece-

wise process is observed on a discrete grid, it is difficult if not impossible to 

see empirically to which category the price belongs. The choice is more a 

question of modelling convenience than an empirical one. In practice, 

different exponential Lévy models proposed in the financial modelling 

literature simply correspond to different choices for the Lévy measure 𝑣: 

  

Compound Poisson jumps: 𝜎 > 0 and ∫ |𝑥|𝑣(𝑑𝑥) < ∞
|𝑥|≤1

. 

- Merton Model (Merton, 1975): 𝑣(𝑥) =
𝜆

𝛿√2𝜋
𝑒
−
(𝑥−𝑚)2

2𝛿2  

- Kou Model (Kou, 2004): 𝑣(𝑥) = 𝑝𝑎1𝑒
−𝑎1𝑥1𝑥>0 + (1 − 𝑝)𝑎2𝑒

𝑎2𝑥1𝑥<0 

 

Compound Poisson jumps:  𝜎 = 0 and ∫ |𝑥|𝑣(𝑑𝑥) = ∞
|𝑥|≤1

. 

- Variance Gamma (Madan, 1998): 𝑣(𝑥) =
1

𝜅|𝑢|
𝑒𝐴𝑢−𝐵|𝑢|, 𝐴 =

𝜃

𝜎2
, 𝐵 =

√𝜃2+2𝜎2/𝜅

𝜎2
 

- Tempered stable processes (Cont, 2004) 

- Normal inverse Gaussian process  (Cont, 2004) 

- Hyperbolic and generalised hyperbolic processes  (Cont, 2004) 

- Meixner process (Schoutens, 2002) 

 

 

 

2.2.4.1 Jump-diffusion models 
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Let’s assume a general class of exponential Lévy models 𝑆𝑡 = 𝑆0𝑒
𝑋𝑡 where 

𝑋𝑡 is a Lévy process consisting of a drift term, a Brownian motion term and 

a superposition of Poisson processes with various jump sizes: 

𝑋𝑡 = 𝛾𝑡 + 𝜎𝑊𝑡 +∑𝑌𝑡

𝑁𝑡

𝑖=1

 (2.74) 

where (𝑁𝑡)𝑡≥0 is a Poisson process that counts the jumps of 𝑋𝑡 and 𝑌𝑡 

denotes the jump sizes which are i.i.d. variables.  

The characteristic function of 𝑋𝑡 is: 

𝐸[𝑒𝑖𝑢𝑋𝑡] = exp {𝑡(𝑖𝛾𝑢 −
𝜎2𝑢2

2
+ 𝜆∫ (𝑒𝑖𝑢𝑥 − 1)𝑓(𝑑𝑥)

ℝ

)} (2.75) 

In what follows we will present the three main Lévy processes that will be 

used in this work as test cases for the implementation of the numerical 

methodology proposed. 

Test Case 2.1 (Merton’s Model) Merton’s model consists of a jump term 

added to a Geometric Brownian motion, that is: 

𝑑𝑆

𝑆
= (𝜇 − 𝜆𝜅)𝑑𝑡 + 𝜎𝑑𝑊𝑡 + 𝑑𝐽𝑡 (2.76) 

where 𝐽𝑡 is a compound Poisson process with rate 𝜆, that is: 

 𝐽𝑡 = ∑ (𝑌𝑡 − 1)
𝑁𝑡
𝑗=1  where 𝐸[𝑁𝑡] = 𝜆𝑡 and 𝑃{𝑁𝑡 = 𝑛} = 𝑒

−𝜆𝑡 (𝜆𝑡)
𝑛

𝑛!
.  

If the 𝑝𝑡ℎ jump occurs at time 𝑡 and 𝑆𝑡−  is the asset price immediately 

before the jump, then 𝑆𝑡 = 𝑌𝑝𝑆𝑡−. The compensation factor 𝜅 = 𝐸[𝑌 − 1] 

reflects the expected relative jump size. 𝑌 − 1 is an impulse function 

producing a jump from 𝑆𝑡− to 𝑆𝑡. 

  

Merton (Merton, 1975) derives an analytical solution for a European call 

option when the 𝑌 are log normally distributed: 𝑙𝑛𝑌~𝑁(𝑎, 𝑏2), that is: 

𝑓(𝑦) =
1

√2𝜋𝜎
exp {(−

(𝑙𝑛𝑦 − 𝜇)2

2𝜎2
)} (2.77) 

⇒ 𝜅 = 𝑒(𝑎+0.5𝑏
2) − 1 
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The solution to the jump diffusion SDE (2.76) is: 

𝑆𝑡 = 𝑆0((𝜇 − 𝜆𝜅 − 0.5𝜎
2)𝑡 + 𝜎𝑊𝑡)∏𝑌𝑝

𝑁𝑡

𝑝=1

 (2.78) 

So, multiplicative jumps can be seen to be a natural extension of GBM.  

 

Theorem 2.12 The price of a European call option under Merton’s jump-

diffusion model using the Black-Scholes formula is: 

𝐶𝑀𝑒𝑟𝑡𝑜𝑛(𝑆0, 𝐾, 𝑇, 𝜎, 𝑟) = 𝑒
−𝑟𝑇∑𝑒−𝜆𝑇

(𝜆𝑇)𝑛

𝑛!

∞

𝑛=0

𝑒𝑟𝑛𝑇𝐶𝐵𝑆(𝑆0𝑒
𝑛𝜎2

𝑇 , 𝛵, 𝜎𝑛, 𝑟𝑛) (2.79) 

Test Case 2.2 (Variance Gamma) The model introduced in (Madan, 1998) 

proposes a three parameter generalization of the Brownian motion as a 

model for the dynamics of the logarithm of the stock price. It is obtained by 

evaluating the Brownian motion with constant drift and volatility at random 

time change given by a Gamma process. Under a VG process the unit period 

continuously compounded return is normally distributed, conditional on the 

realization of a random time. This random time has a Gamma density. In 

this model comparing to the Black-Scholes there are two more parameters 

apart from the volatility 𝜎 that provide control for the kurtosis and the 

skewness.  

 The Lévy measure of the VG process is: 

𝑣(𝑢) =
1

𝜅|𝑢|
𝑒𝐴𝑢−𝐵|𝑢| (2.80) 

where:  

𝐴 =
𝜃

𝜎2
  and 𝐵 =

√𝜃2+2𝜎2/𝜅

𝜎2
 (2.81) 

with 𝜎 and 𝜃 the volatility and drift of Brownian motion and 𝜅 denoting the 

variance rate of the gamma time change. 

The characteristic function of the process 𝑋𝑡 is: 

𝛷𝑡(𝑢) = (1 +
𝑢2𝜎2𝜅

2
− 𝑖𝜃𝜅𝑢)−

𝑡
𝜅 (2.82) 
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Theorem 2.13 The European call option price on a stock, when risk neural 

dynamics of the stock price are given by the VG process for the risk neutral 

parameters,𝜎, 𝑣, 𝜃 is given by:  

𝑐(𝑆(0); 𝐾, 𝑡) = 𝑆(0)𝛹(𝑑√
1 − 𝑐1
𝑣

, (𝑎 + 𝑠)√
𝑣

1 − 𝑐1
,
𝑡

𝑣
) (2.83) 

 

−𝐾𝑒𝑥𝑝(−𝑟𝑡)𝛹(𝑑√
1 − 𝑐2
𝑣

, 𝑎√
𝑣

1 − 𝑐2
,
𝑡

𝑣
)  

where: 

𝑑 =
1

𝑠
[ln (

𝑆(0)

𝐾
) + 𝑟𝑡 +

𝑡

𝑣
ln (
1 − 𝑐1
1 − 𝑐2

)]  

with: 

𝑎 = 𝜁𝑠, where 𝜁 = −
𝜃

𝜎2
 and 𝜁 =

𝜎

√1+(
𝜃

𝜎
)2
𝑣

2

  

and 

𝑐1 =
𝑣(𝑎+𝑠)2

2
, 𝑐2 =

𝑣𝑎2

2
  

The 𝛹 function is defined in terms of modified Bessel function of the 

second kind and the degenerate hypergeometric function of two variables 

(Cont, 2004). 

 

Test Case 2.3 (CGMY process) Under the CGMY process the Lévy measure 

is given by: 

𝑣(𝑢) =
𝐶𝑒−𝑀𝑢

|𝑢|1+𝑌
1𝑢>0 +

𝐶𝑒−𝐺|𝑢|

|𝑢|1+𝑌
1𝑢<0 (2.84) 

 

where 1𝑢>0 and 1𝑢<0 are the indicator variables. The parameter 𝐶 > 0 is the 

measure of the overall level of activity. 𝐺 ≥ 0 and 𝑀 ≥ 0 provide control 

over the rate of the exponential decay on the left and the right of the Lévy 

density and 𝑌 < 2 describes the behaviour of the Lévy density in the area 

around zero where the density tends to infinity. If 𝑌 < 0 then the measure 𝑣 
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integrates to a finite value that yields a process of finite activity. If 𝑌 ∈

[0,1], the process displays infinite activity but finite variation since 

∫ 𝑢𝑣(𝑑𝑢) < ∞
|𝑢|<1

.  

This chapter provided a summary of the main stochastic calculus definitions 

and theorems that will be necessary for the understanding of the financial 

mathematics notions underpinning the work presented here. Lévy processes, 

their characteristic properties and examples of interest were also presented.  

 

 

 

 

 

 

 

3. Partial Integro-Differential Equation for 

Option pricing 

 

In this section we present the proposed partial integro-differential 

formulation for the price of options whose underlying asset follows a jump 

diffusion process (Section 3.1). We will consider a one factor Merton’s 

model (i.e. finite activity jumps) with deterministic volatility and describe 

the approximation of European (Section 3.1.3) and American option prices.  

(Section 3.2). Results for both cases will be presented and discussed in 

Section 3.3. In Section 3.4 we touch upon the calibration of jump-diffusion 

models.  

 

3.1 Pricing PIDE  

 

We saw in the previous section that the solution to the jump-diffusion s.d.e 

in Merton’s case is: 
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𝑆𝑡 = 𝑆0𝑒
((𝜇−𝜆𝜅−0.5𝜎2)𝑡+𝜎𝑊𝑡)∏𝑌𝑗

𝑁𝑡

𝑗=1

  

Assuming that the Brownian motion and the jump process are independent 

and based on the above s.d.e we can derive the PIDE (Cont, 2004) for a 

contingent claim 𝑉(𝑆, 𝑡) that depends on 𝑆 by: 

−
𝜕𝑉

𝜕𝜏
=
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉 + ∫ (𝑉(𝑆𝑒𝑢) − 𝑉(𝑆) − 𝑆(𝑒𝑢 − 1)

𝜕𝑉

𝜕𝑆
) 𝑣(𝑢)𝑑𝑢

+∞

−∞

 (3.1) 

or in a more compact form: 

−
𝜕𝑉

𝜕𝑡
= 𝐿𝑉 + 𝐼𝑐𝑉 (3.2) 

where 𝐿 is a differential operator and 𝐼𝑐 is the convolution-like integral 

operator. 

 Inequality holds for the case of the American option prices: 

−
𝜕𝑉

𝜕𝑡
≥ 𝐿𝑉 + 𝐼𝑐𝑉 (3.3) 

which results to a linear complementarity formulation (LCP), discussed in  

(Section 3.2). 

This PIDE should be augmented by defining the usual payoff terminal 

conditions and the boundary conditions when 𝑆 is zero and when it tends to 

infinity. One can choose the linearity boundary conditions at  𝑆 → ∞, 

namely the second order derivatives with respect to 𝑆 to be zero.  

Boundary Conditions 

 

As 𝑆 → 0 the PIDE reduces to  

𝑉𝜏 = −𝑟𝑉  

As 𝑆 → ∞ then the following assumption can be made:  

𝑉𝑆𝑆 ≅ 0; 𝑆 → ∞  
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This naturally implies that: 

𝑉 ≅ 𝐴(𝜏)𝑆 + 𝐵(𝜏);  𝑆 → ∞  

Assuming that the previous equation holds then 𝑉𝜏 reduces to: 

𝑉𝜏 =
1

2
𝜎2𝑆2𝑉𝑆𝑆 + 𝑟𝑆𝑉𝑆 − 𝑟𝑉; 𝑆 → ∞  

This means that at both 𝑆 = 0, 𝑆 → ∞, the PIDE reduces to the Black-

Scholes PDE and the usual boundary conditions can be imposed.  

Smoothness with respect to the underlying process 

In the case where the log price 𝑋𝑡 has a non-degenerate diffusion component 

it is proved (Garroni, 2001) that the fundamental solution of the pricing 

PIDE, which corresponds to the density, 𝑋𝑡 is in fact a smooth 𝐶∞ solution. 

Consequently the option price 𝑉(𝑡, 𝑥) depends smoothly on the underlying 

process and based on the Feynman-Kac representation results discussed in 

(Section 2.1.1) we can use the solution of the PIDE for the computation of 

the option price.  

 

3.1.1 Numerical challenges  

 

The solution of the PIDE above needs to be approximated
8
. This is most 

commonly done using discretization methods and solving the system of 

resulting algebraic equations.  The PIDE consists of two parts: The Black-

Scholes part representing the convection-diffusion equation and the integral 

part reflecting jumps. The presence of the integral increases the complexity 

of the PIDE numerical solution compared to the Black-Scholes PDE 

solution. The main numerical challenges faced are described below:  

1. Non-local character of the integral term The integral term of the PIDE 

is on a semi-infinite interval. This poses difficulties in the approximation 

of the integral term. The integrand may also have singularities.  

 

2. The unknown solution appears in both the PDE and the integral. 

 

                                                           
8
 Exact solutions to the PIDE do not always exist. Merton’s exact solution exists for the European case and will be 

used to assess the accuracy of the proposed approximation.  
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3. The PDE part of the PIDE is defined in an infinite interval The 

numerical solution of the PIDE requires the localization of the variables 

and of the integral term to a bounded domain 𝑥 ∈ (−𝐵, 𝐵). This happens 

by defining boundary conditions (at 𝑥 = −𝐵 and 𝑥 = 𝐵) in such a way 

as not to destroy the accuracy of the method. Similarly for the numerical 

integration of the jump component we need to reduce the integration 

region to a bounded domain. This corresponds to the truncation of large 

jumps.  

 

4. The matrix resulting from the discrete system of equations while 

approximating the integral term on a bounded interval can be dense.  

 

5. Finite difference schemes that are the scope of this work are widely used 

in combination with numerical integration techniques for the 

approximation of the PIDE. However, issues arise regarding the stability 

and accuracy that these methods can provide. A typical issue is the 

spurious oscillation problem that the Crank-Nicholson scheme is known 

for.  

 

6. Smooth pasting may not always apply (e.g. singular cases) and this can 

necessitate an increased number of mesh points.  

 

3.1.2 Peer review on numerical approximation 

The integral term can be approximated via implicit or explicit treatment in 

the time dimension. In the American case the resulting LCP can be solved 

directly or iteratively. Choices regarding the localization of the integral term 

can affect the approximation accuracy. In what follows we present a brief 

survey on the topic of efficient discretization and algorithmic solutions 

developed by research peers
9
.  

In (d' Halluin, 2005) the resulting PIDE is solved using a fully implicit 

method for the PDE and a weighted timestepping method for the integral 

term.  

𝑉𝜏 =
1

2
𝜎2𝑉𝑆𝑆 + (𝑟 − 𝜆𝜅)𝑆𝑉𝑆 − (𝑟 + 𝜆)𝑉 + ∫ 𝑉(𝑆𝜂)𝑔(𝜂)𝑑𝜂

+∞

0

 (Pr 3.1) 

Note that in the above formulation the linear terms appear in the PDE part 

of the equation. In (Section 3.3) we discuss how this affects the shape of the 

convolution integral.  

                                                           
9 Notation used here is as seen in the referenced papers. 
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The computational domain is bounded using 𝑉𝑆𝑆 = 0 and common Dirichlet 

conditions are applied at 0, 𝑆𝑚𝑎𝑥.  

Background to numerical approximation 

The jump integral term can be transformed into a correlation integral as 

follows. Setting 𝑥 = 𝑙𝑜𝑔𝑆 and introducing the change of variable 𝑦 =

log (𝜂) the resulting integral formulation is: 

𝐼 = ∫ �̅�(𝑥 + 𝑦)𝑓̅(𝑦)𝑑𝑦
+∞

−∞

 (Pr. 3.2) 

with 𝑓(̅𝑦) = 𝑔(𝑒𝑦)𝑒𝑦 denoting the probability density of a jump of size 

𝑦 = log (𝜂) and �̅�(𝑦) = 𝑉(𝑒𝑦). The discretized form of the integral is then: 

𝐼𝑖 = ∑ �̅�𝑖+𝑗

𝑗=
𝑁
2

𝑗=−
𝑁
2
+1

𝑓�̅�𝛥𝑦 + 𝛰((𝛥𝑦)
2) (Pr. 3.3) 

where 𝐼𝑖 = 𝐼(𝑖𝛥𝑥) and 𝑉�̅� = �̅�(𝑗𝛥𝑥) and: 

𝑓�̅� =
1

𝛥𝑥
∫ 𝑓�̅�𝑑𝑥
𝑥𝑗+

𝛥𝑥
2

𝑥𝑗−
𝛥𝑥
2

 (Pr. 3.4) 

with 𝑥𝑗 = 𝑗𝛥𝑥. The discrete form of the correlation integral (Pr 3.3) is using 

an equally spaced grid in 𝑙𝑜𝑔𝑆. The equally spaced grid works well for the 

FFT evaluation of the correlation integral but is not suitable for the PDE 

discretization. The authors modify this approach to allow for non-uniform 

mesh coordinates in 𝑥 = 𝑙𝑛𝑆. Their approach is to obtain values for 𝑉�̅� using 

second order accurate interpolation in S. However, FFT requires regular 

spacing, so 𝐼𝑖 must be regularly spaced. 𝐼𝑖 is spaced on grid points that do 

not coincide with the non-uniform discretization grid in S. Another 

interpolation is then performed to remediate that. 

 �̅�𝑁
2
+𝑗
, 𝑗 > 0 is approximated by an asymptotic boundary condition which 

does not affect accuracy for large values of 𝑁.  

The resulting fully discretized PIDE is:  

𝑉𝑖
𝑛+1[1 + (𝑎𝑖 + 𝑏𝑖 + 𝑟 + 𝜆)𝛥𝜏 − 𝛥𝜏𝑏𝜄𝑉𝑖+1

𝑛+1 − 𝛥𝜏𝑎𝑖𝑉𝑖−1
𝑛+1]  
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= 𝑉𝑖
𝑛 + (1 − 𝜃𝐽)𝛥𝜏𝜆 ∑ 𝑥(𝑉𝑛+1, 𝑖, 𝑗)𝑓�̅�𝛥𝑦 + 𝜃𝐽𝛥𝜏𝜆 ∑ 𝑥(𝑉𝑛, 𝑖, 𝑗)

𝑗=
𝑁
2

𝑗=−
𝑁
2
+1

𝑗=
𝑁
2

𝑗=−
𝑁
2
+1

𝑓�̅�𝛥𝑦 (Pr. 3.5) 

with 𝑥(𝑉, 𝑖, 𝑗) denoting the weighted timestep discretization and 𝑎𝑖, 𝑏𝑖 

denoting the central differences of the space derivatives of the PDE. The 

explicit discretization of the integral term is proven to be unconditionally 

stable, while the accuracy of the time discretization is improved using 

Crank-Nicholson’s scheme. A fixed point iteration scheme is also proposed 

for the efficient solution of the linear algebraic system resulting from the 

implicit discretization of the integral term, with the method shown to exhibit 

global convergence. It is then proved that this discretized solution converges 

to a viscosity solution. The early exercise for the American option case is 

treated via a penalty method (d' Halluin, 2004). The cost of the proposed 

method is essentially the cost of performing two FFTs since the cost of 

computing the correlation integral by Fourier methods at each timestep can 

be significant (Carr, 2007).  

 

In (Toivanen, 2014) the pricing PIDE is split into two parts: 

𝐿𝑣 = 𝐷𝑣 + 𝜆(𝐽𝑣 − 𝑣)  

With D denoting the differential operator and J the integral operator: 

𝐷𝑣 ≔
1

2
𝜎2𝑥2𝑉𝑥𝑥 + (𝑟 − 𝜆𝜅)𝑥𝑣𝑥 − 𝑟𝑣 (Pr. 3.6) 

 

 

 

The authors study the performance of three 2nd order IMEX schemes in 3 

time dimensions. Those schemes are derived by an implicit method 

combined with an extrapolation procedure for the explicit part. An extra 

parameter 𝑐 ∈ [0,1] is introduced, controlling the convex combination of 

the zeroth-order term 𝜆𝑣 between the implicit and explicit part. Their 

stability is studied via Fourier analysis and proved to hold true, conditional 

on λΔτ with the mid-point scheme being the less restrictive in respect to 

choice of 𝑐.   

 

IMEX mid-point: 

𝐽𝑣 ≔ ∫ 𝑣(𝑥𝑦, 𝜏)𝑓(𝑦)𝑑𝑦
+∞

0

 (Pr. 3.7) 
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𝑣𝑚+1 − 𝑣𝑚−1
2

= 𝛥𝜏𝜆(𝐽 − 𝑐𝐼) + 𝛥𝜏(𝐷 − 𝜆(1 − 𝑐)𝐼)
𝑣𝑚+1 + 𝑣𝑚−1

2
 (Pr. 3.8) 

where 𝑣𝑚 = 𝑣(𝑚𝛥𝜏), I the identity matrix, D, J matrices resulting from the 

discretization of the PIDE. For 𝐽 strictly positive and real eigenvalues 

𝑣𝐷 ≤ 0 the scheme is conditionally stable for 𝜆𝛥𝜏 < 1 and 𝑐 = 0.   

 

IMEX mid-CNAB:  

𝑣𝑚+1 − 𝑣𝑚 = 𝛥𝜏𝜆(𝐽 − 𝑐𝐼)
3𝑣𝑚 − 𝑣𝑚−1

2
+ 𝛥𝜏(𝐷 − 𝜆(1 − 𝑐)𝐼)

𝑣𝑚+1 + 𝑣𝑚
2

 (Pr. 3.9) 

For the same conditions as above, the methods is stable for 𝜆𝛥𝜏 <
1

2
 

and 𝑐 ∈ [0,1]. 

 

IMEX mid-BDF2: 

3

2
𝑣𝑚+1 − 2𝑣𝑚 +

1

2
𝑣𝑚−1 = 𝛥𝜏𝜆(𝐽 − 𝑐𝐼)(2𝑉𝑚 − 𝑉𝑚−1 + 𝛥𝜏(𝐷 − 𝜆(1 − 𝑐)𝐼))𝑣𝑚+1 (Pr. 3.10) 

 With conditions as for the previous methods, the scheme is stable for 

𝜆𝛥𝜏 <
2

3
  and 𝑐 ∈ [0,1]. 

 

3.1.3 Numerical approximation  

Generally for the numerical solution of the PIDE the following steps need to 

be followed:  

Localization A bounded computational domain should be chosen and 

artificial boundary conditions should be imposed.  

Truncation of large jumps This corresponds to truncating the integration 

domain of the jump component.  

Discretization The derivatives of the solution are replaced by the usual 

finite differences and the integral term is approximated using common 
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methods (e.g. Trapezoidal, Simpson rule). The problem is then solved using 

implicit/ explicit schemes.   

 

The PIDE (3.1) is integrated between two time levels at  

𝑆 = 𝑆𝑗 , i.e. 

 

∫ −
𝜕𝑉

𝜕𝑡

𝑡𝑚

𝑡𝑚−1

 𝑑𝑡 = 𝑉(𝑆𝑗, 𝑡
𝑚−1) − 𝑉(𝑆𝑗, 𝑡

𝑚)  

= ∫ [𝐿 𝑉(𝑆𝑗, 𝑡) + 𝐼𝑗(𝑉(𝑆, 𝑡))]

𝑡𝑚

𝑡𝑚−1

 𝑑𝑡 

 

(3.4) 

where 

𝐼𝑗(𝑉(𝑆, 𝑡)) = ∫ [𝑉(𝑆𝑗𝑒
𝑢, 𝑡) − 𝑉(𝑆𝑗, 𝑡) − 𝑆𝑗(𝑒

𝑢 − 1) (
𝜕𝑉

𝜕𝑆
) |𝑆=𝑆𝑗  ]

∞

−∞

𝜈(𝑢)𝑑𝑢 

 

(3.5) 

is the option price impact from the probability of the asset price jumping 

from 𝑆 = 𝑆𝑗. 

We will use 𝐿ΔS as the usual spatial second-order discrete approximation to 

the Black-Scholes operator however approximating the convolution integral 

requires some further discussion.  

 

Using a uniform spatial mesh in 𝑆 or in 𝑢 = 𝑙𝑛𝑆 does not distribute the error 

efficiently and a better choice is either to use a mesh refined around the 

strike region ( (Papanicolaou, 2000), (Voltchkova, 2006) ), or via a 

coordinate stretching transformation (this work).  

 

 

Coordinate Stretching For most options the region of interest is determined 

by the payoff. For vanilla call or put options, prices are normally quoted 

around the strike price (𝑆 = 𝑆𝐾). A suitable stretching transformation should 

enlarge this region of asset price.  

 

If we consider a general transformation: 
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𝑆 = asinh(𝑥 − 𝐿) + 𝑐 for 𝑎, 𝑐, 𝐿 ∈ 𝑅 (3.6) 

and in order to determine the parameters 𝑎, 𝑐 we first constrain the curve to 

pass through (0,0), that is: 

𝑐 = 𝑎𝑠𝑖𝑛ℎ𝐿 (3.7) 

While the maximum stretch (at 𝑥 = 𝐿) must correspond to 𝑆 = 𝑆𝐾, thus 𝑐 =

𝑆𝐾, that is: 

𝑆 =
𝑆𝐾

sinh (𝐿)
sinh(𝑥 − 𝐿) + 𝑆𝐾 (3.8) 

Note that 𝑥 = 2𝐿 corresponds to 𝑆 = 2𝑆𝐾.  

The maximum enlargement effect of the transformation is determined by the 

ratio of the gradient at the strike to that at 𝑆 = 0. That is (the stretch): 

 

 

  
𝜏 = (

𝑑𝑆

𝑑𝑥
)
𝑥=0

/ (
𝑑𝑆

𝑑𝑥
)
𝑥=𝐿

= cosh (𝐿) (3.9) 
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Figure 3-1 Coordinate transformation 

 

 

For a given stretch (e.g. 𝜏 = 5) the transformation is determined since: 

𝐿 = log [𝜏 + √𝜏2 − 1] and √(𝜏2 − 1) = 𝜆 = 𝑠𝑖𝑛ℎ𝐿 

This results to: 

𝑆 =
𝑆𝐾

𝜆
sinh(𝑥 − 𝐿) + 𝑆𝐾, for 𝜏 > 1 (3.10) 

and inversely: 

𝑥 = 𝑠𝑖𝑛ℎ−1 (
𝜆

𝑆𝐾
(𝑆 − 𝑆𝐾)) + 𝐿 (3.11) 
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As discussed previously, 𝑆𝜅 is the focus for the refinement and 𝜆 = 𝑠𝑖𝑛ℎ𝐿 is 

a parameter controlling the degree of the stretch. Substituting these 

expressions into the operator 𝐿𝑉 we get:  

𝐿𝑉(𝑥, 𝑡) =
1

2
𝜎2𝑇(𝑥)2(

𝜕2𝑉

𝜕𝑥2
− tanh(𝑥 − 𝐿)

𝜕𝑉

𝜕𝑥
) + 𝑟𝑇(𝑥)

𝜕𝑉

𝜕𝑥
− 𝑟𝑉 (3.12) 

where  

𝑇(𝑥) =
sinh(𝑥 − 𝐿) + 𝜆

cosh (𝑥 − 𝐿)
 (3.13) 

(3.4) with 𝑉(𝑆𝑗 , 𝑡
𝑚)

𝑠→𝑥
→  𝑉(𝑥𝑗 , 𝑡

𝑚) can then be written as:  

 

𝑉(𝑥𝑗, 𝑡
𝑚−1) − 𝑉(𝑥𝑗 − 𝑡

𝑚)

= 𝛥𝑡[𝜃 (𝐿𝛥𝑥𝑉(𝑥𝑗, 𝑡
𝑚−1) + 𝜆𝐼𝑐

𝑗
(𝑉(𝑥, 𝑡𝑚−1)))

+ (1 − 𝜃) (𝐿𝛥𝑥𝑉(𝑥, 𝑡
𝑚) + 𝜆𝐼𝑐

𝑗
(𝑉(𝑥, 𝑡𝑚)))] 

(3.14) 

The boundary condition at 𝑆 = 𝑆𝑚𝑎𝑥 will also now change since: 

𝑆2
𝜕2𝑉

𝜕𝑆2
= 𝑇(𝑥)2 (

𝜕2𝑉

𝜕𝑥2
− tanh(𝑥 − 𝐿)

𝜕𝑉

𝜕𝑥
) = 0 (3.15) 

 

Evaluation of the discrete convolution Integral 

 

Comments on the convolution integral 

 

 The integrand is localised by the exponential tapering of the Lévy 

density and moreover is identically zero when the prices are locally 

linear. 

 The main accuracy requirement is consequently around the strike 

region (or between the strike and the optimal exercise boundary). 

Local mesh refinement of this region will tend to equidistribute the 

errors both in the Black-Scholes operator and convolution 

quadrature. 

 Using 𝑉𝑆𝑆 = 0 𝑎𝑡 𝑆 = 𝑆𝑚𝑎𝑥 as a mesh truncation condition enforces 

linearity in the prices beyond 𝑆𝑚𝑎𝑥. The coordinate stretching is also 
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an efficient way to provide a locally linear region to the right of the 

strike to reduce any localisation errors. 

 

 

Writing the integral in terms of the jump variable 𝑦 the first term in the 

integrand for 𝑆 = 𝑆𝑗 and 𝑡 = 𝑡𝑚 can be denoted: 

𝐹𝑗
𝑚(𝑦) = 𝑉(𝑆𝑗𝑦, 𝑡

𝑚) − 𝑉(𝑆𝑗, 𝑡
𝑚) − 𝑆𝑗(𝑦 − 1) (

𝜕𝑉

𝜕𝑆
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

 (3.16) 

The linear extrapolation of the option price from 𝑆 = 𝑆𝑗 to 𝑆 = 𝑆𝑗𝑦 using 

price and gradient data at 𝑆 = 𝑆𝑗 is: 

𝑉𝐿𝐸(𝑆𝑗𝑦, 𝑡
𝑚) = 𝑉(𝑆𝑗, 𝑡

𝑚) + 𝑆𝑗(𝑦 − 1)(
𝜕𝑉

𝜕𝑆
)𝑆=𝑆𝑗
𝑡=𝑡𝑚 (3.17) 

 

so that:  

𝐹𝑗
𝑚(𝑦) = 𝑉(𝑆𝑗𝑦, 𝑡

𝑚) − 𝑉𝐿𝐸(𝑆𝑗𝑦, 𝑡
𝑚) (3.18) 

simply captures the discrepancy between this linear extrapolation and the 

actual option price. This is largest when the extrapolation passes through a 

region of high curvature, i.e. typically around the strike price. The integral 

term is then just the expected value of this discrepancy:  

 

 𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) =  ∫ 𝐹𝑗

𝑚(𝑦)�̃�(𝑦)𝑑𝑦,   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁𝑆
∞ 

0
 (3.19) 

 

where 𝜈(𝑦) is the density in terms of the jump variable 𝑦.  For the Merton 

model this equates to a lognormal density: 

 

𝜈(𝑦) =
𝜆

𝑦√2𝜋𝑏
𝑒
−
(ln𝑦 − 𝑎)2

2𝑏2  (3.20) 

Hence, 𝐼𝑗 will only be significant for asset prices 𝑆𝑗 from which asset jumps 

through the strike region are probable. If the price jumps are localised by the 

distribution to a region that is relatively linear in asset price, e.g. 

substantially to the left or the right of the strike, then the integral will have a 

relatively small effect on the option price. 

 

Note that the non-convolution terms can be integrated exactly so that: 
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𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) =  ∫ 𝑉(𝑆𝑗𝑦, 𝑡

𝑚)𝜈(𝑦)𝑑𝑦 − 𝜆𝑉(𝑆𝑗, 𝑡
𝑚) − 𝑆𝑗𝜆𝜅 (

𝜕𝑉

𝜕𝑆
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚
∞ 

0

 (3.21) 

for the Merton density since: 

 

∫ 𝜈(𝑦)𝑑𝑦 = 𝜆
∞ 

0
 and 𝜆𝜅 = ∫ 𝜈(𝑦)(𝑦 − 1)𝑑𝑦

∞ 

0
= 𝜆𝐸[𝑌 − 1] (3.22) 

  

Localization of the integral term 

The integral term can be efficiently localised to a finite domain [0, 𝑦∗], such 

that: 

∫ 𝐹𝑗
𝑚(𝑦)�̃�(𝑦)𝑑𝑦 ≈ 0

∞

𝑦∗
 (3.23) 

since 𝑙𝑖𝑚𝑦→∞�̃�(𝑦) = 0 for any sensible density. We shall choose: 

𝑦∗ = 𝑆𝑚𝑎𝑥/𝑆𝑗 

The PDE domain truncation price 𝑆𝑚𝑎𝑥 has to be chosen so that there is no 

curvature in the option price for 𝑆 > 𝑆𝑚𝑎𝑥. This equates to imposing the 

truncation conditions 𝑉𝑆𝑆 = 0 at 𝑆 = 𝑆𝑚𝑎𝑥. This is sufficiently far from the 

strike price and the effect of asset price jumps outside the mesh is ignored.  

 

The now localized integral:  

𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) =  ∫ 𝐹𝑗

𝑚(𝑦)�̃�(𝑦)𝑑𝑦,   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑁𝑆

𝑦∗ 

0

 (3.24) 

needs to be calculated using a quadrature approach. A common choice is the 

composite trapezoidal rule.  
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Quadrature approach  

 

We define 𝑁𝑄 sub-intervals, [𝑦0, 𝑦1], … [𝑦𝑁𝑄−1, 𝑦𝑁𝑄] where 𝑦0 = 0, 𝑦𝑁𝑄 =

𝑦∗ and apply the composite trapezoidal quadrature as below
10

: 

𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) ≈  𝐼𝑗

𝑚

= ∑
1

2
(𝑦𝑝+1 − 𝑦𝑝)[𝐹𝑗

𝑚(𝑦𝑝+1)𝜈(𝑦𝑝+1)

𝑝=𝑁𝑄−1

𝑝=0

+ 𝐹𝑗
𝑚(𝑦𝑝)𝜈(𝑦𝑝)] = ∑ 𝜔𝑝𝐹𝑗

𝑚(𝑦𝑝)

𝑝=𝑁𝑄−1

𝑝=0

 

(3.25) 

 

where the discrete densities are given by: 

𝜔𝑝 =
1

2
(𝑦𝑝+1 − 𝑦𝑝−1)𝜈(𝑦𝑝), 𝑝 = 2,𝑁𝑄 − 1 

𝜔0 =
1

2
(𝑦1 − 𝑦0)𝜈(𝑦0), 𝜔𝑁𝑄 =

1

2
(𝑦𝑁𝑄 − 𝑦𝑁𝑄−1)𝜈 (𝑦𝑁𝑄) 

(3.26) 

  

Note that: 

𝐹𝑗
𝑚(𝑦𝑝) =  𝑉(𝑆𝑝, 𝑡

𝑚) − 𝑉(𝑆𝑗 , 𝑡
𝑚) − 𝑆𝑗(𝑦 − 1) (

𝜕𝑉

𝜕𝑆
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

 (3.27) 

 

where 𝑆𝑝 = 𝑆𝑗 𝑦𝑝. We need to evaluate 𝑉(𝑆𝑝, 𝑡
𝑚) using the FD mesh 

values {𝑉𝑗
𝑚}. This would normally require interpolation since 𝑆𝑝 = 𝑆𝑗𝑦𝑝 ∉

 {𝑆0, 𝑆1, . . . 𝑆𝑁𝑠} i.e. does not coincide with another mesh point.  

 

Our approach is to construct the quadrature points 𝑦𝑝 based on the 

requirement for 𝑆𝑝 = 𝑆𝑗𝑦𝑝 to be another mesh point i.e. for the 𝑗𝑡ℎ finite 

difference equation we define a set of (non-uniform) quadrature points: 

 

𝑦𝑗𝑝 = 𝑆𝑝/𝑆𝑗 , 𝑝 =  0, . . . 𝑁𝑆 (3.28) 

Note that for the 𝑗𝑡ℎ equation the quadrature points correspond to jumps 

from the asset price 𝑆𝑗 to every other finite difference mesh point.  

 

                                                           
10See (Section 7.2) for derivation  
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Hence we now have that the number of quadrature intervals is the same as 

the number of mesh points 𝑁𝑄 = 𝑁𝑆; note each equation has specific 

quadrature weights  𝜔𝑗𝑝 as below: 

𝜔𝑗𝑝 =
1

2
(𝑦𝑗𝑝+1 − 𝑦𝑗𝑝−1)𝜈(𝑦𝑗𝑝) (3.29) 

Hence, 

𝐼𝑗
𝑚 = ∑ 𝜔𝑗𝑝𝐹𝑗

𝑚(𝑦𝑗𝑝)

𝑝=𝑁𝑆−1

𝑝=0

 (3.30) 

and the function 𝐹𝑗
𝑚(𝑦𝑗𝑝) can be estimated from a pair of FD mesh point 

option prices 𝑉𝑝
𝑚 and 𝑉𝑗

𝑚, and a second order approximation to the option 

delta: 

𝐹𝑗
𝑚 (𝑦𝑗𝑝 ) = 𝑉𝑝

𝑚 −  𝑉𝑗
𝑚   − 𝑆𝑗(𝑦𝑗𝑝 − 1)

(𝑉𝑗+1
𝑚 −  𝑉𝑗−1

𝑚 )

2Δ𝑆
 (3.31) 

The disadvantage of this approach is that the quadrature points will change 

for each 𝑆𝑗. On the advantages, this method is simple to implement (i.e. no 

interpolation needed) for a non-uniform or coordinate transformed mesh. 

 

Note that for a coordinate transformed mesh: 

�̅�𝑗
𝑚 (𝑦𝑗𝑝 ) = 𝑉𝑝

𝑚 −  𝑉𝑗
𝑚   − 𝑇(𝑥𝑗)(𝑦𝑗𝑝 − 1)

(𝑉𝑗+1
𝑚 −  𝑉𝑗−1

𝑚 )

2Δ𝑥
 

(3.32) 

We can now write the final fully discretized form of the PIDE (3.1) 

𝑉𝑗
𝑚−1 − 𝑉𝑗

𝑚 = 𝛥𝑡[𝜃(𝐿𝛥𝑥𝑉𝑗
𝑚−1 + ∑ �̅�𝑗

𝑚−1(𝑦𝑗𝑝)𝜈(𝑦𝑗𝑝))

𝑁𝑄−1

𝑝=0

+ (1 − 𝜃)(𝐿𝛥𝑥𝑉𝑗
𝑚 + ∑ �̅�𝑗

𝑚(𝑦𝑗𝑝)𝜈(𝑦𝑗𝑝))

𝑁𝑄−1

𝑝=0

] 

(3.33) 

Comments on quadrature with coordinate transformation 

 The non-uniform mesh creates a non-uniform set of 

quadrature intervals in 𝑦 = 𝑆 𝑆𝑗
⁄ . 

 The quadrature sampling is most accurate in the region of the 

greatest transformation stretch (e.g. at the strike price 𝑆 = 𝐾) 

where the integrand has its maximum variation.  
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Simpson’s Rule 

An alternative to the trapezoidal rule is the higher order Simpson’s 

rule. This can be applied in composite form in a similar way.  

 

𝐼𝑗
𝑚 = ∑

1

6
(𝑦𝑝+1 − 𝑦𝑝)[𝐹𝑗

𝑚(𝑦𝑝+1)𝜈(𝑦𝑝+1)

𝑝=𝑁𝑄−1

𝑝=0

+ 2[𝐹𝑗
𝑚(𝑦𝑝+1) + 𝐹𝑗

𝑚(𝑦𝑝)]𝜈(𝑦𝑝+1/2)

+ 𝐹𝑗
𝑚(𝑦𝑝)𝜈(𝑦𝑝)] 

(3.34) 

= ∑
1

6
(𝑦𝑝+1 − 𝑦𝑝)

𝑝=𝑁𝑄−1

𝑝=0

 [𝐹𝑗
𝑚(𝑦𝑝+1) (𝜈(𝑦𝑝+1)

+ 2𝜈(𝑦𝑝+1 2⁄ ))  + 𝐹𝑗
𝑚(𝑦𝑝) (𝜈(𝑦𝑝+1) + 2𝜈(𝑦𝑝+1 2⁄ ))]

= ∑ �̅�𝑝𝐹𝑗
𝑚(𝑦𝑝)

𝑝=𝑁𝑄−1

𝑝=0

 

where we again use mesh intervals as the quadrature intervals to 

avoid interpolation and  𝐹𝑗
𝑚(𝑦𝑝+1/2) has been estimated using: 

𝐹𝑗
𝑚(𝑦𝑝+1/2) =

1

2
[𝐹𝑗
𝑚(𝑦𝑝+1) + 𝐹𝑗

𝑚(𝑦𝑝)] (3.35) 

and 

𝑦𝑝+1/2 =
1

2
(𝑦𝑝+1 + 𝑦𝑝)  

with the discrete densities given by: 

�̅�𝑝 =
1

6
(𝑦𝑝+1 − 𝑦𝑝−1)𝜈(𝑦𝑝) +

1

3
(𝑦𝑝 − 𝑦𝑝−1)𝜈(𝑦𝑝−1 2⁄ )

+
1

3
(𝑦𝑝+1 − 𝑦𝑝)𝜈(𝑦𝑝+1 2⁄ ), 𝑝 = 2, . . , 𝑁𝑄 − 1 

 

�̅�0 =
1

6
(𝑦1 − 𝑦0) (𝜈(𝑦0) + 2𝜈(𝑦1/2)) (3.36) 
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�̅�𝑁𝑄 =
1

6
(𝑦𝑁𝑄 − 𝑦𝑁𝑄−1) (𝜈 (𝑦𝑁𝑄) + 2𝜈 (𝑦𝑁𝑄−1/2)) 

 

 

Simpson’s rule improves the discrete quadrature measures but 

computational tests show little effect on option pricing.  

Both quadrature approaches are tested on the solution of a European put 

option using the parameters chosen in (d' Halluin, 2004). The results for a 

sequence of mesh refinements are shown in (Section 3.3) on a uniform 

mesh. Since the exact solution is known, the errors can be calculated exactly 

and the accuracy of the quadrature and the impact of the localization can be 

assessed precisely. 

 

Discretization  

For the discretization of the PIDE we are not constrained by any 

requirements to use the same 𝜃 value for the PDE and integral term 

discretization (𝜃𝐶) Along the same lines of (d' Halluin, 2004) we define 

separate values and use the following discretization: 

𝑉𝑗
𝑚−1 − 𝑉𝑗

𝑚 = 𝜃𝛥𝑡𝐿𝛥𝑆𝑉𝑗
𝑚−1 + (1 − 𝜃)𝛥𝑡𝐿𝛥𝑆𝑉𝑗

𝑚 + 𝜃𝐶𝛥𝑡𝐼𝑗
𝑚 + (1 − 𝜃𝐶)𝛥𝑡𝐼𝑗

𝑚  (3.37) 

As previously noted, the discrete integral (on a uniform mesh): 

𝐼𝑗
𝑚 = ∑ 𝜔𝑗𝑝𝐹𝑗

𝑚(𝑦𝑗𝑝)

𝑝=𝑁𝑆

𝑝=0

= ∑ 𝜔𝑗𝑝 (𝑉𝑝
𝑚 −  𝑉𝑗

𝑚   − 𝑆𝑗(𝑦𝑗𝑝 − 1)
(𝑉𝑗+1

𝑚 −  𝑉𝑗−1
𝑚 )

2Δ𝑆
)

𝑝=𝑁𝑆

𝑝=0

 (3.38) 

can be split defining: 

𝜅𝑗 = ∑ 𝜔𝑗𝑝(𝑦𝑗𝑝 − 1)
𝑝=𝑁𝑆
𝑝=0 , (≈ 𝜆𝜅 for Merton) (3.39) 

and  

Ω𝑗 = ∑ 𝜔𝑗𝑝
𝑝=𝑁𝑆
𝑝=0   , (≈ 𝜆 for Merton) (3.40) 

so that: 

𝐼𝑗
𝑚 = ∑ 𝜔𝑗𝑝𝑉𝑝

𝑚 −  Ω𝑗𝑉𝑗
𝑚   − 𝜅𝑗𝑆𝑗

(𝑉𝑗+1
𝑚 −  𝑉𝑗−1

𝑚 )

2Δ𝑆

𝑝=𝑁𝑆

𝑝=0

 (3.41) 
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Then (3.38) can be written: 

𝐼𝑗
𝑚 = ∑ 𝜔𝑗𝑝𝑉𝑝

𝑚 −  Ω𝑗𝑉𝑗
𝑚   − 𝜅𝑗𝑆𝑗

(𝑉𝑗+1
𝑚 −  𝑉𝑗−1

𝑚 )

2Δ𝑆

𝑝=𝑁𝑆

𝑝=0

 (3.42) 

 

Algebraic Structure 

Substituting: 

 

𝐿𝛥𝑆𝑉(𝑆𝑗, 𝑡
𝑚) =

1

2
𝜎2𝑆𝑗

2 [
𝑉𝑗+1
𝑚 − 2𝑉𝑗

𝑚 + 𝑉𝑗−1
𝑚

𝛥𝑆2
] + 𝑟𝑆𝑗 [

𝑉𝑗+1
𝑚 − 𝑉𝑗−1

𝑚

2𝛥𝑆
] − 𝑟𝑉𝑗

𝑚 (3.43) 

 

and equivalently for 𝐿𝛥𝑆𝑉(𝑆𝑗, 𝑡
𝑚−1) in (3.37) the 𝜃-method finite differences 

approximation can be written out as: 

𝑎𝑗𝑉𝑗−1
𝑚−1 + 𝑏𝑗𝑉𝑗

𝑚−1 + 𝑐𝑗𝑉𝑗+1
𝑚−1−𝜃𝐶Δ𝑡 ∑ 𝜔𝑗𝑝𝑉𝑝

𝑚−1

𝑝=𝑁𝑆

𝑝=0

= 𝐴𝑗𝑉𝑗−1
𝑚 + 𝐵𝑉𝑗

𝑚 + 𝐶𝑗𝑉𝑗+1
𝑚−1+(1 − 𝜃𝐶)Δ𝑡 ∑ 𝜔𝑗𝑝𝑉𝑝

𝑚

𝑝=𝑁𝑆

𝑝=0

 

(3.44) 

The coefficients are given by: 

𝑎𝑗 = −𝜃Δ𝑡 [
𝜎2𝑆𝑗

2

2Δ𝑆2
] + 𝜃Δ𝑡

𝑟𝑆𝑗

2Δ𝑆
−𝜃𝐶Δ𝑡

𝜅𝑗𝑆𝑗

2Δ𝑆
 (3.45) 

 

𝑏𝑗 = 1 + 𝜃Δ𝑡 [
𝜎2𝑆𝑗

2

Δ𝑆2
+ 𝑟]+𝜃𝐶ΩjΔ𝑡 (3.46) 

 

𝑐𝑗 = −𝜃Δ𝑡 [
𝜎2𝑆𝑗

2

2Δ𝑆2
] − 𝜃Δ𝑡

𝑟𝑆𝑗

2Δ𝑆
+𝜃𝐶Δ𝑡

𝜅𝑗𝑆𝑗

2Δ𝑆
 (3.47) 

and 

𝐴𝑗 = (1 − 𝜃)Δ𝑡 [
𝜎2𝑆𝑗

2

2Δ𝑆2
] − (1 − 𝜃)Δ𝑡

𝑟𝑆𝑗

2Δ𝑆
+(1 − 𝜃𝐶)Δ𝑡

𝜅𝑗𝑆𝑗

2Δ𝑆
 (3.48) 
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𝐵𝑗 = 1 − (1 − 𝜃)Δ𝑡 [
𝜎2𝑆𝑗

2

Δ𝑆2
+ 𝑟]−(1 − 𝜃𝐶)ΩjΔ𝑡 (3.49) 

 

𝐶𝑗 = (1 − 𝜃)Δ𝑡 [
𝜎2𝑆𝑗

2

2Δ𝑆2
] + (1 − 𝜃)Δ𝑡

𝑟𝑆𝑗

2Δ𝑆
−(1 − 𝜃𝐶)Δ𝑡

𝜅𝑗𝑆𝑗

2Δ𝑆
 (3.50) 

If 𝑎𝑗 < 0, 𝑏𝑗 ≥ |𝑎𝑗| + |𝑐𝑗|, 𝑐𝑗 < 0 and for at least one 𝑗, 𝑏𝑗 > |𝑎𝑗| + |𝑐𝑗|, 

then the system is termed positive definite and is non-singular so can be 

solved either by factorization or relaxation.  

In the case of applying coordinate transformation, where for a stretch of 

τ = 𝑐𝑜𝑠ℎ𝐿 focused at 𝑆 = 𝑆∗, we use the mesh transformation described 

earlier: 

𝑆 = 𝑆∗  (1 +
sinh(𝑥 − 𝐿)

cosh𝐿
) (3.51) 

We can re-write the coefficients (3.45-3.50) as: 

𝑎𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] + 𝜃Δ𝑡

�̃�𝑇(𝑥𝑗)

2Δ𝑥
−𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

2Δ𝑥
 (3.52) 

 

𝑏𝑗 = 1 + 𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

Δ𝑥2
+ 𝑟]+𝜃𝐶ΩjΔ𝑡 (3.53) 

 

𝑐𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] − 𝜃Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

2Δ𝑥
+𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

2Δ𝑥
 (3.54) 

and 

𝐴𝑗 = (1 − 𝜃)Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] − (1 − 𝜃)Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

2Δ𝑥
+(1 − 𝜃𝐶)Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

2Δ𝑥
 (3.55) 

 

𝐵𝑗 = 1 − (1 − 𝜃)Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
+ 𝑟]−(1 − 𝜃𝐶)ΩjΔ𝑡 (3.56) 
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𝐶𝑗 = (1 − 𝜃)Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] + (1 − 𝜃)Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

2Δ𝑥
−(1 − 𝜃𝐶)Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

2Δ𝑥
 (3.57) 

where: 

     �̃� = 𝑟 −
1

2
𝜎2𝑇(𝑥) tanh(𝑥 − 𝐿)    

 𝑇(𝑥) =
sinh(𝑥−𝐿)+sinh𝐿

cosh (𝑥−𝐿)
  

Notes on scheme (3.44) 

1. 𝑉𝑗
𝑚 denotes the solution at node 𝑗 and time level 𝑚. 

2. 𝜃𝐶 = 0 corresponds to an implicit handling of the jump integral, 

whereas 𝜃𝐶 = 1 indicates an explicit treatment of this term and Crank-

Nicholson when 𝜃𝐶 =
1

2
 

3. If 𝑎𝑗, 𝑏𝑗, 𝑐𝑗, do not satisfy the conditions for a positive definite non-singular 

system, oscillation may appear in the numerical solution. This can be 

avoided by using adaptive upwind differencing.  

4. For typical parameter values and grid spacing, forward or backward 

differencing is rarely required for single factor options. In practice, since 

the errors occur at only a small number of nodes, in an area remote from 

the region of interest, the limited use of a low order scheme does not 

result in pure convergence as the mesh is refined.  

5. Algorithmically we decide between central or forward discretization at 

each node of the scheme. 

 

 

 

 

Adaptive Upwinding 

 

We saw from the algebraic structure of scheme (3.44) that the system’s 

positivity property requires: 

𝑎𝑗, 𝑐𝐽 < 0, 𝑏𝑗 > 0 

 That is,  
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𝑎𝑗 = −𝜃 [
𝜎2𝑇2(𝑥𝑗)

Δ𝑥
] + 𝜃(�̃� − 𝐷)𝑇(𝑥𝑗)−𝜃𝐶𝜅𝑗𝑇(𝑥𝑗) < 0 (3.58) 

 

−𝜃 [
𝜎2𝑇(𝑥𝑗)

Δ𝑥
] + 𝜃(�̃� − 𝐷)−𝜃𝐶𝜅𝑗 < 0 (3.59) 

 

and similarly for 𝑐𝑗. Hence: 

|𝜃(�̃� − 𝐷)−𝜃𝐶𝜅𝑗| < 𝜃 [
𝜎2𝑇(𝑥𝑗)

Δ𝑥
] (3.60) 

If this condition is not satisfied for a given 𝑗 then an upwind scheme is 

selectively used to generate the first derivative approximation.  

 

Assuming that: 

𝜃(�̃� − 𝐷)−𝜃𝐶𝜅𝑗 > 0 (3.61) 

then: 

                                     𝑎𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] (3.62) 

𝑏𝑗 = 1 + 𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

Δ𝑥2
+ 𝑟]+𝜃Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

Δ𝑥
−𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

Δ𝑥
+ 𝜃𝐶ΩjΔ𝑡 (3.63) 

𝑐𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] − 𝜃Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

Δ𝑥
+𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

Δ𝑥
 (3.64) 

If in the less likely case: 

𝜃(�̃� − 𝐷)−𝜃𝐶𝜅𝑗 < 0 (3.65) 

then: 

𝑎𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] + 𝜃Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

Δ𝑥
−𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

Δ𝑥
 (3.66) 
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𝑏𝑗 = 1 + 𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

Δ𝑥2
+ 𝑟]−𝜃Δ𝑡

(�̃� − 𝐷)𝑇(𝑥𝑗)

Δ𝑥
+𝜃𝐶Δ𝑡

𝜅𝑗𝑇(𝑥𝑗)

Δ𝑥
+ 𝜃𝐶ΩjΔ𝑡 (3.67) 

𝑐𝑗 = −𝜃Δ𝑡 [
𝜎2𝑇2(𝑥𝑗)

2Δ𝑥2
] (3.68) 

The explicit terms are changed in a similar manner.  

 

Stability and monotonicity 

As presented in (Souganidis, 1991) stability and monotonicity are important 

properties for a numerical scheme in order to ensure convergence to a 

viscosity solution. In what follows we will present the stability assessment 

of the proposed scheme (3.44).  

Theorem 3.1 (Stability of scheme (3.44)) The discretization method (3.44) 

is unconditionally stable for any choice of 𝜃𝐶 , where 0 ≤ 𝜃𝐶 ≤ 1, provided 

that: 

 𝑎𝑗 , 𝑐𝑗 < 0 and 𝑏𝑗 > 0; 

 𝑟, 𝜆 ≥ 0 

Proof Similarly to (d' Halluin, 2004) we define 𝑉𝑚 = [𝑉0
𝑚, 𝑉1

𝑚, . . , 𝑉𝑁𝑆
𝑚 ]′ to 

be the discrete solution vector to equation (3.44) and we suppose a 

perturbation in the initial solution: 

�̂�0 = 𝑉0 + 𝐸0 (3.69) 

with 𝐸𝑚 = [𝐸0
𝑚, 𝐸1

𝑚, . . , 𝐸𝑁𝑆
𝑚 ]′ denoting the perturbation vector. Note that 

𝐸𝑝
𝑚 = 0 assuming Dirichlet boundary conditions are imposed at this node 

(𝑉𝑆𝑆 = 0). We can then write the equation of the propagation of the 

perturbation as: 
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𝑎𝑗𝐸𝑗−1
𝑚−1 + 𝑏𝑗𝐸𝑗

𝑚−1 + 𝑐𝑗𝐸𝑗+1
𝑚−1−𝜃𝐶Δ𝑡 ∑ 𝜔𝑗𝑝𝐸𝑝

𝑚−1

𝑝=𝑁𝑆

𝑝=0

= 𝐴𝑗𝐸𝑗−1
𝑚 + 𝐵𝑗𝐸𝑗

𝑚 + 𝐶𝑗𝐸𝑗+1
𝑚 +(1 − 𝜃𝐶)Δ𝑡 ∑ 𝜔𝑗𝑝𝐸𝑝

𝑚

𝑝=𝑁𝑆

𝑝=0

 

(3.70) 

We now define: 

||𝐸||𝑚 = max
𝑗
|𝐸𝑗|

𝑚  

It follows from ∑ 𝜔𝑗𝑝 = Ω
𝑝=𝑁𝑆
𝑝=0  ,11

 with 𝛺 ≥ 0  that: 

𝑏𝑗|𝐸𝑗|
𝑚−1 ≤ 𝐴𝑗‖𝐸‖

𝑚 + 𝐵𝑗‖𝐸‖
𝑚 + 𝐶𝑗‖𝐸‖

𝑚+(1 − 𝜃𝐶)Δ𝑡𝛺𝑗‖𝐸‖
𝑚

− 𝑎𝑗|𝐸|𝑗−1
𝑚−1 − 𝑐𝑗|𝐸|𝑗+1

𝑚−1−𝜃𝐶Δ𝑡𝛺𝑗‖𝐸‖
𝑚−1 (3.71) 

This implies: 

𝑏𝑗|𝐸𝑗|
𝑚−1 ≤ 𝐴𝑗‖𝐸‖

𝑚 + 𝐵𝑗‖𝐸‖
𝑚 + 𝐶𝑗‖𝐸‖

𝑚+(1 − 𝜃𝐶)Δ𝑡𝛺𝑗‖𝐸‖
𝑚

− 𝑎𝑗‖𝐸‖
𝑚−1 − 𝑐𝑗‖𝐸‖

𝑚−1 − 𝜃𝐶Δ𝑡𝛺𝑗‖𝐸‖
𝑚−1 (3.72) 

Equation (3.72) holds for all 𝑖 < 𝑝. In particular equality holds for 𝑖 = 𝑖∗ 

where:  

||𝐸||𝑚−1 = max
𝑗
|𝐸𝑗|

𝑚−1 (3.73) 

Re-writing equation (3.71) for 𝑖 = 𝑖∗ we get: 

‖𝐸‖𝑚−1(𝑏𝑗 + 𝑎𝑗 + 𝑐𝑗 − 𝜃𝐶𝛥𝑡𝛺𝑗) = ‖𝐸‖
𝑚(𝛢𝑗 + 𝐵𝑗 + 𝐶𝑗 + (1 − 𝜃𝐶)𝛥𝑡𝛺𝑗) (3.74) 

Substituting the coefficients
12

 (3.45-3.50) into (3.74) we get:  

‖𝐸‖𝑚−1 =
(1 − 𝛺𝑗𝛥𝑡)

1 + 𝑟𝛥𝑡
‖𝐸‖𝑚 (3.75) 

Therefore: 

                                                           
11

 ∑ 𝜔𝑗𝑝 ≈ 𝜆
𝑝=𝑁𝑆
𝑝=0  for Merton’s case 

12
 Please note that coefficients (3.45-3.50) contain the 𝛥𝑡𝛺𝑗  terms. In the above proof and 

for presentation purposes we assumed the 𝛥𝑡𝛺𝑗  do not appear in the coefficients.   
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‖𝐸‖𝑚−1 ≤ ‖𝐸‖𝑚 (3.76) 

                                                                                                               ∎ 

The above results indicates that the stability of the scheme is unaffected by 

the discretization choice (implicit/ explicit) of the integral term.  

Remark 3.1 Following (Briani, 2004) is easy to show the discretization 

scheme (3.44) is monotone and consistent and since it is proven to be 

unconditionally stable, the discretized solution converges in a viscosity 

sense (Barles, 1997).   

 

3.2 American options 

Early exercise options allow the holder to exercise before maturity. The 

pricing PIDE is now replaced by an inequality since the hedge portfolio 

value can only have a return bounded above the risk-free return: 

−
𝜕𝑉

𝜕𝜏
≥
1

2
𝜎2𝑆2

𝜕2

𝜕𝑆2
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉

+∫ [𝑉 (𝑆𝑒𝑢 − 𝑉(𝑆) − 𝑆(𝑒𝑢 − 1)
𝜕𝑉

𝜕𝑆
)] 𝑉(𝑢)𝑑𝑢

+∞

−∞

 
(3.77) 

or in the compact form: 

−
𝜕𝑉

𝜕𝜏
≥
1

2
𝜎2𝑆2

𝜕2

𝜕𝑆2
+ 𝑟𝑆 − 𝑟𝑉 + 𝐼𝐶(𝑉) (3.78) 

Additionally an American option cannot fall beneath its immediate payoff 

𝑔(𝑆, 𝑡) so: 

𝑉 ≥ 𝑔 (3.79) 

must also hold. The above two conditions combine into a linear 

complementarity problem:  

(𝑉 − 𝑔)(
𝜕𝑉

𝜕𝑡
+ 𝐿𝑉 + 𝐼𝐶(𝑉)) = 0 (3.80) 

 

Discrete complementarity The finite difference equations now also become 

inequalities: 
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𝑉𝑗
𝑚−1 ≥ 𝑉𝑗

𝑚 + 𝜃Δ𝑡𝐿ΔS 𝑉𝑗
𝑚−1 + (1 − 𝜃)Δ𝑡𝐿ΔS 𝑉𝑗

𝑚 + 𝜃𝐶Δ𝑡𝐼𝑗
𝑚

+ (1 − 𝜃𝐶)Δ𝑡𝐼𝑗
𝑚 (3.81) 

𝑉𝑗
𝑚−1 ≥ 𝑔(𝑆𝑗, 𝑡

𝑚−1) (3.82) 
 

 

Leading to a discrete linear complementarity problem: 

 

(𝑉𝑗
𝑚−1 − 𝑔(𝑆𝑗, 𝑡

𝑚−1))

× (𝑉𝑗
𝑚−1 − 𝑉𝑗

𝑚 − 𝜃Δ𝑡𝐿ΔS 𝑉𝑗
𝑚−1

− (1 − 𝜃)Δ𝑡𝐿ΔS 𝑉𝑗
𝑚 − 𝜃𝐶Δ𝑡𝐼𝑗

𝑚 − (1 − 𝜃𝐶)Δ𝑡𝐼𝑗
𝑚)

= 0 
(3.83) 

 

 

Early Exercise  

 

Projected SOR The discrete LCP (3.83) can be solved for 𝜃 > 0 using a 

relaxation combined with a simple projection step. First the finite difference 

inequality is relaxed as if it was an equation: 

𝑉𝑘+1∗ = 𝑉𝑘 = 𝜔(𝐷 + 𝐿)−1𝑟𝑘 (3.84) 

Then the price vector 𝑉𝑘+1∗ is corrected by adjusting any value greater than 

the payoff to be equal to the payoff.  

𝑉𝑘+1∗ = max (𝑉𝑖
𝑘+1∗ , 𝑔(𝑆𝑗, 𝑡

𝑚)) (3.85) 

This is done at the end of each relaxation step. If 𝜃 = 0, there are no 

equations to relax and this adjustment to 𝑉𝑚 is done just once after each 

timestep.  
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3.3 Numerical experiments on Merton’s model 

This section presents results computed with the proposed finite difference 

scheme on European and American options where the underlying is 

following Merton’s jump-diffusion process. We will assess the performance 

of our proposed scheme through comparison with published results of other 

researchers in the field, and we will draw conclusions on the impact specific 

numerical approximation choices we are proposing have on the consistency 

and accuracy of the scheme.  

We start our experiment using a European put and the parameters used in (d' 

Halluin, 2005): 

𝑆 = 100, 𝐾 = 100, 𝑇 = 0.25, 𝑟 = 0.05, 𝜎 = 0.15,𝜆 = 0,1, , 𝑎 =

−0,9, 𝑏 = 0.45, with the exact value equal to 3.1490. 

Where 𝑎 and 𝑏 are the parameters of the Merton jump amplitude 

distribution. 

A common way to assess the accuracy of a finite difference option pricing 

approximation is to measure the error at the strike for 𝑡 = 0 that is at the 

start of the option duration.  

𝐸𝐾 = |𝑉(𝐾, 0) − 𝑉𝑗𝐾
0 | (3.86) 

Mesh point 𝑗𝐾 will be assumed to be located at the strike asset price, unless 

otherwise stated.  

Quadrature Error  

 

With 𝑆𝑚𝑎𝑥 = 1000, a stretched mesh and variable timesteps we will assess 

the quadrature error. This will be assessed by calculating the error in the 

jump integral 𝐼𝑗, that is: 

𝐸𝐼(𝑆𝑗) = max
j
|𝐼𝑗(𝑉(𝑆, 0)) − 𝐼𝑗

0| (3.87) 

We discussed in (Section 3.1.2) that in (d' Halluin, 2004) formulation (Pr 

3.1) the actual value of the price before the jump is removed from the 

integral term and appears exactly in the PDE part of the equation.  
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The exact values of the integral term 𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) are calculated and shown 

in Figure 3-2 (without linear terms) and Figure 3-3 (with linear terms) as a 

function of 𝑆𝑗.  

Figure 3-2 Exact Integral w/o linear terms 

 

The exact integral without the linear terms for 𝑎 = −0.9 is exhibiting the 

expected behavior, following the shape of the option price. Those two terms 

inside the integral can be removed with exact integration, however the shape 

of the integral term (with the same jump parameters) is then changed 

(Figure 3-3). Retaining the term helps the localization of the convolution 

integral, focusing that way the numerical quadrature on the region of 

interest that is, around the asset strike price.  

Figure 3-3 Exact Integral with linear terms 

 

The quadrature error, when keeping the linear terms inside the integral and 

using the mesh quadrature described in (Section 3.1.1) with 𝑡 = 0 for 

𝑆𝑗 ∈ [0, 𝑆𝑚𝑎𝑥] is shown below for 𝑁𝑠 = 127 (Figure 3-4) and 𝑁𝑠 = 254 

(Figure 3-5) with different degrees of stretch. The errors shown are total 
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errors, i.e. both finite difference mesh price errors and quadrature errors, 

hence the behavior around the strike.  

Figure 3-4 Quadrature error in evaluating 𝑰𝒋
𝟎 (𝑵𝒔 = 𝟏𝟐𝟕) 

 

It can be seen that for a mesh of 𝑁𝑠 = 127, a coordinate stretch of 𝜏 = 5 is 

sufficient to remove the large quadrature errors at the strike, incurred on a 

uniform mesh (𝑡𝑎𝑢 = 1). 

Figure 3-5 Quadrature error in evaluating 𝑰𝒋
𝟎 (𝑵𝒔 = 𝟐𝟓𝟒) 

 

For a mesh of 𝑁𝑠 = 254 a stretching of 𝑡𝑎𝑢 = 5 is sufficient to remove the 

large quadrature errors at the strike.  

From Figure 3-4 and Figure 3-5 for 𝑡𝑎𝑢 = 1, we can see the expected 

reduction of 4 in the maximum quadrature error after the doubling of the 

mesh points. Using a stretch of 𝑡𝑎𝑢 = 5 should show an error reduction by a 

factor of 25 if the refinement is in the region of maximum quadrature error. 

This is approximately observed.  
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The use of Merton’s distribution with bias towards downwards jumps will 

extend the computational region more than is required for the approximation 

of the PDE terms alone. The choice of 𝑆𝑚𝑎𝑥 = 1000 is required for the 6 

figure accuracy needed for the comparison with the results in (d' Halluin, 

2005). 

Figure 3-6 Price error (𝐍𝐬 = 𝟐𝟓𝟒, 𝐭𝐚𝐮 = 𝟐𝟎 ) 

 

 

Price Accuracy and Price Error comparison  

Table 3-1 shows the price accuracy at the strike with varying degrees of 

coordinate stretching with an explicit treatment (𝜃𝐶 = 0) of the integral 

term. The results are for a uniform mesh in the transformed variable.  We 

are comparing against the results in (d' Halluin, 2005). The comparison 

results are for an unspecified variable mesh with additional nodes used for 

the extension to large asset values. The authors use a form of adaptive 

timestepping that ensures that very small timesteps are used for the initial 

evolution of the solution.  

 

Table 3-1 Price accuracy for explicit integral treatment 

Discretization (d' Halluin, 2004) 𝜃𝐶 = 0 

NS M Price error tau=5 tau=10 tau=20 tau=40 

127 40 3.146666 2.36E-03 7.97E-03 2.16E-03 2.19E-04 3.51E-05 

254 80 3.148498 5.28E-04 2.00E-03 6.03E-04 1.19E-04 2.02E-05 

508 160 3.148897 1.28E-04 5.24E-04 1.79E-04 5.85E-05 2.11E-05 

1016 320 3.148994 3.17E-05 1.46E-04 6.14E-05 2.89E-05 1.09E-05 
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A stretched value of 20 means that the smallest value of 𝛥𝑆𝑗 is around 20 

times smaller than the largest value. The transformation parameters have 

been set to provide the smallest mesh interval at the strike and the largest 

at 𝑆 = 𝑆𝑚𝑎𝑥.  

Figure 3-7 below shows the best least squares fit on a log-log plot. The 

slope of the straight line fit shows the overall rate of convergence. Since the 

jump terms are treated fully explicitly and hence are only first order 

accurate we do not expect to see second order convergence for this 

refinement strategy, unlike in (d' Halluin, 2005). For the coarsest stretch of 

𝑡𝑎𝑢 = 5 we get close to second order convergence. This implies that the 

integral term error is subordinate in this discretization.  

Figure 3-7 Strike Error convergence rate for explicit integral treatment 

 

Note that the error for 𝑡𝑎𝑢 = 40 is smaller for 𝑁𝑆 = 127 than the one in (d' 

Halluin, 2005) for 𝑁𝑆 = 1016, though the rate of convergence is highly 

suboptimal. The rate of convergence for a fixed value of 𝑡𝑎𝑢 is determined 

by the order of accuracy of the finite difference approximation, since the 

timestep errors are only first order with 𝜃𝐶 = 0, the estimated combined 

convergence rate is increasingly suboptimal as the spatial errors are reduced. 

The results for a stretch of 𝑡𝑎𝑢 = 40 have been calculated for value of 𝑀, 

the number of timesteps, around 50% greater than the values quoted for the 

other computations in order to remove oscillations in Gamma. In all cases, a 

sequence of 10 small timesteps (starting at 
𝛥𝑡

10
) has been used. 
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Table 3-2 presents the next set of results where the integral term is treated 

based on 𝜽𝑪 = 𝟎. 𝟓 for the same set of meshes discussed previously.  

               

Table 3-2 Price accuracy for implicit integral treatment 

 

It can be seen that the errors in this case exhibit a more uniform behavior in  

relation to the mesh refinement for all values of coordinate stretch. The 

optimal stretch is around 𝑡𝑎𝑢 = 20 as the errors for 𝑡𝑎𝑢 = 40 are larger. 

Although the errors are reduced locally at the strike, with excessive 

stretching, they eventually start to dominate in coarsening regions away 

from the strike and compromise overall accuracy. This becomes apparent in 

the case of 𝑡𝑎𝑢 = 40. This type of behavior is typical with coordinate 

stretching - the error initially decreases with increasing 𝑡𝑎𝑢 and at some 

point begins to increase, i.e. there is an optimal value.  

Figure 3-8 Strike Error convergence rate for implicit integral treatment 

 

Discretization (d' Halluin, 2005) Thetta_C=0.5 

NS M Price error tau=5 tau=10 tau=20 tau=40 

127 40 3.146666 2.36E-03 7.74E-03 1.93E-03 8.84E-06 2.37E-04 

254 80 3.148498 5.28E-04 1.89E-03 4.88E-04 4.70E-06 5.73E-05 

508 160 3.148897 1.28E-04 4.65E-04 1.21E-04 9.57E-07 1.42E-05 

1016 320 3.148994 3.17E-05 1.16E-04 3.01E-05 7.95E-08 3.57E-06 
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Figure 3-9 Price error (𝑵𝒔 = 𝟓𝟎𝟖, 𝒕𝒂𝒖 = 𝟏𝟎 ) 

 

American option case results  

Table 3-3 contains results for the American put option in the case of 𝜃𝑐 =

0.5. The overall behavior is similar to the European case, with second order 

convergence for 𝑡𝑎𝑢 = 5 and 𝑡𝑎𝑢 = 10. Lower convergence occurs for 

𝑡𝑎𝑢 = 20 and 𝑡𝑎𝑢 = 40 but with significantly smaller strike errors.  

 

Table 3-3  American option price accuracy 

Discretization (d' Halluin, 2004) 𝜃𝐶 = 0.5 

NS M Price error tau=5 tau=10 tau=20 tau=40 

127 40 3.23735 3.89E-03 9.13E-03 2.41E-03 5.86E-05 4.20E-04 

254 80 3.240423 8.21E-04 2.30E-03 6.38E-04 4.30E-05 1.07E-04 

508 160 3.241065 1.79E-04 5.71E-04 1.63E-04 1.55E-05 2.75E-05 

1016 320 3.241209 3.45E-05 1.41E-04 3.91E-05 2.04E-06 1.09E-05 
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Figure 3-10 Strike Error convergence rate for the American case 

 

 

Impact of Merton jump-diffusion parameters on the FD accuracy   

 

The Merton jump distribution is lognormal in the jump ratio 𝑌 =
𝑆𝑡
+

𝑆𝑡
 with 

parameters 𝑎, 𝑏 and p.d.f: 

�̃�(𝑦) =
1

𝑦√2𝜋𝑏
𝑒
−
(ln (𝑦)−𝑎)2

2𝑏2  (3.88) 

where 𝑎 is the mean jump size and 𝑏 is the jump variance. The initial asset 

price is assumed to be 𝑆𝑡 = 100 and the p.d.f is graphed against the asset 

price after a jump from 𝑆𝑡 = 100 to 𝑆𝑡
+ = 𝑆𝑡𝑦 = 100𝑦.  

The implication for the approximation and localization of the convolution 

integral: 

𝐼𝐶(𝑆𝑗, 𝑡) = ∫ (𝑉(𝑆𝑗𝑦, 𝑡
𝑚) − 𝑉(𝑆𝑗, 𝑡) − 𝑆𝑗(𝑦 − 1)

𝜕𝑉

𝜕𝑆
) �̃�(𝑦)

∞

0

𝑑𝑦 (3.89) 

                   = 𝐹𝑗
𝑚(𝑦), (as defined in (3.18))  

depends on the product of the term in the brackets and the p.d.f part of the 

PIDE.  
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Figure 3-11 shows the plots of the Merton distribution function for three 

different mean jump ratio values (𝑎 = −0.9, 0, 0.9) showing probabilities of 

jumps from the strike price 𝑆 = 100, alongside the graphs of the 

corresponding convolution integrals for 𝑡 = 0 and for the case of a 

European put option.  

Figure 3-11 Impact of jump ratio on Merton’s distribution function and 
the convolution integral 

 
 

The pricing calculations were performed with parameters 𝑇 = 1,𝐾 =

100, 𝑟 = 0.05, 𝜎 = 0.15 for a range of asset price (𝑆𝑗) values. Since the 

payoff function in this case is 𝑔(𝑆, 𝑡) = (100 − 𝑆)+ all the convolutions 

have a maximum at 𝑆 = 100. This is due to the sharp twist in the payoff 

function, that is, the term 𝑓(𝑆𝑗, 𝑡) is zero when 𝑉(𝑆, 𝑡) is a continuous linear 

function. Therefore its distribution in this case will have a maximum 

near 𝑆 = 100. 

Case: 𝒂 = 𝟎. 𝟗 The p.d.f is biased towards the increased asset values, so for 

𝑆 > 100 we have that 𝑓(𝑆𝑗, 𝑡) → 0 and the convolution integral will cut off 

shortly after 𝑆 = 100, while it is non-zero close to 𝑆 = 0 since small asset 

values may exhibit jumps up close the strike as there is a long tail to the 

right.  
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Case: 𝒂 = 𝟎. 𝟎 The p.d.f is unbiased so only the convolution integral for 

𝑆 > 300 still draws values of  𝑓(𝑆𝑗, 𝑡) close to the strike region where it is 

non-zero. The convolution integral is zero for 𝑆 < 25 since jumps from 

these asset values are unlikely to reach the strike region.  

Case: 𝒂 = −𝟎. 𝟗 The p.d.f is biased towards decreased asset values 

for 𝑆 > 400. The convolution still samples 𝑓(𝑆𝑗 , 𝑡) values close to the strike 

region where is it non-zero. The increased negative bias of the convolution 

integral is zero for 𝑆 < 60 since jumps from these asset values are unlikely 

to reach the strike region.  

It becomes apparent from the graphs that the negative bias occurring for 

𝑎 = −0.9 poses the greatest challenge in the localization.  

Table 3-4 to Table 3-6 show via three accuracy measures the effect of 

varying truncation values on accuracy. Those measures are the error at the 

strike, the discrete 𝐿2 error and the 𝐿∞ error. All computations used a 

stretched mesh with 𝑡𝑎𝑢 = 12.  

Table 3-4 Effect on accuracy for varying truncation values (𝒂 = 𝟎. 𝟗) 

a=0.9 

Smax Strike  error L2 Error Lmax Error 

400 4.25E+00 3.57E+01 6.13E+00 

600 9.25E-01 1.02E+01 2.08E+00 

800 1.73E-01 2.83E+00 6.84E-01 

1000 1.77E-02 6.77E-01 2.12E-01 

1200 3.76E-02 4.84E-01 1.49E-01 

1500 4.32E-02 4.38E-01 1.28E-01 

Table 3-5 Effect on accuracy for varying truncation values (𝒂 = 𝟎) 

Table 2: a=0.0 

Smax Strike  error L2 Error Lmax Error 

400 1.27E-02 9.47E-02 1.52E-02 

600 3.51E-04 1.35E-02 2.64E-03 

800 1.18E-03 1.21E-02 2.73E-03 

1000 1.15E-03 1.25E-02 2.93E-03 

Table 3-6 Effect on accuracy for varying truncation values (𝒂 = −𝟎. 𝟗) 

Table 3: a=-0.9 

Smax Strike  error L2 Error Lmax Error 

400 6.41E-03 1.24E-01 5.53E-02 

600 6.25E-03 1.06E-01 2.62E-02 

800 6.12E-03 1.04E-01 2.70E-02 
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1000 5.98E-03 1.04E-01 2.79E-02 

It can be seen that the truncation when using a truncation value of 𝑆𝑚𝑎𝑥 =

400 for both the PDE and the convolution term, is only effective when the 

distribution preferentially jumps to the left (𝑎 = −0.9) and that much larger 

𝑆𝑚𝑎𝑥 values are needed for improved strike errors for neutral or positive 

weightings. This is the case, despite of the convolution integral being zero 

for 𝑆 > 400 in this case.  

Focusing now on the function: 

𝑓(𝑆, 𝑡) = 𝑉(𝑆𝑗𝑦, 𝑡
𝑚) − 𝑉(𝑆𝑗, 𝑡) − 𝑆𝑗(𝑦 − 1)

𝜕𝑉

𝜕𝑆
 (3.90) 

we will see how it and the convolution integral behaves (for 𝑆𝐽 = 395) for 

the negative (𝑎 = −0.9) and positive (𝑎 = 0.9) jump ratios.  

 

Figure 3-12 Behavior of 𝑭(𝑺𝒋, 𝒕), 𝑺𝒋 = 𝟑𝟗𝟓, 𝒕 = 𝟎, 𝒂 = −𝟎. 𝟗 
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Figure 3-13 Convolution integral for 𝒕 = 𝟎, 𝒂 = −𝟎. 𝟗 

 

Figure 3-14 Convolution integral (𝑰𝒄) error for = 𝟎, 𝒂 = −𝟎. 𝟗 

      

 

It can be seen from Figure 3-12 that the function closely resembles the 

solution since 𝑉(395,0) ≈ 0 and 𝑉𝑆(395,0) ≈ 0. It is interesting to observe 

that the function is non zero for 𝑆 = 800.  

Below are the equivalent graphs for 𝑎 = 0.9.  
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Figure 3-15 Behavior of 𝑭(𝑺𝒋, 𝒕), 𝑺𝒋 = 𝟑𝟗𝟓, 𝒕 = 𝟎, 𝒂 = 𝟎. 𝟗 

 

Figure 3-16 Convolution integral for 𝒕 = 𝟎, 𝒂 = 𝟎. 𝟗 

 

We see that for 𝑎 = 0.9 the strange behavior of 𝐹𝑗
𝑚 for large values of 𝑆 

disappears.  
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Figure 3-17 Convolution integral (𝑰𝒄) error for = 𝟎, 𝒂 = 𝟎. 𝟗 

 

 

 

3.4 Jump-diffusion model calibration  

We discussed in (Section 1.1) that the jump-diffusion models provide a 

useful tool in explaining the non-flat volatility shape observed in the market, 

when one is trying to reconstruct this parameter from option prices, since 

those types of models allow for different volatility levels for different strikes 

and maturities.  

In the results computed and presented in this work, the volatility level was 

set to be the same as the one used in published work from research peers, to 

allow for a meaningful comparison of the numerical approximation 

performance.  

However, one could select to use volatility levels, observed in the market, 

via means of calibration. That would be performed by choosing the optimal 

volatility of volatility levels that would minimize the error between model 

produced option prices (given an initial value of volatility) and option prices 

observed in the market, for different option types, strikes and maturities. 

That would enable for the efficient backtesting of the model when the input 

parameters are derived from historical observed prices. Doing so, one can 

assess the ability of models to “predict” the realized/ (historical) option 

price levels by comparing the calibrated model produced ones with the 

observed ones for the same time period. Interesting findings regarding the 

Merton’s jump-diffusion models backtesting performance and other jump-

diffusion models can be found in (Voltchkova, 2006). 
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In this chapter we presented the FD approximation for the solution of the 

PIDE (3.1). Results were presented and compared with published work from 

research peers.  

Concluding remarks 

1. The mesh based quadrature approach to the jump integral has been 

shown to be accurate when applied to the Merton jump-diffusion 

model.  

2. The use of coordinate stretching improves both the accuracy of this 

quadrature as well as the accuracy of the p.d.e. approximation. 

3. The combination of coordinate stretching and mesh based quadrature 

gives comparable or better accuracy (for the same number of degrees 

of freedom) than the standard approach based on a separate 

approximation of the p.d.e. and the jump integral. 

4. Localization of the jump integral is achieved for mesh based 

quadrature with the standard p.d.e. mesh truncation.  

5. This localization is improved by applying the quadrature to the non-

convolution terms, hence retaining helpful cancellations in the 

integrand, and this effect can be explained by defining the linear 

extrapolation error. 

6. The mesh refinement process for the p.d.e. approximation 

automatically reduces both the p.d.e.  errors and the quadrature error. 

7. Simple explicit weighting of the jump term has useful accuracy with 

this approach and is stable under the usual mesh refinement but leads 

to sub-optimal rates of convergence as has been noted by other 

authors.  

8. Crank-Nicolson timestepping with the approach leads to optimal 

second order accuracy for both European and American options.  

9. The use of a sequence of refined timesteps of the initial evolution is 

important for accuracy, as is placing a mesh point at the strike for 

vanilla payoffs examined here. 
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4. Singularities 

 

In this section we present the implementation of the previously discussed 

numerical approximation, on the Variance Gamma and CGMY test cases 

(Section 4.1). Results and the effectiveness of the approach will also be 

discussed (Section 4.2).  

 

4.1 Treating singularities  

We saw in (Section 2.2.4) the mathematical formulation for the pricing of 

European options where the underlying 𝑆 is following a Lévy jump-

diffusion process whose Lévy measure satisfies:  

∫ 𝑢2𝑣(𝑢)𝑑𝑢 < ∞
+1

−1
,   ∫ 𝑣(𝑢)𝑑𝑢 < ∞

|𝑢|>1
 (4.1) 

The approach needs to be modified for Variance Gamma and CGMY since 

now the finite difference scheme (3.44) will contain singular terms due to 

the singularity of  𝜈(𝑦𝑗𝑝) for 𝑝 = 𝑗 i.e. 𝑦 = 1. Hence the quadrature terms 

𝜈(𝑦𝑗) are singular, namely: 

𝜔𝑗𝑗 =
1

2
(𝑦𝑗𝑗+1 − 𝑦𝑗𝑗−1)𝜈(𝑦𝑗𝑗) (4.2) 

where 𝜈(𝑦𝑗𝑗) the transformed Lévy density
13

.  

The approach described in (Wang, 2007) is adapted to our mesh quadrature 

approach; this introduces an integrable replacement of the singular integral 

term by a second order Taylor series.  

The discrete integral terms: 

𝐼𝑗
𝑚 = ∑ 𝜔𝑗𝑝𝑉𝑝

𝑚 − Ω𝑗𝑉𝑗
𝑚 − 𝜅𝑗𝑆𝑗

𝑝=𝑁𝑆

𝑝=0

(𝑉𝑗+1
𝑚 −  𝑉𝑗−1

𝑚 )

2Δ𝑆
 (4.3) 

resulted from applying composite quadrature to the jump integral, i.e: 

                                                           
13

 𝑦�̃�(𝑦) = 𝑣(𝑙𝑛𝑦) = 𝑣(𝑢) 
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𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) = ∫ 𝐹𝑗

𝑚(𝑦)𝜈(𝑦)𝑑𝑦 = ∑ ∫ 𝐹𝑗
𝑚(𝑦)𝜈(𝑦)𝑑𝑦

𝑦𝑗𝑝+1

𝑦𝑗𝑝

𝑝=𝑁𝑄−1

𝑝=0

𝑦∗ 

0

 (4.4) 

≈ ∑
1

2

𝑝=𝑁𝑄−1

𝑝=0

(𝑦𝑝+1 − 𝑦𝑝)[𝐹𝑗
𝑚(𝑦𝑝+1)𝜈(𝑦𝑝+1) + 𝐹𝑗

𝑚(𝑦𝑝)𝜈(𝑦𝑝)] (4.5) 

We remove and evaluate separately the two integrals (�̃�(𝑦𝑗𝑗) is singular): 

∫ 𝐹𝑗
𝑚(𝑦)𝜈(𝑦)𝑑𝑦

𝑦𝑗𝑗
𝑦𝑗𝑗−1

 , ∫ 𝐹𝑗
𝑚(𝑦)𝜈(𝑦)𝑑𝑦

𝑦𝑗𝑗+1
𝑦𝑗𝑗

 (4.6) 

This is easily accounted for in the quadrature summation by setting: 

𝜔𝑗𝑗 = 0, 𝜔𝑗𝑗−1 = ⋯ ,𝜔𝑗𝑗+1 = ⋯,  

Combining the singular integrals to: 

∫ 𝐹𝑗
𝑚(𝑦)𝜈(𝑦)𝑑𝑦

𝑦𝑗𝑗

𝑦𝑗𝑗−1

= 𝐼𝑗
𝑠

= ∫ (𝑉(𝑆𝑗𝑦, 𝑡
𝑚) − 𝑉(𝑆𝑗, 𝑡

𝑚)
𝑦𝑗𝑗+1

𝑦𝑗𝑗−1

− 𝑆𝑗(𝑦 − 1) (
𝜕𝑉

𝜕𝑆
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

)𝜈 (𝑦)𝑑𝑦 

(4.7) 

  

The use of mesh derived quadrature points 𝑦𝑗𝑝 means that the interval 

removed is different for each set of quadrature intervals and is smallest 

where the mesh is most refined. Expanding 𝑉(𝑆𝑗𝑦, 𝑡
𝑚) in a Taylor series 

around 𝑦 = 1  up to second order gives: 

𝑉(𝑆𝑗𝑦, 𝑡
𝑚) ≈ 𝑉(𝑆𝑗, 𝑡

𝑚) + 𝑆𝑗(𝑦 − 1) (
𝜕𝑉

𝜕𝑆
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

+
1

2
[𝑆𝑗(𝑦 − 1)]

2
(
𝜕2𝑉

𝜕𝑆2
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

 
(4.8) 

So the singular integral terms can be approximated as: 

𝐼𝑗
𝑠 ≈ ∫ (

1

2
[𝑆𝑗(𝑦 − 1)]

2
(
𝜕2𝑉

𝜕𝑆2
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

)𝜈
𝑦𝑗𝑗+1

𝑦𝑗𝑗−1

(𝑦)𝑑𝑦 (4.9) 
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= 𝑆𝑗
2 (
𝜕2𝑉

𝜕𝑆2
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

∫ (
1

2
[(𝑦 − 1)]2) 𝜈

𝑦𝑗𝑗+1

𝑦𝑗𝑗−1

(𝑦)𝑑𝑦 =
1

2
𝜎𝑠𝑗
2 𝑆𝑗

2 (
𝜕2𝑉

𝜕𝑆2
)
𝑆=𝑆𝑗

𝑡=𝑡𝑚

 

where the mesh defined singular jump volatility 𝜎𝑠𝑗 is given by: 

𝜎𝑠𝑗
2 = ∫ [(𝑦 − 1)]2𝜈

𝑦𝑗𝑗+1

𝑦𝑗𝑗−1

(𝑦)𝑑𝑦 (4.10) 

Evaluating the singular volatility 

Applying the change of variable 𝑢 = ln 𝑦 to this integral we get: 

𝜎𝑠𝑗
2 = ∫ [(𝑒𝑢 − 1)]2

𝑢𝑗𝑗+1

𝑢𝑗𝑗−1

𝜈(𝑢)𝑑𝑢 (4.11) 

In the case of CGMY Lévy density, this corresponds to: 

𝜎𝑠𝑗
2 = ∫ [(𝑒𝑢 − 1)]2

𝑢𝑗𝑗+1

𝑢𝑗𝑗−1

𝐶 (
𝑒𝑀𝑢

𝑢1+𝑌
1>0 +

𝑒𝑀|𝑢|

|𝑢|1+𝑌
1<0)𝑑𝑢 (4.12) 

with: 

𝑢𝑗𝑗−1 = ln(
𝑆𝑗−1

𝑆𝑗
) = ln (1 −

(𝑆𝑗 − 𝑆𝑗−1)

𝑆𝑗
) = ln (1 −

Δ𝑆𝑗

𝑆𝑗
) = −

Δ𝑆𝑗

𝑆𝑗
+ 𝑂 (

Δ𝑆𝑗

𝑆𝑗
)

3

 (4.13) 

and similarly for: 

𝑢𝑗𝑗+1 = ln(
𝑆𝑗+1

𝑆𝑗
) = ln (1 +

(𝑆𝑗+1 − 𝑆𝑗)

𝑆𝑗
) = ln (1 +

Δ𝑆𝑗+1

𝑆𝑗
) =

Δ𝑆𝑗+1

𝑆𝑗

+ 𝑂(
Δ𝑆𝑗+1

𝑆𝑗
)

3

 
(4.14) 

With the absolute differences expressed as: 

Δ𝑢𝑗
𝐷 =

Δ𝑆𝑗

𝑆𝑗
, Δ𝑢𝑗

𝑈 = 
Δ𝑆𝑗+1

𝑆𝑗
 (4.15) 

the integral (4.9) can be approximated as: 

𝜎𝑠𝑗
2 = ∫ [(𝑒𝑢 − 1)]2

𝑢𝑗𝑗+1

𝑢𝑗𝑗−1

𝐶 (
𝑒−𝑀𝑢

𝑢1+𝑌
1>0 +

𝑒−𝐺|𝑢|

|𝑢|1+𝑌
1<0)𝑑𝑢 (4.16) 

≈ ∫ [(𝑒𝑢 − 1)]2
Δ𝑢𝑗

𝑈

−Δ𝑢𝑗
𝐷

𝐶 (
𝑒−𝑀𝑢

𝑢1+𝑌
1>0 +

𝑒−𝐺|𝑢|

|𝑢|1+𝑌
1<0)𝑑𝑢  
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= ∫ [(𝑒𝑢 − 1)]2
0

−Δ𝑢𝑗
𝐷

𝐶𝑒−𝐺|𝑢|

|𝑢|1+𝑌
𝑑𝑢 +∫ [(𝑒𝑢 − 1)]2

Δ𝑢𝑗
𝑈

0

𝐶𝑒−𝑀𝑢

𝑢1+𝑌
𝑑𝑢  

= ∫ [(𝑒𝑢 − 1)]2
Δ𝑢𝑗

𝐷

0

𝐶𝑒−𝐺𝑢

𝑢1+𝑌
𝑑𝑢 +∫ [(𝑒𝑢 − 1)]2

Δ𝑢𝑗
𝑈

0

𝐶𝑒−𝑀𝑢

𝑢1+𝑌
𝑑𝑢 

 

 

Since the size of these fractional jump returns is small, expanding the 

exponentials gives a rapidly converging sequence of easily computable 

integrals: 

= ∫ 𝐶𝑒−𝐺𝑢𝑢1−𝑌 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝐷

0

𝑑𝑢

+ ∫ 𝐶𝑒−𝑀𝑢𝑢1−𝑌 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝑈

0

𝑑𝑢 
(4.17) 

Variance Gamma  

For Variance Gamma 𝑌 = 0 and 𝐺 = 𝜆𝑛.  Then the singular volatility can 

be written:  

𝜎𝑠𝑗
2 = ∫ 𝐶𝑒−𝐺𝑢𝑢 [1 +

𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝐷

0

𝑑𝑢

+ ∫ 𝐶𝑒−𝑀𝑢𝑢 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝑈

0

𝑑𝑢 
(4.18) 

which for 𝑌 < 2 can be expressed in terms of incomplete Gamma functions. 

We can then define (Section 7.3) the successive approximations: 

[𝜎𝑠𝑗
2 ]
(1)
=
𝐶

𝐺2
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎) +

𝐶

𝑀2
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏)   (4.19) 

 

[𝜎𝑠𝑗
2 ]
(2)
=
𝐶

𝐺2
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎) +

2𝐶

𝐺3
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 −

𝑎2

2
𝑒−𝑎) (4.20) 

+
𝐶

𝑀2
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏) +

2𝐶

𝑀3
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏 −

𝑏2

2
𝑒−𝑏)  

𝑎 = 𝐺Δ𝑢𝑗
𝐷, 𝑏 = 𝑀Δ𝑢𝑗

𝑈  

Adaptive upwinding criterion 
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The size of the singular viscosity is directly relevant to the adaptive 

upwinding criterion. If we assume for simplicity that 𝜃 = 𝜃𝐶  then 

upwinding is needed if: 

|𝜃(�̃� − 𝐷)−𝜃𝐶𝜅𝑗| > 𝜃 [
𝜎2𝑇(𝑥𝑗)

Δ𝑥
] (4.21) 

Since for the transformation 𝑆(𝑥) we have that: 

𝑆
𝑑𝑥

𝑑𝑆
= 𝑇(𝑥), then 

𝑇(𝑥𝐽)

Δ𝑥
≈

𝑆𝐽

ΔSj
 (4.22) 

 

 

 and (for zero Black-Scholes volatility): 

𝜎2𝑇(𝑥𝑗)

Δ𝑥
≈
𝜎𝑠𝑗
2 𝑆𝐽

ΔSj
≈
𝐶

2
(
𝑎2

𝐺2
+
𝑏2

𝑀2
)
𝑆𝐽
ΔSj

=
𝐶

2
((Δ𝑢𝑗

𝐷)
2
+ (Δ𝑢𝑗

𝑈)
2
)
𝑆𝐽
ΔSj

 

                      =
𝐶

2
((
Δ𝑆𝑗

𝑆𝑗
)
2

+ (
Δ𝑆𝑗−1

𝑆𝑗
)
2

)
𝑆𝐽

ΔSj
≈ 𝐶

Δ𝑆𝑗

𝑆𝑗
 (4.23) 

Therefore and as expected upwinding will be needed to satisfy the positivity 

requirement at some point while the mesh is refined, since the singular 

volatility term will tend to zero. The practical requirement depends on the 

size of 𝐶 and the local refinement of the mesh.  

The behavior of this singular volatility 𝜎𝑠𝑗 is shown below for two different 

meshes for the VG case.  
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Figure 4-1 Singular volatility for 𝑵𝑺 = 𝟖𝟎, 𝒕𝒂𝒖 = 𝟏𝟎 

 

Figure 4-2 Singular volatility for 𝑵𝑺 = 𝟐𝟎, 𝒕𝒂𝒖 = 𝟏𝟎 

 

 

The behavior of the singular volatility 𝜎𝑠𝑗
2  as shown above is consistent with 

what was previously discussed.  
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4.2 Results  

In what follows we will present the results computed following the 

numerical approach discussed in the previous sections. The first set of 

results will be compared against the ones in (Wang, 2007). The VG option 

parameter set used for the case of a European call option is: 

𝐾 = 98, 𝑇 = 0.5, 𝑟 = 0, 𝜎 = 0, 𝜈 = 0.1686, 𝜆𝑛 = 20.264, 𝜆𝑝 = 39.784 

In (Wang, 2007) the prices are quoted for a sequence of meshes for 𝑆 =
90, 𝑡 = 0 with the exact price being 𝑉(90,0) = 0.6133591.  

The results from the coordinate transformed meshes require interpolating to 

𝑆 = 90 and for simplicity this was done using linear interpolation of 

neighbouring mesh points. Implicit timestepping is used both for the PDE 

(𝜃 =
1

2
) and the integral term (𝜃𝐶 =

1

2
). Upwinding was not used for our 

results in the case of the European options.  

Table 4-1 Price accuracy for the VG European call option  

Discretization (Wang, 2007) 𝜃, 𝜃𝐶 = 0.5 

NS M Price error tau=5 tau=10 tau=20 tau=40 

129 50 0.603428 9.93E-03 2.06E-03 2.14E-05 8.93E-05 1.49E-03 

257 100 0.610918 2.44E-03 1.09E-04 5.86E-05 7.73E-05 5.52E-05 

513 200 0.612863 4.96E-04 1.51E-04 2.73E-05 3.09E-05 4.28E-05 

1025 400 0.613263 9.61E-05 2.51E-05 2.03E-05 1.90E-06 1.61E-05 

Results in Table 4-1 show that our approach is consistently more accurate 

for the same number of mesh points and timesteps for all the stretch factors 

tested, but the convergence is non-uniform, although it is typically second 

order. The non-uniformity observed is most likely due to the use of 

interpolation (to the same order of accuracy of the finite difference method) 

as it disappears in the second set of results which show strike prices and 

errors. Please note that results from other authors on this test case are not 

available.  
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Figure 4-3 Error Convergence for VG European Call (𝑺 = 𝟗𝟎, 𝜽𝑪 = 𝟎. 𝟓) 

 

Table 4-2 Price accuracy for the VG European call option at strike price 

Discretization Theta_C=0.5 

NS M tau=5 tau=10 tau=20 tau=40 

129 50 7.88E-03 1.52E-03 2.11E-03 4.46E-03 

257 100 2.25E-03 4.83E-04 4.61E-04 1.05E-03 

513 200 6.21E-04 1.36E-04 1.11E-04 2.60E-04 

1025 400 1.61E-04 3.53E-05 2.77E-05 6.48E-05 

The results in Table 4-2 are for the strike price 𝑉(98,0). In this case 

interpolation is not required since the mesh is always aligned with the strike.  

Figure 4-4 shows the strike error convergence for the VG European call 

option. Is it important to note, that although the finite difference method is 

clearly not a positive difference scheme as the meshes refine, there is not 

oscillation observed in the price, the delta or Gamma price sensitivities. A 

typical Gamma plot is shown in Figure 4-5 for 𝑁𝑠 = 512.  
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Figure 4-4 Error Convergence for VG European Call (𝑺 = 𝑺𝑲, 𝜽𝑪 = 𝟎. 𝟓) 

 

Figure 4-5 Finite differences Gamma for VG European Call option 

 

The corresponding singular volatility function is shown in Figure 4-6 below.  
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Figure 4-6 Singular volatility function for European Call option (𝑵𝑺 =
𝟓𝟏𝟐, 𝒕𝒂𝒖 = 𝟓) 

 

 

American options with Variance Gamma  

When the underlying is following a VG distribution, solving for option 

prices with the early exercise feature can be problematic, since smooth 

pasting need not apply. Table 4-3 shows our results. Second order accuracy 

is shown for the strike price with 𝜃 = 𝜃𝐶 = 0.5. However we observe 

severe oscillations in the Gamma sensitivity local to the exercise boundary.  

The nature of the solution here appears to involve a delta function like 

behaviour in Gamma that proves to be challenging to compute. 

Incorporating adaptive upwinding leads to a very similar but smoother 

functional behaviour for Gamma. In this case though, the numerical 

approximation is first order accurate as shown by the results in Table 4-3 

(for exact price 2.90347) and the convergence graph shown in Figure 4-7. 

No sufficiently detailed comparison results are easily available for 

American options. 

Table 4-3 Price Accuracy for the VG early exercise 

Discretization 𝜃𝐶 = 0.5 

NS M tau=5 tau=10 tau=20 Tau=20(upwind) 

64 20 3.54E-02 1.70E-02 7.91E-03 9.94E-02 

127 40 1.06E-02 4.96E-03 2.30E-03 4.94E-02 

254 80 3.01E-03 1.33E-03 5.79E-04 2.48E-02 

508 160 7.43E-04 2.73E-04 6.63E-05 1.24E-02 

1016 320 
   

6.28E-03 
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Figure 4-7 Error Convergence for VG American Put (𝑺 = 𝑺𝑲, 𝜽𝑪 = 𝟎. 𝟓) 

 

Figure 4-8 Finite differences Gamma for VG Early exercise (upwinding) 
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Figure 4-9 Finite differences Gamma for VG Early exercise (no upwinding) 

 

 

CGMY  

In what follows we present the results for a European call option where the 

underlying is following a CGMY process. The parameters used are: 

𝜃 = 𝜃𝐶 = 0.5, 𝑆 = 90, 𝐾 = 98,, 𝜎 = 0, 𝑇 = 0.25, 𝑟 = 0.06, 

𝐶 = 0.42, 𝐺 = 4.37, 𝑀 = 191.2, 𝑌 = 1.0102 

The need for interpolation to 𝑆 = 90 again leads to some noise in the rate of 

convergence but it can roughly be seen to achieve second order accuracy 

and the errors are approximately 5 times smaller than the ones reported in 

(Wang, 2007) for the same number of mesh points. In the case of a 

European option, Gamma is always smoother but the SOR iteration did not 

always converge when high stretching was used and without increasing the 

number of timesteps (those were excluded from the Table 4-4 below). 

Table 4-4 Price accuracy for the CGMY European call option 

Discretization (Wang, 2007) 𝜃𝐶 = 0.5 

NS M Price error tau=5 tau=10 tau=20 tau=40 

64 -     1.65E-02 1.87E-02 2.40E-02 3.23E-02 

127 - 2.26919 3.85E-02 6.93E-03 6.65E-03 7.14E-03 8.61E-03 

254 - 2.24117 1.05E-02 2.98E-03 2.23E-03 2.11E-03 2.14E-03 

508 - 2.23341 2.71E-03 8.33E-04 5.56E-04 5.32E-04 5.97E-04 

1016 - 2.23135 6.50E-04 2.57E-04 1.36E-04 1.30E-04 1.52E-04 
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Figure 4-10 Error Convergence for CGMY European Call (𝑺 = 𝟗𝟎, 𝜽𝑪 =
𝟎. 𝟓) 

 

Figure 4-11 Finite differences Gamma for CGMY European (no-upwinding) 

 

 

Results for an American put under CGMY process are computed and 

compared again with (Wang, 2007) Table 4-5 below.  
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The overall rate of convergence is shown in Figure 4-12 and is similar to the 

convergence achieved by (Wang, 2007). However, the interpolation 

required has introduced again noise.  

  

Table 4-5 Price accuracy for the CGMY American put option 

Discretization (Wang, 2007) 𝜃𝐶 = 0.5 

NS M Price error tau=5 tau=10 tau=20 tau=40 

64 50     2.26E-02 2.39E-02 2.39E-02 3.14E-02 

128 100 9.2639 3.84E-02 5.97E-03 6.28E-03 8.94E-03 1.27E-02 

256 200 9.23635 1.09E-02 9.88E-04 1.48E-03 2.35E-03 3.74E-03 

512 400 9.22836 2.88E-03 3.17E-04 4.78E-04 6.76E-04 9.79E-04 

1024 800 9.22619 7.10E-04 4.74E-05 1.35E-04 1.81E-04 1.81E-04 

 

The localised oscillation in Gamma (Figure 4-13) can be removed by 

incorporating adaptive upwinding, which comes with a great cost on the 

accuracy. However, that does not appear to affect the accuracy at 𝑆 = 90 

which is superior to the one reported in (Wang, 2007) for the same number 

of mesh points for all the different extends of stretch.  

Figure 4-12 Error Convergence for CGMY American put (𝑺 = 𝟗𝟎, 𝜽𝑪 =
𝟎. 𝟓) 
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Figure 4-13 Finite differences Gamma for CGMY early exercise (no-
upwinding) 

 

In this chapter we presented the implementation of the FD approximation to 

test cases with singularities (VG, CGMY). Results were presented and 

compared with published work from research peers.    

Concluding remarks 

 

1. The use of mesh-based quadrature is easily extended to singular 

Lévy densities. 

2. The singular volatility introduced leads to accurate prices for pure 

jumps despite the lack of positivity in the difference scheme. 

3. The singular volatility 𝜎𝑠𝑗
2  varies across the mesh with smallest 

values where the mesh is refined most by the coordinate 

transformation. Since it is based on a second order approximate 

Taylor series this should support the accuracy of the method. The 

term 𝜎𝑠𝑗
2 𝑆𝑗

2goes to zero as the mesh is refined. 

4. The use of adaptive upwinding introduces a numerical dissipation 

term at the strike and reduces the accuracy of the method to first 

order. 

5. Without upwinding the method gives second order accuracy for 

European options for both VG and CGMY and with oscillation free 

Gamma, however the lack of positivity leads to problems using SOR 

as a solver. LU factorization would be straightforward. 

6. The first VG European test case used a coordinate transformation 

focused at the strike (𝑆 = 98) and evaluated the accuracy at a point 

away from the strike (𝑆 = 90).  The accuracy was still superior to 

the comparison results suggesting that the early evolution at the 

strike is crucial for these problems. 
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7. Without upwinding the method gives second order accuracy with 

PSOR for American options for both VG and CGMY. However 

there is unacceptable oscillation in Gamma for VG and a small 

localised oscillation for CGMY. The improvement with CGMY is 

consistent with its greater intensities for small diffusive-like jumps 

with CGMY for 𝑌 > 1. 

8. There is a need for a higher order numerical dissipation term to use 

with this method to deal with the numerical oscillations in Gamma 

for the early exercise cases for pure jumps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 
 

5. IT splitting for American options with 

jumps 

 

In this chapter we incorporate the IT splitting iterative method for the 

approximation of the integral term and investigate its effectiveness in 

combination with coordinate stretching for the solution of an American 

option for the classical Merton model, VG and CGMY.  

We saw in Section 3.2 that under certain assumptions, the Option price 𝑉, 

where the underlying follows an exponential Lévy process, is shown to 

follow the PIDE (3.1).  

Introducing the auxiliary variable 𝜆(𝑆, 𝑡) permits the following 

reformulation: 

−
𝜕𝑉

𝜕𝑡
= λ + 𝐿𝑉 +  𝐼(𝑉) (5.1) 

𝑉 ≥ 𝑔, λ ≥ 0, (𝑉 − 𝑔)λ = 0 

 

It is easy to check by elimination of λ that this formulation is identical to the 

original LCP but with the advantage that the PIDI is now a PIDE. 

Employing the usual finite difference discretization leads to: 

𝑉𝑗
𝑚−1 = Δ𝑡𝜆𝑗

𝑚−1 + 𝑉𝑗
𝑚 + 𝜃Δ𝑡𝐿ΔS 𝑉𝑗

𝑚−1 + (1 − 𝜃)Δ𝑡𝐿ΔS 𝑉𝑗
𝑚 + 𝜃𝐶Δ𝑡𝐼𝑗

𝑚−1

+ (1 − 𝜃𝐶)Δ𝑡𝐼𝑗
𝑚 (5.2) 

𝑉𝑗
𝑚−1 ≥ 𝑔(𝑆𝑗, 𝑡

𝑚−1),  𝜆𝑗
𝑚−1 ≥ 0, (𝑉𝑗

𝑚−1 − 𝑔(𝑆𝑗, 𝑡
𝑚−1))  𝜆𝑗

𝑚−1 ≥ 0 

following the approach in Toivanen (Toivanen, 2004) where the term in λ 

has been made fully implicit. Toivanen describes a fractional step 

approximation to the discretization above, as follows: 

Define the solution to the first step as {�̃�𝑗
𝑚−1, �̃�𝑗

𝑚−1}, and then the first 

fractional step is given by: 
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�̃�𝑗
𝑚−1 = Δ𝑡�̃�𝑗

𝑚−1 + 𝑉𝑗
𝑚 + 𝜃Δ𝑡𝐿ΔS �̃�𝑗

𝑚−1 + (1 − 𝜃)Δ𝑡𝐿ΔS 𝑉𝑗
𝑚 + 𝜃𝐶Δ𝑡𝐼𝑗

𝑚−1

+ (1 − 𝜃𝐶)Δ𝑡𝐼𝑗
𝑚 (5.3) 

 

where 𝐼𝑗
𝑚−1 = 𝐼𝑗

𝑚−1(�̃�𝑝
𝑚−1), and we choose �̃�𝑗

𝑚−1 =  𝜆𝑗
𝑚- which implies 

that the early exercise boundary has not moved during the first fractional 

step. 

In the second fractional step, for {𝑉𝑗
𝑚−1,  𝜆𝑗

𝑚−1}, we have: 

(𝑉𝑗
𝑚−1 − �̃�𝑗

𝑚−1) − Δ𝑡( 𝜆𝑗
𝑚−1 − �̃�𝑗

𝑚−1) = 0 (5.4) 

(𝑉𝑗
𝑚−1 − 𝑔(𝑆𝑗, 𝑡

𝑚−1))  𝜆𝑗
𝑚−1 = 0 (5.5) 

𝑉𝑗
𝑚−1 ≥ 𝑔(𝑆𝑗, 𝑡

𝑚−1),  𝜆𝑗
𝑚−1 ≥ 0 (5.6) 

 

 

 

It is easily verified that the solution to step 2 can be stated explicitly as: 

𝑉𝑗
𝑚−1 = max[�̃�𝑗

𝑚−1 − Δ𝑡�̃�𝑗
𝑚−1, 𝑔(𝑆𝑗, 𝑡

𝑚−1)] (5.7) 

 

 𝜆𝑗
𝑚−1 = max [0, �̃�𝑗

𝑚−1 + 
𝑔(𝑆𝑗, 𝑡

𝑚−1) − �̃�𝑗
𝑚−1

Δ𝑡
] (5.8) 

 

Note that adding the first equation of step 2 to the equation in step 1 gives: 

𝑉𝑗
𝑚−1 = Δ𝑡 �̃�𝑗

𝑚−1 + 𝑉𝑗
𝑚 + 𝜃Δ𝑡𝐿ΔS �̃�𝑗

𝑚−1 + (1 − 𝜃)Δ𝑡𝐿ΔS 𝑉𝑗
𝑚 + 𝜃𝐶Δ𝑡𝐼𝑗

𝑚−1

+ (1 − 𝜃𝐶)Δ𝑡𝐼𝑗
𝑚 (5.9) 

 

so that the implicit differential and integral terms approximate the exercise 

boundary as fixed during the timestep and are not updated till the following 

timestep.  
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Solution procedure for Step 1 

 

This step is solved by applying LU factorization to the tridiagonal matrix 

resulting from the difference approximation to the PDE terms (including the 

singular volatility terms for VG and CGMY) and applying a simple fixed 

point iteration to update the implicit jump term. As Wang et al  (Wang, 

2007) have shown this converges extremely rapidly (typically in 3 to 4 

iterations).  

It is feasible to include a Step 2 solution within the fixed point iteration and 

this has been done for the calculations presented later in this chapter (this 

appears to improve the accuracy on very refined meshes but a systematic 

study has not been done). The use of LU factorization in Step 1 is 

advantageous as it has an optimal operation count in contrast to PSOR 

where the convergence deteriorates on fine meshes. 

Variance Gamma IT Splitting/ PSOR comparison 

The first set of results described are for Variance Gamma and are a 

comparison with those of (Wang, 2007) and (Oosterlee, 2007). The variance 

Gamma option dataset is for an American call option: 

𝐾 = 100, 𝑇 = 9.0, 𝑟 = 0.1, 𝑞 = 0.1, 𝜎 = 0, 𝜈 = 1.0, 𝜆𝑛 = 1/9.5085, 𝜆𝑝 = 1/5.2585 

The parameters were chose to show the lack of smooth pasting for the early 

exercise boundary and this is visible from the plot of the option price Delta. 

The plot from (Wang, 2007) is reproduced below together with a plot 

obtained using our method combined with IT splitting, with 𝑁𝑠 = 240, 𝜏 =

20, 𝑆∗ = 140. 

 

Figure 5-1 shows the plot of Delta against asset price for 𝜎𝐵𝑆 = 0, 0.1 

showing discontinuity in Delta, where the number of mesh points is 

𝑁 = 1025 and timesteps 𝑀 = 7500 (from (Wang, 2007)).   
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Figure 5-1 Discontinuity in Delta at 𝑺 = 𝟏𝟓𝟎. 

 

Figure 5-2 shows the comparison plot of Delta against asset price for 

𝜎𝐵𝑆 = 0, using: 𝜏 = 20, 𝑆∗ = 145,𝑁𝑠 = 480,𝑀 = 240, 𝜃 = 𝜃𝐶 =

0.5, 𝑆𝑚𝑎𝑥 = 300 showing the discontinuity in Delta at 𝑆 = 150. 

 

Figure 5-2 Discontinuity in Delta 
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The second dataset is the one used with PSOR in Section 4.2 for the 

Variance Gamma American put option pricing problem is: 

𝑆 = 100, 𝐾 = 100, 𝑇 = 0.5, 𝑟 = 0.05, 𝜎 = 0, 

𝜈 = 0.1686,  𝜆𝑛 = 20.264, 𝜆𝑝 = 39.784 

 

Results with early exercise with Variance Gamma are challenging since 

smooth pasting need not apply and although the results below show 

approximately second order accuracy for the strike price with 𝜃 = 𝜃𝐶 = 0.5, 

there are severe oscillations in Gamma local to the exercise boundary. The 

results with IT splitting are almost identical to those obtained using PSOR; 

convergence to the strike price is uniform at all values of the stretch and the 

rate of convergence is approximately 1.8 suggesting that the oscillation in 

Gamma around 𝑆 ∈ [93,95] is degrading the rate of convergence at  𝑆 =

100. 

Table 5-1 shows the comparison of the results for the strike price, for the IT 

splitting versus PSOR, in the case of an American put option where the 

underlying is following a VG process, while Table 5-2 shows the strike 

error for different stretches using IT splitting. The exact price is 

approximately 2.90360 (from Richardson extrapolation).  

 

Table 5-1 Strike prices comparison (VG American put) 

Discretisation  IT Splitting PSOR 

NS M tau=5 tau=10 tau=20 tau=5 tau=10 tau=20 

64 20 2.867982 2.885238 2.892441 2.868059 2.886475 2.895564 

127 40 2.89248 2.897572 2.899435 2.892845 2.898512 2.901173 

254 80 2.900245 2.901735 2.902245 2.900463 2.902136 2.902891 

508 160 2.902648 2.903069 2.903217 2.902727 2.903197 2.903404 

1016 320 2.903343 2.903461 2.903504       

2035 640     2.90359       

 

Table 5-2 Strike error for IT splitting (VG American put) 

Discretisation 𝜃𝐶 = 0.5 

NS M tau=5 tau=10 tau=20 tau=40 

64 20 3.56E-02 1.84E-02 1.12E-02 9.93E-03 

127 40 1.11E-02 6.03E-03 4.16E-03 4.08E-03 

254 80 3.35E-03 1.87E-03 1.35E-03 1.34E-03 

508 160 9.52E-04 5.31E-04 3.83E-04 3.72E-04 

1016 320 2.57E-04 1.39E-04 9.59E-05 8.93E-05 
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Figure 5-3 American VG strike error (𝜽𝑪 = 𝟎. 𝟓, IT splitting) 

 

Figure 5-3 shows the best least square fit to the convergence rate for the 

strike errors using the IT splitting method (shown as the slope of the trend 

lines). 

 

CGMY IT Splitting/ PSOR comparison 

 

The Gamma of the option price is a sensitive feature of the solution for early 

exercise option and so a comparison was done for the standard PSOR 

implementation and the IT splitting implementation for the same mesh and 

number of timesteps. 

 

The second comparison was for CGMY and comparing again with the 

published results in (Wang, 2007). The first set of results for CGMY are for 

a European call option with: 

𝜃 = 𝜃𝐶 = 0.5, 𝑆 = 90, 𝐾 = 98, 𝜎 = 0, 𝑇 = 0.25, 𝑟 = 0.06, 

𝐶 = 0.42, 𝐺 = 4.37, 𝑀 = 191.2, 𝑌 = 1.0102 
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The need to interpolate to 𝑆 = 90 again leads to some variability in the rate 

of convergence but it can roughly be seen to be second order and the 

accuracy is approximately 5 times smaller than (Wang, 2007) for the same 

number of mesh points. 

Table 5-3 shows the price errors in the case of CGMY for an American 

option (using linear interpolation between mesh points either side of 𝑆 =

90). The IT splitting results obtained with Crank-Nicolson, while the 

(Wang, 2007) results were obtained using adaptive timestepping with 𝑀/4 

timesteps.  

Table 5-3 Price accuracy results with IT splitting 

Discretisation (Wang, 2007) 𝜃𝐶 = 0.5, IT Splitting 

NS M Price error tau=5 tau=10 tau=20 tau=40 

64 50     2.23E-02 2.36E-02 3.13E-02 4.28E-02 

128 100 9.2639 3.84E-02 5.87E-03 6.28E-03 9.18E-03 1.47E-02 

256 200 9.23635 1.09E-02 9.52E-04 1.53E-03 2.32E-03 3.77E-03 

512 400 9.22836 2.88E-03 3.20E-04 4.63E-04 6.69E-04 1.64E-03 

1024 800 9.22619 7.11E-04 8.51E-05 1.37E-04 1.84E-04 3.83E-04 

 

Table 5-4 shows option prices in the case of CGMY for an American put 

option (using linear interpolation between mesh points either side of 𝑆 =

90). Again, IT splitting results were obtained with Crank-Nicolson.  

Table 5-4 Price accuracy comparison (CGMY American put) 

Discretisation 𝜃𝐶 = 0.5, IT Splitting 𝜃𝐶 = 0.5, PSOR 

NS M tau=5 tau=10 tau=20 tau=40 tau=5 tau=10 tau=20 tau=40 

64 50 9.203223 9.2019 9.194214 9.18268 9.202909 9.201556 9.201556 9.194038 

128 100 9.219606 9.219199 9.216296 9.210769 9.219508 9.219199 9.216541 9.2128 

256 200 9.224527 9.223952 9.223157 9.221705 9.224492 9.224003 9.223129 9.221739 

512 400 9.225158 9.225016 9.22481 9.223834 9.225163 9.225002 9.224804 9.224501 

1024 800 9.225394 9.225341 9.225295 9.225096 9.225433 9.225345 9.225299 9.225299 

 

The rate of convergence for IT splitting is similar to PSOR, however this 

may reflect poor control of the fixed point iteration residuals as the meshes 

were refined and a more robust iteration control loop may improve this. The 

rate for 𝑡𝑎𝑢 = 5 is optimal and almost identical to the PSOR results, with 

the same notable improvement in accuracy compared to (Wang, 2007). The 

price Gamma has a small localized oscillation just after the peak for PSOR 

and this may affect the accuracy at 𝑆 = 90. There is no observable 

difference in the Gamma profiles between the two methods, as it can been 

seen from Figure 5-6 and Figure 5-7 below.  
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Figure 5-4 Error Convergence IT splitting (𝑺 = 𝟗𝟎, 𝜽𝑪 = 𝟎. 𝟓)  

 

Figure 5-4 shows the strike price errors for the case of CGMY process for 

an American option, against the mesh size, together with the best straight 

line fits, showing the rate of convergence for the IT splitting algorithm and a 

range of coordinate transformations.  

Figure 5-5 Error Convergence PSOR (𝑺 = 𝟗𝟎, 𝜽𝑪 = 𝟎. 𝟓) 
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Figure 5-5 shows the strike price errors again for the CGMY American case 

against the mesh size, together with best straight line fits, showing the rate 

of convergence, for the PSOR algorithm and a range of coordinate 

transformations.  

Figure 5-6 American CGMY Gamma for PSOR (𝑵𝑺 = 𝟏𝟎𝟐𝟒, 𝒕𝒂𝒖 = 𝟓) 

 

 

Figure 5-7 American CGMY Gamma for IT splitting (𝑵𝑺 = 𝟏𝟎𝟐𝟒, 𝒕𝒂𝒖 = 𝟓) 
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Merton’s comparison 

Using the Merton dataset (identical to the one used in Section 3.3): 

𝑆 = 100, 𝐾 = 100, 𝑇 = 0.25, 𝑟 = 0.05, 𝜎 = 0.15,𝜆 = 0,1, 𝑎 = −0,9, 𝑏 = 0.45 

 with the exact value equal to 3.1490. 

 

For this dataset (d' Halluin, 2005) use 𝑆𝑚𝑎𝑥=1000, an unspecified mesh and 

variable timesteps. Results for the American option comparisons are given 

below for 𝜃𝐶 = 0.5. The overall picture is similar to European case with 

second order rates of convergence for 𝑡𝑎𝑢 = 5,10 and lower rates but for 

much smaller strike errors for 𝑡𝑎𝑢 = 20,40. The IT splitting method as 

implemented produced similar convergence rates and accuracies when 

compared to PSOR, though with more variation.  

Figure 5-8 American Merton strike error (𝜽𝑪 = 𝟎. 𝟓, IT splitting) 

 

Figure 5-8  shows the strike error for an American put under Merton using 

IT splitting with a range of coordinate transformed mesh refinements and 

comparing to (d' Halluin, 2005), while Figure 5-9 shows the equivalent 

strike errors using PSOR.  
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Figure 5-9 American Merton strike error (𝜽𝑪 = 𝟎. 𝟓, IT PSOR) 

 

 

Table 5-5 Strike error comparison (Merton’s American put) 

Discretisation IT Splitting PSOR 

NS M tau=5 tau=10 tau=20 tau=40 M tau=5 tau=10 tau=20 tau=40 

127 160 3.23257 3.23947 3.24188 3.24237 40 3.23212 3.23883 3.24118 3.24166 

254 320 3.23928 3.24096 3.24155 3.24151 80 3.23895 3.24061 3.2412 3.24135 

508 640 3.24074 3.24116 3.24132 3.24135 160 3.24067 3.24108 3.24123 3.24127 

1016 1280 3.24114 3.24125 3.24128 3.24129 320 3.2411 3.2412 3.24124 3.24123 

 

Table 5-5 presents a comparison for the strike errors between IT splitting 

and PSOR for the case an American put option with the underlying 

following Merton’s jump-diffusion process. Note the different number of 

timesteps for PSOR.  

The results for IT splitting are comparable to PSOR. However, it was 

observed that oscillations in Gamma sometimes occurred when using the 

same number of timesteps as PSOR. These oscillations were removed by 

increasing the number of timesteps to those noted in the table above. The 

PSOR results for Gamma were entirely free of oscillation. The comparison 

suggests that the PSOR results could be more accurate (at this rate of 

precision) with a greater number of timesteps and the use of adaptive 

timestepping would be beneficial to both these issues.  
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Figure 5-10 Gamma function for Merton’s American Put (𝑵𝑺 = 𝟏𝟎𝟏𝟔, IT 
splitting) 

 

 

Figure 5-11 Gamma function for Merton’s American Put (𝑵𝑺 = 𝟏𝟎𝟏𝟔, 
PSOR) 
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In this chapter we investigated the performance of IT splitting, when 

coupled with the coordinate stretching and the compact mesh quadrature for 

the integral term.  

 

Concluding remarks 

1. Ikonen-Toivanen splitting adapted to the jump-diffusion linear 

complementarity problem works well with Merton with highly 

comparable results and convergence rates using mesh based 

quadrature and a range of coordinate transformation stretch values. 

2. Ikonen-Toivanen splitting adapted to the jump-diffusion linear 

complementarity problem works well with Variance Gamma and 

CGMY, where the small jumps are replaced by a singular volatility 

model, are almost identical to PSOR when used with a range of 

coordinate stretching parameters and the mesh-based quadrature.  

3. The results for Variance Gamma and CGMY would benefit from 

some additional second order numerical damping to remove the 

oscillation in Gamma near the exercise boundary. LU factorization 

with IT splitting is far more efficient as a solution technique 

compared to PSOR given the loss of the 𝑀-matrix property. 

4. It would be interesting to test a version of volatility replacement for 

small jumps with the Merton model. 
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6. Conclusion  

 

In this work we investigated the numerical solution of a European and 

American option pricing problem where the underlying is following a jump-

diffusion process. We presented the numerical approximation focusing on 

the Merton’s classical model, but also extended to the singular cases of VG 

and CGMY. 

 

We presented the extension of coordinate stretching transformation  

(Parrott, 1999) to the jump-diffusion case and in combination with compact 

mesh based quadrature approach to the integral term we investigated the 

effectiveness of the approximation. An implicit time discretization was used 

and early exercise was treated by classical iterative projection approach. IT 

splitting (Toivanen, 2004) was also implemented for the American option 

case and its performance was compared against the PSOR approach.  

 

The approximation was tested on the classical Merton’s model as well as the 

singular cases of Variance Gamma and CGMY. The quadrature formulation 

was proved to be effective and with good localization properties and results 

to second-order accurate prices.  
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7. Appendix  

 

7.1 Self-financing portfolio 

 

Definition 7.15 (Self-financing portfolio) Let a portfolio 𝜋 that consists of 

shares and bonds. 𝑎𝑛,𝑖 are the units of each share 𝑛, 𝑛 = 0,1, … ,𝑁 at time 𝑖 

contained in the portfolio. The total value of 𝜋 at time 𝑖 will be:  

𝑉𝑖 = ∑𝑎𝑛,𝑖𝑋𝑛,𝑖

𝑁

𝑛=0

 (7.1) 

Let the portfolio be updated at time 𝑖. At that time we know only the prices 

of time 𝑖 − 1. This means that the random variables 𝑎𝑛,𝑖 are 𝐹𝑖−1 

measurable. In other words, all the information that we need to estimate the 

values that 𝑎𝑛,𝑖 take, are contained in the 𝜎-algebra 𝐹𝑖−1.  𝐹𝑖−1 contains all 

the information that can be derived from the evolution of the stochastic 

process 𝑋𝑛,𝑖 up to time 𝑡 = 𝑖 − 1. 

If the investor holds at time 𝑡, 𝑎𝑛,𝑖 units of the share 𝑛, then the change in 

the price of that share in the time interval is [𝑖 − 1, 𝑖] is:  

𝛥𝑋𝑛
𝑖 = 𝑋𝑛,𝑖 − 𝑋𝑛,𝑖−1 (7.2) 

The profit that the investor makes due to that price change is: 

𝐺𝑖
𝑛 = 𝑎𝑛,𝑖𝛥𝛸𝑖

𝑛 (7.3) 

The overall profit from all the shares at time 𝑡 = 𝑖 is: 

𝐺𝑖 = ∑𝑎𝑛,𝑖𝛥𝑋𝑖

𝑁

𝑛=0

 (7.4) 

The value of the portfolio can only change using cash gained from the 

changes in the value of the shares that already exist in the portfolio. 

Therefore there is no inflow or outflow of cash. Under this restriction the 

value of the portfolio at time 𝑡 becomes: 

𝑉𝑡 = 𝑉0 +∑𝐺𝑖

𝑡

𝑖=0

 (7.5) 
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This is called a self-financing portfolio.  

From the above definition it is obvious that the value of the portfolio is a 

martingale transformation of the stochastic process 𝑋𝑛,𝑖. 

The value of the portfolio whether is self-financing or not can be derived 

from: 

∑𝛥𝑎𝑛,𝑖𝑋𝑛,𝑖−1 = 0 ∀𝑖

𝑁

𝑛=0

 (7.6) 

The sum of the changes that occur in the units of the shares should balance 

as the previous equation shows.  

 

7.2 Integral term  

𝐼𝑗(𝑉(𝑆, 𝑡
𝑚)) = ∑ ∫ 𝐹𝑗

𝑚(y)𝜈(y)

𝑦𝑝+1

𝑦𝑝

𝑑𝑦

𝑝=𝑁𝑄−1

𝑝=0

 (7.7) 

≈ 𝐼𝑗
𝑚 = ∑

1

2
(𝑦𝑝+1 − 𝑦𝑝)[𝐹𝑗

𝑚(𝑦𝑝+1)𝜈(𝑦𝑝+1) + 𝐹𝑗
𝑚(𝑦𝑝)𝜈(𝑦𝑝)]

𝑝=𝑁𝑄−1

𝑝=0

 

Setting 𝑎𝑝 = 𝐹𝑗
𝑚(𝑦𝑝)𝜈(𝑦𝑝) , so that: 

2𝐼𝑗
𝑚 = (𝑦1 − 𝑦0)[𝑎1 + 𝑎0] + (𝑦2 − 𝑦1)[𝑎2 + 𝑎1]

+⋯(𝑦𝑗 − 𝑦𝑗−1)[𝑎𝑗 + 𝑎𝑗−1] + (𝑦𝑗+1 − 𝑦𝑗)[𝑎𝑗+1 + 𝑎𝑗]

+⋯ (𝑦N − 𝑦𝑁−1)[𝑎𝑁 + 𝑎𝑁−1] 
(7.8) 

with: 

2𝐼𝑗
𝑚 = 𝑦1𝑎1 − 𝑦0𝑎1 + 𝑦1𝑎0 − 𝑦0𝑎0    

+𝑦2𝑎2 − 𝑦1𝑎2 + 𝑦2𝑎1 − 𝑦1𝑎1 +⋯ 

+𝑦j−1𝑎𝑗−1 − 𝑦𝑗−2𝑎𝑗−1 + 𝑦j−1𝑎𝑗−2 − 𝑦j−2𝑎𝑗−2 

+𝑦j𝑎𝑗 − 𝑦𝑗−1𝑎𝑗 + 𝑦j𝑎𝑗−1 − 𝑦j−1𝑎𝑗−1 

+𝑦j+1𝑎𝑗+1 − 𝑦𝑗𝑎𝑗+1 + 𝑦j+1𝑎𝑗 − 𝑦j𝑎𝑗 
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+𝑦j+2𝑎𝑗+2 − 𝑦𝑗+1𝑎𝑗+2 + 𝑦j+2𝑎𝑗+1 − 𝑦j+1𝑎𝑗+1 

…+ 𝑦N−1𝑎𝑁−1 − 𝑦𝑁−2𝑎𝑁−1 + 𝑦N−1𝑎𝑁−2 − 𝑦N−2𝑎𝑁−2 

+𝑦N𝑎𝑁 − 𝑦𝑁−1𝑎𝑁 + 𝑦N𝑎𝑁−1 − 𝑦N−1𝑎𝑁−1   (7.9)      

Cancelling and combining terms, we get: 

2𝐼𝑗
𝑚 = +𝑦1𝑎0 − 𝑦0𝑎0 

+𝑦2𝑎1 − 𝑦0𝑎1 +⋯ 

+𝑦j−1𝑎𝑗−1 − 𝑦𝑗−2𝑎𝑗−1 + 𝑦j−1𝑎𝑗−2 − 𝑦j−2𝑎𝑗−2 

 

+𝑦j𝑎𝑗 − 𝑦𝑗−1𝑎𝑗 + 𝑦j𝑎𝑗−1 − 𝑦j−1𝑎𝑗−1 

+𝑦j+1𝑎𝑗+1 − 𝑦𝑗𝑎𝑗+1 + 𝑦j+1𝑎𝑗 − 𝑦j𝑎𝑗 

+𝑦j+2𝑎𝑗+2 − 𝑦𝑗+1𝑎𝑗+2 + 𝑦j+2𝑎𝑗+1 − 𝑦j+1𝑎𝑗+1 

 

…+ 𝑦N−1𝑎𝑁−1 − 𝑦𝑁−2𝑎𝑁−1 + 𝑦N−1𝑎𝑁−2 − 𝑦N−2𝑎𝑁−2 

+𝑦N𝑎𝑁 − 𝑦𝑁−1𝑎𝑁 + 𝑦N𝑎𝑁−1 − 𝑦N−1𝑎𝑁−1 

+(𝑦2 − 𝑦1)[𝑎2 + 𝑎1] + ⋯+ (𝑦N − 𝑦𝑁−1)[𝑎𝑁 + 𝑎𝑁−1]      (7.10) 

 

= ∑ 𝜔𝑝𝐹𝑗
𝑚(𝑦𝑝)

𝑝=𝑁𝑄

𝑝=0

 (7.11) 

 

 

7.3 Details of singular integrations for Variance Gamma  

 

Variance Gamma  

𝜈(𝑢) = 𝐶
 𝑒−𝑀 𝑢

 𝑢1+𝑌
1𝑢>0  + 𝐶

 𝑒−𝐺|𝑢| 

|𝑢|1+𝑌
1𝑢<0  𝑤ℎ𝑒𝑟𝑒  𝑢 = ln 𝑦  (7.12) 
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With fractional jumps: 

Δ𝑢𝑗
𝐷 =

Δ𝑆𝑗

𝑆𝑗
, Δ𝑢𝑗

𝑈 = 
Δ𝑆𝑗+1

𝑆𝑗
 (7.13) 

We can write the singular volatility: 

𝜎𝑠𝑗
2 ≈ ∫ [(𝑒𝑢 − 1)]2

Δ𝑢𝑗
𝐷

0

𝐶𝑒−𝐺𝑢

𝑢1+𝑌
𝑑𝑢 + ∫ [(𝑒𝑢 − 1)]2

Δ𝑢𝑗
𝑈

0

𝐶𝑒−𝑀𝑢

𝑢1+𝑌
𝑑𝑢 (7.14) 

= ∫ 𝐶𝑒−𝐺𝑢𝑢1−𝑌 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝐷

0

𝑑𝑢 + ∫ 𝐶𝑒−𝑀𝑢𝑢1−𝑌 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝑈

0

𝑑𝑢 

For VG we know that  𝑌 = 0, 𝐺 = 𝜆𝑛 so we can write (7.14) as: 

𝜎𝑠𝑗
2 = ∫ 𝐶𝑒−𝐺𝑢𝑢 [1 +

𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝐷

0

𝑑𝑢

+ ∫ 𝐶𝑒−𝑀𝑢𝑢 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝑈

0

𝑑𝑢 
(7.15) 

Now,  

∫ 𝐶𝑒−𝐺𝑢𝑢 [1 +
𝑢

2!
+
𝑢2

3!
… ]

2Δ𝑢𝑗
𝐷

0

𝑑𝑢

= ∫ 𝐶𝑒−𝐺𝑢𝑢 [1 + 𝑢 +
7

12
𝑢2…]

Δ𝑢𝑗
𝐷

0

𝑑𝑢 
(7.16) 

We can write the first term as: 

∫ 𝐶𝑒−𝐺𝑢𝑢
Δ𝑢𝑗

𝐷

0

𝑑𝑢 =
𝐶

−𝐺
[𝑢𝑒−𝐺𝑢]0

Δ𝑢𝑗
𝐷

−
𝐶

−𝐺
∫ 𝑒−𝐺𝑢
Δ𝑢𝑗

𝐷

0

𝑑𝑢 (7.17) 

 

=
𝐶

−𝐺
(Δ𝑢𝑗

𝐷𝑒−𝐺Δ𝑢𝑗
𝐷

) −
𝐶

𝐺2
(𝑒−𝐺Δ𝑢𝑗

𝐷

− 1) =
𝐶

𝐺2
(1 − 𝑒−𝐺Δ𝑢𝑗

𝐷

− 𝐺Δ𝑢𝑗
𝐷𝑒−𝐺Δ𝑢𝑗

𝐷

) 
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=
𝐶

𝐺2
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎) =

𝐶

𝐺2
(
𝑎2

2
−
𝑎3

3
+⋯) 

where 𝑎 = 𝐺Δ𝑢𝑗
𝐷. The second term can be written: 

∫ 𝐶𝑒−𝐺𝑢𝑢2
Δ𝑢𝑗

𝐷

0

𝑑𝑢 =
𝐶

−𝐺
[𝑢2𝑒−𝐺𝑢]0

Δ𝑢𝑗
𝐷

+
2𝐶

𝐺
∫ 𝑢𝑒−𝐺𝑢
Δ𝑢𝑗

𝐷

0

𝑑𝑢 (7.18) 

=
𝐶

−𝐺
((Δ𝑢𝑗

𝐷)
2
𝑒−𝐺Δ𝑢𝑗

𝐷

) +
2𝐶

𝐺3
(1 − 𝑒−𝐺Δ𝑢𝑗

𝐷

− 𝐺Δ𝑢𝑗
𝐷𝑒−𝐺Δ𝑢𝑗

𝐷

) 

=
𝐶

𝐺3
(−𝐺2(Δ𝑢𝑗

𝐷)
2
𝑒−𝐺Δ𝑢𝑗

𝐷

) +
𝐶

𝐺3
(2 − 2𝑒−𝐺Δ𝑢𝑗

𝐷

− 2𝐺Δ𝑢𝑗
𝐷𝑒−𝐺Δ𝑢𝑗

𝐷

) 

=
2𝐶

𝐺3
(1 − 𝑒−𝐺Δ𝑢𝑗

𝐷

− 𝐺Δ𝑢𝑗
𝐷𝑒−𝐺Δ𝑢𝑗

𝐷

−
1

2
𝐺2 (Δ𝑢𝑗

𝐷)
2
 𝑒−𝐺Δ𝑢𝑗

𝐷

) 

=
2𝐶

𝐺3
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 −

𝑎2

2
𝑒−𝑎) =

2𝐶

𝐺3
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 −

𝑎2

2
𝑒−𝑎) =

2𝐶

𝐺3
(
𝑎3

6
+⋯) 

Adding the two terms, we get: 

𝐶

𝐺2
(
𝑎2

2
−
𝑎3

3
+⋯)+

2𝐶

𝐺3
(
𝑎3

6
+⋯) (7.19) 

The terms can be seen to scale in accordance to (
𝑎

𝐺
)
2

 and (
𝑎

𝐺
)
3

 assuming 

that (
𝑎

𝐺
) = Δ𝑢𝑗

𝐷 ≪ 1 the terms can be usefully truncated. Hence, we can 

define the successive approximations:  

 

[𝜎𝑠𝑗
2 ]
(1)
=
𝐶

𝐺2
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎) +

𝐶

𝑀2
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏)   (7.20) 

 

[𝜎𝑠𝑗
2 ]
(2)
=
𝐶

𝐺2
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎) +

2𝐶

𝐺3
(1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 −

𝑎2

2
𝑒−𝑎) (7.21) 
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+
𝐶

𝑀2
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏) +

2𝐶

𝑀3
(1 − 𝑒−𝑏 − 𝑏𝑒−𝑏 −

𝑏2

2
𝑒−𝑏)  

 

𝑎 = 𝐺Δ𝑢𝑗
𝐷, 𝑏 = 𝑀Δ𝑢𝑗

𝑈 
 

Note that: 

1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 = 1 − (1 − 𝑎 +
𝑎2

2
−
𝑎3

3!
+ ⋯) − 𝑎 (1 − 𝑎 +

𝑎2

2
−
𝑎3

3!
+ ⋯) (7.22) 

1 − 𝑒−𝑎 − 𝑎𝑒−𝑎 −
𝑎2

2
𝑒−𝑎 =

𝑎2

2
−
𝑎3

3
+ ⋯−

𝑎2

2
(1 − 𝑎 +

𝑎2

2
−
𝑎3

3!
+ ⋯) =

𝑎3

6
+ ⋯ 

(7.23) 
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