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Abstract

This paper presents a high order finite element implementation of the convex multi-variable
electro-elasticity for large deformations large electric fields analyses and its particularisation to
the case of small strains through a staggered scheme. With an emphasis on accurate geometrical
representation, a high performance curvilinear finite element framework based on an a posteriori
mesh deformation technique is developed to accurately discretise the underlying displacement-
potential variational formulation. The performance of the method under near incompressibility
and bending actuation scenarios is analysed with extremely thin and highly stretched compo-
nents and compared to the performance of mixed variational principles recently reported by Gil
and Ortigosa [1, 2, 3]. Although convex multi-variable constitutive models are elliptic hence,
materially stable for the entire range of deformations and electric fields, other forms of physical
instabilities are not precluded in these models. In particular, physical instabilities present in
dielectric elastomers such as pull-in instability, snap-through and the formation, propagation and
nucleation of wrinkles and folds are numerically studied with a detailed precision in this paper,
verifying experimental findings. For the case of small strains, the essence of the approach taken
lies in guaranteeing the objectivity of the resulting work conjugates, by starting from the under-
lying convex multi-variable internal energy, whence avoiding the need for further symmetrisation
of the resulting Maxwell and Minkowski-type stresses at small strain regime. In this context,
the nonlinearity with respect to electrostatic counterparts such as electric displacements is still
retained, hence resulting in a formulation similar but more competitive with the existing line-
arised electro-elasticity approaches. Virtual prototyping of many application-oriented dielectric
elastomers are carried out with an eye on pattern forming in soft robotics and other potential
medical applications.
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1. Introduction

In recent years, exploiting actuation and harvesting through the heterogenous class of Electro-
Active-Polymers (EAP) has received considerable research focus. In particular, the electronic
subgroup of EAP such as Dielectric Elastomers (DE) and electrostrictive relaxor ferroelectric
polymers or Piezoelectric Polymers (PP) have become the subject of intensive mathematical and
numerical analyses. Typically, the physically insightful information that could be gained from
the numerical studies, depends on the capability of the underlying mathematical model utilised
to simulate EAP. This has led to the development of a diverse range of mathematical models
ranging from simplified to high fidelity models [4, 5].

On one end of the spectrum lies the class of simplified formulations, where one-dimensional
idealisation in the form of rod and beam structures with mass-spring-damper-capacitor support
using small strains and linear electrostatic assumption is utilised [4, 6, 7]. Particularly more
popular in the experimental physics community, these models have been used successfully to
characterise actuation and energy harvesting capabilities of a range of materials, inherently due
to their proximity to the actual experimental set-up. The potential of a material, in exhibiting
electrostiction is typically exploited using such simplified formulations [8, 9, 10, 11, 12, 13].

On the other end of the spectrum lies the class of mathematically more sophisticated for-
mulations that exploit the large deformation characteristics of EAP [5, 14, 15, 1, 2, 16, 17, 18].
The point of departure for such formulations is an assumed energy functional for the coupled
electromechanical system. Conceptually, essential and suitable mathematical requirements for
the energy functional such as ellipticity [19, 20], multi-variable convexity [1, 2], coercivity [21]
and material frame indifference [22] can only be studied in a large deformation context. From a
phenomenological point of view, these requirements or rather restrictions have important physical
implications, in particular in guaranteeing the positive definiteness of the generalised electrome-
chanical acoustic tensor, existence of real wave speeds in the material in the vicinity of an equili-
brium configuration and the electromechanical stability of the material [23, 2]. Apart from these
requirements other forms of physical instabilities present in dielectric elastomers such as pull-in
instability, snap-through and the formation, propagation and nucleation of wrinkles have also
been reported for these models, numerically as well experimentally [24, 25, 26, 27, 28, 29, 30, 31].

In an important intermediate class for electromechanics, the large deformation characteristics
of the system are neglected, whereas the nonlinearity still present in the material emanates from
the electrostriction of the material through the Maxwell (for vacuum V∞) or Minkowski (for
material V ) stress tensors [32, 33, 34, 35]. Theoretical aspects of these formulations were first
introduced in Landau and Lifshitz [33]. The practical relevance of Maxwell stress tensor has led to
a widespread utilisation of these formulations for exploiting electrostriction and magnetostriction.
Unfortunately, electrostrictive models based on the utilisation of Minkowski stress tensor, in the
generic case of anisotropy do not satisfy material frame indifference (i.e. objectivity or invariance
of the energy with respect to rotations) of the electromechanical (total) stress tensor, due to
the inherent non-symmetric nature of the Minkowski stress. Several authors in the past have
used ad-hoc solutions, such as symmetrisation of the total stress tensor, or consideration of the
conservation of angular momentum in the formulation, as a remedy [34, 36]. Nevertheless, the
extended electromechanical Hessian still remains non-symmetric, which dictates the development
of specialised non-symmetric finite element frameworks. Recently, Bustamente [37] has shown
that physically admissible energy functionals can be constructed by choosing suitable constitutive
restrictions such that their linearisation yields objective Minkowski-type stresses.
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The present manuscript presents a computational framework suitable for both geometrically
linearised and large deformation large electric field electromechanics. A convex multi-variable
strain energy description based on the works of Gil and Ortigosa [1, 2, 3] is chosen for modelling
EAPs under actuation and energy harvesting scenarios. For the case of small strains, following
Bustamente [37], the present manuscript extends the framework developed by Gil and Ortigosa
[1, 2] to the case of geometrically linearised electrostriction, to redress the aforementioned incon-
sistencies for the class of intermediate formulations. Importantly, all the aforementioned mathe-
matical requirements are imposed at a large deformation level to arrive at a physically admissible
energy functional. In this context, convex multi-variable energies typically expressed in terms
of fundamental kinematic measures {F ,H , J} are re-expressed in terms of a set of symmetric
kinematics {C,G, C} to guarantee the objectivity of the energy functional. Linearisation with
respect to geometrical fields is then performed by perturbing the energy in the vicinity of the
reference configuration. Analogous to [38], this is achieved through a staggered scheme where the
equations of electrostatics are solved for in a nonlinear fashion whereas the linearised mechanical
equations are updated incrementally.

Admittedly, all the three class of formulations have been primarily applied to simplified geo-
metries where the aim has been to verify the computational framework rather than to simulate
realistic electromechanical components. In the present work, emphasis is put on accurate geo-
metrical representation of electromechanical components by utilising an a posteriori curvilinear
mesh deformation technique to accurately represent the true CAD boundaries. This is achie-
ved by placing the high order nodes in the computational mesh on the true CAD boundary
(curves/surfaces) through the solid mechanics based mesh deformation technique [38], but the
underlying finite element functional spaces are not modified, i.e. a standard isoparametric fi-
nite element discretisation is employed. By relying on accurate geometrical representation and
standard finite element technology, the current framework takes finite element analysis of elec-
tromechanical systems beyond the verification stage through virtual prototyping of a series of
electromechanical components with potential applications in pattern forming, soft-robotics and
other medical applications.

The paper is organised as follows. In section 2, nonlinear continuum electromechanics is
described. In section 3, a variational framework for displacement-potential electromechanics is
described. Aspects of particularisation to small strains and the corresponding staggered scheme
are also discussed in this section. In section 4, a series of numerical examples pertaining to the
capability of the current framework in modelling DEs are analysed, starting from the h and p con-
vergence properties of the curvilinear finite element framework presented in subsection 4.1. The
effect of accurate boundary representation using high order curvilinear finite elements is analysed
in subsection 4.2 and compared to high order planar elements (elements with planar faces/edges).
In subsection 4.3, examples of electromechanical actuation for linearised electromechanics using
the presented staggered scheme are discussed. In subsection 4.4, the performance of the cur-
rent high order finite element displacement-potential approach is compared to those of mixed
Hu-Washizu formulations presented in [1, 2, 3]. In subsection 4.5, impact of code transformation
and data parallelism for an efficient implementation of convex multi-variable electro-elasticity in
the context of high order finite elements is presented. Finally, a series of examples pertaining to
the massive deformation of dielectric elastomers are presented in subsection 4.6. The inherent
instabilities in DEs such as pull-in instability and the formation of wrinkles are studied with
detailed precision using h and p refinements, pinpointing the robustness and the high performant
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capability of the current framework.

2. Nonlinear continuum electromechanics

2.1. Kinematics: motion and deformation

Let us consider the motion of an electro-active body which in its initial or material configura-
tion is defined by a domain V of boundary ∂V with outward unit normal N . After the motion,
the body occupies a spatial configuration defined by a domain v of boundary ∂v with outward
unit normal n, as shown in Figure 1. The motion of the electro-active polymer V is defined
by a pseudo-time (t) dependent mapping field φ which links a material particle from material
configuration X to spatial configuration x according to x = φ(X, t), where displacement boun-
dary conditions can be defined as x = (φ)∂uV on the boundary ∂uV ⊂ ∂V , where the notation
(·)∂uV is used to indicate the given value of a variable (·) on the boundary ∂uV . The two-point

x1, X1

x3, X3

x2, X2

dA

da =HdA

dX

dx = F dX

dV0

dV = JdV0

x = φ(X, t)

Figure 1: Deformation map of a continuum and illustration of the strain measures F , H and J .

deformation gradient tensor or fibre-map F , which relates a fibre of differential length from the
material configuration dX to the spatial configuration dx, namely dx = F dX, is defined as [39]

F = ∇0x =
∂φ(X, t)

∂X
, (1)

where ∇0(·) is the material or Lagrangian gradient operator. In addition, J = detF represents
the Jacobian or volume-map of the deformation, which relates differential volume elements in the
material configuration dV and the spatial configuration dv as dv = JdV . Finally, the element area
vector is mapped from initial dA (colinear with N ) to final da (colinear with n) configuration
by means of the two-point co-factor or adjoint tensor H as da = HdA, which is related to
the deformation gradient via the so-called Nanson’s rule as H = JF−T . With the help of the
definition of the tensor cross product presented in [40] and utilised in the context of hyperelasticity
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and electromechanics in [41, 22, 1], it is possible to re-write the area H and volume J maps as

H =
1

2
F F ; J =

1

3
H : F , (2)

where for two-point second order tensors A and B, the tensor cross operation is computed as
[A B]iI = EijkEIJKAjJBkK , with E the third order alternating tensor3. Based on the fundamental
kinematic measures {F ,H , J} defined in (1) and (2), a set of symmetric kinematic measures
namely C,G and C, can be defined as follows [22]

C = F TF ; G =
1

2
C C = HTH ; C =

1

3
G : C = J2, (3)

where C is the right Cauchy-Green strain tensor and G and C are its co-factor and determinant,
respectively. Let us define δu and ∆u as virtual and incremental variations of x, respectively,
where it will be assumed that δu and ∆u satisfy compatible homogeneous displacement based
boundary conditions that vanish on ∂uV . Making use of the tensor cross product operation
introduced above, the first and second directional derivatives of the symmetric kinematic measures
{C,G, C} with respect to virtual and incremental variation of the geometry can now be evaluated,
starting with C

DC[δu] = (∇0δu)TF + F T∇0δu; (4a)

D2C[δu; ∆u] = (∇0δu)T (∇0∆u) + (∇0∆u)T (∇0δu), (4b)

and similarly for the co-factor G

DG[δu] = C DC[δu]; (5a)

D2G[δu; ∆u] = C D2C[δu; ∆u] +DC[∆u] DC[δu], (5b)

and finally for the determinant C

DC[δu] = G : DC[δu] (6a)

D2C[δu,∆u] = D2C[δu; ∆u] : G+C : (DC[δu] DC[∆u]), (6b)

2.2. Translational and rotational equilibruim

The kinematics of the continuum presented in subsection 2.1 must be described through the
conservation of linear momentum. In the absence of inertial effects, the global conservation of
linear momentum leads to the integral translational equilibrium equations

∫

∂tV

t0dA+

∫

V

f 0dV = 0, (7)

3In addition, throughout the paper, the symbol (·) is used to indicate the scalar product or contraction of a
single index a · b = aibi; the symbol (:) is used to indicate double contraction of two indices A : B = AijBij ; the
symbol (×) is used to indicate the cross product between vectors [a × b]i = ξijkajbk and the symbol (⊗) is used
to indicate the outer or dyadic product [a⊗ b]ij = aibj .
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where f 0 represents the body force per unit undeformed volume V and t0 the traction force per
unit undeformed area, applied on ∂tV ⊂ ∂V such that ∂tV ∪∂uV = ∂V and ∂tV ∩∂uV = ∅. From
(7), the local translational equilibrium equations and the associated boundary conditions can be
written as

DIVP + f 0 = 0 in V ; (8a)

PN = t0 on ∂tV ; (8b)

φ = (φ)∂φV on ∂uV, (8c)

where P represents the first Piola-Kirchoff stress tensor. Furthermore, conservation of rotational
equilibrium leads to the well-known tensor condition PF T = FP T .

2.3. Electrostatics: Gauss’s and Faraday’s laws

In addition to the conservation of translation and rotational equilibrium presented in sub-
section 2.2, the electro-active polymer represented by the continuum described in subsection 2.1
is subjected in its material configuration V to an electric volume charge ρe0 per unit of undefor-
med volume and an electric surface charge ωe0 per unit of undeformed area applied on ∂ωV ⊂ ∂V .
Hence, the integral version of the Gauss’s law can be written in a Lagrangian format as

∫

∂ωV

ωe0dA+

∫

V

ρe0dV = 0. (9)

From (9), the local version of Gauss’s law and the associated boundary conditions can be written
as

DIVD0 − ρe0 = 0 in V ; (10a)

D0 ·N = −ωe0 on ∂ωV, (10b)

where D0 is the Lagrangian electric displacement vector. Alternatively, the spatial electric dis-
placement vector D can be obtained through the area push forward relationship D0 = HTD,
[5, 14]. Furthermore, in the absence of magnetic fields, the integral version of the static Faraday’s
law can be written in a Lagrangian form for a closed curve C embedded in V ∪ ∂V as

∮

C
E0 · dX = 0, (11)

where E0 is the Lagrangian or material electric field vector. The local version of (11) and the
associated boundary conditions can be written as

E0 = −∇0ϕ in V ; (12a)

ϕ = (ϕ)∂ϕV on ∂ϕV, (12b)

where ϕ is the scalar electric potential. In (12), ∂ϕV represents parts of the boundary ∂V where
essential electric potential boundary conditions are applied such that ∂ωV ∪ ∂ϕV = ∂V and
∂ωV ∩ ∂ϕV = ∅. The spatial electric field vector E can be obtained by performing the push
forward (standard fibre transformation) on material electric field i.e. E0 = F TE.

6



2.4. The internal energy density: Objective convex multi-variable electro-elasticity

For the closure of the system of equations defined by (8), (10) and (12), two additional con-
stitutive laws are needed relating deformation and electric displacements to stresses and electric
fields in the continuum, satisfying appropriate constitutive inequalities, in particular ellipticity
[5, 2]. In the case of reversible electro-elasticity, where thermal effects and electric polarisation in-
duced hysteresis are disregarded, the internal energy density e per unit of undeformed volume can
be solely defined in terms of the deformation and electric displacement, namely e = e(∇0x,D0).
The requirement for objectivity (i.e. invariance with respect to rotations in the material confi-
guration) implies that e must be independent of the rotational components of deformation. This
can be facilitated by re-expressing the internal energy density in terms of a symmetric kinematic
measure (such as the symmetric right Cauchy-Green tensor C) as follows

e(∇0x,D0) = esym(C,D0). (13)

Denoting the virtual and incremental variations of the electric displacements with δD0 and ∆D0,
respectively, that satisfy compatible homogeneous displacement, the first law of thermodynamics
yields

Desym[δu; δD0] = S :
1

2
DC[δu] +E0 · δD0, (14)

where the second Piola-Kirchhoff stress tensor S and the Lagrangian electric field E0 are com-
puted as

S = 2
∂esym(C,D0)

∂C
; E0 =

∂esym(C,D0)

∂D0

, (15)

wherein the first and second Piola-Kirchhoff tensors are related through P = FS. Of particular
importance to this development is multi-variable convexity in electromechanics, recently presented
by Gil and Ortigosa [1, 2, 3], which automatically satisfies ellipticity. Using the convex multi-
variable definition, the internal energy density is postulated as

e(∇0x,D0) = W (F ,H , J,D0,d); d = FD0, (16)

where W represents a convex multi-variable functional in terms of the extended set of arguments
{F ,H , J,D0,d}. For the requirement of objectivity, the convex multi-variable energy W can be
re-expressed in terms of a set of symmetric kinematics defined in (3)

e(∇0x,D0) = esym(C,D0) =
⇐
W (F ,H , J,D0,d) =

⇒
Wsym(C,G, C,D0), (17)

where esym represents the internal energy in terms of the right Cauchy Green strain tensor C and
Lagrangian electric displacement D0 and Wsym represents an internal energy defined in terms
of the extended symmetric mechanical kinematic set Vmsym = {C,G, C} and the Lagrangian
electric displacement D0. It is worth noting that Wsym is not strictly convex with respect to the
individual components of the set {Vmsym,D0}, but rather an objective re-expression of the convex
multi-variable functional W . Furthermore, the inclusion of the term d in W is useful in the
context of studying material stability [1] which can be re-expressed in terms of the combination
of kinematics in {Vmsym,D0}. Notice that, constructing a convex multi-variable energy (i.e. W )
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is a necessary first step for a materially frame indifferent representation (i.e. Wsym), but the
vice-versa is not necessarily true.

Definition of an objective internal energy density such as in (17) is an essential requirement
for the particularisation of a multi-variable convex function to the case of small strains [38].
Furthermore, this definition of the internal energy esym (17) facilitates the introduction of a new
set of work-conjugates which can now be defined as

ΣC = 2
∂Wsym

∂C
; ΣG = 2

∂Wsym

∂G
; ΣC = 2

∂Wsym

∂C
; ΣD0 =

∂Wsym

∂D0

. (18)

For notational convenience, the following sets, featuring in subsequent sections, are introduced

Vmsym = {C,G, C}; Σm
Vsym

= {ΣC ,ΣG,ΣC}; (19a)

Ve = {D0}; Σe
V = {ΣD0}; (19b)

V = {Vmsym,Ve}; ΣV = {Σm
Vsym

,Σe
V} (19c)

Following [22, 1, 2], a physically more insightful representation for the second Piola-Kirchhoff
stress tensor S and the Lagrangian electric field E0 can be obtained as

S = ΣC + ΣG C + ΣCG E0 = ΣD0 . (20)

Subsequently, the internal energy esym = esym(C,D0) can be further linearised leading to a
tangent operator (facilitating a Newton-Raphson solution) which can be defined as follows

D2esym[δu, δD0; ∆u,∆D0] = [1
2
DC[δu] : δD0]

[
C QT

Q θ

] [
: 1

2
DC[∆u]
∆D0

]
+ S :

1

2
D2C[δu; ∆u],

(21)

with the fourth order elasticity tensor C, the third order coupling tensor Q and the second order
dielectric tensor θ defined as

C = 4
∂2esym(C,D0)

∂C∂C
; Q = 2

∂2esym(C,D0)

∂D0∂C
; θ =

∂2esym(C,D0)

∂D0∂D0

. (22)

Analogous to (20), a more physically insightful representation of the tangent operator can be
obtained as

D2esym[δu; ∆u] = [Mδ]
T [HWsym ][M∆] + (ΣG + ΣCC) : (1

2
DC[δu] 1

2
DC[∆u])

+ S : [(∇0δu)T (∇0∆u)], (23)

where

[Mδ]
T = [1

2
DC[δu] : 1

2
DG[δu] : 1

2
DC[δu] δD0·]; (24)

[M∆] =




: 1
2
DC[∆u]

: 1
2
DG[∆u]

1
2
DC[∆u]

∆D0


 , (25)
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with the Hessian operator [HWsym ] defined as

[HWsym ] =




4WsymCC 4WsymCG 4WsymCC 2WsymCD0

4WsymGC 4WsymGG 4WsymGC 2WsymGD0

4WsymCC 4WsymCG 4WsymCC 2WsymCD0

2WsymD0C
2WsymD0G

2WsymD0C
WsymD0D0


 , (26)

where the components of C,Q and θ can now be defined in terms of the set of work-conjugates
ΣV defined in (19) using Table 1. It is important to note that, as opposed to the convex multi-

C

WsymCC
+C

(
WsymGG

C
)

+
(
WsymCCG⊗G

)

+WsymCG
C +C WsymCG

+WsymCC
⊗G+G⊗WsymCC

+ (C WsymCC
)⊗G+G⊗ (WsymCC

C)

QT
WsymCD0

+C WsymGD0
+G⊗WsymCD0

θ
WD0D0

Table 1: Elasticity tensor C, piezoelectric tensor Q and dielectric θ tensor re-expressed in terms of the components
of the Hessian operator.

variable Hessian operator expressed in terms of the fundamental kinematic set {F ,H , J,D0,d}
presented in [1], the constitutive term (first term) in (23) is not strictly positive definite as multi-
variable convexity is not defined with respect to the set Vmsym and, hence, ellipticity (i.e. rank-one
convexity) of the internal energy based on this constitutive term alone cannot be established.

2.5. The Helmholtz-like energy density and Legendre transformation

In the case of pursuing a standard variational implementation via the finite element method,
where the scalar electric potential is preferred as an unknown over the electric displacement field
vector, it is typically preferred to work with the Helmholtz-like energy Φ = Φ(C,−∇0ϕ), defined
as [1, 2] 4

Φ(C,−∇0ϕ) = −sup
D0

{−∇0ϕ ·D0 − esym(C,D0)} , (27)

4The usage of Helmholtz-like energy is due to the fact that the Helmholtz energy is predominantly used in the
context of thermal problems for the free energy expressed in terms temperature and the Legendre transformation
therein to obtain the internal energy expressed in terms of entropy.
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wherein the second Piola-Kirchhoff stress tensor S and the Lagrangian electric displacement D0

are computed as

S = 2
∂Φ(C,E0)

∂C

∣∣∣∣
E0=−∇0ϕ

; D0 = −∂Φ(C,E0)

∂E0

∣∣∣∣
E0=−∇0ϕ

. (28)

Further linearisation of the Helmholtz-like energy leads to the three constitutive tensors analogous
to (22)

CΦ =
∂2Φ(C,E0)

∂C∂C

∣∣∣∣
E0=−∇0ϕ

; QΦ =
∂2Φ(C,E0)

∂C∂E0

∣∣∣∣
E0=−∇0ϕ

; θΦ =
∂2Φ(C,E0)

∂E0∂E0

∣∣∣∣
E0=−∇0ϕ

, (29)

where the subscript E0 = −∇0ϕ implies that energy is evaluated for the value of electric field
obtained using (12). When the internal energy is a complex multi-variable function of the set V ,
the nonlinearity of the convex multi-variable function esym can make it impossible to obtain an
explicit representation of the constitutive tensors in (29). Whence, it is typically more suitable
to perform this step numerically, by utilising a nonlinear iterative scheme. In the context of finite
element analysis, by exploiting the relationship between the internal energy and the Helmholtz-like
energy through the Legendre transform in (27), it is possible to compute, via a Newton-Raphson
algorithm per quadrature point, these tensors as

[θΦ]ij = −[θ]−1
ij ; [QΦ]ijk = −[θΦ]mi[Q]jkm; [CΦ]ijkl = [C]ijkl − [Q]ijm[QΦ]mkl. (30)

For a detailed representation of different electromechanical energies, the reader can refer to Gil
and Ortigosa [1].

3. Variational formulation

3.1. Displacement-electric potential based variational formulation

A variational principle can be established by the total energy minimisation defined in terms
of the internal energy of the system esym = esym(C,D0). In this case, the total potential energy
Πe(x

∗, ϕ∗,D∗0) can be written as

Πe(x
∗, ϕ∗,D∗0) = inf

x,D0

sup
ϕ

{∫

V

esym(C,D0) dV +

∫

V

D0 ·∇0ϕdV − Πext(x, ϕ)

}
, (31)

where (x∗, ϕ∗,D∗0) denotes the exact solution and Πext(x, ϕ) represents the external coupled
electromechanical work additively decomposed into the purely mechanical Πm

ext(x) and electrical
Πe

ext(ϕ) components

Πm
ext(x) =

∫

V

f · x dV +

∫

∂tV

t0 · x dA;

Πe
ext(ϕ) = −

∫

V

ρe0 ϕdV −
∫

∂ωV

ωe0 ϕdA,

where

Πext(x, ϕ) = Πm
ext(x) + Πe

ext(ϕ).
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Application of the Legendre transform enables [1] above variational principle (31) to be reformu-
lated as

ΠΦ(x∗, ϕ∗) = inf
x

sup
ϕ

{∫

V

Φ(C,−∇0ϕ)dV − Πext(x, ϕ)

}
. (32)

It is now straightforward to carry out finite element discretisation of (32) in terms of {x, ϕ},
for which we refer to [2]. In this context, (32) can be solved for in a standard monolithic way
as described in Algorithm 1. In the current setting, equal order high order isoparametric finite
elements are utilised for the interpolation of the primary variables i.e. {x, ϕ}.

Algorithm 1 The nonlinear electromechanics solver

procedure Monolithic Solver
Input geometry, material properties and analysis parameters
Initialise F = 0, x = X and R = 0
for each increment n do

Compute incremental nodal forces ∆F
Compute electromechanical nodal forces F = F + ∆F
Compute electromechanical residuals R = R−∆F
while ||R||/||F|| > tolerance do

Assemble K
Solve Ku = −R
Update the geometry x = x+ u
for every quadrature point do

Given E0 compute D0 implicitly via 22(c)
Compute CΦ,QΦ and θΦ using (30)
Compute second Piola-Kirchhoff stress tensor S using (20)

end for
Compute traction forces T
Find R = T− F

end while
end for

end procedure

3.2. Incrementally linearised electromechanics

As presented in section 1, a particular class of coupling in electromechanics deals with small
strains coupled with nonlinear electrostatics. To this end, the variational principle described in
(32) can be particularised for the case of small strains. Extending, the strategy presented in
[38, 42], let us consider the total potential energy (32) cast in an iterative (Newton-Raphson)
form

ΠΦint
(x∗

n+1

k+1 , ϕ
∗n+1

k+1 ) =

∫

V

Φ(Cn+1
k+1 ,−(∇0ϕ)n+1

k+1)dV, (33)

where superscripts denote increments and subscripts denote iterations. A geometrically linearised
formulation for electro-elasticity can be obtained by perturbing the potential energy (33). Ho-
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wever note that in contrast to the approach presented in [38], particularisation of (33) for small
strains through consistent linearisation with respect to the variations in electrostatic fields and
mechanical fields cannot be performed simultaneously, as it leads to high order tensorial quantities
without clear physical interpretations. However, as shown in Figure 2, for small deformations, the
geometry could be solved for incrementally with only the electrostatic equations requiring a full
Newton-Raphson procedure. This gives rise to the staggered scheme presented in the following
subsection.

3.3. The staggered approach to incrementally linearised electromechanics

To elaborate the staggered approach emanating from the variational principle (31), let us
reconsider (33) which in fully discretised form (using the finite element method) can be written
as [

Kuu
n+1
k+1 Kuφ

n+1
k+1

Kφu
n+1
k+1 Kφφ

n+1
k+1

][
Uu

n+1
k+1

Uφ
n+1
k+1

]
= −

[
Ru

n+1
k+1

Rφ
n+1
k+1

]
, (34)

where Kuu represents the fully discrete purely mechanical stiffness matrix, Kφφ the fully discrete
matrix associated with electrostatic variable(s) and Kuφ and Kφu the fully discrete electrome-
chanical coupled matrices. The above discrete form particularised to the staggered case of (31)
can be established as shown in Algorithm 2. Algorithm 2 in particular implies a staggered sy-
stem in which the geometry is updated incrementally, but the associated electrostatic variables
are solved for iteratively. More specifically, as shown in Figure 2 the geometry, the mechanical
and the coupling matrices are frozen during the iterative (implicit) solution of the electrostatic
variables. An algorithmic representation of this staggered scheme is presented in Algorithm 2
where N represents the external electrical nodal force vector. Note that an initial step for solving
the mechanical variables is necessary in this case i.e. Kuu

0
0Uu

0
0 = −Ru

0
0 to account for Dirichlet

driven problems. Since the above staggered approach requires the solution of a scalar field elec-
tric potential through solving the discretised Gauss’s law, the saving in computational cost can
be tremendous within its range of applicability (small strains). However as the voltage induced
deformation increases a high number of increments might be needed to obtain the results of fully
nonlinear monolithic approach.

xn = φn(X)

xn+1 = φn(X) + u

xn+1 = φn+1(X)

xn0 ; ϕ
n
k

xn0 ; ϕ
n
k+1

Freeze Geometry

Figure 2: Schematic representation of the staggered incrementally linearised scheme.
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Algorithm 2 The incrementally linearised electromechanics solver

procedure Staggered Solver
Assemble & solve the mechanical problem Kuu

0
0Uu

0
0 = −Ru

0
0

for each increment n do
Compute electrostatic residual R̂n+1

φ0
= Rφ

n+1
0 −Kφu

n
0Uu

n
0

while ||R̂n+1
φk+1
|| > tolerance do

Assemble & solve the electrostatic problem Kφφ
n+1
k+1Uφ

n+1
k+1 = −R̂n+1

φk+1

Compute electrostatic traction forces Tφ
n+1
k+1

Update electrostatic residual R̂n+1
φk+1

= Tφ
n+1
k+1 −Nφ

n+1
k+1

Accumulate mechanical residual Rφu
n+1
k+1 = Tu

n+1
k+1 −Nu

n+1
k+1

end while
Compute the force vector Fuφ

n
0 = Kuφ

n
0Uφ

n+1
k+1

Solve the corrected mechanical problem Kuu
n
0Uu

n+1
0 = −Ru

n
0 −Rφu

n+1
k+1 + Fuφ

n
0

Update the geometry xn+1 = xn + Uu
n+1
0

Assemble Kuu
n+1
0 , Kuφ

n+1
0 and Kφu

n+1
0

Set n+ 1 to n
end for

end procedure

4. Numerical examples

In this section a series of numerical examples for electromechanics are presented. These
include a) (mesh refinement) h and (polynomial enrichment) p convergence studies for high or-
der displacement-potential formulation for convex multi-variable internal energies presented in
section 3, b) the impact of accurate geometrical representations on the solution of large defor-
mation electromechanical problems, c) comparison of monolithic (nonlinear) approach with the
incrementally linearised staggered approach and the range of applicability of the latter approach
in actuation, d) comparison of the current framework with the mixed Hu-Washizu variational
principles presented in [2, 16] and, e) Impact of code transformation and data parallelism for
an efficient implementation of convex multi-variable electro-elasticity in the context of high or-
der finite elements. Apart from these benchmark studies, a series of examples pertaining to the
massive deformation and the instabilities in DEs such as the formation of folds and wrinkles is
studied in detail using the current framework. The finite element implementation involves equal
order standard isoparametric discretisation of the electromechanical variables {x, ϕ}, starting
with at least quadratic basis functions. As a standard nomenclature in high order finite element
analysis, polynomial interpolation over tetrahedra are denoted by p and polynomial enrichment
over hexahedra are denoted by q. Unless otherwise specified, for all the examples, the curvili-
near meshes are generated using the consistently linearised solid mechanics analogy presented in
[38, 43], using a Mooney-Rivlin model with a Poisson’s ratio of 0.45 and 10 load increments. In
addition, all the analyses are carried out with the high performance domain-specific data parallel
tensor contraction finite element framework Fastor based on the authors’ previous work [44] and
the massively parallel multi-frontal direct sparse solver MUMPS is used for the solution of system
of linear equations. For the purpose of assessing the performance of the proposed monolithic ap-
proach the final example is solved using the algebraic multigrid (AMG) solver with the standard
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Ruge-Stuben aggregations, c.f. [45, 46, 47, 48].

4.1. h & p convergence of the proposed high order framework

As a starting point, it is essential to examine the h and p convergence properties of the
proposed high order displacement-potential formulation for large deformations large electric fields
(fully coupled monolithic approach) described in section 2 and subsection 3.1. Hence, the objective
of this example is to a) assess the convergence of different variables in {x, ϕ,V ,ΣV} using h and
p refinements, b) examine optimality of the algorithm in terms of convergence properties on high
order curved tetrahedral and hexahedral meshes around a dielectric elastomeric patch, obtained
using the mesh deformation technique described in [38] and, c) showcase the scalability of the
framework with high polynomial enrichment. The geometry of the dielectric patch is shown in
Figure 3. A similar convergence study for an eleven field Hu-Washizu type mixed variational
formulation in terms of the set of unknowns {x,F ,H , J, ϕ,d,ΣF ,ΣH ,ΣJ ,ΣD0 ,Σd} is presented
in [2]. The constitutive model considered is based on a convex multi-variable energy functional
expressed in terms of the invariants of the set V as follows

Wel,1(C,G, C,D0) = µ1

n∑

i=1

αiI
i
C + µ2

n∑

i=1

βiI
i
G − 2

(
µ1

n∑

i=1

iαi3
i−1 + 2µ2

n∑

i=1

iβi3
i−1

)
ln
√
C

+
λ

2
(
√
C − 1)2 +

1

2ε1

IID0 +
1

2ε2

√
C
IId,

(35)

where I(•) denotes the trace of the entity (•) and II(•) the squared of the L2 norm of the entity
(•) with IId = D0 · CD0. Furthermore, {µ1, µ2, λ, ε1, ε2} represent positive material constants
with αi’s and βi’s denoting scaling coefficients. The material parameters in (35) used for this
example are presented in Table 2, where n = 2, α1 = β1 = 1 and α2 = β2 = 0.2 are chosen. The

µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2) ε2 (N/V2)
1 1/2 1 4 4

Table 2: Material properties for example 4.1

problem is constructed so that smoothness of the solution is guaranteed. For that purpose, the
following simple exact fields associated with the fields x and ϕ are considered

xexact = X +





γ1 sinX1

γ2 cosX2

γ3(sinX3 + cosX3)



 ; ϕexact = ϕ0 sinX1, (36)

where for this benchmark example, γ1 = 0.1, γ2 = 0.2, γ3 = 0.3 and ϕ0 = 104V are chosen. The
deformation gradient tensor and the Lagrangian electric field can now be computed as

F exact =




1 + γ1 cosX1 0 0
0 1− γ2 sinX2 0
0 0 1 + γ3(cosX3 − sinX3)


 ; Eexact

0 = −




ϕ cosX1

0
0



 .

(37)
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The remaining exact fields in the set Vexact = {Cexact,Gexact, Cexact,Dexact
0 } can now be obtained

for the smooth displacement and electric potential fields, from (37). Application of (3) on (37)
yields the exact right Cauchy-Green tensor, its cofactor and determinant for the smooth fields
(36) as

Cexact = F exactTF exact; Gexact =
1

2
Cexact Cexact; Cexact =

1

3
Gexact : Cexact. (38)

Similarly, the Lagrangian electric displacement vector can be computed by applying (15) on (35)
as

Dexact
0 =

(
1

ε1

I +
1

ε2

√
Cexact

Cexact

)−1

Eexact
0 . (39)

Once all the elements of the set Vexact have been determined, it is possible to obtain the set of exact
work conjugates Σexact

V = {ΣC
exact,ΣG

exact,Σexact
C ,Σexact

D0
} via (18). These enable to compute the

second Piola-Kirchhoff stress tensor Sexact from (20). Finally, the associated volumetric force
and electric charge in mechanical and electrical equilibrium with the exact first Piola-Kirchhoff
stress tensor P exact = F exactSexact and exact Lagrangian electric displacement field Dexact

0 are
determined from (8) and (10), respectively as

f 0(xexact, ϕexact) = −DIVP exact; ρ0(xexact, ϕexact) = DIVDexact
0 . (40)

For the convergence studies, three different high order curvilinear unstructured tetrahedral meshes
and one high order curvilinear structured hexahedral mesh for the dielectric patch in Figure 3
are considered with 532 elements, 9220 elements, 26807 elements for the first three and 5000
elements for the last one, respectively, as shown in Figure 5. As will be described shortly, these
discretisations are chosen such that the maximum segment fitting in a curved element (denoted
by h) is successively refined for h-convergence. The placements of high order nodes on curved
boundaries of the meshes are given particular importance, in that they have been computed
through an arc-length based projection from high order planar meshes with Warburton nodal
distribution [38]. The curved volume mesh is then obtained by applying the consistently linearised
elastic analogy [38, 43, 49, 50]. It is worth mentioning that the quality of the curvilinear meshes
directly impact the h and p convergence property (optimality) of the finite element interpolation
scheme. To this end, Table 3 and Table 4 report the three fundamental quality measures (where
Q1 quantifies distortion of edges, Q2 quantifies distortion of faces and Q3, also known as scaled
Jacobian, quantifies volumetric distortion of the element itself) of the curved tetrahedral and
hexahedral meshes, respectively; c.f. [38]. Optimal symmetric quadrature rules for tetrahedra
reported in [51] are utilised for numerical integration of high order tetrahedral elements. For
hexahedral elements, a simple tensor product based quadrature rule is utilised.

p
Coarse (532 elements) Medium (9220 elements) Fine (26807 elements)

DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3
p = 2 1027 ×4 0.888 0.875 0.790 17934 ×4 0.962 0.924 0.885 52590 ×4 0.953 0.909 0.866
p = 3 3077 ×4 0.881 0.843 0.746 54018 ×4 0.936 0.869 0.799 158352 ×4 0.947 0.893 0.838
p = 4 6861 ×4 0.874 0.813 0.738 120473 ×4 0.926 0.850 0.771 352838 ×4 0.935 0.871 0.800
p = 5 12911×4 0.851 0.807 0.711 226516 ×4 0.904 0.831 0.721 662848 ×4 0.924 0.843 0.765
p = 6 21759×4 0.846 0.771 0.652 381373 ×4 0.891 0.828 0.713 1115196×4 0.901 0.837 0.757

Table 3: Distortion quality of high order curvilinear tetrahedral meshes
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p DoFs Q1 Q2 Q3
p = 2 49943 ×4 0.999 0.984 0.914
p = 3 147364 ×4 0.993 0.972 0.889
p = 4 341885 ×4 0.987 0.961 0.853
p = 5 659106 ×4 0.981 0.934 0.820
p = 6 1129027 ×4 0.971 0.900 0.797

Table 4: Distortion quality of high curvilinear hexahedral mesh

For studying h-convergence properties, only tetrahedral meshes are considered. The conver-
gence rate of different primary and derived variables {x, ϕ,V ,ΣV} are then studied by comparing
the interpolated solution and analytical solution for a fixed p and successive h-refinement, similar
to the strategy followed in [38, 2]. To monitor the convergence rate, the L2(V ) norm of the error
is computed for all quantities of interest. For curvilinear meshes the L2(V ) norms of the variables

Figure 3: CAD geometry of the dielectric patch

are reported as a function of the diameter (the largest segment that can fit within a curved region)
of the element computed through a straightforward sampling strategy illustrated in Figure 4 for
curved tetrahedral and hexahedral elements. After traversing the whole computational mesh, the
minimum value of all the diameters is chosen as h [52, 53]. The tetrahedral meshes reported in
Table 3 are chosen such that they correspond to successive refinement in this quantity.

Figure 4: Illustration of computing the diameter (largest segment) in curvilinear meshes using sampling and
tessellation strategy, for p=5 tetrahedra and q=2 hexahedra

Figure 6 shows h-convergence of the variables {x, ϕ,V ,ΣV} for four levels of p-refinement (i.e.
p = 2, 3, 4, 5). Note that unlike in [2], while the displacements and electric potential are primary
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(solved) variables, the rest of variables are secondary (derived). As can be observed in Figure 6 for

(a) (b) (c)

Figure 5: Three representative curvilinear meshes used for convergence studies; a) medium tetrahedral mesh (9220
elements) b) fine tetrahedral mesh (26807 elements), and c) fine hexahedral mesh (5000 elements)

both low and high order polynomial interpolations, the expected rate of convergence is achieved for
both primary (p+ 1 convergence rate) and derived (p convergence rate) variables. Notice that for
this study, the multi-precision floating point library (MPFR) is utilised for arbitrary floating point
accuracy. Apart from pinpointing the optimality and accuracy of the high order electromechanical
solver on complex curved meshes, the h-convergence plots also prove that the framework scales
reliably with high p and millions of degrees of freedom. Next, the p-convergence of tetrahedral
elements for a fixed mesh (the finest mesh) is considered and compared to the p-convergence
properties of hexahedral elements. Notice from Table 3 and Table 4 that the hexahedral mesh is
chosen such that for every p, the number of nodes in the tetrahedral and hexahedral meshes are
within a 5% difference. Once again, the degree of interpolation is successively increased leading
to p convergence of the L2(V ) norm of the same afore-mentioned quantities. Figure 7 shows p
convergence of the L2(V ) for arguments of the set {x, ϕ,V ,ΣV}. Once again, optimal rates of
convergence for both curvilinear tetrahedral and hexahedral elements are obtained.

4.2. Effect of accurate boundary representation in nonlinear electro-elasticity

Having studied the convergence properties of high order curvilinear finite elements for model-
ling convex multi-variable electromechanics in the previous section, the objective of this section is
to examine if accurate geometrical representation through high order curvilinear finite elements,
does play a role in capturing the physics of soft elastomeric materials better compared to the
standard high order finite elements with planer faces/edges. The examples in this section are
also motivated by the fact that, the vast majority of finite element simulations of electromecha-
nical devices are carried out using either low order or high order finite elements with planer faces
[54, 55, 56, 2, 16, 23, 34], with possible geometrical simplifications and at times even de-featuring
[57].

To this end, the notable example of electromechanical plate with a hole is chosen for exa-
mination [54]. For this example, once again, one tetrahedral mesh and one hexahedral mesh is
chosen and the polynomial degree is successively enriched, while keeping the mesh size h fixed.
Additionally, for both examples, the material model chosen is based on the following convex
multi-variable strain energy representation

Wel,2 = µ1IC + µ2IG − 2(µ1 + µ2)ln
√
C +

λ

2
(
√
C − 1)2 +

1

2ε1

IID0 +
1

2
√
Cε2

IId, (41)

with material constants as given in Table 5. The Poisson’s ratio corresponding to parameters µ1,
µ2 and λ, is ν = 0.357. The mesh quality information for the plate with the hole is listed in Table 6

17



−1.0 −0.5 0.0 0.5 1.0
log10(h)

−6

−4

−2

0

lo
g 1

0(
L2

er
ro

r)

Rx1 = 3.0; RC33 = 2.0; RG11 = 2.0; RC = 2.0
Rφ = 3.0; RD01

= 2.0

x1

C33

G11

C
ϕ
D01

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−4

−2

0

lo
g 1

0(
L2

er
ro

r)

RΣC33
= 2.0; RΣG11

= 2.0; RΣC = 2.0
RΣD01

= 2.0

ΣC33

ΣG11

ΣC

ΣD01

(a) (b)

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−8

−6

−4

−2

0

lo
g 1

0(
L2

er
ro

r)

Rx1 = 3.9; RC33 = 3.0; RG11 = 3.0; RC = 3.0
Rφ = 3.8; RD01

= 3.0

x1

C33

G11

C
ϕ
D01

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−6

−4

−2

0

lo
g 1

0(
L2

er
ro

r)

RΣC33
= 3.0; RΣG11

= 3.0; RΣC = 3.0
RΣD01

= 3.0

ΣC33

ΣG11

ΣC

ΣD01

(c) (d)

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−12

−10

−8

−6

−4

−2

lo
g 1

0(
L2

er
ro

r)

Rx1 = 5.0; RC33 = 4.0; RG11 = 4.0; RC = 4.0
Rφ = 5.0; RD01

= 3.9

x1

C33

G11

C
ϕ
D01

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−10

−8

−6

−4

−2

lo
g 1

0(
L2

er
ro

r)

RΣC33
= 4.0; RΣG11

= 4.0; RΣC = 4.0
RΣD01

= 3.9

ΣC33

ΣG11

ΣC

ΣD01

(e) (f)

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−15.0

−12.5

−10.0

−7.5

−5.0

lo
g 1

0(
L2

er
ro

r)

Rx1 = 5.8; RC33 = 5.0; RG11 = 4.9; RC = 4.9
Rφ = 5.8; RD01

= 5.0

x1

C33

G11

C
ϕ
D01

−1.0 −0.5 0.0 0.5 1.0
log10(h)

−14

−12

−10

−8

−6

−4

lo
g 1

0(
L2

er
ro

r)

RΣC33
= 4.9; RΣG11

= 4.9; RΣC = 4.9
RΣD01

= 4.9

ΣC33

ΣG11

ΣC

ΣD01

(g) (h)

Figure 6: h convergence of L2(V ) norm of the error for different kinematic and kinetic variables, (a) & (b) p = 2,
(c) & (d) p = 3 , (e) & (f) p = 4 and (g) & (h) p = 5. Rζ indicates the rate of convergence of quantity ζ.
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Figure 7: p convergence of L2(V ) norm of the error for different kinematic and kinetic variables for mesh with
9220 elements.

µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2) ε2 (N/V2)
1e5 1e5 5e5 ε0 5ε0

Table 5: Material parameters for (41) with the vacuum permittivity ε0 = 8.85418781× 10−12 (N/V2)

and the geometry and the tetrahedral and hexahedral meshes are shown in Figure 8 and Figure 9,
respectively. A constant electric voltage of 2 × 108V/m is applied through the whole thickness

p
Tetrahedral Hexahedral

DoFs Q1 Q2 Q3 DoFs Q1 Q2 Q3
p/q = 2 340 ×4 0.982 0.965 0.948 363 ×4 0.980 0.961 0.942
p/q = 3 938 ×4 0.990 0.980 0.971 1012 ×4 0.982 0.966 0.951
p/q = 4 2021 ×4 0.986 0.973 0.960 2165 ×4 0.981 0.963 0.947
p/q = 5 3681 ×4 0.990 0.980 0.970 3966 ×4 0.979 0.959 0.941
p/q = 6 6097 ×4 0.990 0.979 0.969 6559 ×4 0.977 0.955 0.935

Table 6: Distortion quality of high order curvilinear tetrahedral and hexahedral meshes

and symmetric mechanical Dirichlet boundary conditions are imposed on the outer boundaries
of the plate. This induces stretching of the electromechanical plate and as a result of the outer
boundaries being fixed the plate is thickened in the region away from the hole and shrunk in
thickness in the vicinity of the hole. Figure 10 shows the quadratic convergence of Newton-
Raphson for the last load increment for all polynomial degrees on curvilinear tetrahedral and
hexahedral meshes, respectively. It is worth mentioning that, since the planar and curvilinear
meshes do not possess the same volume, a systematic study of the difference in error norms
of quantities is not feasible. However, since both planar and curved meshes share the same
(p/q = 1) vertices, a comparison of certain quantities of interest at these vertices can be carried
out. Notice that since the node is shared between neighbouring elements appropriate stress
recovery is required. This will lead to some oscillatory results in stresses (c.f. subsection 4.4
for further investigation in this regard). In the current setting, the order of quadrature rule to
integrate stresses have been purposefully increased to 2(p + 1) to remove these oscillations as
far as feasible. A representation of stress concentration for the plate with circular hole is shown
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Figure 8: CAD representation of plate with circular hole with dimensions 10× 20× 2 m3. The circular hole with
a radius of 5m is centred at [0, 0, 0]T

(a) (b)

(c) (d)

Figure 9: Curvilinear meshes used for comparison a) p = 3 planar tetrahedra, b) p = 3 curvilinear tetrahedra, c)
p = 3 planar hexahedra and, d) p = 3 curvilinear hexahedra

figuratively in Figure 11 only for p/q = 5 meshes, for the final deformed configuration. It is evident
from the figures that as opposed to the meshes with planar faces/edges, curvilinear meshes perform
much better in reporting a smoother representation of the stress near the circular region. A
similar conclusion is drawn across all polynomial degrees for tetrahedral and hexahedral elements
(not reported, for the purpose of brevity). For instance, the maximum hydrostatic pressure at
the tip of the circular hole within the plate located at [5, 20, 2]T is phyd = −4.982 × 104 Pa for
the hexahedral mesh with planar faces/edges, whereas only phyd = −0.104 Pa for curvilinear
hexahedral mesh. This clearly confirms that the appearance of non-physical stress concentrations
can be significantly reduced through curvilinear meshes accurately representing the geometry.
Similar behaviour has also been reported by the computational fluid dynamics community, where
an inaccurate geometric representation leads to non-physical entropy production [58, 57]. In line
with the theme of this work, the aim of this study has been to assess and report the performance
of curvilinear meshes in comparison to high order meshes with planar facets purely based on
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Figure 10: Quadratic convergence of Newton-Raphson on curivilinear a ) tetrahedral mesh and, b) hexahedral
mesh

geometrical enhancements.

(a) (b)

(c) (d)

Figure 11: Evolution of voltage induced hydrostatic pressure in a plate with circular hole, a) planar p = 5 mesh,
b) curved p = 5 mesh, c) planar q = 5 mesh and, d) curved q = 5 mesh

4.3. Linearised electrostriction through the staggered approach

The objective of this example is to study the performance and the range of applicability of
the staggered approach for small strain actuation and energy harvesting problems. To this end,
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two actuation problems are considered, based on two material models. For the first problem,
the material model used is that of (41) with material constant given by (5). This problem is in
particular a simple one due to the fact that electric field is a linear function of electric displacement
and hence chosen for the purpose of benchmarking the staggered scheme. For the second problem,
the following stabilised convex multi-variable energy functional is considered [3]

Wel,2 = µ1IC + µ2IG − (2µ1 + 4µ2 + 12µe)ln
√
C +

λ

2
(
√
C − 1)2 +

1

2ε1

IID0 +
1

2ε2

√
C
IId (42)

+µe

(
I2
C +

2

µeεe
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eε

2
e

II2
d

)
,

with material properties listed in Table 7. In this model the electric field and electric displacement

µ1 (Pa) µ2 (Pa) µe (Pa) λ (Pa) ε−1
1 (V2/N) ε2 (N/V2) ε2 (N/V2)

2.3e4 1.15e5 800 8e5 0 4.5ε0 1050ε0

Table 7: Material parameters for (42) with the vacuum permittivity ε0 = 8.85418781× 10−12 (N/V2)

are coupled implicitly and hence this model tests the true performance of the staggered approach.
The computational meshes considered are shown in Figure 12 together with the CAD geometry.
The mesh has 3819 elements and for an interpolation degree p = 3 there are 47317 points in the
mesh corresponding to a total of 189268 degrees of freedom. To study the performance of the

(a) (b)

Figure 12: Electromechanical plate with holes a) CAD geometry and, b) p = 4 curvilinear mesh

staggered scheme the error incurred in staggered scheme is quantified relative to (fully nonlinear)
monolithic approach as

||e||staggered
L2 =

[
||ηmonolithic − ηstaggered||

||ηmonolithic||

] 1
2

. (43)

Typically, the range of applicability of the staggered electrostrictive scheme can be determined
by successively increasing the electric voltage and observing the error produced by the scheme
[25]. In the current setting, the following non-dimensional quantity is chosen to quantify the
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increase in electric voltage

W = Φ/(H

√
µ

ε
), (44)

where Φ denotes the applied potential and H represents the plate thickness. For the ideal
dielectric model µ and ε can be related to material parameters as

µ = 2(µ1 + µ2);
1

ε
=

1

ε1

+
1

ε2

. (45)

Similarly, for the stabilised material described in (42), µ and ε can be found as

µ = 2(µ1 + 2µ2 + 6µe);
1

ε
=

1

ε1

+
1

ε2

+
12

εe
. (46)

The plate is clamped at the two ends along the length and the electric voltage is applied through
the thickness of the plate such that W increases from 0.1 to 1.0. Figure 13 shows the relative L2

norm of the staggered approach as function of number of increments for different values of W .
As can be observed, certainly as the W and hence the voltage induced deformation increases,
the error incurred in staggered approach increases. The convergence of the staggered approach
is approximately linear for both models. Interestingly, even under the application of extremely
high voltage, the results of the staggered scheme seem to converge to the results of the monolithic
approach. However, opting for such high number of increments may not be computationally
practical. For engineering accuracy and large scale problems, the staggered scheme pays off as it
only involves an iterative solution of the Gauss’s law for the scalar electric potential.
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Figure 13: Convergence of the staggered scheme with respect to the monolithic solver as a function of increase in
applied voltage quantified by W as defined in (44)

Finally, Figure 14 shows the amount of voltage induced strains in the plate. Notice that
despite large displacements, the strains are still small in the context of dielectric elastomers.
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(a) (b)

(c) (d)

Figure 14: Voltage induced strains Cxx in electromechanical plate

4.4. Comparison of higher order displacement potential based formulation with 11 field mixed
formulation for electro-elasticity

The objective of the examples presented in this section is to compare the performance of the
displacement-potential formulation (DPF) discretised using high order tetrahedral and hexahe-
dral finite elements with the 11 field mixed Hu-Washizu variational formulation (MWF) (based
on the set {x,F ,H , J, ϕ,d,ΣF ,ΣH ,ΣJ ,ΣD0 ,Σd}) for electro-elasticity presented in [1, 2, 16],
on curvilinear meshes. In particular, MWF is an extension of the mixed formulations to po-
lyconvex elasticity presented in [41, 22, 62]. While for the DPF formulation, an equal order
interpolation for all the variables (x, ϕ) is used (for tetrahedra and hexahedra), the MWF for-
mulation utilises a quadratic interpolation for x and ϕ, linear discontinuous interpolation for
F ,H , J,d,ΣF ,ΣH ,ΣD0 ,Σd and a piecewise constant interpolation for J and ΣJ and is prima-
rily developed for 10-noded tetrahedra [2]. These formulations are compared against with an
eye on two fundamental issues pertaining to the modelling of large deformation large electric
field electromechanics namely, shear-locking and volumetric locking. To this end, three dielectric
cantilever patches with aspect ratio {10, 100, 1000} are considered, as shown in Figure 15. The
problem is analysed under compressible and nearly incompressible scenarios with Poisson’s ratio
0.45 and 0.499 respectively. A series of curvilinear meshes are then produced for p = {2, 3, 4, 5}
and q = {2, 3, 4, 5} for each aspect ratio. In addition, three h-refinement levels are considered
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using a coarse, a medium and a fine description for each aspect ratio and each polynomial degree.
An attempt is made to keep the total number of nodes in the computational mesh for every poly-
nomial degree within the same range (within 5% difference). The necessary information regarding
the quality of the curvilinear meshes are listed in Table 8 and Table 9, for tetrahedral meshes and
hexahedral meshes, respectively. Note that, for a given p and h-refinement level, the size of the
computational mesh is the same for all aspect ratios, in that, to obtain different aspect ratios,
the mesh is appropriately scaled in the thickness direction. This certainly leads to extremely
stretched elements but does not change the distortion of quality of the mesh as far as curvilinear
mesh quality measures are concerned.

(a) (b) (c)

Figure 15: Geometry of the patch for three different aspect ratios a) 10, b) 100 and, c) 1000

∆V

L
W = L/5

T = {L/10, L/100, L/1000}

Electrodes

1

Figure 16: Description of the boundary conditions

p
Coarse Medium Fine

DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3
p = 2 2842 ×4 (1652) 0.971 0.943 0.909 4686 ×4 (2730) 0.965 0.936 0.911 9916 ×4 (5910) 0.980 0.959 0.938
p = 3 2859 ×4 (396) 0.911 0.784 0.586 4656 ×4 (710) 0.925 0.837 0.734 9838 ×4 (1866) 0.952 0.898 0.836
p = 4 2835 ×4 (126) 0.852 0.690 0.500 4693 ×4 (326) 0.872 0.733 0.611 9819 ×4 (698) 0.945 0.886 0.819
p = 5 2856×4 (82) 0.873 0.758 0.651 4651 ×4 (172) 0.952 0.908 0.866 9889 ×4 (396) 0.944 0.890 0.840

Table 8: Distortion quality of high order curvilinear tetrahedral meshes

For comparison an ideal dielectric elastomer is considered with the following convex multi-
variable internal energy description

Wel,3 = µ1IC + µ2IG − 2(µ1 + µ2)ln
√
C +

λ

2
(
√
C − 1)2 +

1

2ε1

IId, (47)

with the material parameters as given in Table 10.
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p
Coarse Medium Fine

DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3 DoFs (N. Elements) Q1 Q2 Q3
q = 2 2885 ×4 (244) 0.972 0.987 0.957 4665 ×4 (472) 0.986 0.970 0.953 9805 ×4 (928) 0.990 0.980 0.969
q = 3 2853 ×4 (76) 0.959 0.913 0.863 4605 ×4 (148) 0.979 0.957 0.935 9805 ×4 (292) 0.979 0.958 0.935
q = 4 2873 ×4 (32) 0.818 0.618 0.361 4650 ×4 (68) 0.950 0.897 0.842 9793 ×4 (124) 0.950 0.898 0.842
q = 5 2756×4 (16) 0.822 0.625 0.369 4700 ×4 (32) 0.834 0.656 0.401 9801 ×4 (64) 0.853 0.723 0.781

Table 9: Distortion quality of high order curvilinear hexahedral meshes

Parameters µ1 (Pa) µ2 (Pa) λ (Pa) ε1 (N/V2)
Values (for ν = 0.45) 1e5 0 9e5 4ε0
Values (for ν = 0.499) 1e5 0 4.99e7 4ε0

Table 10: Material parameters for (47) with the vacuum permittivity ε0 = 8.85418781× 10−12 (N/V2)

In order to be able to apply appropriate boundary conditions, it is made sure that all compu-
tational meshes have at least two elements across the thickness. For every aspect ratio, the patch
is clamped at [0, X, Y ]T and a constant electric voltage is applied across the half thickness T/2
(where T represents the patch thickness), as shown in Figure 16. It is certainly not feasible to
apply the same amount of electric voltage while varying the patch aspect ratio and hence Table 11
lists the Dirichlet boundary conditions considered for the three aspect ratios.

Aspect Ratio 10 100 1000
Electric Voltage (V/m) 1e7 7.5e4 1.8e2

Table 11: Applied electric voltage as Dirichlet boundary condition for three aspect ratios

In order to compare different kinematic and kinetic quantities of interest for different formu-
lations, two different physical points in the patches are considered namely, A - the node located
at [L,W/2, T/2]T , and B - the point interior to the computational mesh [0.98L, 0.49W, 0.49T ]T

(c.f. Figure 16).
Table 12 and Table 13 compare the results obtained for different kinematics and kinetics

quantities with displacement potential formulation using high order tetrahedral and hexahedral
elements with the 11 field mixed formulations, for aspect ratio 10 and Poisson’s ratio 0.45 and
0.499, respectively. For this comparison, the problem is solved in 50 load increments and the
comparison is performed at increment 12, which corresponds to the onset of nonlinear deformation.
The first observation from the tables is that the DPF based discretisations have an asymptotically
upper bound convergence while the MWF based results have an asymptotically lower bound
convergence. This can be observed studying the convergence of a given quantity for a fixed
polynomial degree and successive h-refinements. This convergence pattern is more pronounced in
the case of MWF. Consequently, for a fixed polynomial degree, it can be observed that MWF
has a consistent 2%-5% higher displacements and strains estimate rate.

Regarding the stresses, as can be seen from the σxz results, the differences between the formu-
lations are significant. While the results for the MWF show a convergence pattern, the results
of the DPF do not seem to converge as coherently, with some clear pressure oscillations (as p/q
and h-refinements are carried out). The σzz and hydrostatic pressure still do not seem to be
affected, primarily due to the fact that these components have a much higher electro-mechanical
stress contribution coming from the electric displacement (which is the applied Dirichlet boundary
condition).

The conclusion drawn from the above set of results is that, for thick electromechanical beams,
both high order DPF and MWF implementations capture the physical behaviour of the system
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accurately without showing any signs of shear or volumetric lockings. Importantly, this signifies
that high order discretisations can capture nearly incompressible scenarios reliably [59, 60, 61].
The oscillations in stresses is an expected phenomenon for DPF implementations [2, 62, 41] which
seems to persist even with polynomial enrichment. Unlike the problems reported in subsection 4.1,
the convergence rate of stresses here can not be ascertained, since the polynomial enrichment
here, comes with the trade-off of coarsening the computational mesh to keep the problem size
the same. In this regard, MWF implementation maintains a consistent accuracy by virtue of
explicitly solving for kinetic variables.

Note that so far, only the aspect ratio of the patch has been considered and no remarks have
been made regarding the aspect ratio of the elements in the mesh. It is important to mention
that high order elements are at a severe disadvantage here compared to their low-order or MWF
counterparts, in that, polynomial enrichment leading to coarsening of the mesh, also inherently
implies dramatic stretching for high order elements. It is certainly not feasible to control the
aspect ratio of the patch and the aspect ratio of the elements at the same time, while also having
to keep the size of the computational mesh the same across all polynomial enrichments. This
also signifies that, for p = q, the computational meshes do not necessarily exhibit the same
elemental aspect ratios. It is still astounding to observe that, high order elements perform fairly
well regardless.

Quantity Refinement p = 2 p = 3 p = 4 p = 5 q = 2 q = 3 q = 4 q = 5 11Mixed

uA
x (m)

Coarse 0.15 0.1506 0.1502 0.1505 0.1505 0.1506 0.1506 0.1506 0.1595
Medium 0.1505 0.1503 0.1505 0.1506 0.1506 0.1506 0.1507 0.1506 0.1542
Fine 0.1505 0.1508 0.1505 0.1506 0.1506 0.1506 0.1507 0.1506 0.1535

uA
z (m)

Coarse 0.9572 0.9555 0.9565 0.9551 0.958 0.9597 0.9598 0.9603 1.049
Medium 0.9566 0.9576 0.9603 0.9596 0.9583 0.96 0.9604 0.9603 1.0022
Fine 0.9571 0.96 0.9597 0.9594 0.9585 0.96 0.9604 0.9603 0.9948

FA
xz

Coarse -0.0176 -0.0186 -0.018 -0.0184 -0.0178 -0.0184 -0.0183 -0.0183 -0.0199
Medium -0.0183 -0.0181 -0.018 -0.0183 -0.0178 -0.0185 -0.0183 -0.0183 -0.0191
Fine -0.0183 -0.0186 -0.0178 -0.0184 -0.0178 -0.0185 -0.0183 -0.0183 -0.0191

HA
zx

Coarse -0.0184 -0.0184 -0.0182 -0.0186 -0.0181 -0.0184 -0.0183 -0.0183 -0.0198
Medium -0.0184 -0.0181 -0.0183 -0.0182 -0.018 -0.0185 -0.0184 -0.0183 -0.019
Fine -0.0184 -0.0181 -0.0186 -0.0184 -0.018 -0.0185 -0.0184 -0.0183 -0.0192

σB
xz(Pa)

Coarse 68.817 -34.4955 8.4401 2.5424 20.9594 -16.3045 -4.2272 -8.6977 -24.0193
Medium 1.5908 -10.4219 16.6441 -17.0173 11.9318 -4.436 -4.8418 -8.9388 -15.3804
Fine -3.9871 -63.5881 19.221 -15.5529 7.1833 -4.433 -4.8497 -8.9573 -4.7419

σB
zz(Pa)

Coarse 228.8202 242.9458 167.4105 225.4981 227.3906 208.8909 220.5269 233.9105 262.6845
Medium 226.3231 304.8385 190.6815 232.3852 228.7893 202.9177 228.5124 234.1146 262.0383
Fine 226.7235 228.4325 192.3997 227.9372 229.1137 202.8566 228.503 234.1104 233.9687

pBhyd(Pa)
Coarse 258.7676 262.7815 228.257 256.8133 249.9223 258.8183 253.0553 260.2188 283.1432
Medium 256.2272 239.7233 239.8217 256.7475 249.6441 259.3416 254.3613 260.1902 279.219
Fine 257.2179 258.3805 255.9474 256.809 249.4617 259.3333 254.3594 260.1998 229.3169

Table 12: Comparison of high order displacement potential and 11 field mixed formulations for different kinematic and kinetic
measures, for aspect ratio 10 and Poisson’s ratio 0.45

Turning the attention to thinner beams, the results for the patch with the aspect ratio 100 are
analogous to those with the aspect ratio 10 and offer no further insight, and are hence omitted
for the purpose of brevity. The same analysis is then carried out with extremely thin beams with
aspect ratio 1000 featuring highly stretched elements. The corresponding loading from Table 11 is
applied. Table 14 and Table 15 compare the results obtained for different kinematics and kinetics
quantities with displacement potential formulation using high order tetrahedral and hexahedral
elements with the 11 field mixed formulations, for aspect ratio 1000 and Poisson’s ratio 0.45 and
0.499, respectively.

As can be observed from the tables, the p = 2 elements exhibit severe shear locking in this case.
Comparing the results of thick and thin beams, it is evident that this phenomenon occurs solely
due to the high aspect ratio (slenderness of the beam) [63, 64]. Interestingly, although not as
dramatic, the MWF implementation also exhibits shear locking. On the other hand, hexahedral
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Quantity Refinement p = 2 p = 3 p = 4 p = 5 q = 2 q = 3 q = 4 q = 5 11Mixed

uA
x (m)

Coarse 0.1603 0.1614 0.1606 0.1576 0.1621 0.1607 0.1613 0.1603 0.1682
Medium 0.1609 0.1606 0.1609 0.1603 0.1622 0.1607 0.1614 0.1603 0.1647
Fine 0.1611 0.1612 0.1611 0.1599 0.1622 0.1607 0.1614 0.1603 0.1641

uA
z (m)

Coarse 1.0215 1.0273 1.0274 0.949 1.0265 1.031 1.0299 1.0198 1.109
Medium 1.0256 1.028 1.0213 1.0175 1.0282 1.0306 1.0317 1.0197 1.0737
Fine 1.0256 1.0304 1.0326 1.0175 1.0286 1.0306 1.0317 1.0198 1.0659

FA
xz

Coarse -0.0189 -0.0201 -0.019 -0.019 -0.0203 -0.0187 -0.0201 -0.0191 -0.021
Medium -0.0195 -0.0188 -0.0189 -0.0193 -0.0203 -0.0187 -0.0202 -0.0191 -0.0205
Fine -0.0197 -0.0198 -0.0191 -0.0212 -0.0203 -0.0187 -0.0202 -0.0191 -0.0205

HA
zx

Coarse -0.02 -0.02 -0.0193 -0.0191 -0.0204 -0.0192 -0.0198 -0.0194 -0.0209
Medium -0.0197 -0.0195 -0.0194 -0.0192 -0.0205 -0.0191 -0.02 -0.0194 -0.0204
Fine -0.0198 -0.019 -0.0198 -0.0199 -0.0205 -0.0191 -0.02 -0.0194 -0.0205

σB
xz(Pa)

Coarse 89.1516 -23.91 14.7041 0.2679 7.9494 39.9045 -41.9385 17.966 -25.4328
Medium 10.3683 60.0207 38.6844 -20.1666 6.9024 27.4752 -32.0594 17.139 -18.2278
Fine -3.7742 -90.0163 12.6685 -143.9537 6.0727 27.538 -32.0799 17.0549 -4.8466

σB
zz(Pa)

Coarse 234.1627 260.194 146.468 244.717 143.7517 299.7924 199.8753 270.1902 376.1902
Medium 245.7591 362.475 203.2137 255.0402 144.1905 299.4855 200.6011 270.5423 282.167
Fine 233.4144 265.2387 177.1516 192.5099 144.4195 299.4976 200.6389 270.5092 204.6006

pBhyd(Pa)
Coarse 273.3164 279.5418 241.9163 274.1948 273.0657 273.9475 273.383 273.9117 402.374
Medium 273.4977 272.6952 253.7051 274.2576 273.0683 273.934 273.4753 273.9096 294.6149
Fine 273.7066 274.0771 259.1145 270.249 273.0699 273.9341 273.4752 273.9103 246.635

Table 13: Comparison of high order displacement potential and 11 field mixed formulations for different kinematic and kinetic
measures, for aspect ratio 10 and Poisson’s ratio 0.499

elements have a consistent performance across all polynomial degrees. It is important to mention
that, this phenomenon can not be attributed to the nearly incompressible nature of the material,
due to two reasons. First, for p = 2 elements, the thick beams do not exhibit locking neither at
ν = 0.45 nor at ν = 0.499. Second, MWF performs specifically well for nearly incompressible
scenarios and explicitly solves for the J variable through an augmented Hu-Washizu variational
principle [1]. Also notice that, for this aspect ratio, even p = 3 elements exhibit some amount of
locking. The oscillations in the stress on the other hand, for DPF formulations is huge, at high
polynomial degrees. This is in part due to the fact that, higher order elements are much more
stretched. For instance, the coarsest p = 5 elements have an aspect ratio of 215 and the coarsest
q = 5 elements have an aspect ratio of 450.

Quantity Refinement p = 2 p = 3 p = 4 p = 5 q = 2 q = 3 q = 4 q = 5 11Mixed

uA
x (m)

Coarse -0.0057 -0.037 -0.04437 -0.0478 -0.0566 -0.056 -0.0536 -0.0527 0.0005
Medium 0.0021 -0.049 -0.0473 -0.0487 -0.057 -0.0571 -0.0529 -0.0532 -0.0156
Fine 0.0017 -0.0483 -0.0494 -0.0499 -0.0572 -0.0572 -0.0537 -0.0561 -0.0252

uA
z (m)

Coarse 0.0437 2.3622 2.8948 2.9245 3.0755 3.0593 2.9972 3.0944 0.5598
Medium 0.0677 2.7467 2.9379 2.9545 3.0875 3.0916 2.9803 3.0929 1.672
Fine 0.2951 2.7054 2.9584 2.9941 3.0927 3.0956 3.0022 3.0972 2.094

FA
xz

Coarse -0.0074 -0.0467 -0.0435 -0.0235 -0.0604 -0.0599 -0.0589 -0.054 -0.0004
Medium -0.0013 -0.0541 -0.0437 -0.0444 -0.0606 -0.0606 -0.0586 -0.055 -0.0001
Fine -0.0061 -0.0547 -0.0537 -0.0455 -0.0606 -0.0607 -0.059 -0.0516 -0.0003

HA
zx

Coarse -0.0075 -0.0467 -0.04535 -0.0235 -0.0604 -0.06 -0.0589 -0.054 -0.0406
Medium -0.0013 -0.0541 -0.0438 -0.0445 -0.0606 -0.0606 -0.0586 -0.0551 -0.0106
Fine -0.0061 -0.0547 -0.0537 -0.0456 -0.0607 -0.0607 -0.059 -0.0516 -0.0345

σB
xz(Pa)

Coarse 18.3433 -0.0816 -1.2205 -0.9087 0.6522 0.5042 -0.4751 0.7071 -0.1453
Medium -0.0358 -1.1296 8.3123 2.6078 0.7813 0.3317 0.2968 1.1267 0.4453
Fine -0.1437 -0.8996 1.2107 3.3222 0.892 0.333 0.2834 1.1086 0.1926

σB
zz(Pa)

Coarse -32.2983 -15.9872 541.2936 63.4422 0.0401 0.1828 0.8809 -0.7323 1.6931
Medium -1.173 -10.6548 327.1866 120.7646 -0.0127 0.1375 0.1661 0.2904 4.1625
Fine -0.3662 2.8504 23.2398 4.5291 -0.0542 0.1445 0.0937 0.308 14.0885

pBhyd(Pa)
Coarse -24.8172 -23.6293 410.2216 42.8566 2.7135 2.8305 3.7971 2.0094 -4.2656
Medium -8.1182 -16.7676 308.1874 111.348 2.6489 2.8169 2.8075 2.4095 5.391
Fine -6.7439 -3.6837 26.1795 10.0663 2.5984 2.8229 2.7651 2.4154 15.0638

Table 14: Comparison of high order displacement potential and 11 field mixed formulations for different kinematic and kinetic
measures, for aspect ratio 1000 and Poisson’s ratio 0.45

The conclusion drawn from the experiments so far is that, both DPF and MWF are capable
of capturing the behaviour of compressible and nearly incompressible dielectric elastomers fairly
well. However, for thin beams, low order DPF discretisations on tetrahedra as well MWF suffer
from shear locking (resolvable through the use of a finer discretisation), while high order DPF
discretisations are able to cope up with thin beams and resolve the primary variables accurately
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Quantity Refinement p = 2 p = 3 p = 4 p = 5 q = 2 q = 3 q = 4 q = 5 11Mixed

uA
x (m)

Coarse 0.0022 -0.0329 -0.0563 -0.0564 -0.0603 -0.0618 -0.0607 -0.0618 0.0004
Medium 0.0022 -0.0489 -0.0559 -0.0574 -0.0642 -0.0615 -0.0615 -0.0605 -0.0194
Fine 0.0022 -0.0434 -0.0577 -0.0582 -0.0614 -0.0616 -0.0615 -0.6165 -0.0312

uA
z (m)

Coarse 0.0062 2.1839 2.9353 3.0931 3.1536 3.2548 3.2635 3.2618 0.5988
Medium 0.0024 2.496 2.9301 2.9984 3.2623 3.2082 2.9336 3.2518 1.8414
Fine 0.0104 2.8819 2.933 2.9997 3.2017 3.2099 3.1395 3.2548 2.3124

FA
xz

Coarse -0.0007 -0.0441 -0.0505 -0.0515 -0.0626 -0.0691 -0.0603 -0.0621 -0.0004
Medium -0.0002 -0.0565 -0.0564 -0.0526 -0.0643 -0.063 -0.0592 -0.0044 -0.0001
Fine -0.0002 -0.0501 -0.0561 -0.0582 -0.063 -0.063 -0.0613 -0.0593 -0.0004

HA
zx

Coarse -0.0007 -0.0441 -0.0205 -0.0515 -0.0627 -0.0691 -0.0604 -0.0621 -0.0448
Medium -0.0002 -0.0565 -0.0565 -0.0527 -0.0643 -0.063 -0.0592 -0.0044 -0.0115
Fine -0.0002 -0.0501 -0.0561 -0.0583 -0.063 -0.063 -0.0613 -0.0593 -0.038

σB
xz(Pa)

Coarse -0.058 -1.0561 0.2593 0.191 0.7204 0.7001 0.7089 0.7071 -0.2034
Medium -0.0656 -1.022 5.1248 -39.3918 0.8225 0.5512 0.3729 -9.6306 0.6378
Fine -0.1293 -0.8051 10.014 28.8039 0.8635 0.5506 0.364 -206.3348 0.2668

σB
zz(Pa)

Coarse 47.1482 -395.4936 -33.2631 538.5343 -2.8369 3.3726 3.3814 3.3796 2.1594
Medium 0.6649 49.3672 -414.2999 2113.4412 -4.1608 6.1501 1.802 2217.1176 4.6069
Fine -0.6984 13.3289 330.097 2189.0055 -5.4436 6.173 1.4294 3478.8777 14.6644

pBhyd(Pa)
Coarse 38.1504 -407.0878 -41.0376 528.9243 0.4472 6.5811 6.5899 6.5881 -5.0029
Medium -7.9517 40.8982 -420.7844 985.5186 -0.8781 9.456 5.1897 739.779 6.6814
Fine -9.1691 5.7871 350.556 710.8945 -2.1342 9.4748 4.8289 1165.274 15.8006

Table 15: Comparison of high order displacement potential and 11 field mixed formulations for different kinematic and kinetic
measures, for aspect ratio 1000 and Poisson’s ratio 0.499

at the expense of a huge oscillation in derived variables such as stresses. To separate the issue
of volumetric and shear locking further a different set of experiments are now considered using
only DPF implementation by applying an extremely high electric voltage on the patches and
lowering the Poisson’s ratio to ν = 0.35. The loading scenario for different aspect ratios is listed
in Table 16.

Aspect Ratio 10 100 1000
Electric Voltage (V/m) 2.6e7 1e5 4e2

Table 16: Applied electric voltage as Dirichlet boundary condition for three aspect ratios

Figure 17 shows the hydrostatic pressure for the patch with aspect ratio 10 (thick) solved
with the medium mesh. Once again, it can be seen that even for large deformations and finite
strains, the DPF implementation with tetrahedra does not suffer from any locking, although
some oscillation in the pressure could be observed, across all polynomial degrees. Similarly,
Figure 18 shows the evolution of the co-factor component H13 on the coarse mesh. For this
aspect ratio, which could be considered a thin beam, DPF implementation with tetrahedra once
again produces accurate results.

As evident by now, the challenging problem is the extremely thin beams with aspect ratio 1000
shown in Figure 18 . Notice that both p = 2 and p = 3 elements exhibit severe shear locking for
this aspect ratio, confirming the fact that this locking is purely due to stretching of the elements.
Only p = 4 elements (and beyond) are able to capture this deformation accurately. Interestingly,
as shown in Figure 20 the q = 2 elements also lock at this level of deformation. Certainly, the
problem of shear locking could in part be remedied by using h-refinement. As shown in Figure 21,
even with the fine mesh the q = 2 elements suffer from shear locking.

The examples presented here show a clear advantage for the application of high order elements
in electromechanics. Modelling of dielectric elastomeric beams with high aspect ratio is indeed
a challenging problem. Mixed formulations based on convex multi-variable electro-elastic strain
energies have an unrivalled performance in capturing the pressure and other derived quantities
of interest, but still could suffer from shear locking at extremely high aspect ratios. Note that
the performance of high order elements could still be superior if the element’s aspect ratio was
preserved during polynomial enrichment (which was not the case for here). The analyses perfor-
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(a) (b) (c)

Figure 17: Voltage induced hydrostatic pressure phyd for the medium mesh using a) p = 2, b) p = 3 and, c) p = 4

(a) (b) (c)

Figure 18: Voltage induced large strain (Hxz) for the coarse mesh using a) p = 2, b) p = 3 and, c) p = 4

(a) (b) (c)

Figure 19: Voltage induced large strain (Fzx) for the fine mesh using a) p = 2, b) p = 3 and, c) p = 4

med in this section was carried out with the clear goal of keeping the size of the computational
domain the same across all polynomial enrichments.
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(a) (b) (c)

Figure 20: Voltage induced large strain (Fzx) for the fine mesh using a) q = 2, b) q = 3 and, c) q = 4

(a) (b) (c)

Figure 21: Voltage induced large strain (Fzx) for the fine mesh using a) q = 2, b) q = 3 and, c) q = 4

4.5. Kernel-based data parallel code generation for electromechanics on curvilinear meshes

Having studied the h and p convergence properties of the framework and its performance with
respect to mixed variational principles, the objective of this section is to present some implementa-
tion details of the framework. The present high order curvilinear finite element framework is tied
and closely developed on top of Fastor library [44]. Fastor (https://github.com/romeric/
Fastor) is an open source (MIT licensed) C++ based generic tensor contraction library that
can perform heavy numerical computations such as mathematical/algorithmic transformations
and graph optimisations at compile time using a powerful in-built expression template engine.
The transformed algorithms are then used by Fastor to generate data parallel (SIMD-vectorised)
code for modern CPU and potentially GPU architectures. Recently, it has been shown in [44]
that Fastor is able to generate carefully crafted data parallel code (SSE-SSE4.2, AVX-AVX2-
AVX512, FMA) for the local assembly of low and high order finite elements for a series of convex
multi-variable electro-elastic models, exhibiting many fold performance improvement over hand-
written C code. As described earlier, since convex multi-variable electro-elasticity models require
Legendre transformation through a Newton-Raphson scheme per quadrature point to find the
appropriate constitutive tensors, local assembly of the finite elements become a critical hotspot
for performance optimisations (see [38, 44] for performance benchmarks).

To this effect, a problem is manufactured where the performance of the current framework
(using Fastor) is studied and compared to the equivalent hand-optimised C code. This problem
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pertains only performance studies of numerical integration of work-conjugates (20), Hessian (22)
and the subsequent quadrature point Newton-Raphson required for the Legendre transform (30)
and (26), during local assembly (also see Algorithm 1). A set of similar benchmark problems has
been presented in the authors’ previous work on Fastor [44], where explicit code snippets for the
aforementioned set of operations are presented. The interested reader is advised to consult Poya
et. al. [44] and Fastor’s repository, for a series of such performance studies, as for the purpose of
brevity, complete implementation details of the problem are not presented here.

This performance study once again considers both curved hexahedral and tetrahedral meshes.
The geometry considered for the problem is that of an electromechanical component shown in
Figure 22 together with curved meshes. For the purpose of benchmark, refined meshes are chosen
such that distortion qualities are all almost unity.

z

y

x

(a) (b) (c)

Figure 22: a) CAD geometry, b) curved tetrahedral mesh and, c) curved hexahedral mesh for electromechanical
component with 1m thickness, 20m height (y-axis), 100m width (x-axis) and 500m length (z-axis)

Note that the tetrahedral and hexahedral meshes do not have the same number of nodes.
The relevant information regarding the meshes is listed in Table 17. The geometry essentially
consists of two plates connected through an extruded arc/fillet (in the z direction). No boundary
conditions have been applied on the arc part of the geometry. The electromechanical component
is mechanically fixed at one longitudinal end and two different electric voltages are applied across
the thickness of the top and bottom plates, namely 4.5× 107V for the top plate and 8.1× 107V
for the bottom plate. The problem exhibits massive snap-back behaviour as the different applied
voltages make the component bend initially but after the point of electromechanical instability
the difference in displacements in both plates causes the component to deform in the opposite
direction.

Mesh (N. Elements) p/q = 2 p/q = 3 p/q = 4 p/q = 5 p/q = 6 p/q = 7 p/q = 8
Tetrahedral (43200) 367196 1223568 2689668 5082200 8366140 12921312 18777812
Hexahedral (7200) 351276 1048144 2322900 4348344 7297276 11342496 16656804

Table 17: Degrees of freedom associated with each polynomial degree for tetrahedral and curvilinear meshes

To study the performance of numerical integration, the stabilised convex multi-variable model
(42) is chosen with material properties listed in Table 7. The problem is then analysed under
the aforementioned boundary conditions and the performance of numerical integration of work-
conjugates ΣV (20), Hessian and constitutive tensors of the internal energy C, Q, θ (22) and
the quadrature point Newton-Raphson required for the Legendre transform (30) to obtain the
constitutive tensors of Helmholtz-like energy CΦ, QΦ, θΦ (26) are monitored under three diffe-
rent compilation flags. These correspond to the same code compiled with -O3 -march=native

but with auto-vectorisation turned off (i.e. -fno-tree-vectorize for gcc, -fno-vectorize for
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LLVM’s clang and -no-vec for Intel’s ICC), same code compiled with -O3 -march=native where
the compiler is permitted to auto-vectorise the code and Fastor transformed code compiled with
-O3 -march=native. All performance measurements have been recorded on a single core of In-
tel(R) Xeon(R) CPU E5-2650 v2 @2.60GHz with AVX instruction sets, 20MB private L1-cache
and 32GB memory, running Ubuntu 16.04 and GCC-7, LLVM’s Clang 4.0 and ICC 17.0.3 are used
to compile all the codes. To keep the comparison fair, careful attention is paid to the compilers
generated assembly code.

Figure 23 shows the relative speed of the code (with and without auto-vectorisation) in com-
parison to Fastor’s generated code with all the three aforementioned compilers. Since with every
polynomial enrichment the quadrature order has to be increased accordingly, as a result the
computational cost of numerical integration increases almost cubically for all the cases (for three-
dimensional problems). Nevertheless, Fastor’s data parallelism falling into the category of la-
tency hiding techniques, hides much of this computational complexity. For both hexahedra and
tetrahedra, Fastor’s SIMD vectorised code shows consistently nearly 2X speed-up over compilers
auto-vectorised code on an AVX capable processor and 3-3.5X speed up over non-vectorised (but
well-optimised) code. It can also be seen from the figures, that unlike Fastor, auto-vectorisation is
compiler specific and in some cases the code may not benefit from it, specifically with Intel’s ICC
in this case, Figure 23(e,f). On the other hand, Fastor is extremely less sensitive to the compiler
(and optimisations) used. This is potentially the ultimate speed-up achievable for non-trivial
codes using data parallelism on AVX architectures over non-vectorised codes (ideal speed-up is
4X for double precision). For complex algorithms, such as numerical integration of convex multi-
variable electro-elastic models, compile time code transformation and graph search optimisation
are necessary to be able to achieve this performance. One again, these aspects of Fastor library
are presented and benchmarked in detail in [44].

Finally, Figure 24 shows the evolution of voltage induced hydrostatic pressure phyd at different
loading stages, for q = 3 hexahedral mesh. Notice the massive snap-back behaviour of system
and butterfly shape it occupies at the final deformed configuration.

4.6. Virtual prototyping of massive deformations and instabilities in dielectric elastomers through
high performance numerical simulations

The objective of this section is to numerically study the behaviour of highly stretchable die-
lectric elastomers undergoing massive deformations through virtual prototyping of a series of
electromechanical components. One of the main goals of these set of examples is to gain insights
into the onset of instabilities such as pull-in instability [24, 25] and the subsequent formation of
wrinkles in dielectric elastomers. The occurrence of these phenomena have been experimentally
verified by Plante and Dubowsky [24], where a large applied electric potential has led to massive
deformation of a dielectric elastomer sheet with eventual partial wrinkling of the sheet. Zhao
et. al. [25], Mao [26] and others [27, 28, 65] have also reported instabilities in DEs through
numerical studies, albeit in relatively simplified settings. Here, an attempt is made to model
dielectric elastomeric components which could potentially be applied as compliant actuators in
soft robotics, medical devices and similar applications. From a computational point of view,
four ingredients are needed to simulate such massive deformations in DEs namely, a) a convex
multi-variable expansion of the electromechanical internal energy ensuring ellipticity [1, 2, 3, 16]
b) accurate representation of the dielectric elastomeric components, c) high order finite element
analyses to capture extreme deformations and finally, d) high performance kernels for rapid pro-
totyping and modelling DEs. Having established all the aforementioned necessities, a diligent
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Figure 23: Speed-up achieved by compile time algorithmic transformation and data parallelism for numerical
integration of work-conjugates and Hessian of convex multi-variable electro-elastic model (42) with high order
curved tetrahedral and hexahedral meshes with compilers a,b) GCC, c,d) LLVM’s Clang and, e,f) Intel’s ICC

endeavour is put in the upcoming examples to present application-oriented numerical modelling
of dielectric elastomers. Unless otherwise specified, all the examples in this section are modelled
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(a) (b)

(c) (d)

(e) (f)

Figure 24: Evolution of voltage induced hydrostatic pressure phyd in electromechanical component with accumu-
lated load factor Λ being a) Λ = 0.416 b) Λ = 0.806, c) Λ = 0.889, d) Λ = 0.944, e) Λ = 0.972 and, f) Λ = 1.0.
Note that in the figures shown, the electromechanical component is mirrored along the z-axis

using the ideal dielectric elastomer material presented in (41) with material parameters listed
in Table 5. For majority of these examples, the meshes are extremely fine in order to capture
the formation of wrinkles (despite polynomial enrichment) and, as a consequence, the distortion
quality of curvilinear meshes are almost unity.
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4.6.1. A massively deformable dielectric cylinder

The first example considered is that of a dielectric shell-like cylindrical structure shown in
Figure 25(a) with 10m outer radius, 0.333m thickness and 25m length, centred at [0, 0, 0]T . The
model is made up of 27000 (p = 3) curvilinear tetrahedral elements with 179122 points in the com-
putational mesh corresponding to a total of 716488 degrees of freedom (shown in Figure 25(b)).
An ideal dielectric elastomer is used as material model and the material properties are shown in

x

y

z

(a) (b)

Figure 25: Geometry and a curved tetrahedral mesh of the dielectric shell-like cylindrical structure with 10m
radius 0.333m thickness and 25m length, centred at [0, 0, 0]T

Table 18. The following set of boundary conditions are applied.

µ1 (Pa) µ2 (Pa) λ (Pa) ε−1
1 (V2/N) ε2 (N/V2)

1e5 0 4e5 0 4ε0

Table 18: Material parameters with the vacuum permittivity ε0 = 8.85418781× 10−12 (N/V2)

uy = 0 [m] at X = [0, y, z]T ;

ux = 0 [m] at X = [x, 0, z]T ;

u = 0 [m] at X = [10, y, z]T ;

ϕ = 0 [V] at Rin;

ω0 = 1.4× 10−4Λ [Q/m2] at Rout,

where Rin = 9.6667m is the inner radius, Rout = 10m is the outer radius and Λ

Λ ∈ [0, 1] ⊂ R

is simply a load factor controlling the application of surface charge such that, Λ = 0. represents
start of the load increment and Λ = 1. represents end of the load increment (application of full
load). The usage of load factor as a pseudo-time step to quantify the application of load is a
standard practice in nonlinear quasi-static analyses [66, 67, 68]. The above non-uniform set of
boundary conditions causes the cylinder to deform asymmetrically. Furthermore, the disparity
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in electric charge between the electrodes across the thickness causes the thickness to shrink. As
shown in Figure 26, when the voltage is small, the elastomer deforms slightly, and the charge
increases with the electric voltage approximately linearly. As the voltage increases, the elastomer’s
surface area expands significantly, and a small increase in the voltage adds a large amount of
displacement on the cylinder. Consequently, after the voltage reaches a maximum value the
voltage needed to maintain the charge drops [24]. This corresponds to the pull-in instability
[25] causing regions of the cylinder to snap-back to fully new configuration possessing a different
thickness. As more charge is applied at this state, the difference between the thick and thin
regions causes the surface of the cylinder to fold and form wrinkles. This can be clearly observed in
Figure 26(c,f). Notice that at the extreme loading state the elements closer to symmetry surfaces
become considerably thinner and a complete zone of compression is formed at this region. Since

(a) (b) (c)

(d) (e) (f)

Figure 26: Evolution of charge induced stresses in dielectric cylindrical structure with accumulated load factor Λ
being a) σyy at Λ = 0.678 b) σyy at Λ = 0.785, c) σyy at Λ = 1.0 d) σxy at Λ = 0.678 e) σxy at Λ = 0.785, f) σxy
at Λ = 1.0

the formation of wrinkles causes the cylinder to maintain different circumferential expansion at
different regions along the length, one measure to quantify actuation property is to report the
electric voltage as a function of circumferential expansion. One such graph is shown in Figure 27
for different positions along the length of the cylinder. The figure confirms the experimental
findings in [24] that the formation of wrinkles is beyond the point of pull-in instability, when the
surface is a mixture of thinner and thicker regions.
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Figure 27: Non-dimensional quantity Φ/(H
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) quantifying electric voltage as a function of circumferential ex-

pansion, showing points of snap-through, pull-in instability and formation of coarse wrinkles in dielectric elastomer.
H stands for thickness and R̃ = 9.8333 is the averaged radius accounting for thickness stretch

Next, two q = 3 hexahedral meshes are chosen for the cylinder and two sets of boundary
conditions are applied on each one respectively. The meshes correspond to 1.5M and 3.2M degrees
of freedom, approximately. The first set of boundary conditions is similar to the previous analysis,
however instead of surface charge now an electric potential of 5.2× 107V is applied at the inner
radius. The second set of boundary conditions corresponds to

u = 0 [m] at X = [0, y, z]T ;

u = 0 [m] at X = [x, 0, z]T ;

ϕ = 0 [V] at Rin;

ϕ = 5.2× 107Λ [V] at Rout,

where Λ is now the load factor quantifying the application of electric potential for the nonlinear
quasi-static analysis. Due to symmetry, only 1/8th of geometries are analysed. Figure 28 shows
the evolution of the Fxz component of the deformation gradient tensor with voltage history.
The first observation is that since the boundary condition is now through applied voltage and
not electric charge as in the previous analysis, the voltage will always constantly increase and
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hence there is no negative or downward slope in voltage vs strain curves, up until the point
of electric breakdown. The second observation from Figure 28 is that, unlike in the case of
applied charge where the surfaces near symmetry boundary conditions become thinner, here
these surfaces undergo twisting to accommodate for the constant applied electric voltage. The
formation of coarse wrinkles at [0, x, y]T is not present in this case.

(a) (b)

(c) (d)

Figure 28: Evolution of voltage induced strain Fxz in dielectric cylindrical structure with accumulated load factor
Λ being a) Λ = 0.538 b) Λ = 0.769, c) Λ = 0.923 and, d) Λ = 1.0

Finally, unlike the two previous analyses, the third example with the second set of boundary
conditions for the hexahedral mesh mentioned above is completely uniform in terms of loading. As
can be seen in Figure 29 this set of boundary conditions imposes a homogeneous circumferential
expansion. However, once the electric voltage is high enough, coarse wave-like wrinkles starting
from the central point along the length of the cylinder are formed propagating towards the two
ends of the cylinder.

The above three examples of cylindrical shell-like DEs pinpoint the different actuation pro-
perties that can be activated different sets of boundary conditions. In addition, they verify the
capability of the current framework to cope with extremely fine meshes and high polynomial
enrichment to capture massive deformations and wrinkling in dielectric elastomers.

4.6.2. Capsule

The next example considered is that of a dielectric capsule, shown in Figure 30(a,b) centered
at [0, 0, 0]T with an in-plane radius of 10m, thickness of 0.5m and a bulging factor of 2m in the out
of plane direction. The mesh considered (shown in Figure 30(c)) has 10112 elements and for an
interpolation degree q = 3 there are 365584 points in the computational mesh which corresponds
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Figure 29: Evolution of voltage induced strain (co-factor of the deformation gradient) Hzy in dielectric cylindrical
structure with accumulated load factor Λ being a) Λ = 0.490 b) Λ = 0.686, c) Λ = 0.784, d) Λ = 0.882, e)
Λ = 0.941 and, f) Λ = 1.0

to 1462336 degrees of freedom. Due to symmetry, only 1/4th of the geometry is analysed. A set
of symmetric mechanical Dirichlet boundary conditions are applied on the mesh with an applied
electric voltage across the thickness, as described in the following.

u = 0 [m] at X = [0, y, z]T ;

uz = 0 [m] at X = [x, 0, z]T ;

ϕ = 0 [V] at Rin;

ϕ = 2.5× 107Λ [V] at Rout.

This problem is in particular interesting in shape and pattern forming through actuation. Fi-
gure 31 shows the hydrostatic pressure at different loading stages. As can be observed the capsule
undergoes massive deformation to adopt a squared shape from an initial circular configuration, as
the electric voltage is applied. The capsule deforms significantly when the electric voltage is high
to adopt the new shape. After the point of snap-through as more voltage is applied, a compression
zone is formed at the centre. As the electric voltage is increased, this compression zone rapidly
moves from the centre towards the edges of the deformed capsule signalling the propagation of
compressed band through a highly inflated capsule. The occurrence of this phenomenon is indeed
analogous to the ones reported in the previous section, in that, after the point of pull-in instability
the thicker regions expand at the expense of the thinner region resulting in zones of compression
and propagation of pressure as a wave through the capsule.
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Figure 30: Dielectric capsule centred at [0, 0, 0]T with an in-plane radius of 10m, thickness of 0.5m and a bulging
factor of 2m a,b) CAD geometry and c) q = 3 structured hexahedral mesh

(a) (b) (c)

(e) (d) (f)

Figure 31: Evolution of voltage induced hydrostatic pressure in dielectric capsule with the accumulated load factor
Λ being a) Λ = 0.411, b) Λ = 0.767, c) Λ = 0.823, d) Λ = 0.882, e) Λ = 0.946 and, f) Λ = 1.0

4.6.3. Capturing folds and coarse wrinkles in dielectric plates with and without inclusions

The objective of this study is to show the effect of inclusions and the capability of the current
high order curvilinear framework in capturing folds and coarse wrinkles with very coarse meshes
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through polynomial enrichments. To this effect, two dielectric plates are considered one wit-
hout holes or inclusions and one with multiple circular inclusions distributed non-homogeneously
through the plate, as shown in Figure 32. The mesh considered for the plate without inclusion is
an extremely coarse 12 × 12 × 1 structured hexahedral mesh (with only one element across the
thickness). For a polynomial degree of q = 6 there are 37303 points in the computational mesh
corresponding to a total of 149212 degrees of freedom. For the plate with inclusions, the mesh
considered is an unstructured tetrahedral with 2147 elements, as shown in Figure 32(d). For an
interpolation degree of p = 4, there are 26943 points in the computational mesh corresponding
to a total of 107772 degrees of freedom.
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Figure 32: Geometries and meshes for the dielectric plates of size 100× 100 × 1 m3, a,b) without inclusions and,
c,d) with inclusions

The following set of boundary conditions are applied on both plates

u = 0 [m] at X = [0, y, 0]T ;

u = 0 [m] at X = [100, y, 0]T ;

u = 0 [m] at X = [x, 0, 0]T ;

u = 0 [m] at X = [x, 100, 0]T ;

ϕ = 0 [V] at X = [x, y, 0]T ;

ϕ = 4.98× 107Λ [V] at X = [x, y, 1]T .

Figure 33 shows the evolution of deformation in the plate (without inclusions) at multiple loading
stages and Figure 34 shows the final configuration of the plate. The formation of folds and coarse
wrinkles can be clearly seen from the figures. Notice how the high order curvilinear elements are
able to capture this intrinsic property of dielectric elastomers with a very coarse discretisation.

Similarly, Figure 35 shows the evolution of strain component Fxz in the plate with inclusions at
multiple loading stages and Figure 36 shows the final configuration of the plate. The formation of
folds can be clearly seen from the figures. However, unlike in the case of plate with no inclusions,
the deformation pattern is completely non-uniform and the plate does not deform as much. Once
again, notice how the high order curvilinear elements are able to capture foldings in dielectric
elastomers with an increased level of detail despite a coarse discretisation.

While folding and the formation of single layer coarse wrinkles can be captured accurately
using the high order curvilinear elements, as presented in the next section, multi-layer wrinkling
and the propagation and nucleation of extremely fine wrinkles would still require a refined com-
putational mesh.

4.6.4. Dielectric thin film undergoing massive wrinkling

The objective of this final example is to study the voltage induced instability in a thin die-
lectric elastomeric film undergoing massive formation, propagation and nucleation of wrinkles.
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Figure 33: Evolution of norm of displacements in dielectric plate with the accumulated load factor Λ being a)
Λ = 0.482, b) Λ = 0.602, c) Λ = 0.843 and, d) Λ = 1.0

Figure 34: Formation of folds in dielectric plate (at the final deformed configuration) captured on a 12 × 12 × 1
hexahedral mesh with q = 6 polynomial interpolation

(a) (b) (c) (d)

Figure 35: Evolution of strains Fxz in dielectric plate with inclusions with the accumulated load factor Λ being a)
Λ = 0.482, b) Λ = 0.602, c) Λ = 0.843 and, d) Λ = 1.0
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Figure 36: Formation of folds in dielectric plate with inclusions (at the final deformed configuration) captured on
an unstructured tetrahedral mesh with p = 4 polynomial interpolation

Instabilities in the form of wrinkling have also been studied in [26, 27, 28]. For the analysis,
a hexahedral mesh with two polynomial enrichments is considered namely q = 2 and q = 6
with 268140 and 1.4M degrees of freedom, respectively. The latter allows for a highly detailed
propagation of wrinkles through the film in terms of geometry and solution accuracy. The CAD
geometry and mesh of the film are shown in Figure 37 with 100m radius and 1m thickness centred
at [0, 0, 0]T .
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Figure 37: Dielectric thin film with 100m radius and 1m thickness centred at [0, 0, 0]T , a) CAD geometry and, b)
q = 2 mesh

The following set of boundary conditions is applied on the film

u = 0 [m] at X = [x, y, 0]T s.t. x2 + y2 = 1002;

ϕ = 0 [V] at X = [x, y, 0]T ;

ϕ = 5× 107Λ [V] at X = [x, y, 1]T .

This above set of boundary conditions essentially implies fixing the mechanical variables at the
outer boundary of the base of the film and applying an electric voltage across the thickness of
the film. This forces the film to bend perpendicularly and expand in area. The electric voltage
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is applied adaptively on the film through 1000 load increments. Figure 38 shows the evolution of
stress components σxz and σyz in dielectric film for q = 2 mesh. As can be observed under low
electric voltage, the region near the boundary of the circular film starts bulging up. This allows
the film to expand in area and shrink in thickness in this region. As the voltage is increased the
thick regions surrounding the thin ones start to expand and bulge facilitating the formation and
further propagation of wrinkles. Under further increase in voltage all the regions start to possess
similar thickness and the film straightens again allowing for nucleation of many wrinkles. The
process of wrinkling starts once again, when the voltage is further increased. The process keeps
repeating itself as voltage keeps increasing up until the point of complete electric breakdown.
Note that the formation of deep channels near the boundary require polynomial enhancement
despite a very fine mesh to capture the massive voltage induced bending caused by wrinkles.

(a) (b) (c)

(e) (d) (f)

(g) (h) (i)

(j) (k) (l)

Figure 38: Evolution of voltage induced stress components σxz (a,b,c,d,e,f) and σyz (g,h,i,j,k,l) in dielectric film
with the accumulated load factor Λ being a,g) Λ = 0.580, b,h) Λ = 0.725, c,i) Λ = 0.798, d,j) Λ = 0.870, e,k)
Λ = 0.943 and, f,l) Λ = 1.0

The same problem is then analysed using q = 6 elements, however now after the formation
a certain number of wrinkles in the film, the load is released. Figure 39 shows the deformation
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history of the film together with the evolution of hydrostatic pressure. As the load is released, the
deep channels around the boundary start to move inwards, leaving a thick bended layer behind.
As the whole load cycle is completed the film starts flattening and forming a plate with multiple
tiny wrinkles on the surface.

Finally, the aspect ratio of the film is decreased from 1/100 to 1/20 i.e. the radius is decreased
to 20m and the same problem with release load cycle is analysed using the q = 6 mesh. The
deformation pattern is the same as in the previous analysis, however, since now there is little room
for the formation of multiple thick and thin regions, wrinkling is limited. As shown in Figure 40
a deep channel is formed near the boundary that starts propagating inwards till it reaches the
centre. The film starts occupying a balloon shape at this stage. As the voltage is increased, the
centre of the film starts bending in the opposite direction, allowing the formation of another layer
of wrinkles to propagate outwards. Once the wrinkle is propagated through the film by reaching
the boundaries, another layer of wrinkles starting from the centre starts propagating outwards.
The process is repeated and in the process, multiple wrinkles start nucleating before hitting the
boundary. Under the completion of the release cycle, the film starts flattening leaving multiple
extremely fine wrinkles behind on the surface.

Overall, the problem of analysing the formation of wrinkles in dielectric elastomers is a chal-
lenging one, in that it requires a very fine mesh. With coarse meshes it is possible to capture
folds using high order curvilinear elements, however multi-layer wrinkling might not even occur
using coarse meshes. Even high polynomial enrichments do not allow for a wave like deformation
of a single element in a wrinkled state, and hence h-refinement is absolutely necessary. Where
polynomial enrichment really helps is in massive bending of single elements during the formation
of deep channels. The examples discussed afore, pinpoint the robustness and the high perfor-
mant capability of the framework in capturing massive deformations and wrinkling in dielectric
elastomers with a remarkable level of detail.

5. Concluding remarks

A high order finite element implementation of the convex multi-variable electro-elasticity for
large deformations large electric fields simulations and its particularisation to the case of small
strains through a staggered scheme is presented. Accurate geometrical representation through a
high performance curvilinear finite element framework based on a posteriori mesh deformation
technique is developed to accurately discretise the underlying displacement-potential variational
formulation. The performance of the method under near incompressibility and bending actuation
scenarios is analysed with extremely thin and highly stretched components and compared to the
performance of mixed variational principles. Although convex multi-variable constitutive models
are elliptic and hence, materially stable for the entire range of deformations and electric fields,
other forms of physical instabilities are not precluded in these models. In particular, physical
instabilities present in dielectric elastomers such as pull-in instability, snap-through and the for-
mation, propagation and nucleation of wrinkles and folds are numerically studied with a detailed
precision in this paper, verifying experimental findings. In this context, the combination of h and
p refinement proves to be essential to capture the inherent instabilities in dielectric elastomers.
While the formation of folds and coarse wrinkles can be accurately captured by high order curvi-
linear elements using extremely coarse meshes, nucleation of wrinkles and multi-layer wrinkling
require mesh refinement in addition to polynomial enrichment. For the case of small strains,
the staggered scheme is shown to capture the electrostrictive behaviour of EAPs fairly well with
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 39: Evolution of voltage induced hydrostatic pressure in dielectric film with the accumulated load factor
Λ being a) Λ = 0.221, b) Λ = 0.332, c) Λ = 0.443, d) Λ = 0.554, e) Λ = 0.665, f) Λ = 0.887, g) Λ = 0.943, h)
Λ = 0.971, and, i) Λ = 1.0
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Figure 40: Evolution of voltage induced hydrostatic pressure in dielectric film with the accumulated load factor Λ
being (left to right - top to bottom) Λ = 0.0, Λ = 0.124, Λ = 0.249, Λ = 0.374, Λ = 0.499, Λ = 0.624, Λ = 0.749,
Λ = 0.874, Λ = 0.886, Λ = 0.899, Λ = 0.911, Λ = 0.918, Λ = 0.921, Λ = 0.924, Λ = 0.928, Λ = 0.93, Λ = 0.934,
Λ = 0.936, Λ = 0.94, Λ = 0.942, Λ = 0.949, Λ = 0.952, Λ = 0.955, Λ = 0.958, Λ = 0.96, Λ = 0.962, Λ = 0.964,
Λ = 0.965, Λ = 0.966, Λ = 0.968, Λ = 0.969, Λ = 0.97, Λ = 0.971, Λ = 0.972, Λ = 0.974, Λ = 0.975, Λ = 0.976,
Λ = 0.978, Λ = 0.979, Λ = 0.98, Λ = 0.981, Λ = 0.982, Λ = 0.984, Λ = 0.985, Λ = 0.986, Λ = 0.988, Λ = 0.989,
Λ = 0.99, Λ = 0.991, Λ = 0.992, Λ = 0.994, Λ = 0.995, Λ = 0.996, Λ = 0.998, Λ = 0.999 and, Λ = 1.0

a threshold point in applied voltage beyond which the fully coupled nonlinear solver becomes
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computational more favourable. Importantly, the staggered approach can also be applied to large
displacements small strains problems. The staggered approach is competitive due to the fact that
for its range of applicability, only the scalar field Gauss’s law needs to be solved for iteratively.
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[45] K. Stüben, A review of algebraic multigrid, Journal of Computational and Applied Mathematics
128 (2001) 281 – 309. Numerical Analysis 2000. Vol. VII: Partial Differential Equations.
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[50] A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Distortion and quality measures for validating
and generating high-order tetrahedral meshes, Engineering with Computers (2014) 1–15.

[51] F. Witherden, P. Vincent, On the identification of symmetric quadrature rules for finite element
methods, Computers & Mathematics with Applications 69 (2015) 1232 – 1241.

[52] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method,
Dover Publications Inc., Mineola, New York, USA, 2009.

[53] P. Solin, K. Segeth, Higher-Order Finite Element Methods, Chapman & Hall, 2003.
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