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Abstract— this paper investigates the use the swarm 

intelligence of honey bees to create groups of co-operative AI for 

an RTS game in order to create and re-enact battle simulations. 

The behaviour of the agents are based on the foraging and 

defensive behaviours of honey bees, adapted to a human 

environment. The groups consist of multiple model-based reflex 

agents, with individual blackboards for working memory, with a 

colony level blackboard to mimic the foraging patterns. An agent 

architecture and environment is proposed that allows for 

creation of autonomous cooperative agents. The behaviour of 

agents is then evaluated and their intelligence is tested using an 

adaptation of Anytime Universal Intelligence Test. 
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I.  INTRODUCTION 

Certain genres of video games require large numbers of 
individual artificial intelligence (AI) units to work together for 
or against the player, such as in Real Time Strategy (RTS) or 
Tower Defence games. Along with the ever increasing 
computer processing power, it is possible to use more complex 
algorithms and techniques to create more realistic and 
challenging AI with less computational expense. Multi-agent 
approaches and swarm intelligence are inspired on the ability 
of social animals and crowds to work together as a group 
without the need for a leader to delegate tasks. Individuals in a 
swarm are unable to find a solution to a colony’s problems 
alone; however, by interacting with each other and making 
decisions based on local information, they can find a solution at 
the colony level [1].  

The aim of swarm intelligence in AI is to create a 
decentralised group of autonomous, self-organised individuals 
that respond to local stimuli. When these individuals are 
viewed at the swarm-level, individual decisions should be 
contributing to the appearance of a group decision. Several 
algorithms are inspired by biological swarms; e.g., particle 
swarm optimisation is based on birds flocking [2] and ant 
colony optimisation is based on ant foraging methods [3]. 

The aim of this research is to adapt the real-life swarm 
intelligence of honey bees to create a group of co-ordinated AI 
agents for an RTS game setup. The goal is to recreate an 
autonomous AI that can be used to re-enact battles in a 

simulation format, which could also be used in history or 
military training. 

This project will use elements of pre-existing algorithms, 
with the aim of developing an AI agent based behaviour of 
honey bees. This approach will not have a leader or brain to 
guide the strategy, instead the independent behaviour of agents 
aims to simulate an over-arching strategy. The behaviour and 
roles of honey bees are presented in section II and III, then 
existing approaches in swarm intelligence and multi-agent 
systems are presented. Section V presents instances of swarm 
intelligence being used in games. Section VI presents the 
proposed mapping of bees to soldiers, setting the ground for 
presenting the agent architecture and the proposed environment 
in section VII. The evaluation section shows the results of 
experiments and present an evaluation method based on 
Anytime Universal Intelligence Test. Finally the paper 
concludes in section IX. 

II. BEHAVIOUR OF HONEY BEES 

The next two section present the behaviour and roles within 
bee hives. These will be used as the basis of the agent 
behaviours and will be mapped to unit behaviour in an RTS in 
section VI. Group decisions in honey bee colonies are formed 
by lots of individual bees’ decisions. According to Detrain and 
Deneubourg [4] an individual’s decision can influence the 
decision of others, causing the appearance of a group decision. 
Individual decisions are made because of the bee’s interactions 
with nest mates or the environment. Bees exhibit two main 
behaviours that is useful in a strategy battle games. These are 
Foraging and Defensive behaviour. 

1) Foraging 
When foraging, honey bees actively recruit others to food 

sources, providing information about the source through a 
waggle dance. Waggle dances consist of a series of waggle 
runs followed by a semi-circular turn; communicating the 
distance, the angular location based on the sun’s azimuth and 
the odour of food. These dances provide bees with positive 
feedback that influences others to go to certain locations. The 
waggle dance is also used by bees to tell nest mates about 
suitable nest locations when a swarm is looking for a new 
home [5], [6]. 

While searching for the flowers bees will take an irregular 
path and possibly fly hundreds of meters from their hive; 
however, when they fly back to their nest after locating a food 



source, they take the path with the shortest distance [7]. 
Experiments have shown that bees can learn and make 
decisions based on visual stimuli using their own working 
memory [8]. This working memory is what allows bees to 
navigate their environment and call on experience to make 
decisions about the profitability of food. 

 

Fig. 1. Model of honey bee defensive behaviour [9]. 

2) Defensive Behaviour 
The defensive behaviour of the colony can also be viewed 

as a collection of individual responses to stimuli from the 
environment, such as recruitment pheromones from colony 
members. Defensive responses of a bee can be broken down 
into four sequential phases: alerting, activating, attracting and 
culminating illustrated in Fig. 1. Repeated disturbances of the 
colony can invoke a fifth phase called absconding, whereby the 
queen and adult bees leave the nest [9]. 

In each of these phases there are number of actions a bee 
can take; however, they can only perform one action at a time 
and each action requires a certain amount of Complex 
Available Energy (CAE). By reacting to a stimulus, a bee can 
step through each of these phases and take an action. There are 
multiple forms of stimuli that can invoke defensive behaviour, 
including moving visual stimuli, vibrations of the nest and the 
alarm pheromones of nest mates [10].  

a) Alerting 

In the alerting phase, bees have the options of alert, recruit 
or flee.  

 Alert bees take a defensive stance with their wings 
extended, mouth open and antennae waving. This 
response is not based on the direction of the stimulus, as 
it has been found that alert bees that are grouped 
together face in different directions.  

 A recruiting bee will open their sting chamber and run 
into the hive, releasing alarm pheromone to stimulate 
nest mates into defensive behaviour. A recruiting bee 
can be recruited into further defensive action by their 
own pheromone.  

 If the stimulus provides directional information, some 
bees will choose to retreat from the area of disturbance. 

b) Activating 

With more stimulation, bees reach the activating stage. 
Here, bees will look for the source of the disturbance. 
Depending on if the hive is open or unopened, the search will 
start close to the bee or the hive entrance. If there is no further 
stimulation after a period, the activated bee may begin 
searching meters from the hive. 

c) Attracting 

If an appropriate stimulus is found by an active bee, they 
will orient towards it. The same disturbance often 
simultaneously activates and attracts bees. This change in 
phase is more obvious when a stimulus is presented and then 
removed to a remote location. 

d) Culminating 

In this phase, several responses are possible. Bees may 
sequentially display two or more of the following responses: 
threaten, run, sting, bite, pull hair or burrow into clothes. If the 
integrity of the nest has been disrupted, the bee may choose to 
run. 

III. ROLES WITHIN A BEE COLONY 

During a worker’s lifetime, they will undertake different 
roles as they develop and age, also known as age-related 
polytheism [10]. The main roles they take are: Nurses, Middle 
Aged Bees, and Foragers.  

Middle Aged Bees (MABs): develop around the age of 12 
– 21 days and remain in at this stage of development for a little 
over a week. MABs can take on numerous roles within the 
nest. Younger MABs tend to take on tasks such as comb 
building and colony maintenance, while older MABs take on 
tasks closer to the hive entrance such as nectar 
receiving/processing and guarding [11]. Around 10 – 15% of 
MAB workers will take part in guarding [10]. The rest of the 
MABs tasks are closely related to foragers. Bees can choose 
which task to do based on feedback from the local 
environment, e.g. foragers performing the tremble dance can 
recruit MABs to act as receivers [4]. 

Foragers: Once a bee has developed into this role, they no 
longer take part in hive related tasks that MABs handle. 
Instead, foragers focus on collecting all resources [11]. 

There is a two more roles which will not be used in this 
paper. The Cell Cleaner role refers to newly emerged bees that 
have not been involved in the nest duties yet. The Nurse role is 
responsible for feeding the young and caring for the Queen. 

IV. MULTI-AGENT & SWARM INTELLIGENCE 

Swarm Intelligence is built upon the idea of multi-agent 
systems. A multi-agent system consists of an environment 
which multiple AI agents communicate and act within. An AI 
agent is described as something that can perceive its 
environment through sensors and make decisions/act based on 
information found in that environment [12]. An agent is 
expected to be able to: 

 Operate autonomously 

 Perceive their environment 

 Persist over a prolonged period 

 Adapt to change 



 Create and pursue goals 

Rationally, agents should aim to select an action that is 
expected to maximise its performance measure, based on 
evidence provided by the percept sequence and whatever built-
in knowledge the agent has [12].  

A. Model-based Agents 

There are different agent types that can be created to 
replicate the behaviour of the honey bees. As the environment 
in which the bees are interacting with in a battle scenario is 
partially observable, sequential and dynamic, model-based 
reflex agents are the best fit for implementing the agents used 
within such environment [13].  

These type of agents keep track of part of the world they 
cannot see anymore, by using information perceived 
historically. The state of the world the agent is tracking can be 
updated using information about how the world evolves 
independently of the agent, and how the agent’s actions affect 
the world [14], [15]. 

Model-based reflex agents are most suitable for a partially 
observable environment, as they can maintain an internal state 
of the world that is dependent on the percept history. To be 
able to update this internal state, the agent needs to know how 
the world works; known as the model of the world. The model 
agents use needs two types of information: how the world 
evolves independently of the agent and how the agent’s own 
actions affect the world. Using this state and the current 
percept, the agent can make decisions as to what to do. 

As the environment is partially observable, the state 
maintained by the agent is better thought of as a best guess. 
This means there is likely to be uncertainty in the state, 
however decisions still need to be made [12], [15]. 

B. Blackboard architecture 

A blackboard is a global structure that is available to all 
agents in a system to share information and collaborate to solve 
a problem. Traditional blackboard systems are made of three 
components: the blackboard, several knowledge sources (KSs) 
and a controller component. The blackboard acts as the shared 
memory for the KSs to read and write from. A KS is a system 
that can read information from the blackboard, process 
anything relevant to it, and contribute information towards 
solutions. KSs are independent of each other, and each can be a 
different type of system, allowing different approaches to 
problem solving; however, only one KS can write to the 
blackboard at a time. The controller component is responsible 
for choosing which KS can write to the blackboard next. 
Decisions are made based on what the KS will contribute and 
the resources required to create this contribution [16]. 

More recently, a different approach [17] was suggested for 
blackboards in a multi-agent system. Corkill proposed a system 
whereby each agent has their own blackboard and all KSs used 
in the system, allowing them to focus on nearby data and share 
with other agents they meet. This approach would create a 
flexible distributed system, similar to how honey bees use local 
information and their own experience to make decisions and 
share information. This has been taken on by other researchers 
and expanded to using a private and a shared blackboard, 

where part of the world is shared amongst the agents and other 
information are kept private to each individual agent [18]. 

C. Markov Decision Process for Decision Making 

AI agents will need to be able to make decisions about the 
tasks they are performing, the information they share with 
others, the actions they will take during defensive behaviour 
and the nodes they will travel to, during resource gathering. 
There are many methods that can be used to allow agents to 
make these decisions. Due to the probabilistic nature of bees’ 
foraging patterns and the model of defensive behaviour, the 
Markov Decision Process (MDP) is rendered to be the most 
suitable. 

MDP is a process where all possible states are known, each 
state having related action and reward values, and a probability 
of transitioning from one state to another [19]. MDPs are most 
suitable to scenarios whereby the agent moves through several 
known sequential states, where transitions between states 
happen via a decided action. These points, where decisions are 
made, are known as decision epochs. Taking an action results 
in a reward value, which can be positive and negative; with 
negative values being a cost, rather than a reward. Agents 
know the rewards for actions before they are taken.  

To handle a partially observable environment, Partially 
Observable MDPs (POMDPs) can be implemented. POMDPs 
have a similar structure to MDPs, however they require a 
sensor model to be able to create a belief state; a group of 
actual states the agent might currently be in [12]. 

V. APPROACHES IN GAMES 

Multi-agent approaches including swarm intelligence have 
been used in games in recent years. These approaches have 
been used in both serious games used for military training, 
problem solving in battlefields, as well as used in traditional 
video games for entertainment. 

Reynolds [20] proposed an approach in simulating the 
flocking behaviour of birds, creating a distributed behavioural 
model much like that at work in a natural flock as an 
alternative to scripting the path of each bird individually for 
animation. 

Li and Hu  [21] present a soccer simulation implemented 
using a multi-agent approach that implements a blackboard 
model so tackle the communication between the agents. Other 
researchers [22], [23], have used multi-agent blackboard 
approach to creating autonomous NPCs (Non-Playable 
Characters) that behave similar to humans in order to improve 
NPC behaviour and increase game engagement. 

Particle Swarm Optimisation has been used in a tower 
defence game to optimise cannon locations to cause enemies 
the most damage [24]. The scenario contained two teams of 
players, attack and defence. The attack team needed to navigate 
along a single path that ensured minimum casualties. The 
defence team were given seven cannons to place on the map, 
with the aim of causing the maximum amount of damage to the 
enemy regardless of the path they took. 

An adapted version of Ant Colony Optimisation (ACO) 
was used to simulate resource gathering in a real-time strategy 



game environment that was believable to players. A memetic 
ant colony system was created, using ACO to explore the 
environment and communicate information about resources. 
This solution was chosen as it is less computational intensive 
than using explicit planning and searching. Experiments using 
this system with different levels of difficulty found that agents 
in this system were successful even when there were many 
obstacles and few resources available [25]. 

VI. MAPPING THE BEE BEHAVIOUR 

The prior sections investigated the behaviour of honey bees 
that will be adapted for use in an RTS AI agent. This section 
discusses the findings and the proposed approach to 
implementing swarm intelligence into the agents within the 
game. 

A bee, during its lifetime, will undertake several different 
roles. In the game environment, there will be several different 
roles that AI can undertake and switch between depending on 
the needs of the group e.g. Harvesters, Foragers, and Soldiers. 

To replicate the bees working memory, each agent in the 
system will have their own private blackboard to store locally 
perceived information to be used for make individual 
decisions. To best use this working memory, model-based 
reflex agents will be implemented to keep track of the 
environment based on the models of honey bee behaviour 
discussed earlier. 

The foraging behaviour is implemented into the game 
environment, using a shortest path calculation based on 
Dijkstra’s algorithm to wander in the map and locate resources. 
Once resources are found the bees would move directly 
towards the base to deposit their load and will continue 
collecting using this new direct route. On returning to base, 
they will be able to access a global blackboard to which all 
agents can read and write. A successful forager can then add 
the location of the resource found to the blackboard, describing 
how to get to a resource in a similar way to the honey bee’s 
waggle dance. The bees will use this point as a target direction 
for gathering resources. Negative feedback will occur when 
resources are depleted; the path is removed from the 
blackboard and other resources will need to be found. 

If the nest is disturbed, units undertake defensive actions 
which are presented as the model for an individual bee. Bees 
step through the same phases of behaviour, however can take 
different actions in each phase dependant on how they perceive 
the disturbance. To handle the probabilities involved in 
choosing actions in defensive behaviour, a Markov decision 
process will be implemented. The process will allow agents to 
select different actions to move from phase to phase, dependant 
on the agent’s remaining stamina. MDP could also be adapted 
to handle the decisions of which node to move to during 
foraging, dependant on the paths that have recently been 
travelled along.  

VII. ENVIRONMENT AND ROLES 

The simulation scenario involves a randomly generated 
environment that holds two bases (nests). This map will host 
two separate colonies known as the Defenders and the 
Aggressors. There are resources scattered around the 

environment which the Defenders aim to collect as their base 
would produce a new agent after each ρ amount of resources 
collected. Aggressors would be scouring the environment, 
hunting Defender agents and searching for the Defender’s base. 
This environment is created inspired by Λ environment [26], 
[27] which is one of the environment classes that implements 
the theory behind the Anytime Universal Intelligence Test [28]. 

Once the aggressors have spotted the defender’s base they 
will stop foraging and gather to attack. As the same time, as the 
aggressors have also been spotted, the defenders would issue a 
“Call to Arms” (alert->recruiting) which would result in 
recruiting the defenders into a defensive position ready for the 
imminent attack from the aggressors. The simulation will 
arrive at its conclusion when both sides line up and charge each 
other resulting in battle. Once a side is completely wiped out 
the simulation ends. 

If the nest is disturbed, units undertake defensive actions 
which are presented as the model for an individual bee. Bees 
step through the same phases of behaviour, however can take 
different actions in each phase dependant on how they perceive 
the disturbance. To handle the probabilities involved in 
choosing actions in defensive behaviour, a Markov decision 
process will be implemented. The process will allow agents to 
select different actions to move from phase to phase, dependant 
on the agent’s remaining stamina. MDP could also be adapted 
to handle the decisions of which node to move to during 
foraging, dependant on the paths that have recently been 
travelled along.  

A. Defender roles 

 Harvesters (Foragers): collect resources only, cannot 
attack but can alert the castle about attackers. The have 
Low CAE. 

 Militia (MAB): collects resources, but can switch to 
defensive mode to protect castle when called. 

B. Aggressor roles 

 Scouts (MAB): do not collect resources, only looking 
for defenders or the castle, can attack when called to 
arms, can travel further than Attackers and can detect 
enemies/castle in a wider range. 

 Attackers (MAB): do not collect resources, can look for 
defenders/castle, can attack but cannot travel as far as 
Scouts unless attacking a castle. 

C. Resources 

The resources within the map are used for replenishing the 
health and the energy of defenders. The collected resources 
will also allow the defender’s castle to build new defender 
units. The aggressor’s start the game with existing resources 
presumed to have been gained from previous raids. 

D. Agent Architecture 

The proposed architecture for the agents in presented in 
Fig. 2. The agent consists of blackboard and processing 
components. Information is received by the sensor form the 
environment, this information is then stored in the blackboard. 
The Action Selector unit would than select a suitable action 



based on the information on the blackboard. This final decision 
is then passed on to the actuator which would apply this to the 
environment, hence exhibiting a behaviour. 

State

Base Location

Resource 
Empty

Next 
Destination

Resource 
Location

Enemy 
Location

Resource 
Locations

Enemy 
Spotted

P
R

IV
A

TE
 B

LA
C

K
B

O
A

R
D

SH
A

R
ED

 B
LA

C
K

B
O

A
R

D

EN
V

IR
O

N
M

N
ET

Sensor

Commander

Pathfinder

Attacker

Flocker

Unifier

Actuator

ACTION SELECTOR

 

Fig.  2. Agent architecture 

The blackboard is divided into two sections; a private 
blackboard and a shared blackboard. The private blackboard is 
private and independent for each agent. The information on the 
private blackboard are only accessible to an instance of the 
agent and relate to this agent. The shared blackboard is 
information that is shared amongst all agents. This simulates 
the knowledge held at the nest that is publicly known to all 
agents. 
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Fig.  3. High level agent state machine. 

The action consists of a commander unit that reads the 
current state of the agents and then based on the current state of 
the world decides which of the underlying experts are needed 
to make the next decision. At any given situation, the agent 
might be needing to take multiple decision through multiple 
experts. The agent might need to move and flock at the same 
time as flocking action would involve moving and therefore 
pathfinding. The three expert units; pathfinder, attacker and 
flocker will use the information from the agent state and the 
world state and make their own relative decisions. Finally the 
decisions made by the three experts are passed to the unifier 
unit which would form the decision into actionable directives 
that are passed to the actuator. 

The commander and the three expert units base their 
decision making on a hierarchical state machine of the agents 
that represents the states which the agents would go through 
based on the information received from the game as well as the 
decisions that the agents has taken. Fig. 3 represents the high 
level agent state machine. Each agent after it is created would 
go through a setting up state where its role and initial action is 
decided. Once the agent is ready, it will go to the foraging state 
where as the aggressor or defender it will start to look for 
defenders or resources respectively. From foraging, if they 
meet enemies, they will go to attacking or defending states and 
finally when an agent’s health reaches zero it will die. 
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Fig.  4. Foraging state 
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Fig.  5. Conflict State 



The foraging state, illustrated in Fig. 4, encompasses the 
state machine for movements and path finding. This state 
machine would allow foraging unless an enemy or resource has 
been spotted in which case the agent would move to the 
conflict state or focus of collecting resources.  

As presented in Fig. 5, conflict state controls the decision 
for the various agent roles during the disturbances. The 
aggressor agents will call to arms all their fellow attackers and 
scouts, flock to position and charge the defenders. The 
defenders on the other side will get into formation, and charge 
the aggressors to defend their castle. There is a chance that the 
harvesters might flee to base instead of joining the defence. 
The aggressors have a special state, Hunt, as they would hunt 
for enemies if they are not attacking the castle. 

TABLE I.  MAPPING BEE DEFENSIVE BEHAVIOUR TO UNIT BEHAVIOUR. 

Behaviour 
Cost 

(CAE) 
Damage 

Bee 
Human 

Aggressor Defender 

Recruit 

Initiate Call to 

Arms 
Flee - - 

Call to Arms at 

Base 

Call to Arms at 

Base 
- - 

Searching 
Get in 

Formation 

Get into Defensive 

position 
- - 

Attract 
Get in line for 

charge 

Get in line for 

charge 
- - 

Culminating 

Battle Cry Taunt 1 
+1 to the next 

attack 

Sword Attack Sword Attack 1 1 

Block with 

Shield 
Block with Shield 2 No Damage 

Shield Bash Shield Bash 5 2 

String Sword 

Attack 

String Sword 

Attack 
8 4 

Dodge Dodge 3 No Damage 

The table 1, illustrates how the bee behaviour model 
presented earlier has been mapped to human behaviour during 
disturbances to the nest. The table shows how recruiting, 
searching, alerting, attract and culminating will be mapped to 
simulated human behaviour in the AI units within the game as 
well presenting the mapping of attack patterns and their weight 
in the units for the MDP to decide on actions.  

If the nest is disturbed, units undertake defensive actions 
which are presented as the model for an individual bee. Bees 
step through the same phases of behaviour, however can take 
different actions depending on the CAE levels and their role. 
The agents would use the table below to decide also on the 
rewards of the actions they take compared to the cost.  

The flock to position state deals with the flocking 
behaviour of the agents. This state machines, presented in Fig. 
6, allows the agents to make decision on their positioning, 
when responding to call to arms, or when readying to get in 
line for charge. The flocking behaviour is at the core of crowd 
and swarm intelligence. The flocking patterns are a great 
demonstration of independent agents behaving separately and 
yet creating a crowd pattern.  
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Fig.  6. Flock to Position state 

VIII. EVALUATION 

This section presents the evaluation of the proposed 
architecture. The evaluation method used here is inspired by 
[29] and their approach to Anytime Universal Intelligence Test 
[28]. For this purpose the environment is created based on a Λ 
environment [26], [27]. The idea is to evaluate an agent that 
can perform a set of finite tasks based on the environment it is 
placed in. The intelligence of the system is assessed as a 
function of successful transition between states and the success 
of achieving the objective of each state. Fig.  7 illustrates the 
agents in three different states. 

 

Fig.  7. Simulation of the game. (a) Flock to Position at base. (b) Adjusting 

Position to Charge. (c) Charge. 

Each agent has its own specific role as defined earlier. Each 
of these roles would have their own specific set of tasks and 
states that they are supposed to achieve. Each agent πi which is 
a member of Π = {π1, π2… πn} has a role ωj from Ω = {ω1, ω2… 
ωm}. Each role would have a set of states available to them 

which is defined as Sj = {s: s  States  ωj can be in s}, where 
States is the set including all the states available.  

An available state sk would have a good outcome k and a 

bad outcome k. The good outcome is achieving its objective 
whilst the worst outcome is the complete opposite. This is a 



theoretical definition that has been put into practice based on 
the tasks at hand. For example for a harvester agent which is in 
found resource state, the good outcome would be to collect 
resource and go home. But the bad outcome in this scenario has 
been defined as not going home i.e. being stuck or moving 
towards any other position, either case, it would be the 
destination chosen by the agent as opposed to the expected 
destination.  

A reward function has been defined for the agents which 
would represent how an agent is performing in a state based on 
the best and worst outcomes of that state. The reward of agent 
πi in state sk is represented by γi, k where -1.0 ≤ γ ≤ +1.0. The 
value of γi, k is calculated using (1) as a function of the outcome 
of the state objective. 

 γi, k = 1/f(πi , k)  1/f(πi , k)   (1) 

Where f(a, b) denotes the success of a achieving b. this can 
take many forms as in previous example it would be the 
distance of agent a from the position b. other examples could 
include in case of a conflict f(a, b) would take the form of 
successful implementation of attack b by agent a. 

The intelligence of an agent πi would be defined as the 
amalgamation of its rewards in all its states during an iteration 
of the simulation, denoted as Ii presented in (2). Hence the 
intelligence of the agents in a role, ωjI, can then be calculated 
using (3) as the amalgamation of all the agents that are acting 
in the role ωj. 

  Ii = ∑k=1…p (γi, k) / p  (2) 

  ωjI = ∑i=1…q Ii / q   (3) 

The number p in (2) is the number of states available for 
agent πi and it is important to note that if an agent arrives at and 
therefore p would not necessarily equal to |Sj|. It would depend 
on the states that the agent has arrived at during a simulation 
which means some states might be skipped whilst others might 
have been repeated many times. The number q represents the 
number of πi agents that are acting in role ωj.  

Finally, the collective intelligence of a set of agents, Π, is 
defined as ψ(Π) and calculated using (4) as the amalgamation 
of the intelligence of all the roles. 

 ψ(Π) = ∑j=1…m ωjI / m , m = |Ω|  (4) 

As Ω is the set of all the roles and each agent within Π is 
mapped to a role, by association, amalgamating the intelligence 
of each role, would allow for an amalgamation of the 
intelligence of all agents.  

For the purpose of this research, the architecture was 
implemented using C# and Unity and the simulation was 
executed for five iterations. Each iteration concluded with one 
side, either aggressors or defenders, defeated and wiped out. 
The iteration took between 6-11 minutes and both sides had an 
equal number of agents spawned at the start. A sample iteration 
can be viewed here1. Table II presents the amalgamated 
rewards for each state for the five test iterations. 

                                                           
1 https://youtu.be/VX8QUYdpqsg 

TABLE II.  AMALGAMATED REWARD FOR EACH STATE. 

State 
Iteration 

1 

Iteration 

2  

Iteration 

3 

Iteration 

4 

Iteration 

5 

Adjust Position 0.978 0.97 0.88 0.8 0.88 

Alert Base 0.94 0.94 0.75 0.99 0.8 

At Home 0.89 0.86 0.83 0.97 0.782 

At Position 0.98 0.74 0.79 0.71 0.77 

Attack 0.908 0.91 0.93 0.85 0.972 

Attack Finished 0.838 0.81 0.89 0.96 0.881 

Call To Arms 0.79 0.87 0.93 0.84 0.98 

Charge 0.698 0.95 0.71 0.94 0.936 

Checking Dest. Pos. 0.84 0.76 0.81 0.9 0.827 

Checking Direction 0.86 0.82 0.95 0.8 0.943 

Checking For Enemies 0.8 0.98 0.94 0.7 0.991 

Default 0.90 0.95 0.90 0.95 0.985 

Find Flock Position 0.96 0.85 0.75 0.73 0.789 

Flee To Base 0.71 0.96 0.71 0.95 0.869 

Found Resource 0.95 0.75 0.99 0.74 0.79 

Getting Destination 0.84 0.74 0.87 0.83 0.947 

Get To Position 0.86 0.78 0.99 0.86 0.9 

Going Home 0.73 0.9 0.87 0.7 0.891 

Going To Dest. Pos. 0.8 0.77 0.89 0.82 0.967 

Go To Flock Position 0.89 0.98 0.94 0.86 0.838 

Hunt 0.93 0.777 0.936 0.94 0.736 

Moving 0.88 0.75 1 0.89 0.825 

Moving To Target 0.81 0.9 0.95 0.87 0.81 

Pick Direction With Target 0.99 0.87 0.86 0.82 0.71 

Picking Direction 0.81 0.83 0.85 0.8 0.991 

Restarting With Resource Loc. 0.86 0.71 0.9 0.87 0.78 

Returning To Path Home 0.91 0.95 0.79 0.94 0.82 

Starting 0.97 0.89 0.77 0.74 0.772 

Stuck 0.727 0.91 1 0.82 0.707 

Surround Castle 0.92 0.72 0.75 0.93 0.9 

Adjust Position 0.78 0.97 0.88 0.7 0.88 

TABLE III.  INTELLIGENCE FOR EACH ROLE. 

Role Iteration 1 Iteration 2  Iteration 3 Iteration 4 Iteration 5 

Attacker 0.94 0.89 0.86 0.81 0.86 

Scout 0.9 0.92 0.77 0.84 0.87 

Militia 0.8 0.922 0.977 0.83 0.758 

Harvester 0.9 0.7 0.94 0.93 0.74 

TABLE IV.  COLLECTIVE INTELLIGENCE FOR EACH TEAM. 

Team Iteration 1 Iteration 2  Iteration 3 Iteration 4 Iteration 5 

Aggressors 0.92 0.905 0.815 0.825 0.865 

Defenders 0.85 0.811 0.958 0.88 0.749 

Tables III and IV respectively represent the intelligence 
calculated for each role and then the collective intelligence of 
each team. The intelligence values are generally above 0.7, this 
is considered a very high score as the range of possible 
intelligence would have been between -1 and +1. The 
intelligence scores are close to the top end meaning that the 
majority of times the agents have been consistently pursuing 
the good outcome for each state. Whilst on average it seems to 
be the aggressors are performing slightly better that the 
defenders, it is worth noting that there are iterations such as 
iteration 3 and 4; where defenders have performed better.  

IX. CONCLUSION 

This research investigated the idea of adapting swarm 
intelligence honey bees when foraging and defending their 
nests to create a group of co-operative agents. The idea was to 
create a decentralised group of autonomous agents that could 
work together to achieve goals that would be found within an 
RTS game. The goal was to simulate battle behaviour without a 
central control or a leader that would dictate strategy [30], [31]. 

https://youtu.be/VX8QUYdpqsg


Instead, trying to create the battle out of a swarm behaviour of 
independent agents. Multiple simulations were run and using 
the recorded data, patterns of behaviour were identified and 
analysed to check whether the performed behaviour was 
expected for that role and main state. The analysed data was 
then used to calculate the intelligence score of each individual 
agent using the Λ environment and the Anytime Universal 
Intelligence Test. The agents scored consistently above 0.7 in a 
scale between -1 and +1, demonstrating a high level of 
collective intelligence. A noteworthy behaviour also emerged, 
presenting the appearance of team leaders during the setup of a 
larger battle. This behaviour goes against the idea of creating a 
decentralised group, however due to the nature of an RTS 
environment, the temporary appearance of leaders makes sense 
to lead the teams together into battle. 

Future work for this project revolves around scaling up the 
simulation in terms of environment, roles available in the teams 
and the action taken during battles. To introduce new 
behaviours successfully, the environment will need to be larger 
to handle more agents and more detail. This would allow the 
system to be expanded and applied to other game genres such 
as shooter games, racing games and especially serious games 
and simulations such as rehabilitation games and narrative 
based trainings. Also, introducing a new role in the defender 
team called the Scavenger which would act in a similar way to 
harvesters, yet would take part in battles. They would be able 
to collect resources from the corpses of dead agents, providing 
another resource for creating defender agents. Currently, agents 
can fight on a 1vs1 basis, when an enemy is nearby or in a 
larger battle after spotting the defender base. In a larger 
environment, it would be possible to call groups of nearby 
agents together for group battles to occur. If deciding to call 
other agents for a group battle, agents within a certain radius 
would create formations and attack each other. Hence brining 
the simulation much closer to true strategic behaviour and 
battle simulations.  
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