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Abstract. A stochastic point process model, which is constructed from a class of
doubly stochastic Poisson processes, is proposed to analyse point rainfall time se-
ries observed in fine sub-hourly time scales. Under the framework of this stochastic
model, rain cells arrive according to a Poisson process whose arrival rate is gov-
erned by a finite-state Markov chain. Each cell of the point process has a random
lifetime during which instantaneous random depths (pulses) of rainfall bursts oc-
cur as another Poisson process. The structure of this model enables us to study
the variability of rainfall characteristics at small time intervals. The covariance
structure of the pulse occurrence process is studied. Second-order properties of the
time series of cumulative rainfall in discrete intervals are derived to model 5-minute
rainfall data, over a period of 48 years, from Germany. The results show that the
proposed model is capable of reproducing rainfall properties well at various sub-
hourly resolutions.
Keywords: Doubly Stochastic Poisson process, Fine-scale rainfall, Point process,
Stochastic models, Rainfall pulse.

1 Introduction

Stochastic point process models for rainfall have been studied extensively by
many authors over the years. Much of the work has focused on models based
on Poisson cluster processes (Rodriguez-Iturbe et al, 1987 [11], Cowpertwait
1994 [3], Onof 1994 [5], Chandler 1997 [1]) utilizing either the Neyman-Scott
or Bartlett-Lewis processes. Rainfall models based on Markov process have
also been considered by some authors (Smith and Karr 1983 [12], Ramesh
1998 [9], Onof et al 2002 [6], amongst others). However, the majority of the
literature on this topic has concentrated on modelling rainfall data recorded
at hourly or higher aggregation level. In some hydrological applications there
is a need to reproduce rainfall time series at much smaller aggregation level.
There has been some work lately on modelling fine-scale rainfall data us-
ing point process models. Cowpertwait et al 2007 [2] developed a Bartlett-
Lewis pluse model to study fine-scale rainfall structure whereas Ramesh et al,
2011 [10] considered a class of doubly stochastic Poisson processes to study
fine-scale rainfall intensity using rainfall bucket tip time series.
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In this paper, following the approach suggested in Cowpertwait et al
2007 [2], we develop a simple point process model based on a doubly stochas-
tic Poisson process to analyse rainfall time series collected at sub hourly
fine-scale resolution. Expressions for the second-order properties of the accu-
mulated rainfall in disjoint intervals are derived. The proposed model is fitted
to 48 years of 5-minute rainfall time series from Germany. The results show
that the model is capable of reproducing rainfall properties well at various
sub-hourly resolutions.

2 Model framework

We shall start with a brief description of the doubly stochastic Poisson pro-
cesses (DSPP), as the model we propose is derived from a special class of
this process. A DSPP is a point process where the arrival rate of a Poisson
process itself becomes a stochastic process. A special class of tractable DSPP
emerges when the arrival rate of the point process is governed by a finite-state
irreducible Markov chain. This process is also called a Markov-modulated
Poisson process (MMPP), see for example, Ramesh 1995 [8] amongst others.
The model we propose in this paper, to study fine-scale rainfall time series,
is based on this class of DSPP.

Suppose that the rain cells arrive according to a DSPP on two states
where the arrival rate is switching between the high intensity (φ2) and low
intensity (φ1) states at random times controlled by the underlying Markov
chain that has transition rates λ (for 1 → 2) and µ (for 2 → 1). Each
rain cell has a random lifetime of length L and a cell originated at time Ti
terminates at time Ti +Li. The cell lifetimes Li are taken to be independent
and exponentially distributed with parameter η. During the lifetime of each
cell, [Ti, Ti + Li), instantaneous random pulses of rainfall at times Tij occur
according to another Poisson process at rate ξ. The process of pulse arrival
terminates with the cell lifetime. Hence each cell of the DSPP generates a
series of pulses during its lifetime and associated with each pulse is a random
rainfall depth, Xij , and therefore the process {Tij , Xij} becomes a marked
point process (Cox & Isham, 1980 [4]). In our derivation of model properties
in Section 3, we treat the pulses in distinct cells as independent but allow
those within a single cell to be dependent. We refer this model as the doubly
stochastic pulse model (DSP).

3 Covariance structure of pulse arrival process

As the properties of the pulse arrival process are functions of those of the cell
arrival process, we shall first see the properties of the cell arrival process. The
second-order properties of the two state DSPP can be obtained as functions
of the parameters {λ, µ, φ1, φ2} (Ramesh 1998 [9]). The mean arrival rate of



Stochastic point process model for fine-scale rainfall time series 3

this cell arrival process M(t) is written as E(M(t)) = m = λφ2+µφ1

λ+µ and the

covariance density of M(t), for t > 0, is given by

cM (t) = Ae−(λ+µ)t, where A =
λµ

(λ+ µ)2
(φ1 − φ2)2. (1)

This shows that the covariance of the cell arrival process decays exponentially
with time. We shall now study the covariance structure of the pulse arrival
process and focus our attention on deriving an expression for its covariance
density which will then be used in the derivation of the statistical properties
of the aggregated rainfall process in Section 4.

In this DSP model framework, the cell lifetimes Li are assumed to follow
exponential distribution with parameter η and therefore we have E(Li) = 1

η .

Let N(t) be the counting process of pulse occurrences from all cells. If a cell
is active then it generates a series of instantaneous pulses at Poisson rate
ξ during its lifetime and therefore the mean number of pulses per cell is ξ

η .

Hence the mean arrival rate of pulses is E(N(t)) = mξ
η .

To derive an expression for the covariance density of this DLP process, we
first studied the product density of the point process (Cox & Isham, 1980 [4])
at distinct time points. We considered two distinct pulses at time t and t+u
(u > 0), which may come from the same cell or different cells, and obtained
an expression for the product density which was then used to obtain the
covariance density of this DLP process for u ≥ 0 as

c(u) =

(
mξ

η

)
δ(u) +A1e

−(λ+µ)u + [B2 −B1] e−ηu (2)

where A1 =
(

ξ2A
η2−(λ+µ)2

)
, B1 =

((
ξm
η

)2
+
(

ξ2A
η2−(λ+µ)2

))
and B2 =

(
ξ2m
η

)
.

Here A1 and B1 correspond to the contribution from pulses generated by dif-
ferent cells whereas B2 corresponds to the contribution from different pulses
within the same cell, where the depths of these pulses may be dependent.

4 Properties of the aggregated rainfall

Although our DSP process evolves in continuous time, the rainfall data are
usually available in aggregated form in equally spaced discrete time intervals.
We, therefore, develop expressions for the second-order properties of the ag-
gregated rainfall process which can be used for model fitting and assessment.

Let Y
(h)
i be the total rainfall in disjoint time intervals of fixed length h, for

i = 1, 2, . . . , then it can be expressed as

Y
(h)
i =

∫ ih

(i−1)h

X(t)dN(t),
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where X(t) is the depth of a pulse at time t. Let E(X(t)) = µx be the mean
depth of the pulses. The mean of the aggregated rainfall can be written as

E
[
Y

(h)
i

]
=

∫ ih

(i−1)h

E(X(t))dN(t) =

(
mξ

η

)
µxh. (3)

The variance and autocovariance function of the aggregated rainfall process
can now be worked out using the covariance density of the pulse arrival
process given in (2). In this derivation, we need to distinguish whether the
pulses at time t and s belong to the same cell or come from different cells. This
will allow us to accommodate some within-cell depth dependence. However,
it is assumed that any two pulses within a cell, regardless of their location
within the cell, have the same expected product moment of depths. In this
set up, the variance function turns out to be

Var
[
Y

(h)
i

]
= E(X2)

(
mξ

η

)
h

+ 2µ2
xA1ψ1(λ+ µ) + 2

[
E [XijXik]B2 −B1µ

2
x

]
ψ1(η) (4)

where ψ1(λ+ µ) =
[(λ+µ)h−1+e−(λ+µ)h]

(λ+µ)2 and ψ1(η) =
[ηh−1+e−ηh]

η2 .

Similarly, the autocovariance function for the aggregated rainfall in two
distinct intervals can be derived, by distinguishing the contributions from
pulses within the same cell, and this is given below, for k ≥ 1,

cov
[
Y

(h)
i , Y

(h)
i+k

]
=

∫ (k+1)h

kh

∫ h

0

cov [X(s)dN(s), X(t)dN(t)]

= µ2
xA1ψ2(λ+ µ) +

[
E [XijXik]B2 −B1µ

2
x

]
ψ2(η) (5)

where ψ2(λ+µ) = e−(λ+µ)(k−1)h [1−e−(λ+µ)h]
2

(λ+µ)2 and ψ2(η) = e−η(k−1)h [1−e−ηh]
2

η2 .

When considering the special case where all pulse depths are independent
E (XijXik) can be replaced by µ2

x in equations (4) and (5).

5 Model fitting and assessment

We use our DSP model to analyse 48 years (1960 - 2007) of 5-minute rainfall
data from Dortmund (courtesy of Emschergenossenschaft/Lippeverband) in
the Bochum region around the river Ems in Germany and assess how well
the fitted model reproduces the properties of the rainfall over a range of sub
hourly resolutions. In this work, we shall restrict ourselves to the special
case where the pulse depths X

′s
ij are independent random variables with an

exponential distribution. Our model then has 7 parameters but we estimate
the 6 parameters by the method of moment approach using the observed
and theoretical values of the second-order properties. The parameter µx is
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estimated separately for each month using the sample mean by the following
equation

µx =

(
η

mξ

)
x̄

where x̄ is the estimated average of hourly rainfall for each month.
The following dimensionless functions, coefficient of variation ν(h) and

the autocorrelation at lag 1 ρ(h) of the aggregated rainfall process, are used
to estimate the remaining 6 parameters of the model.

ν(h) =

E

[(
Y

(h)
i − E

[
Y

(h)
i

])2]1/2
E(Y

(h)
i )

, ρ(h) = Corr
[
Y

(h)
i , Y

(h)
i+1

]
.

The above properties of the aggregated process at 4 different agrregation
levels (at h=1/12, 1/3, 1/2 and 1 hour) are used in our estimation. The es-
timates of the functions from the empirical data, denoted by ν̂(h) and ρ̂(h),
are calculated for each month using 48 years of 5-minute rainfall series accu-
mulated at appropriate scales. The estimated values of the model parameters
{λ̂, µ̂, φ̂1, φ̂2, η̂ and ξ̂} for each month can be obtained by minimizing the
weighted sum of squares of dimensionless functions as given below using stan-
dard routines. Here the weights are taken as the reciprocal of the variance of
the empirical values of the functions calculated separately for the 48 years.∑

h= 1
12 ,

1
3 ,

1
2 ,1

[
1

ˆvar(ν(h))
(ν̂(h)− ν(h))

2
+

1

ˆvar(ρ(h))
(ρ̂(h)− ρ(h))

2

]
.

The above objective function is minimized, using the simplex algorithm by
Nelder & Mead, separately for each month to obtain estimates of the model
parameters. Values of µ̂ are larger for summer months showing smaller mean
sojourn times (1/µ) in higher rainfall intensity state. The estimates φ̂2 and

ξ̂ are also higher, in general, for the summer months and show that the cell
arrival rates vary from about 55 to 82 per hour whereas the pulse arrival rates
range from 106 to 178 per hour throughout the year. The mean duration of
cell lifetime (1/η) falls between 1.3 to 2 minutes.

The empirical and fitted values of the mean, standard deviation, coef-
ficient of variation and lag 1 autocorrelation of the aggregated rainfall are
displayed in Figures 1 and 2. In almost all cases a near perfect fit, exact
fit in some cases, was obtained for all properties. An exception is the lag1
autocorrelation at 1 hour aggregation level where there appears to be a slight
underestimation. Nevertheless the differences in the correlations are less than
0.1 and the model does well at small time-scales. One point to note here is
that h=10 minutes aggregation was not used in the fitting but the model has
certainly reproduced all the properties well for this time-scale. This reveals
that the model is capable of producing estimates of the quantities not used
in the fitting which adds strength to this DSP modelling framework.
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Fig. 1. Observed and fitted values of the mean and Standard deviation of the
aggregated rainfall for DSP model at h=5, 10, 20, 30 and 60 minute aggregations.
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Fig. 2. Observed and fitted values of the coefficient of variation and autocorrela-
tion of the aggregated rainfall for DSP model at h=5, 10, 20, 30 and 60 minute
aggregations.
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6 Conclusions and future work

A DSP model has been developed to study the properties of fine-scale rainfall
time series. Second-order moment properties of the aggregated rainfall have
been derived and used for model fitting and assessment. The empirical prop-
erties of the rainfall are in very good agreement with the fitted theoretical
values over a range of sub hourly time scales, including those that are not
used in fitting. This suggests that the model is capable of reproducing the
fine scale structure of the rainfall process well and has potential application
in many areas. Despite this, there is potential to develop the model further
to accommodate third order moments and also to explore its capability to
handle aggregations at higher levels. Further developments to explore other
hydrological properties of interest are also envisaged.
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