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Abstract 

A major econometric issue in estimating production parameters and technical efficiency is the 
possibility that some forces influencing production are only observed by the firm and not by the 
econometrician. Not only can this misspecification lead to a biased inference on the output 
elasticity of inputs, but it also provides a faulty measure of technical efficiency. We extend the 
Levinsohn and Petrin (2003) approach and provide an estimation algorithm to overcome the 
problem of endogenous input choice in stochastic production frontier estimation by generating 
consistent estimates of production parameters and technical efficiency. We apply the proposed 
method to a plant-level panel dataset from the Colombian food manufacturing sector for the 
period 1982-1998. This dataset provides the value of output and prices charged for each product, 
expenditures and prices paid for each material used, energy consumption in kilowatt per hour 
and energy prices, number of workers and payroll, and book values of capital stock. Empirical 
results find that the traditional stochastic production frontier tends to underestimate the output 
elasticity of capital and firm-level technical efficiency. The evidence in this research suggests 
that addressing the endogeneity issue matters in stochastic production frontier analysis. 
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Introduction 

Estimating the production technology is fundamental to assessing the production potential of 

firms or sectors. Increased availability of large firm-level micro datasets of inputs and outputs 

and the interest in analyzing production efficiency in relation to any change in policy in 

production processes has led to renewed interest in productivity and efficiency analysis. From an 

econometric perspective, the stochastic production frontier approach has been a standard starting 

point for modeling technical efficiency (Kumbhakar and Lovell 2000; Greene 2008).  

A major econometric issue in estimating production parameters and technical efficiency 

is the possibility that some determinants of production are only observed (or predictable) by the 

firm and not by the econometrician. The firm’s input allocation is chosen by its optimizing 

behavior where input choices may be correlated with these observed (or predictable by the firm) 

components. Traditionally, stochastic production frontier models assume that input choices are 

independent of the efficiency and productivity term. If a firm observes some part of its efficiency 

and productivity, its input choices may be influenced, resulting in an endogeneity problem in the 

stochastic production frontier estimation. This misspecification leads to a biased inference on 

measurement of input elasticities and the economies of scale, and provides a faulty measure of 

firm technical efficiency.  

The concerns about endogeneity in production function estimation are well documented 

in the literature (Marschak and Andrews 1944; Griliches and Mairesse 1995; Olley and Pakes 

1996; Levinsohn and Petrin 2003; Ackerberg, Caves, and Frazer 2006). Quantities of inputs are 

likely to be correlated with productivity shocks, which lead to biased estimates of production 

function parameters. The traditional approaches to addressing endogeneity in production 
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function estimation employing instrumental variables and fixed effects are problematic on both 

theoretical and empirical grounds. Olley and Pakes (1996)  address endogeniety by focusing on 

investment to control for the unobserved productivity shock, while Levinsohn and Petrin (2003) 

and Ackerberg, Caves, and Frazer (2006) use intermediate inputs as a means to  control for the 

unobserved shocks. These approaches assume that firms operate efficiently to obtain maximum 

potential output given the firm’s resources and information at a given time. However, the firms 

may not necessarily make optimal decisions in every period. The discrepancy between optimal 

and observed quantities is derived as a measure of technical efficiency in the stochastic frontier 

literature.  

Kutlu (2010) and Tran and Tsionas (2013) modify the widely used Battese and Coelli 

(1992) approach to deal with the endogeneity problem in the case of stochastic production 

frontier estimation. Mutter et al. (2013) also address the endogeneity issue but in a stochastic 

cost frontier setting. However, these latter studies do not model shocks to the production that are 

predictable by the firms but unknown to the econometricians.  

Overall, the stochastic frontier literature has largely ignored the advances made in firm 

production function estimation using inputs to control for unobservables. Our approach extends 

the semi-parametric estimation approach of Levinsohn and Petrin (2003) and provides an 

estimation algorithm to address the endogeneity of the input bias problem within the stochastic 

production frontier framework to generate consistent estimates of the production parameters and 

technical efficiency. We apply the proposed method to plant-level panel data for the Colombian 

food manufacturing sector and find that addressing the endogeneity issue significantly impacts 

stochastic production frontier estimation. 
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The next section addresses the issue of the endogeneity of input choice and presents a 

semi-parametric approach to the stochastic production frontier estimation that corrects for the 

input choice endogeneity. The following two sections present the data and estimation results, 

with the final section providing concluding comments.   

Endogeneity and the Stochastic Production Frontier 

Firm output is bounded from above by a frontier that is stochastic in the sense that it varies 

randomly across firms. The starting point is the stochastic production frontier for a sample of N 

firms for T time periods, and can be written as  

(1) ( ; ) it itv u
it it itY A f X eβ −= ;,...,1;,...,1 TtNi ==  

itY  denotes production of ith firm at time period t , itX  is a vector of input quantities of ith firm at 

t  time period, β  is a vector of unknown parameters to be estimated, and itA  is the (unobserved) 

production shock component. The model combines two random error components; 

2~ (0, )it vv N σ , a standard noise component, and 2~ ( , )it uu N µ σ+ ,  a non-negative term reflecting 

technical inefficiency.   

We focus on the log-linear form of the Cobb-Douglas production frontier with technical 

efficiency presented as  

(2) 0it l it m it e it k it it it ity l m e k t a v uβ β β β β δ= + + + + + + + −  

where y , l , m , e , and k  refer to the natural logarithm of output, labor, material, energy, and 

capital inputs, respectively, while lβ , mβ , eβ , and kβ are the coefficients associated with inputs  
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l , m , e , and k ;  t is the proxy for exogenous technical change; itu represents technical 

inefficiency; and itv  is random statistical noise. We can create a composed error term  

( )itititit uva −+=ε   with the following rationale. The shocks to production that are predictable 

by firms when making input decision are denoted ita and can be influenced by factors like 

expected rainfall at the firm’s location, managerial ability of the firm, expected breakdowns, 

strikes, etc. The pure random deviation or measurement error, itv , is not observable by the firm 

when making its input choices.  The deviations from the ‘best-practice’ firm are captured by itu . 

All the predictable components of the productivity and efficiency are embodied in the ita term to 

address endogeneity. 

If a firm observes some part of its efficiency and productivity, its input choices may be 

influenced, resulting in a simultaneity problem in the stochastic production frontier estimation. 

These production input decisions can be influenced by common causes impacting efficiency and, 

hence, the simultaneity problem emerges. Inputs are likely to be correlated with the components 

of productivity and efficiency that are observed by the firm but unobserved by the 

econometrician. This problem is more pronounced for inputs that adjust quickly, such as labor 

and materials. The omission of some explanatory variables leads to biased likelihood estimation 

of the stochastic production frontier models.  

Semi-parametric approach to stochastic production frontier estimation 

Olley and Pakes (1996) overcome the simultaneity problem by using investment as a proxy for 

the unobserved productivity shock. When investment is discontinuous, Levinsohn and Petrin 

(2003) suggest that investment may not respond fully to the productivity shocks and propose 
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using intermediate inputs to control for the simultaneity problem. Two important conditions must 

be met for intermediate inputs to be a valid proxy for controlling for simultaneity. First, there 

should be a strict monotonicity assumption on the intermediate input demand functions, which 

follows the basic economic primitives of a profit maximizing firm.  If more productive firms find 

it profitable to produce more than the less productive firms for a given capital stock, more 

productive firms will demand more of that intermediate input.  Second, the market environment 

is assumed to be competitive and firms face common input and output prices. This assumption 

relates to the monotonicity condition.  If the market structure is not competitive, it is not obvious 

that the firms with a greater productivity shock will produce more output, and hence will use 

more intermediate input. In an oligopolistic market structure, for example, the more productive 

firms do not necessarily produce more due to price differences.  

To correct for the simultaneity issue in stochastic production frontier estimation, we 

modify the structural estimation methodology proposed by Levinsohn and Petrin (2003) for 

obtaining consistent estimates of production parameters and technical efficiency. The estimation 

stages proceed as follows:  

Stage 1 

The first stage employs energy as the proxy for the unobserved productivity shock. Using the 

assumptions mentioned above, specifying the input demand function for energy as  

(3) ( , )it it it ite e a k= , 

we employ the monotonicity condition to invert (3) and generate the energy demand equation 

(4) ( , )it it it ita a e k= . 
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 By expressing the intermediate input demand as only a function of ita  and itk , we implicitly 

invoke the perfect competition assumption, which further assumes input and output prices are 

identical across firms. However, indexing the input demand function by t   allow these prices to 

change over time, with prices being common across firms, allowing us to express the 

intermediate input demand function with just two state variables.1  

In estimating (2), we follow Battese and Coelli (1992), 2~ (0, )it vv N σ , 2~ ( , )it uu N µ σ+ , 

and  time-varying technical efficiency is defined by exp( [ ])it iu u t Tζ= − − , with iu  reflecting the 

firm-specific, base-period efficiency component, where the sign of the estimated ζ governs the 

change in technical inefficiency over time. While the production shock ita  is a state variable that 

influences the firm’s decision, the remaining error it itv u−   has no impact on the firm’s decision.  

Substituting (4) into (2) yields 

(5) ( , )it l it m it t it it it ity l m t e k v uβ β δ φ= + + + + −  

where  

(6) 0( , ) ( , )t it it k it e it it it ite k k e a e kφ β β β= + + + . 

Following Levinsohn and Petrin (2003), we specify a third-order polynomial approximation in 

tk and te in place of ( , )t t te kφ  or 
3 3

0 0

( , )
i

i j
t t t ij t t

i j

e k c k eφ
−

= =

≈∑∑ . Maximum likelihood estimation with 

no intercept leads to consistent estimates of the coefficients of freely variable inputs except the 

proxy from (5). The time-varying technical efficiency parameter is also estimated in this stage 

using the Battese and Coelli (1992) error component model.  

Stage 2 
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The coefficients of the proxy input and capital are identified in this stage. Coefficients of capital 

and energy enter twice in (6) and cannot be identified without further restrictions. Building on 

Levinsohn and Petrin (2003), identification is facilitated by assuming that capital is a state 

variable and does not instantaneously adjust to the unexpected part of productivity shock, 

although it might adjust to the predicted part. This notion is formalized by assuming that 

productivity is governed by an exogenous first-order Markov process 

(7) ( ) ( )1
0 1 1| { } , |t

it i it it itp a a I p a aτ τ
−
= − −=   

where 1itI −  is the firm’s information set at 1t − . The evolution of a firm’s productivity over time 

is such that a firm having just observed 1ita −  at 1t −  infers that the distribution of ita  will be 

( )1|it itp a a − . We can decompose ita  into its conditional expectation given the information 

available to the firm at 1t − (denoted by 1itI − ) and a residual in ita  

(8) ( )1|it it it ita E a I ξ−= +  . 

Using the assumption that productivity follows a first-order Markov process as given in (7) we 

know that firms, realizing the value of 1ita −  at 1t − , form expectations of productivity at t   and 

hence we obtain 

(9) ( )1|it it it ita E a a ξ−= + . 

Further, we assume that the non-forecastable part of productivity is uncorrelated with capital, 

leading to the two moment conditions  

(10) [ ] [ ] [ ]( ) 0it it it it it it itE v k E k E v kξ ξ+ = + =  
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(11) [ ] [ ] [ ]1 1 1( ) 0it it it it it it itE v e E e E v eξ ξ− − −+ = + =  

The first moment condition (10) states the assumption that capital does not respond to the 

innovation in productivity. Capital stock in period t is determined by investment decisions from 

previous periods and does not respond to this period’s productivity innovationtξ . The second 

moment condition (11) reflects last period’s electricity choice and is uncorrelated with 

innovation in productivity. We employ the Generalized Method of Moments (GMM) to estimate 

the parameters of capital and energy, which involves choosing a starting value *eβ and *
kβ for the 

estimation algorithm. For any candidate values, we re-write (2) to yield  

(12) * *ˆ ˆ ˆ ˆit l it m it e it k it it it ity l m e k t u a vβ β β β δ− − − − − + = +  

Substituting (9) into (12) yields 

(13) * *
, 1

ˆ ˆ ˆ ˆ ( | )it l it m it e it k it it it i t it ity l m e k t u E a a vβ β β β δ ξ−− − − − − + − = +  

Conditional on our candidate values (*
eβ , *

kβ ), (12) implies estimate of it ita v+�   

(14) it ita v+� * *ˆ ˆ ˆ ˆit l it m it e it k it ity l m e k t uβ β β β δ= − − − − − +  

With , 1( | )it i tE a a −  unknown, we estimate ( ), 1 , 1( | ) |it i t it it i tE a a E a v a− −= + . From (6) in Stage 1 we 

obtain 

(15) * *
, 1 , 1 , 1 , 1

ˆˆi t i t e i t k i ta e kφ β β− − − −= − −  

By performing local least squares regression2 on it ita v+� by , 1ˆi ta − we estimate , 1( | )it i tE a a − , which 

now allows us to compute an estimate of the residual � ( )*
it itvξ β+  using (13) where 

* * *( , )k eβ β β= . We perform local least squares with dependent variable it ita v+�  and independent 
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variable 1ˆita − , specifying a local quadratic kernel-based estimation that weights the observations 

closest to the point of evaluation more heavily. We then employ the GMM criterion to estimate 

the unknown parameters * * *( , )k eβ β β=   

(16) 

   

min
β *

ξit + vit
�( )kit

t
∑

i
∑







2

+ ξit + vit
�( )ei ,t−1

t
∑

i
∑







2












 

and use a two-dimensional grid search to obtain the global minimum of this objective function 

by allowing the candidate values for *kβ  and *
eβ  to vary from 0.01 to 0.99, in increments of 0.01. 

The moment condition represents the distance between the observed moments and zero. The two 

moment conditions (10) and (11) state that the residual term � ( )*
it itvξ β+

 
is mean independent of 

itk  and 1ite − .  

 In stage 2, the estimated coefficients from stage 1 are fed into the regression equations to 

compute it ita v+�  and , 1ˆi ta − . Local quadratic least square estimation is executed using these 

estimators. Both the estimated stage 1 coefficients and the predicted values from the local least 

square regression are then combined in the GMM estimation routine to estimate the coefficients 

of the capital and the proxy. All the preliminary estimators are used more than once and they 

introduce noise into the estimation routine. We use the bootstrap approach to estimate the 

standard errors where the observed data are used to approximate the true population distribution 

of the data and are sampled repeatedly to compare the variability of the estimates across these 

samples.  

Data Description 
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Our dataset is sourced from the Colombian Annual Manufacturers Survey (AMS) covering 1982 

to 1998.  The AMS is an unbalanced panel of plant-specific quantities and prices for both output 

and inputs, and is suitable for estimating the gross output physical production frontier. The data 

are provided by Departamento Administrativo Nacional de Estadistica (DANE) and were 

created originally to study the impact of structural reforms on productivity and profitability 

enhancing reallocation in the Colombian manufacturing industry (Eslava et al. 2004). The same 

database is used by Eslava et al. (2010) to investigate the plant-level adjustment dynamics of 

capital and labor and their joint interactions in the context of deregulated Colombian 

manufacturers. 

The dataset is comprised of Colombian manufacturing plants with more than 10 

employees or sales over US$35,000 in 19983, and contains annual plant-level information on the 

following: i) the value of output and prices charged for each product; ii) cost and prices paid for 

each material used; iii) energy consumption in kilowatt per hour and energy prices; iv) number 

of workers and payroll; and v) book values of capital stock (buildings, structures, machinery, and 

equipment)4. In contrast to the literature measuring productivity by deflating sales by an 

industry-level price index, these data eliminate a common source of measurement error in 

production function estimation.  

The plant-level price indices of output and materials are constructed using Tornqvist 

indices. While the quantities of materials and output are constructed by dividing the cost of 

materials and value of output by the corresponding price indices, the quantities of energy 

consumption are directly reported in the data. The capital stock variable is constructed by the 

perpetual inventory method using the book values and capital expenditure together with gross 

capital deflators and the depreciation rate of capital. Capital in period t  is calculated by 
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combining deflated investment in new capital with depreciated capital from 1t − .5 Labor is 

measured as total hours of employment, which is an improvement over the number of employees 

as a labor variable. Since these data do not present worker hours, a sector-level measure of 

average hours per laborer is constructed as the ratio of earnings per worker and the sectoral 

wage, which is obtained from the Monthly Manufacturing Survey of various years. 

This study focuses on the Colombian meat, dairy products, bakery products, and 

confectionary industry indicated by 4-digit ISIC codes 3111, 3112, 3117, and 3119, respectively. 

We estimate the production frontier model at the 4-digit ISIC level to address as homogenous a 

sample of producers as possible. These data are annual time-series observations for 93 meat 

manufacturing firms with 1032 observations, 99 dairy firms with a total of 1219 observations, 

363 bakery firms with 4049 observations, and 46 chocolate and confectionary firms with 551 

observations. Summary statistics for the key variables are presented in Table 1 where the means 

and standard deviations of the logarithm of plant-level physical quantity and price of output and 

input variables are presented. The units for energy consumption and labor use are kilowatt hours 

and hours of employment, respectively. Output, capital, and materials are expressed in thousands 

of pesos based on the constant price index for 1982 being 100. The level of inputs and output 

differs across the food sub-sectors. Meat and dairy product firms are comparatively large in 

terms of average annual output, capital and employment. There are significant differences in 

material and energy consumption among the sectors. Meat and dairy product firms are more 

material- and energy-intensive than bakery and confectionary product firms.  

The prices for output, materials, and energy are expressed as real prices relative to the 

yearly producer price index (PPI) to discount inflation. The mean of this relative price should be 

close to zero if appropriately weighted by output since the PPI value is dominated by 
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manufacturing industries. A positive price variable can be interpreted as an increase in price 

relative to yearly PPI, whereas, a negative price variable shows a decrease in price relative to 

yearly PPI.    

These constructed price indices are used to obtain plant-specific physical quantities by 

deflating the value of output and inputs and represent an important advantage over deflating sales 

by industry-level aggregate price deflators. In the next section we use these variables to estimate 

the production parameters and the technical efficiency by using a capital-labor-energy-material 

(KLEM) physical production frontier.  

Estimation Results 

Table 2 presents the stochastic production frontier parameter estimates using the traditional 

production frontier and the endogeneity corrected production frontier method. The standard 

errors are reported in parentheses and all dependent and independent variables are in log form. 

As a baseline, the traditional production frontier parameters are estimated using the Battese and 

Coelli (1992) error component model and the maximum-likelihood method with time-varying 

technical efficiency. The endogeneity corrected stochastic production frontier is estimated by the 

two-stage semi-parametric method outlined earlier where energy acts as proxy for the 

productivity shock6. The coefficients of labor and materials are estimated in the first stage 

whereas the coefficients of capital and energy are estimated in the second stage of the estimation 

procedure. The parameters of the production frontiers are significantly different across the four 

industries, but none have radically different point estimates. The estimates from both methods 

differ and provide insights into the endogeneity issue in stochastic production frontier estimation. 

As the semi-parametric approach points out, these elasticities are likely to be biased if 
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productivity shocks are correlated with input choices. The coefficient of materials is the largest 

and lies in the range 0.7-0.8 for all individual food industries and the aggregate food sector. The 

output elasticities of labor and material are similar within the four industries, but that of energy is 

different in both methods. The coefficient of capital is consistently higher in the endogeneity 

corrected method than in the traditional stochastic frontier method in all four industries and the 

food manufacturing sector in aggregate. Compared to the endogeneity-corrected model, the 

estimates of the traditional stochastic frontier models find labor and materials coefficients to be 

equivalent or slightly overestimated for all industries. The energy coefficients, on the other hand, 

are underestimated for 4 out of the 5 regressions in the traditional stochastic frontier model. 

Consistently better log-likelihood values are generated with the endogeneity-corrected method 

than in the traditional method across industries. 

For a two-input production function, with one variable input and one quasi-fixed (say 

capital) input, Marschak and Andrews (1944) suggest that the coefficient of the variable input is 

likely to be biased upward while the capital estimate is likely to be biased downward, provided 

the capital is not correlated or weakly correlated with this period’s productivity shock. But in the 

presence of endogeneity, it is generally impossible to sign the biases of the production function 

coefficients when there are many inputs (Levinsohn and Petrin 2003). All of the inputs may be 

correlated with the error to varying degrees. The estimation bias of the production function 

coefficients depends not only on the correlation of the input variables with the unobserved 

productivity shock but also on the correlation between the input variables. With the energy proxy 

controlling for the unobserved productivity shock that is correlated with variable inputs, the 

evidence suggests that addressing the endogeneity issue matters in stochastic production frontier 

estimation to generate consistent estimates of production parameters for this sample of 
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Colombian food industry firms. The average rate of technical progress in all food manufacturing 

sectors is positive. For the industry-level estimation, the average rates of technical progress for 

meat and dairy product sectors are higher than that for bakery and confectionary product sectors. 

The annual rate of technical progress is highest in the meat industry with an estimate of 2%, and 

lowest in the bakery product industry with an estimate of 1.2%. The returns to scale estimates for 

the four food industries are 1.035, 1.118, 1.234, and 1.173 for meat, dairy, bakery, and 

confectionary product sectors, respectively, although estimates are not significantly different 

from constant returns to scale as judged by the Wald test at the 5% significance level.  

Technical efficiency is estimated for each observation based on maximum likelihood 

estimation in the first stage. The point estimator for technical efficiency is calculated as the mean 

of the conditional distribution of itu  given it itv u− . The coefficient γ  denotes the variance of the 

inefficiency component divided by total variance of the composed error term. The estimates of γ  

in Table 2 for all industries and the sector in aggregate are statistically significant at least at the 

5% significance level, implying that technical inefficiency exists in all food sectors regardless of 

whether or not endogeneity is corrected for. The estimates of the time-varying efficiency 

component, ζ , are negative and statistically significant for all industries, implying that technical 

efficiency in Colombian food manufacturing sectors trending toward being less efficient. The 

significant coefficient γ , along with negative and significantζ , implies that technical efficiency 

is present and decreases over time. Estimates of technical efficiency vary considerably both 

across firms and across time periods. The average technical efficiency for all food industry firms 

is 62.1%. Meat and bakery product industries have the highest average technical efficiency 

estimates, both being 66%, and the dairy sector has the lowest average technical efficiency 

estimate, 56%.  Firm-level point estimates of technical efficiency are higher for most firms in the 
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endogeneity corrected method than in the traditional stochastic frontier model for all food 

industries we examined. Figure 1 provides kernel density plots of technical efficiency for both 

the traditional stochastic frontier and the endogeneity corrected stochastic frontier methods. The 

plots show that the distributions of TE for the endogeneity corrected method are shifted 

rightward consistently for all the sectors. The firm-level estimates of technical efficiency 

increase because of the correction of endogeneity by conditioning out correlated unobserved 

shocks in production in stage 1 of the estimation procedure. Overall, low technical efficiency 

estimates indicate that the rate of technology diffusion in Colombian food firms was slow.   

The average technical efficiency is found to be deteriorating through the sample period 

for all selected food manufacturing sectors. The rate of technical efficiency change consistently 

hovers around -1%, resulting in a steady negative impact on technological progress. Firm-level 

net effect of technological progress and technical efficiency change for the selected Colombian 

food manufacturing sectors are summarized by quintiles in Table 3. The results indicate that the 

gains in technological progress were reduced by the decrease in technical efficiency over time, 

but the net effects were positive for most food firms. Due to slow technological progress in 

bakery and confectionary product industries, the firms in the lowest quintile face a net loss 

effect. Overall, annual technological progress of 1.6% is offset by the negative estimate of 

average technical efficiency change of -1%, resulting in a net annual shift of 0.6% for all 

Colombian food manufacturing firms.  

The competitive environment suggests that a time-varying specification of technical 

efficiency is desirable, particularly if a long panel dataset is available. Differences in managerial 

ability and education can impact the firm’s technical efficiency (Mundlak, 1961; Stefanou and 

Saxena, 1988; Battese and Coelli, 1995; Kalaitzandonakes and Dunn, 1995). Evidence of 
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deteriorating technical efficiency is not new in the literature.  Other studies finding decreasing 

technical efficiency over time include Spanish dairy farming (Cuesta, 2000), Korean textile 

manufacturing (Kim and Han, 2001), and Malaysian manufacturing (Kim and Shafii, 2009). 

 

Concluding Comments 

In order to correct for the endogeneity of input choice problem in the stochastic production 

frontier estimation, this study controls for the unobserved productivity shock using an 

intermediate input as a proxy and compares the results concerning the information about 

endogeneity in the stochastic frontier framework. We find that the output elasticity of capital is 

consistently higher when correcting for endogeneity compared to the traditional stochastic 

frontier method in all four food sectors. The traditional stochastic frontier analysis approach 

tends to underestimate the output elasticity of capital and firm-level technical efficiency for the 

Colombian food manufacturing industry. Although the coefficients of variable inputs are not 

widely different in the two methods, labor and materials are slightly overestimated in the 

traditional stochastic frontier method. The distributions of firm-level technical efficiency are 

found to be shifted rightward in endogeneity corrected method because of the correction of 

endogeneity in stage 1 of the estimation procedure. The average technical efficiency for all food 

industries is approximately 62% and is found to be deteriorating through time. The results also 

suggest that the gains in technological progress are reduced by the decrease in technical 

efficiency over time, resulting in a modest net annual shift for all Colombian food manufacturing 

firms. Low technical efficiency estimates indicate that the rate of technology diffusion in the 

Colombian food firms is slow. Hence, it is important to encourage policies that promote the 
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efficient use of the existing technology to catch up to the technology frontier in the Colombian 

food manufacturing industry. 

The level of efficiency speaks to the competitiveness of plants and their ability to 

compete, survive and grow.  More efficient sectors can exploit greater gains from the resources 

expended, with greater efficiency translating into productivity gains. Correcting for the 

endogeneity of input choice leads to an increase in estimated technical efficiency for plants in 

each industry.  By providing a methodology and estimation algorithm for correcting endogeneity 

of input choice problem, this study overcomes a major limitation in existing stochastic frontier 

research and provides more accurate estimates of production parameters and technical efficiency 

that are critical for policy analysis. The evidence suggests that addressing the endogeneity issue 

matters in the stochastic production frontier estimation to generate consistent estimates of 

production parameters and technical efficiency.   
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    Table 1. Industry-wise Summary Statistics of Key Variables 

Variables 
Butchering and  
Meat Canning 

Dairy 
Products 

Bakery 
Products 

Cocoa, 
Chocolate and  
Confectionary  

All Food 

Output 11.582 12.035 9.779 10.637 10.976 

  (1.580) (1.673) (1.287) (1.937) (1.809) 

Capital 9.259 9.912 7.717 8.633 8.828 

  (1.655) (1.648) (1.558) (2.104) (1.949) 

Labor 11.244 11.541 10.508 10.956 10.881 

  (1.239) (1.086) (1.015) (1.298) (1.198) 

Energy 12.404 13.195 11.183 11.362 12.211 

  (1.580) (1.454) (1.186) (1.961) (1.719) 

Materials 11.276 11.687 9.341 10.140 10.637 

  (1.695) (1.690) (1.252) (1.962) (1.857) 

Output prices -0.109 -0.024 0.110 0.050 0.053 

  (0.299) (0.287) (0.338) (0.432) (0.328) 

Energy prices 0.394 0.365 0.381 0.425 0.349 

  (0.489) (0.430) (0.425) (0.396) (0.455) 

Material prices -0.143 -0.083 0.014 -0.012 -0.018 

  (0.331) (0.223) (0.221) (0.284) (0.268) 

No. of plants 93 99 363 46 1029 

No. of obs. 1032 1219 4049 551 10772 

 

 

Note: This table reports mean and standard deviations (in the brackets) of the log of quantity variables 
and log of prices deviated from yearly producer price indices to discount inflation. The units of the labor 
and energy variables are hours of employment and kilowatt hours respectively. The other variables are 
expressed in thousands of pesos based on constant price index for 1982 being 100.   
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                                                                                        Table 2. Stochastic Production Frontier Estimates  

Variables Butchering and meat 
canning 

Dairy Products Bakery Products Chocolate and 
confectionary 

All Food 

  Stochastic 
 frontier 

Endogeneity 
corrected  
stochastic 
frontier 

Stochastic 
 frontier 

Endogeneity 
corrected  
stochastic 
frontier 

Stochastic  
frontier 

Endogeneity 
corrected  
stochastic 
frontier 

Stochastic  
frontier 

Endogeneity 
corrected  
stochastic 
frontier 

Stochastic  
frontier 

Endogeneity 
corrected  
stochastic 
frontier 

Const. -0.817   -1.214   -0.459   -0.522   -0.693   

  (0.293)   (0.308)   (0.172)   (0.491)   (0.139)   

lnL 0.106 0.107 0.187 0.168 0.116 0.111 0.224 0.236 0.138 0.131 

  (0.017) (0.032) (0.019) (0.037) (0.010) (0.020) (0.027) (0.035) (0.007) (0.013) 

lnM 0.760 0.758 0.787 0.780 0.862 0.852 0.772 0.777 0.821 0.816 

  (0.014) (0.023) (0.015) (0.032) (0.009) (0.020) (0.021) (0.042) (0.006) (0.012) 

lnE 0.056 0.030 0.015 0.080 -0.002 0.200 -0.008 0.020 0.013 0.030 

  (0.014) (0.015) (0.015) (0.016) (0.007) (0.225) (0.020) (0.324) (0.005) (0.015) 

lnK 0.057 0.140 0.042 0.090 0.024 0.070 0.052 0.140 0.033 0.080 

  (0.012) (0.046) (0.013) (0.049) (0.005) (0.029) (0.016) (0.067) (0.004) (0.029) 

t 0.020 0.020 0.021 0.018 0.015 0.012 0.012 0.014 0.018 0.016 
  (0.003) (0.004) (0.003) (0.006) (0.002) (0.003) (0.005) (0.010) (0.002) (0.002) 

  0.139 0.140 0.135 0.126 0.124 0.126 0.223 0.240 0.135 0.137 

  (0.024) (0.025) (0.017) (0.016) (0.009) (0.010) (0.061) (0.076) (0.007) (0.008) 

  0.746 0.747 0.699 0.691 0.720 0.727 0.820 0.835 0.728 0.732 

  (0.045) (0.047) (0.040) (0.040) (0.022) (0.023) (0.050) (0.053) (0.015) (0.016) 

  0.497 0.480 0.759 0.729 0.651 0.569 0.675 0.607 0.764 0.687 

  (0.093) (0.094) (0.074) (0.073) (0.056) (0.043) (0.159) (0.188) (0.042) (0.040) 
  -0.037 -0.037 -0.037 -0.036 -0.038 -0.038 -0.036 -0.043 -0.034 -0.036 

  (0.008) (0.008) (0.005) (0.005) (0.003) (0.003) (0.009) (0.009) (0.002) (0.003) 

mean TE 0.653 0.660 0.562 0.581 0.633 0.663 0.624 0.645 0.585 0.621 

  (0.126) (0.126) (0.137) (0.131) (0.134) (0.138) (0.154) (0.161) (0.131) (0.135) 

LLR 112.460 113.930 75.904 105.932 535.462 548.676 27.679 32.578 654.374 683.705 
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Table 3. Firm-level Net Effect of Technical Change and Technical Efficiency Change Corrected for Endogeneity 

  
Quintile 

Butchering and  
Meat canning 

Dairy Products Bakery Products 
Chocolate and 
 Confectionary 

Net change 1 (lowest) 0.007 0.006 -0.001 -0.001 

  2 0.009 0.006 0.000 0.000 

  3 0.010 0.007 0.001 0.002 

  4 0.011 0.008 0.003 0.004 

  5 (highest) 0.014 0.011 0.007 0.008 

TEC 1 (lowest) -0.013 -0.013 -0.013 -0.015 

  2 -0.011 -0.012 -0.012 -0.014 

  3 -0.010 -0.012 -0.011 -0.012 

  4 -0.009 -0.011 -0.009 -0.010 

  5 (highest) -0.006 -0.007 -0.006 -0.006 

TP 1 (lowest) 0.020 0.018 0.012 0.014 

  2 0.020 0.018 0.012 0.014 

  3 0.020 0.018 0.012 0.014 

  4 0.020 0.018 0.012 0.014 

  5 (highest) 0.020 0.018 0.012 0.014 
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Figure 1. Kernel density plots of TE for endogeneity corrected and standard stochastic frontier for 4 sectors 
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Appendix A 

A stochastic frontier production model representing panel data can be written as 

exp( )it it it itY X v uβ= −  

Taking logarithmic transformation and writing log terms in small letters 

(A1) it it ity x β ε′= +   

where it it itv uε = −  is composed error. Following Battese and Coelli (1992), time varying 

technical inefficiency can be written as 

(A2) exp[ ( )]  ;  ( )( 1,2,.., ),it it i iu u t T u t i i Nζ ζ φ= = − − ∈ =  

where ζ is an unknown scalar parameter to be estimated and ( )iφ represents the set of iT time 

periods among the total T periods for which observation for the ith firm are obtained. Assuming 

2 2~ (0, ) and ~ ( , )it v i uv iidN u iidNσ µ σ+ and iu ’s and itv ’s are independent 

(A3) it it it iv uε ζ= −   

(A4) 

2

1/2

1 1
( ) exp

[1 ( )](2 ) 2
u u u

u
f u

F µ
σ

µ
π σ σ

  −
 = −  − −    

  

(A5) 

2

1/2

1 1
( ) exp

(2 ) 2v v

v
f v

π σ σ

  
 = −  
   

 

Since u and v are independent, the joint density is the product of their individual densities 
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(A6) 

2 2
1 1 1

( , ) exp
[1 ( )]2 2 2

u u v u v

u v
f u v

F µ
σ

µ
πσ σ σ σ

    −
 = − −   − −      

  

In (A3) the density function of u is independent of time whereas the density of v is time 

dependent. In vector notation, let iv be the ( 1)iT × vector of itv ’s for iT  observations for the ith 

firm 1( ,..., )
ii i iTv v v ′= . Using the results from multivariate normal distribution when there are iT  

independent observations, we obtain 

(A7) 

2

( 1)/2 2

1 1 1
( , ) exp

[1 ( )](2 ) 2 2i i

u

i i i
i i T T

u v u v

u v v
f u v

F µ
σ

µ
π σ σ σ σ+

  ′ −
 = − −     − −      

  

Using  it it it iv uε ζ= −  and iε being 1iT ×  vector of itε ’s for iT  number of observations or 

1 1( ,..., )
i ii i i i iT iT iv u v uε ζ ζ ′= − −  and in vector form  where  is 1 vector of i i i i i i itv u Tε ζ ζ ζ= + ×  

or 1 ( ,..., )
ii i iTζ ζ ζ= , the joint distribution of iu and iε is given by 

(A8) 

2

( 1)/2 2

( ) ( )1 1 1
( , ) exp

[1 ( )](2 ) 2 2i i

u

i i i i i i i
i i T T

u v u v

u u u
f u

F µ
σ

µ ε ζ ε ζε
π σ σ σ σ+

  ′ − + +
 = − −     − −      

 

The marginal density function of iε is obtained by integrating out iu or 
0

( ) ( , )i i i if f u duε ε
∞

= ∫
 

(A9) 

*

*
2 2*

1/2 2 *
/2 1 2 2

1 ( ) 1
( ) exp { }

21 ( ) (2 )

i

i

i i

u

i i i
i

T T v u i
v v i i u

F
f

F

µ
σ

µ
σ

ε ε µµε
σ σ σπ σ σ ζ ζ σ−

 − −   ′       = −   + −          ′   − − +     

  

where 

(A10) 
2 2

*

2 2

v i i u
i

v i i u

µσ ζ ε σµ
σ ζ ζ σ

′−=
′+
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(A11) 
2 2

*2

2 2

u v
i

v i i u

σ σσ
σ ζ ζ σ

=
′+

  

The conditional density of iu given iε is  

(A12) *

*

2*

*1/2 *

( , ) 1 1
( | ) exp

( ) 2[1 ( )](2 )i

i

i i i i
i i

i ii

f u u
f u

f F µ
σ

ε µε
ε σπ σ

  −
 = = −  

−    

  

This is the density function of the positive truncation of the * *2( , )i iN µ σ . Hence the estimation of 

technical efficiency of the ith firm at time period t  is given by 

(A13)  0

* * *
* 2 *21

2* *

[exp( ) | ] exp( ) ( | )

1 [ ( / )]
                         exp{- + }  

1 ( / )

it i it i i i i

it i i i
it i it i

i i

E u u f u du

F

F

ε ζ ε

ζ σ µ σ ζ µ ζ σ
µ σ

∞

− = −

 − −=  − − 

∫
  

The density function of iy , a 1iT × vector of ity ’s for the ith firm, can be obtained from (A9) by 

substituting ( )i iy x β′−  for iε , where ix is a iT k× matrix of itx ’s for the ith firm. The log 

likelihood function for the sample observations 1 2( , ,..., )Ny y y y′ ′ ′ ′=  is given by 

(A14)  

* 2 2 21 1 1
2 2 2

1 1 1

* *

1

2 2 * *1 1 1
2 2 2

1

( ; ) ( ) ln(2 ) ( 1) ln( ) ln( )

                  ln[1 ( / )] ln[1 ( / )]

                  [( ) ( ) / ] ( / ) ( / )

N N N

i i v v i i u
i i i

N

u i i
i

N

i i i i v u i i
i

LL y T T

N F F

y x y x N

θ π σ σ ζ ζ σ

µ σ µ σ

β β σ µ σ µ σ

= = =

=

=

′= − − − +

− − − + − −

′− − − − +

∑ ∑ ∑

∑

∑ 2

1

N

i =
∑

  

where * 2 2( , , , , )u vθ β σ σ µ ζ′ ′=  
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Appendix B 

Estimation algorithm 

Stage one: 

1. Create a third-order polynomials in k and the proxy e or 
3 3

0 0

( , )
i

i j
t t t ij t t

i j

e k c k eφ
−

= =

≈∑∑ . 

2. Run Battese and Coelli maximum likelihood estimation with no intercept using the freely 

variable inputs (except the proxy) and the constructed polynomial terms as independent 

variables. 

The key estimated parameters from this stage are all the freely variable inputs except the 

proxy and the technical (in)efficiency, or ˆ ˆ ˆ ˆ, , , and l m ituβ β δ .   

Stage two: 

1. Choose starting candidate values for ( , )k eβ β say * *( , )k eβ β for estimation algorithm. 

Although starting value is not critical, a good guess for beginning would be OLS 

estimates.    

2. Compute it ita v+� * *ˆ ˆ ˆ ˆit l it m it e it k it ity l m e k t uβ β β β δ= − − − − − + , We call this variable ‘A’.  

3. Compute * *
, 1 , 1 , 1 , 1

ˆˆi t i t e i t k i ta e kφ β β− − − −= − −  and call the variable ‘B’.  

4. Regress ‘A’ on ‘B’ using locally weighted least squares. Take the predicted value and 

call it ‘C’ which is equal to , 1( | )it i tE a a − .  

5. Compute *( )it itvξ β+�  * *
, 1

ˆ ˆ ˆ ˆ ( | )it l it m it e it k it it it i ty l m e k t u E a aβ β β β δ −= − − − − − + −  which is 

basically ‘A’- ‘C’. This enters into moment equation in GMM estimator. 
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6. Perform a grid search to obtain the global minimum of the GMM objective function and 

iterate the previous steps by allowing the candidate values for *
kβ  and *

eβ  from 0.01 to 

0.99, in increments of 0.01.    

The key estimated parameters from this stage are proxies input (energy) and capital. 

 

                                                 
1  The within-year variation of the price indices for output, material and energy are fairly tight, with a coefficient of 
variation falling in the 15-20% range on average. Consequently, we can reasonably expect that these markets are 
perfectly competitive. 
2  Local least squares regression is a nonparametric kernel-based estimation method is discussed in Pagan and Ullah 
(1999).  
3 For a more detailed description of the data, see Eslava, et al. (2004). 
4 We treat plants as firms although there are multi-plant firms in the sample because of data restriction. The AMS 
does not provide any information on which plants are firms and which plants belong to a firm (or group). 
5 Industry-level depreciation rates are obtained from Pombo (1999).  
6 We also estimate the model using materials as the proxy and find the parameters of the production frontier to be 
very similar. We present the estimation results using energy as the intermediate proxy for transmitted productivity 
shock. 


