
Swarm Intelligence for Autonomous Cooperative

Agents in Battles for Real-Time Strategy Games

Damon Daylamani-Zad, Letitia B. Graham, Ioannis Th. Paraskevopoulos

Department of Computing and Information Systems

University of Greenwich

London, United Kingdom

{d.d.zad, gl213, i.parask}@greenwich.ac.uk

Abstract— this paper investigates the use the swarm

intelligence of honey bees to create groups of co-operative AI for

an RTS game in order to create and re-enact battle simulations.

The behaviour of the agents are based on the foraging and

defensive behaviours of honey bees, adapted to a human

environment. The groups consist of multiple model-based reflex

agents, with individual blackboards for working memory, with a

colony level blackboard to mimic the foraging patterns. An agent

architecture and environment is proposed that allows for

creation of autonomous cooperative agents. The behaviour of

agents is then evaluated and their intelligence is tested using an

adaptation of Anytime Universal Intelligence Test.

Keywords—Real-Time Strategy games; Swarm Intelligence;

Agent Architecture; Multi-agent Intelligence;Artificial Intelligence;

Finite State Machine

I. INTRODUCTION

Certain genres of video games require large numbers of
individual artificial intelligence (AI) units to work together for
or against the player, such as in Real Time Strategy (RTS) or
Tower Defence games. Along with the ever increasing
computer processing power, it is possible to use more complex
algorithms and techniques to create more realistic and
challenging AI with less computational expense. Multi-agent
approaches and swarm intelligence are inspired on the ability
of social animals and crowds to work together as a group
without the need for a leader to delegate tasks. Individuals in a
swarm are unable to find a solution to a colony’s problems
alone; however, by interacting with each other and making
decisions based on local information, they can find a solution at
the colony level [1].

The aim of swarm intelligence in AI is to create a
decentralised group of autonomous, self-organised individuals
that respond to local stimuli. When these individuals are
viewed at the swarm-level, individual decisions should be
contributing to the appearance of a group decision. Several
algorithms are inspired by biological swarms; e.g., particle
swarm optimisation is based on birds flocking [2] and ant
colony optimisation is based on ant foraging methods [3].

The aim of this research is to adapt the real-life swarm
intelligence of honey bees to create a group of co-ordinated AI
agents for an RTS game setup. The goal is to recreate an
autonomous AI that can be used to re-enact battles in a

simulation format, which could also be used in history or
military training.

This project will use elements of pre-existing algorithms,
with the aim of developing an AI agent based behaviour of
honey bees. This approach will not have a leader or brain to
guide the strategy, instead the independent behaviour of agents
aims to simulate an over-arching strategy. The behaviour and
roles of honey bees are presented in section II and III, then
existing approaches in swarm intelligence and multi-agent
systems are presented. Section V presents instances of swarm
intelligence being used in games. Section VI presents the
proposed mapping of bees to soldiers, setting the ground for
presenting the agent architecture and the proposed environment
in section VII. The evaluation section shows the results of
experiments and present an evaluation method based on
Anytime Universal Intelligence Test. Finally the paper
concludes in section IX.

II. BEHAVIOUR OF HONEY BEES

The next two section present the behaviour and roles within
bee hives. These will be used as the basis of the agent
behaviours and will be mapped to unit behaviour in an RTS in
section VI. Group decisions in honey bee colonies are formed
by lots of individual bees’ decisions. According to Detrain and
Deneubourg [4] an individual’s decision can influence the
decision of others, causing the appearance of a group decision.
Individual decisions are made because of the bee’s interactions
with nest mates or the environment. Bees exhibit two main
behaviours that is useful in a strategy battle games. These are
Foraging and Defensive behaviour.

1) Foraging
When foraging, honey bees actively recruit others to food

sources, providing information about the source through a
waggle dance. Waggle dances consist of a series of waggle
runs followed by a semi-circular turn; communicating the
distance, the angular location based on the sun’s azimuth and
the odour of food. These dances provide bees with positive
feedback that influences others to go to certain locations. The
waggle dance is also used by bees to tell nest mates about
suitable nest locations when a swarm is looking for a new
home [5], [6].

While searching for the flowers bees will take an irregular
path and possibly fly hundreds of meters from their hive;
however, when they fly back to their nest after locating a food

source, they take the path with the shortest distance [7].
Experiments have shown that bees can learn and make
decisions based on visual stimuli using their own working
memory [8]. This working memory is what allows bees to
navigate their environment and call on experience to make
decisions about the profitability of food.

Fig. 1. Model of honey bee defensive behaviour [9].

2) Defensive Behaviour
The defensive behaviour of the colony can also be viewed

as a collection of individual responses to stimuli from the
environment, such as recruitment pheromones from colony
members. Defensive responses of a bee can be broken down
into four sequential phases: alerting, activating, attracting and
culminating illustrated in Fig. 1. Repeated disturbances of the
colony can invoke a fifth phase called absconding, whereby the
queen and adult bees leave the nest [9].

In each of these phases there are number of actions a bee
can take; however, they can only perform one action at a time
and each action requires a certain amount of Complex
Available Energy (CAE). By reacting to a stimulus, a bee can
step through each of these phases and take an action. There are
multiple forms of stimuli that can invoke defensive behaviour,
including moving visual stimuli, vibrations of the nest and the
alarm pheromones of nest mates [10].

a) Alerting

In the alerting phase, bees have the options of alert, recruit
or flee.

 Alert bees take a defensive stance with their wings
extended, mouth open and antennae waving. This
response is not based on the direction of the stimulus, as
it has been found that alert bees that are grouped
together face in different directions.

 A recruiting bee will open their sting chamber and run
into the hive, releasing alarm pheromone to stimulate
nest mates into defensive behaviour. A recruiting bee
can be recruited into further defensive action by their
own pheromone.

 If the stimulus provides directional information, some
bees will choose to retreat from the area of disturbance.

b) Activating

With more stimulation, bees reach the activating stage.
Here, bees will look for the source of the disturbance.
Depending on if the hive is open or unopened, the search will
start close to the bee or the hive entrance. If there is no further
stimulation after a period, the activated bee may begin
searching meters from the hive.

c) Attracting

If an appropriate stimulus is found by an active bee, they
will orient towards it. The same disturbance often
simultaneously activates and attracts bees. This change in
phase is more obvious when a stimulus is presented and then
removed to a remote location.

d) Culminating

In this phase, several responses are possible. Bees may
sequentially display two or more of the following responses:
threaten, run, sting, bite, pull hair or burrow into clothes. If the
integrity of the nest has been disrupted, the bee may choose to
run.

III. ROLES WITHIN A BEE COLONY

During a worker’s lifetime, they will undertake different
roles as they develop and age, also known as age-related
polytheism [10]. The main roles they take are: Nurses, Middle
Aged Bees, and Foragers.

Middle Aged Bees (MABs): develop around the age of 12
– 21 days and remain in at this stage of development for a little
over a week. MABs can take on numerous roles within the
nest. Younger MABs tend to take on tasks such as comb
building and colony maintenance, while older MABs take on
tasks closer to the hive entrance such as nectar
receiving/processing and guarding [11]. Around 10 – 15% of
MAB workers will take part in guarding [10]. The rest of the
MABs tasks are closely related to foragers. Bees can choose
which task to do based on feedback from the local
environment, e.g. foragers performing the tremble dance can
recruit MABs to act as receivers [4].

Foragers: Once a bee has developed into this role, they no
longer take part in hive related tasks that MABs handle.
Instead, foragers focus on collecting all resources [11].

There is a two more roles which will not be used in this
paper. The Cell Cleaner role refers to newly emerged bees that
have not been involved in the nest duties yet. The Nurse role is
responsible for feeding the young and caring for the Queen.

IV. MULTI-AGENT & SWARM INTELLIGENCE

Swarm Intelligence is built upon the idea of multi-agent
systems. A multi-agent system consists of an environment
which multiple AI agents communicate and act within. An AI
agent is described as something that can perceive its
environment through sensors and make decisions/act based on
information found in that environment [12]. An agent is
expected to be able to:

 Operate autonomously

 Perceive their environment

 Persist over a prolonged period

 Adapt to change

 Create and pursue goals

Rationally, agents should aim to select an action that is
expected to maximise its performance measure, based on
evidence provided by the percept sequence and whatever built-
in knowledge the agent has [12].

A. Model-based Agents

There are different agent types that can be created to
replicate the behaviour of the honey bees. As the environment
in which the bees are interacting with in a battle scenario is
partially observable, sequential and dynamic, model-based
reflex agents are the best fit for implementing the agents used
within such environment [13].

These type of agents keep track of part of the world they
cannot see anymore, by using information perceived
historically. The state of the world the agent is tracking can be
updated using information about how the world evolves
independently of the agent, and how the agent’s actions affect
the world [14], [15].

Model-based reflex agents are most suitable for a partially
observable environment, as they can maintain an internal state
of the world that is dependent on the percept history. To be
able to update this internal state, the agent needs to know how
the world works; known as the model of the world. The model
agents use needs two types of information: how the world
evolves independently of the agent and how the agent’s own
actions affect the world. Using this state and the current
percept, the agent can make decisions as to what to do.

As the environment is partially observable, the state
maintained by the agent is better thought of as a best guess.
This means there is likely to be uncertainty in the state,
however decisions still need to be made [12], [15].

B. Blackboard architecture

A blackboard is a global structure that is available to all
agents in a system to share information and collaborate to solve
a problem. Traditional blackboard systems are made of three
components: the blackboard, several knowledge sources (KSs)
and a controller component. The blackboard acts as the shared
memory for the KSs to read and write from. A KS is a system
that can read information from the blackboard, process
anything relevant to it, and contribute information towards
solutions. KSs are independent of each other, and each can be a
different type of system, allowing different approaches to
problem solving; however, only one KS can write to the
blackboard at a time. The controller component is responsible
for choosing which KS can write to the blackboard next.
Decisions are made based on what the KS will contribute and
the resources required to create this contribution [16].

More recently, a different approach [17] was suggested for
blackboards in a multi-agent system. Corkill proposed a system
whereby each agent has their own blackboard and all KSs used
in the system, allowing them to focus on nearby data and share
with other agents they meet. This approach would create a
flexible distributed system, similar to how honey bees use local
information and their own experience to make decisions and
share information. This has been taken on by other researchers
and expanded to using a private and a shared blackboard,

where part of the world is shared amongst the agents and other
information are kept private to each individual agent [18].

C. Markov Decision Process for Decision Making

AI agents will need to be able to make decisions about the
tasks they are performing, the information they share with
others, the actions they will take during defensive behaviour
and the nodes they will travel to, during resource gathering.
There are many methods that can be used to allow agents to
make these decisions. Due to the probabilistic nature of bees’
foraging patterns and the model of defensive behaviour, the
Markov Decision Process (MDP) is rendered to be the most
suitable.

MDP is a process where all possible states are known, each
state having related action and reward values, and a probability
of transitioning from one state to another [19]. MDPs are most
suitable to scenarios whereby the agent moves through several
known sequential states, where transitions between states
happen via a decided action. These points, where decisions are
made, are known as decision epochs. Taking an action results
in a reward value, which can be positive and negative; with
negative values being a cost, rather than a reward. Agents
know the rewards for actions before they are taken.

To handle a partially observable environment, Partially
Observable MDPs (POMDPs) can be implemented. POMDPs
have a similar structure to MDPs, however they require a
sensor model to be able to create a belief state; a group of
actual states the agent might currently be in [12].

V. APPROACHES IN GAMES

Multi-agent approaches including swarm intelligence have
been used in games in recent years. These approaches have
been used in both serious games used for military training,
problem solving in battlefields, as well as used in traditional
video games for entertainment.

Reynolds [20] proposed an approach in simulating the
flocking behaviour of birds, creating a distributed behavioural
model much like that at work in a natural flock as an
alternative to scripting the path of each bird individually for
animation.

Li and Hu [21] present a soccer simulation implemented
using a multi-agent approach that implements a blackboard
model so tackle the communication between the agents. Other
researchers [22], [23], have used multi-agent blackboard
approach to creating autonomous NPCs (Non-Playable
Characters) that behave similar to humans in order to improve
NPC behaviour and increase game engagement.

Particle Swarm Optimisation has been used in a tower
defence game to optimise cannon locations to cause enemies
the most damage [24]. The scenario contained two teams of
players, attack and defence. The attack team needed to navigate
along a single path that ensured minimum casualties. The
defence team were given seven cannons to place on the map,
with the aim of causing the maximum amount of damage to the
enemy regardless of the path they took.

An adapted version of Ant Colony Optimisation (ACO)
was used to simulate resource gathering in a real-time strategy

game environment that was believable to players. A memetic
ant colony system was created, using ACO to explore the
environment and communicate information about resources.
This solution was chosen as it is less computational intensive
than using explicit planning and searching. Experiments using
this system with different levels of difficulty found that agents
in this system were successful even when there were many
obstacles and few resources available [25].

VI. MAPPING THE BEE BEHAVIOUR

The prior sections investigated the behaviour of honey bees
that will be adapted for use in an RTS AI agent. This section
discusses the findings and the proposed approach to
implementing swarm intelligence into the agents within the
game.

A bee, during its lifetime, will undertake several different
roles. In the game environment, there will be several different
roles that AI can undertake and switch between depending on
the needs of the group e.g. Harvesters, Foragers, and Soldiers.

To replicate the bees working memory, each agent in the
system will have their own private blackboard to store locally
perceived information to be used for make individual
decisions. To best use this working memory, model-based
reflex agents will be implemented to keep track of the
environment based on the models of honey bee behaviour
discussed earlier.

The foraging behaviour is implemented into the game
environment, using a shortest path calculation based on
Dijkstra’s algorithm to wander in the map and locate resources.
Once resources are found the bees would move directly
towards the base to deposit their load and will continue
collecting using this new direct route. On returning to base,
they will be able to access a global blackboard to which all
agents can read and write. A successful forager can then add
the location of the resource found to the blackboard, describing
how to get to a resource in a similar way to the honey bee’s
waggle dance. The bees will use this point as a target direction
for gathering resources. Negative feedback will occur when
resources are depleted; the path is removed from the
blackboard and other resources will need to be found.

If the nest is disturbed, units undertake defensive actions
which are presented as the model for an individual bee. Bees
step through the same phases of behaviour, however can take
different actions in each phase dependant on how they perceive
the disturbance. To handle the probabilities involved in
choosing actions in defensive behaviour, a Markov decision
process will be implemented. The process will allow agents to
select different actions to move from phase to phase, dependant
on the agent’s remaining stamina. MDP could also be adapted
to handle the decisions of which node to move to during
foraging, dependant on the paths that have recently been
travelled along.

VII. ENVIRONMENT AND ROLES

The simulation scenario involves a randomly generated
environment that holds two bases (nests). This map will host
two separate colonies known as the Defenders and the
Aggressors. There are resources scattered around the

environment which the Defenders aim to collect as their base
would produce a new agent after each ρ amount of resources
collected. Aggressors would be scouring the environment,
hunting Defender agents and searching for the Defender’s base.
This environment is created inspired by Λ environment [26],
[27] which is one of the environment classes that implements
the theory behind the Anytime Universal Intelligence Test [28].

Once the aggressors have spotted the defender’s base they
will stop foraging and gather to attack. As the same time, as the
aggressors have also been spotted, the defenders would issue a
“Call to Arms” (alert->recruiting) which would result in
recruiting the defenders into a defensive position ready for the
imminent attack from the aggressors. The simulation will
arrive at its conclusion when both sides line up and charge each
other resulting in battle. Once a side is completely wiped out
the simulation ends.

If the nest is disturbed, units undertake defensive actions
which are presented as the model for an individual bee. Bees
step through the same phases of behaviour, however can take
different actions in each phase dependant on how they perceive
the disturbance. To handle the probabilities involved in
choosing actions in defensive behaviour, a Markov decision
process will be implemented. The process will allow agents to
select different actions to move from phase to phase, dependant
on the agent’s remaining stamina. MDP could also be adapted
to handle the decisions of which node to move to during
foraging, dependant on the paths that have recently been
travelled along.

A. Defender roles

 Harvesters (Foragers): collect resources only, cannot
attack but can alert the castle about attackers. The have
Low CAE.

 Militia (MAB): collects resources, but can switch to
defensive mode to protect castle when called.

B. Aggressor roles

 Scouts (MAB): do not collect resources, only looking
for defenders or the castle, can attack when called to
arms, can travel further than Attackers and can detect
enemies/castle in a wider range.

 Attackers (MAB): do not collect resources, can look for
defenders/castle, can attack but cannot travel as far as
Scouts unless attacking a castle.

C. Resources

The resources within the map are used for replenishing the
health and the energy of defenders. The collected resources
will also allow the defender’s castle to build new defender
units. The aggressor’s start the game with existing resources
presumed to have been gained from previous raids.

D. Agent Architecture

The proposed architecture for the agents in presented in
Fig. 2. The agent consists of blackboard and processing
components. Information is received by the sensor form the
environment, this information is then stored in the blackboard.
The Action Selector unit would than select a suitable action

based on the information on the blackboard. This final decision
is then passed on to the actuator which would apply this to the
environment, hence exhibiting a behaviour.

State

Base Location

Resource
Empty

Next
Destination

Resource
Location

Enemy
Location

Resource
Locations

Enemy
Spotted

P
R

IV
A

TE
 B

LA
C

K
B

O
A

R
D

SH
A

R
ED

 B
LA

C
K

B
O

A
R

D

EN
V

IR
O

N
M

N
ET

Sensor

Commander

Pathfinder

Attacker

Flocker

Unifier

Actuator

ACTION SELECTOR

Fig. 2. Agent architecture

The blackboard is divided into two sections; a private
blackboard and a shared blackboard. The private blackboard is
private and independent for each agent. The information on the
private blackboard are only accessible to an instance of the
agent and relate to this agent. The shared blackboard is
information that is shared amongst all agents. This simulates
the knowledge held at the nest that is publicly known to all
agents.

Setting Up

Ready

Foraging Conflict
Cannot
Attack

Dead

Health = 0
Meet

Enemy

Fig. 3. High level agent state machine.

The action consists of a commander unit that reads the
current state of the agents and then based on the current state of
the world decides which of the underlying experts are needed
to make the next decision. At any given situation, the agent
might be needing to take multiple decision through multiple
experts. The agent might need to move and flock at the same
time as flocking action would involve moving and therefore
pathfinding. The three expert units; pathfinder, attacker and
flocker will use the information from the agent state and the
world state and make their own relative decisions. Finally the
decisions made by the three experts are passed to the unifier
unit which would form the decision into actionable directives
that are passed to the actuator.

The commander and the three expert units base their
decision making on a hierarchical state machine of the agents
that represents the states which the agents would go through
based on the information received from the game as well as the
decisions that the agents has taken. Fig. 3 represents the high
level agent state machine. Each agent after it is created would
go through a setting up state where its role and initial action is
decided. Once the agent is ready, it will go to the foraging state
where as the aggressor or defender it will start to look for
defenders or resources respectively. From foraging, if they
meet enemies, they will go to attacking or defending states and
finally when an agent’s health reaches zero it will die.

Foraging

Picking
Direction

Checking
Direction

Moving

Destination
Reached

Resource
Found

Calculate
Route Home

Returning to
Home Path

At Base

Restarting
with

Resource Loc

Moving To
Target

Stuck

Checking For
Enemies

Direction Chosen

If no resource
 detected

If detected
 resource

Touched
 resource

In same pos
for x frames

At
resource

In same pos
for x frames

No Resource
Found

Redirected

Resource
 Collected

If has resource

Route
Calculated

Recalculated
Route

Touched
 Base

Resource
 Locations Stored

No Resource
Locations Stored

End of Path
 Reached

Enemy Found

Max Path
Taken

No Enemy Found

Fig. 4. Foraging state

Conflict

Flee To Base

Alert Base

Call to Arms
Flock To
Position

Surround
Castle

Adjust
Position

Harvester

Militia

Aggressor

Can
Attack/Defend

Aggressors

In
 Position

ChargeFacing
Defenders

Facing
Aggressors

Attacking

Attack Finished

At Base Meet
 Enemy

If No Health

If low health/energy

Refilled health/energy

Return to Foraging

Hunt

No Enemy

Meet Enemy

Fig. 5. Conflict State

The foraging state, illustrated in Fig. 4, encompasses the
state machine for movements and path finding. This state
machine would allow foraging unless an enemy or resource has
been spotted in which case the agent would move to the
conflict state or focus of collecting resources.

As presented in Fig. 5, conflict state controls the decision
for the various agent roles during the disturbances. The
aggressor agents will call to arms all their fellow attackers and
scouts, flock to position and charge the defenders. The
defenders on the other side will get into formation, and charge
the aggressors to defend their castle. There is a chance that the
harvesters might flee to base instead of joining the defence.
The aggressors have a special state, Hunt, as they would hunt
for enemies if they are not attacking the castle.

TABLE I. MAPPING BEE DEFENSIVE BEHAVIOUR TO UNIT BEHAVIOUR.

Behaviour
Cost

(CAE)
Damage

Bee
Human

Aggressor Defender

Recruit

Initiate Call to

Arms
Flee - -

Call to Arms at

Base

Call to Arms at

Base
- -

Searching
Get in

Formation

Get into Defensive

position
- -

Attract
Get in line for

charge

Get in line for

charge
- -

Culminating

Battle Cry Taunt 1
+1 to the next

attack

Sword Attack Sword Attack 1 1

Block with

Shield
Block with Shield 2 No Damage

Shield Bash Shield Bash 5 2

String Sword

Attack

String Sword

Attack
8 4

Dodge Dodge 3 No Damage

The table 1, illustrates how the bee behaviour model
presented earlier has been mapped to human behaviour during
disturbances to the nest. The table shows how recruiting,
searching, alerting, attract and culminating will be mapped to
simulated human behaviour in the AI units within the game as
well presenting the mapping of attack patterns and their weight
in the units for the MDP to decide on actions.

If the nest is disturbed, units undertake defensive actions
which are presented as the model for an individual bee. Bees
step through the same phases of behaviour, however can take
different actions depending on the CAE levels and their role.
The agents would use the table below to decide also on the
rewards of the actions they take compared to the cost.

The flock to position state deals with the flocking
behaviour of the agents. This state machines, presented in Fig.
6, allows the agents to make decision on their positioning,
when responding to call to arms, or when readying to get in
line for charge. The flocking behaviour is at the core of crowd
and swarm intelligence. The flocking patterns are a great
demonstration of independent agents behaving separately and
yet creating a crowd pattern.

Flock To Position

Getting
Destination

Going to
Destination

Checking
Destination

Go To
Position

Find Flock
Position

Checking
For Nearby

Agents

At Position

Destination
 found

Destination
 position empty

 x units
away from
destination

Destination
position filled

X units away
 from position

No nearby agents

Position found

Another Agent
Too close

Fig. 6. Flock to Position state

VIII. EVALUATION

This section presents the evaluation of the proposed
architecture. The evaluation method used here is inspired by
[29] and their approach to Anytime Universal Intelligence Test
[28]. For this purpose the environment is created based on a Λ
environment [26], [27]. The idea is to evaluate an agent that
can perform a set of finite tasks based on the environment it is
placed in. The intelligence of the system is assessed as a
function of successful transition between states and the success
of achieving the objective of each state. Fig. 7 illustrates the
agents in three different states.

Fig. 7. Simulation of the game. (a) Flock to Position at base. (b) Adjusting

Position to Charge. (c) Charge.

Each agent has its own specific role as defined earlier. Each
of these roles would have their own specific set of tasks and
states that they are supposed to achieve. Each agent πi which is
a member of Π = {π1, π2… πn} has a role ωj from Ω = {ω1, ω2…
ωm}. Each role would have a set of states available to them

which is defined as Sj = {s: s  States  ωj can be in s}, where
States is the set including all the states available.

An available state sk would have a good outcome k and a

bad outcome k. The good outcome is achieving its objective
whilst the worst outcome is the complete opposite. This is a

theoretical definition that has been put into practice based on
the tasks at hand. For example for a harvester agent which is in
found resource state, the good outcome would be to collect
resource and go home. But the bad outcome in this scenario has
been defined as not going home i.e. being stuck or moving
towards any other position, either case, it would be the
destination chosen by the agent as opposed to the expected
destination.

A reward function has been defined for the agents which
would represent how an agent is performing in a state based on
the best and worst outcomes of that state. The reward of agent
πi in state sk is represented by γi, k where -1.0 ≤ γ ≤ +1.0. The
value of γi, k is calculated using (1) as a function of the outcome
of the state objective.

 γi, k = 1/f(πi , k)  1/f(πi , k) (1)

Where f(a, b) denotes the success of a achieving b. this can
take many forms as in previous example it would be the
distance of agent a from the position b. other examples could
include in case of a conflict f(a, b) would take the form of
successful implementation of attack b by agent a.

The intelligence of an agent πi would be defined as the
amalgamation of its rewards in all its states during an iteration
of the simulation, denoted as Ii presented in (2). Hence the
intelligence of the agents in a role, ωjI, can then be calculated
using (3) as the amalgamation of all the agents that are acting
in the role ωj.

 Ii = ∑k=1…p (γi, k) / p (2)

 ωjI = ∑i=1…q Ii / q (3)

The number p in (2) is the number of states available for
agent πi and it is important to note that if an agent arrives at and
therefore p would not necessarily equal to |Sj|. It would depend
on the states that the agent has arrived at during a simulation
which means some states might be skipped whilst others might
have been repeated many times. The number q represents the
number of πi agents that are acting in role ωj.

Finally, the collective intelligence of a set of agents, Π, is
defined as ψ(Π) and calculated using (4) as the amalgamation
of the intelligence of all the roles.

 ψ(Π) = ∑j=1…m ωjI / m , m = |Ω| (4)

As Ω is the set of all the roles and each agent within Π is
mapped to a role, by association, amalgamating the intelligence
of each role, would allow for an amalgamation of the
intelligence of all agents.

For the purpose of this research, the architecture was
implemented using C# and Unity and the simulation was
executed for five iterations. Each iteration concluded with one
side, either aggressors or defenders, defeated and wiped out.
The iteration took between 6-11 minutes and both sides had an
equal number of agents spawned at the start. A sample iteration
can be viewed here1. Table II presents the amalgamated
rewards for each state for the five test iterations.

1 https://youtu.be/VX8QUYdpqsg

TABLE II. AMALGAMATED REWARD FOR EACH STATE.

State
Iteration

1

Iteration

2

Iteration

3

Iteration

4

Iteration

5

Adjust Position 0.978 0.97 0.88 0.8 0.88

Alert Base 0.94 0.94 0.75 0.99 0.8

At Home 0.89 0.86 0.83 0.97 0.782

At Position 0.98 0.74 0.79 0.71 0.77

Attack 0.908 0.91 0.93 0.85 0.972

Attack Finished 0.838 0.81 0.89 0.96 0.881

Call To Arms 0.79 0.87 0.93 0.84 0.98

Charge 0.698 0.95 0.71 0.94 0.936

Checking Dest. Pos. 0.84 0.76 0.81 0.9 0.827

Checking Direction 0.86 0.82 0.95 0.8 0.943

Checking For Enemies 0.8 0.98 0.94 0.7 0.991

Default 0.90 0.95 0.90 0.95 0.985

Find Flock Position 0.96 0.85 0.75 0.73 0.789

Flee To Base 0.71 0.96 0.71 0.95 0.869

Found Resource 0.95 0.75 0.99 0.74 0.79

Getting Destination 0.84 0.74 0.87 0.83 0.947

Get To Position 0.86 0.78 0.99 0.86 0.9

Going Home 0.73 0.9 0.87 0.7 0.891

Going To Dest. Pos. 0.8 0.77 0.89 0.82 0.967

Go To Flock Position 0.89 0.98 0.94 0.86 0.838

Hunt 0.93 0.777 0.936 0.94 0.736

Moving 0.88 0.75 1 0.89 0.825

Moving To Target 0.81 0.9 0.95 0.87 0.81

Pick Direction With Target 0.99 0.87 0.86 0.82 0.71

Picking Direction 0.81 0.83 0.85 0.8 0.991

Restarting With Resource Loc. 0.86 0.71 0.9 0.87 0.78

Returning To Path Home 0.91 0.95 0.79 0.94 0.82

Starting 0.97 0.89 0.77 0.74 0.772

Stuck 0.727 0.91 1 0.82 0.707

Surround Castle 0.92 0.72 0.75 0.93 0.9

Adjust Position 0.78 0.97 0.88 0.7 0.88

TABLE III. INTELLIGENCE FOR EACH ROLE.

Role Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Attacker 0.94 0.89 0.86 0.81 0.86

Scout 0.9 0.92 0.77 0.84 0.87

Militia 0.8 0.922 0.977 0.83 0.758

Harvester 0.9 0.7 0.94 0.93 0.74

TABLE IV. COLLECTIVE INTELLIGENCE FOR EACH TEAM.

Team Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Aggressors 0.92 0.905 0.815 0.825 0.865

Defenders 0.85 0.811 0.958 0.88 0.749

Tables III and IV respectively represent the intelligence
calculated for each role and then the collective intelligence of
each team. The intelligence values are generally above 0.7, this
is considered a very high score as the range of possible
intelligence would have been between -1 and +1. The
intelligence scores are close to the top end meaning that the
majority of times the agents have been consistently pursuing
the good outcome for each state. Whilst on average it seems to
be the aggressors are performing slightly better that the
defenders, it is worth noting that there are iterations such as
iteration 3 and 4; where defenders have performed better.

IX. CONCLUSION

This research investigated the idea of adapting swarm
intelligence honey bees when foraging and defending their
nests to create a group of co-operative agents. The idea was to
create a decentralised group of autonomous agents that could
work together to achieve goals that would be found within an
RTS game. The goal was to simulate battle behaviour without a
central control or a leader that would dictate strategy [30], [31].

https://youtu.be/VX8QUYdpqsg

Instead, trying to create the battle out of a swarm behaviour of
independent agents. Multiple simulations were run and using
the recorded data, patterns of behaviour were identified and
analysed to check whether the performed behaviour was
expected for that role and main state. The analysed data was
then used to calculate the intelligence score of each individual
agent using the Λ environment and the Anytime Universal
Intelligence Test. The agents scored consistently above 0.7 in a
scale between -1 and +1, demonstrating a high level of
collective intelligence. A noteworthy behaviour also emerged,
presenting the appearance of team leaders during the setup of a
larger battle. This behaviour goes against the idea of creating a
decentralised group, however due to the nature of an RTS
environment, the temporary appearance of leaders makes sense
to lead the teams together into battle.

Future work for this project revolves around scaling up the
simulation in terms of environment, roles available in the teams
and the action taken during battles. To introduce new
behaviours successfully, the environment will need to be larger
to handle more agents and more detail. This would allow the
system to be expanded and applied to other game genres such
as shooter games, racing games and especially serious games
and simulations such as rehabilitation games and narrative
based trainings. Also, introducing a new role in the defender
team called the Scavenger which would act in a similar way to
harvesters, yet would take part in battles. They would be able
to collect resources from the corpses of dead agents, providing
another resource for creating defender agents. Currently, agents
can fight on a 1vs1 basis, when an enemy is nearby or in a
larger battle after spotting the defender base. In a larger
environment, it would be possible to call groups of nearby
agents together for group battles to occur. If deciding to call
other agents for a group battle, agents within a certain radius
would create formations and attack each other. Hence brining
the simulation much closer to true strategic behaviour and
battle simulations.

REFERENCES

[1] S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of

swarm intelligence,” Swarm Intell., vol. 1, no. 1, pp. 3–31, 2007.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in

Proceedings of ICNN’95 - International Conference on Neural

Networks, 1995, vol. 4, pp. 1942–1948.

[3] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,”

Theor. Comput. Sci., vol. 344, no. 2–3, pp. 243–278, Nov. 2005.

[4] C. Detrain and J.-L. Deneubourg, “Collective Decision-Making and

Foraging Patterns in Ants and Honeybees,” in Advances in Insect

Physiology, Alexander S. Raikhel, Ed. Academic Press, 2008, p. (35)

123-173.

[5] R. Menzel, “Learning, memory, and ‘cognition’ in honey bees,”

Neurobiol. Comp. Cogn., pp. 237–292, 1990.

[6] T. D. Seeley, P. K. Visscher, and K. M. Passino, “Group decision

making in honey bee swarms,” Am. Sci., vol. 94, no. 3, p. 220, 2006.

[7] K. von Frisch, Tanzsprache und Orientierung der Bienen. Berlin

Heidelberg: Springer-Verlag, 1965.

[8] S. Zhang, F. Bock, A. Si, J. Tautz, and M. V Srinivasan, “Visual

working memory in decision making by honey bees,” Proc. Natl. Acad.

Sci. United States Am. , vol. 102, no. 14, pp. 5250–5255, Apr. 2005.

[9] A. M. Collins, T. E. Rinderer, K. W. Tucker, H. A. Sylvester, and J. J.

Lackett, “A Model of Honeybee Defensive Behaviour,” J. Apic. Res.,

vol. 19, no. 4, pp. 224–231, Jan. 1980.

[10] G. J. Hunt, “Flight and fight: A comparative view of the

neurophysiology and genetics of honey bee defensive behavior,” J.

Insect Physiol., vol. 53, no. 5, pp. 399–410, May 2007.

[11] B. R. Johnson, “Division of labor in honeybees: form, function, and

proximate mechanisms,” Behav. Ecol. Sociobiol., vol. 64, no. 3, pp.

305–316, 2010.

[12] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd edition. Upper Saddle River, NJ, USA: Prentice Hall, 2009.

[13] R. Lieck and M. Toussaint, “Temporally extended features in model-

based reinforcement learning with partial observability,”

Neurocomputing, vol. 192, pp. 49–60, Jun. 2016.

[14] D. H. Scheidt and M. J. Pekala, “Model-based agents,” in Power

Engineering Society General Meeting, 2007. IEEE, 2007, pp. 1–2.

[15] K. J. Miller, C. D. Brody, and M. M. Botvinick, “Identifying Model-

Based and Model-Free Patterns in Behavior on Multi-Step Tasks,”

bioRxiv, Dec. 2016.

[16] D. D. Corkill, “Blackboard systems,” AI Expert, vol. 6, no. 9, pp. 40–

47, 1991.

[17] D. D. Corkill, “Collaborating Software: Blackboard and Multi-Agent

Systems & the Future,” in Proceedings of the International Lisp

Conference, 2003.

[18] J. Orkin and D. Roy, “The restaurant game: Learning social behavior

and language from thousands of players online,” J. Game Dev., vol. 3,

no. 1, pp. 39–60, 2007.

[19] Mausam and A. Kolobov, “Planning with Markov Decision Processes:

An AI Perspective,” Synth. Lect. Artif. Intell. Mach. Learn., vol. 6, no.

1, pp. 1–210, Jun. 2012.

[20] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral

Model,” in Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Techniques, 1987, pp. 25–34.

[21] S. Li and F. Hu, “Communication between the RoboCup Agents Based

on the Blackboard Model and Observer Pattern,” in Proceedings of the

5th International Conference on Wireless Communications, Networking

and Mobile Computing, 2009, pp. 1–5.

[22] J. Orkin and D. Roy, “Automatic Learning and Generation of Social

Behavior from Collective Human Gameplay,” Proc. 8th Int. Conf.

Auton. Agents Multiagent Syst., vol. 1, pp. 385–392, 2009.

[23] J. Orkin, “Using online games to capture, generate, and understand

natural language,” in the 13th European Workshop on Natural

Language Generation, 2011, p. 71.

[24] P. Huo, S. C. K. Shiu, H. Wang, and B. Niu, “Application and

Comparison of Particle Swarm Optimization and Genetic Algorithm in

Strategy Defense Game,” in Proceedings of Fifth International

Conference on Natural Computation, 2009, pp. 387–392.

[25] X. Chen, Y. S. Ong, L. Feng, M. H. Lim, C. Chen, and C. S. Ho,

“Towards Believable Resource Gathering Behaviours in Real-time

Strategy Games with a Memetic Ant Colony System,” Procedia

Comput. Sci., vol. 24, pp. 143–151, 2013.

[26] J. Insa-Cabrera, J. Hernández-Orallo, D. L. Dowe, S. Espana, and M.

V. Hernández-Lloreda, “The anYnt project intelligence test: Lambda-

one,” in Proceedings of AISB/IACAP 2012 Symposium “Revisiting

Turing and his Test: Comprehensiveness, Qualia, and the Real World,”

2012, pp. 20–27.

[27] N. Chmait, D. L. Dowe, Y.-F. Li, D. G. Green, and J. Insa-Cabrera,

“Factors of collective intelligence: How smart are agent collectives?,”

in Proceedings of 22nd European Conference on Artificial Intelligence

(ECAI), 2016, pp. 542–550.

[28] J. Hernández-Orallo and D. L. Dowe, “Measuring universal

intelligence: Towards an anytime intelligence test,” Artif. Intell., vol.

174, no. 18, pp. 1508–1539, 2010.

[29] N. Chmait, Y.-F. Li, D. L. Dowe, and D. G. Green, “A Dynamic

Intelligence Test Framework for Evaluating AI Agents,” in

Proceedings of Evaluating General-Purpose AI (EGPAI), ECAI

workshop, 2016.

[30] I. Karpov, L. Johnson, V. Valsalam, and R. Miikkulainen, “Evaluation

Methods for Active Human-Guided Neuroevolution in Games,” in

2012 AAAI Fall Symposium on Robots Learning Interactively from

Human Teachers (RLIHT), 2012.

[31] I. V Karpov, L. M. Johnson, and R. Miikkulainen, “Evaluating team

behaviors constructed with human-guided machine learning,” in

Proceedings of the IEEE Conference on Computational Intelligence in

Games, 2015.

