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Abstract The vast majority of strategies aimed at controlling contagion processes
on networks consider a timescale separation between the evolution of the system and
the unfolding of the process. However, in the real world, many networks are highly
dynamical and evolve, in time, concurrently to the contagion phenomena. Here,
we review the most commonly used immunization strategies on networks. In the
first part of the chapter, we focus on controlling strategies in the limit of timescale
separation. In the second part instead, we introduce results and methods that re-
lax this approximation. In doing so, we summarize the main findings considering
both numerical and analytically approaches in real as well as synthetic time-varying
networks.

1 Introduction

A wide range of real-world phenomena such as the spreading of ideas, memes, infec-
tious diseases, and malwares can be effectively modeled as contagion processes on
networks [1, 2, 3, 4, 5]. An intense research on the subject allowed to identify a set of
network features that affect such processes. In particular, two properties have been
thoroughly investigated. The first is the heterogeneity observed in the distribution of
networks’ metrics. Examples are the number of connections per node, degree, and
the intensity of contacts, weight. These quantities follow distributions characterized
by heavy-tails, which imply the absence of characteristic scales and the presence of
large fluctuations respect to the average [6]. The second is the higher-order organi-
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zation of connectivity patterns associated to the presence of clusters/communities
and or to the correlation between node’s features [2, 7].

The understanding of these properties and their effects on spreading phenomena
has spurred the creation of strategies aimed at controlling or promoting diffusion
processes. These can be classified in two main categories [8]. In the first, we find
global strategies that rely on the full knowledge of the network structure. In the sec-
ond instead, we find local strategies which relax this, often unrealistic, assumption.
In order to better understand the problem set-up, let’s imagine we want to protect
a network of computers against the spreading of malwares. The trivial solution is
clearly to immunize all computers. However, this strategy is very costly and of-
ten unpractical. The problem then is finding a way to immunize just a fraction p of
nodes and still effectively protect the entire network. Each prescription for the selec-
tion of this fraction constitutes what we call a strategy. To this end, global strategies
use centrality measures such as degree, k-core, betweenness and pagerank to rank
the importance of each node [1, 2, 9, 10]. Local strategies instead infer the role of
nodes by local explorations and samples [11].

One common assumption in the majority of related works is to consider a
timescale separation between the changes in network structures, τG, and the con-
tagion process τP. Indeed, spreading processes have been typically considered to
take place in either static (τP � τG) or annealed (τP � τG) networks. While this
approximation can be used to study a range of processes such as the spreading of
some diseases in contact networks or the propagation of energy in power grids it
fails to describe many others phenomena in which the two timescales are compara-
ble [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40]. In these cases, such as the spreading of ideas, memes,
information and some type of diseases the diffusion processes take place in time-
varying networks [41, 42, 43]. Thus their study and modeling needs to consider the
interplay between the two simultaneously unfolding dynamics.

In this chapter, we will first review the main strategies to control contagion pro-
cesses in static and annealed networks. We will then focus on time-varying graphs
and discuss the recent body of research based on numerical simulations of conta-
gious processes on real and synthetic temporal networks. Finally, we will consider
spreading processes unfolding on a particular class of time-varying networks called
activity-driven networks which allows the analytical study of different global and
local strategies of immunization. As prototypical example of contagion processes
we will consider the Susceptible-Infected-Susceptible (SIS) model [44, 45, 1]. SIS
dynamics are characterized by two transitions between the two different mutually

exclusive states of nodes S+ I
β−→ 2I, I

µ−→ S. The stationary state of the process is
described by two different behaviors. Above a threshold an endemic state is reached
where the density of nodes in the class I, I∞, is fixed by the balance of the spreading
and recovery rates. Below the threshold the spreading is not able to sustain itself and
dies out, thus in the stationary state of the process the number of nodes in the class
I is zero.



2 Controlling contagion processes in static/annealed networks

How can we protect a network from the spreading of an infectious disease? While
this is the underlying question of the chapter, in this section we will first focus on
two timescale separation limits. In order to devise effective control strategies it is
crucial to understand how contagion processes spread on networks. In particular, it
is important to determine how the properties of networks affect such phenomena. As
mentioned above, the topology of real-world networks is typically characterized by
broad degree distributions often approximated by power-laws i.e. P(k) ∼ k−γ . The
heterogeneities that these distributions entail have genuine effects on the unfolding
of contagion processes. Indeed, it has been shown [46] that the epidemic threshold
of a SIS process spreading on uncorrelated annealed networks is:

β

µ
>
〈k〉2

〈k2〉
(1)

The derivation of the threshold is performed by means of heterogeneous mean-field
(HMF) theory which assumes that nodes with the same degree are statistically equiv-
alent. In this perspective connections between nodes are continuously reshuffled
such that the degree distribution P(k) and the probability of having connections be-
tween nodes with degree k and k′, P(k′|k), are kept constant [15]. The timescale
describing this shuffling is much faster than the timescale describing the spreading
process. Consequently, the disease spreads in an effective network where all these
connections are available routes of contagion. Interestingly, in the case of networks
with exponent 2 < γ < 3 the second moment of the degree distribution diverges as
N → ∞, which implies a vanishing epidemic threshold: any virus with a spreading
rate larger than zero will be able to affect a macroscopic fraction of the network.
In finite networks where only finite fluctuations are possible, none of the moments
diverge thus the threshold is larger than zero. However, the presence of nodes with
degree much larger than the average, hubs, pushes the threshold to values much
smaller than in the case of corresponding homogeneous networks with the same
size (number of nodes) and average connectivity. Indeed, hubs decrease the shortest
paths between any pair of nodes in the network and once infected, they dramatically
accelerate the diffusion by virtue of their large number of connections.

In case of static networks the timescale describing the evolution of the conta-
gion process is much faster than the timescale of the network, thus the contagion
phenomena evolves in a frozen, quenched, structure. The threshold of an SIS model
in this case is tied to the spectral properties of the adjacency matrix Ai j coding for
the static network structure. Indeed, for an arbitrary network the epidemic threshold
is inversely proportional to the largest eigenvalue λ1 [47, 48, 49] of the matrix. In
case of uncorrelated networks, λ1 ∼

√
kmax, thus the threshold is associated to the

largest degree in the system. It is interesting to notice that the analytical results for
uncorrelated annealed and static scale-free graphs are equivalent if the degree ex-
ponent γ < 2.5, while if γ > 2.5, the results obtained with the HMF theory deviate
from those obtained in static networks. Although the study of such deviation is fas-



cinating, it is beyond the scope of this chapter, we refer the interested reader to the
following recent papers on the subject [50, 51, 52, 53].

Now that we understand in some details how contagion phenomena spread on
networks we can shift the attention towards controlling/vaccination strategies. In-
terestingly, this problem is closely related to the robustness of a network structure
against attacks [54], which further maps to a site percolation in networks [3]. In
both cases the objective is to identify a critical fraction of nodes which removal
would segregate the network structure and thus disrupt the spreading of a contagion
process. In case of vaccination this translates to the identification of a critical pc
fraction of nodes to immunize in order to push the epidemics to an inactive phase
i.e. below the threshold. Studies discussed above suggests that nodes in heteroge-
neous networks have very different roles in sustaining spreading processes and have
indisputable effects on the epidemic threshold. In order to demonstrate this obser-
vation, let us consider the simplest vaccination strategy which involves a fraction p
of randomly selected nodes. This strategy is agnostic to the features of the networks
and has been shown to simply re-scale the effective spreading rate β → β (1− p)
[10, 55]. For uncorrelated annealed networks, the threshold becomes:

β

µ
(1− pc) =

〈k〉2

〈k2〉
. (2)

In this case, the large fluctuations typical of heavy-tailed degree distributions push
the critical immunization fraction pc to values close to one. In other words, in order
to protect heterogeneous networks against infectious diseases a random immuniza-
tion strategy is inefficient as it requires a large fraction of nodes to be vaccinated.

Can we do better, and if yes, how? The answer to this question depends on the
amount of information available about the network structure. Let’s first consider a
scenario in which we have full access to the structure and features of the nodes.
In this case, we can implement targeted immunization strategies based on global
knowledge. These relies on different centrality measures which have been developed
to characterize and rank the importance of nodes in a network [1, 2]. Interestingly,
many of these are defined via diffusion processes [56], thus the importance of nodes
is explicitly associated to their role in sustaining spreading phenomena.

One of the simplest centrality measure is the degree centrality, which indicates
hubs in the network. By removing nodes with the highest degree it is possible to
reduce degree fluctuations which in turn increases the epidemic threshold. Here the
critical fraction pc to arrest the epidemic spreading is determined by a critical kc(p)
degree which corresponds (for annealed uncorrelated networks) to the critical point
〈k〉2pc/〈k

2〉pc = β/µ . For graphs with degree exponent γ = 3 the critical fraction of
immunization to arrest epidemics appears as

pc ∼ e−2µ/kminβ (3)

where kmin assigns the smallest degree in the network [10, 55]. As clear from the ex-
ponential dependence on the kmin and β , targeted vaccination strategy based on de-
gree centrality provides a very efficient way to control epidemic spreading. Similar



conclusions can be drawn by applying other centrality measures, such as between-
ness and k-core centrality, or memberships, for the selection of immunized nodes
[9, 57, 58, 59, 60, 61].

Let’s consider now the case in which we don’t have access to the global structure
of the network and to the features of all nodes. Immunization strategies developed
under this very realistic assumption are typically called local strategies as they are
based on local exploration and sampling of the network structure.

One of the most notable local methods is the acquaintance vaccination [11]. This
relies on the so called “friendship paradox”: your friends have more friends that you
do. In the case of uncorrelated heterogeneous networks is very easy to prove that
this counterintuitive fact holds true [1, 2]. Several studies performed in real-world
networks confirm the paradox as a genuine feature tied to the large fluctuations in
degree observed across a wide range of graphs [62, 63, 64].

Cohen et al realized how this feature can be used to find highly connected nodes
in the system via a local exploration. In the acquaintance strategy we first select
randomly an f fraction of probe nodes. However, instead of vaccinating them, we
choose randomly one of their neighbors as target of our vaccination. Note that the
local search from different probes can lead to the same neighbor i.e. p ≤ f . The
critical fraction of nodes is:

pc = 1−∑k P(k)νk
fc (4)

where ν f = 〈e− f/k〉k is the probability that an acquaintance is not selected in a single
attempt, while fc assigns the critical fraction of random probes which can be deter-
mined numerically as shown in [3, 11, 65, 66]. The critical immunization fraction
of this method is always pc < 1 and considerably smaller for scale-free networks
with any degree exponent as compared to the random vaccination strategy [11].

Note that other variations of the acquaintance vaccination strategy were proposed
by optimizing the neighbor selection [67]. At the same time immunization was also
studied on meta-population networks [68]. In other studies, it has been argued that
efficient immunization strategies can be developed by considering the higher-order
organization of connectivity patterns [57, 69, 70, 71, 72, 73, 74]. Further studies pro-
posed vaccination strategies using evolutionary games [75], or considering complex
contagion processes [76]. For a recent review on the subject we refer the readers to
Ref. [8].

3 Controlling contagion processes in time-varying networks

We now move away from the limits of timescale separation. In fact, we are ready to
study spreading processes and immunization strategies on time-varying networks in
which the timescales driving the evolution of the system and of the spreading pro-
cess are comparable. As done before for annealed and static networks, we will first



study the epidemic threshold. We will then use this knowledge to present and better
understand immunization strategies aimed at controlling contagion phenomena.

A closed formula for the epidemic threshold of a SIS epidemic process unfold-
ing on any time-varying has been derived [77]. In this approach the time-varying
network is considered as a sequence of adjacency matrices A1,A2, . . . ,AT which de-
scribe the evolution of the network in time. Prakash et al showed that the disease
will not be able to spread in the system if

λ∏i Si < 1 (5)

where Si = (1− µ)I+αAi, and α is the transmission rate per contact. In other
words, the disease will die out if the largest eigenvalue of the system-matrix
S = ∏i Si is smaller than one. This result have been recently confirmed with a dif-
ferent approach [78]. It is interesting to note that in both static and time-varying
networks the largest eigenvalue, of the adjacency matrix in one case and of the
system matrix in the other, determines the unfolding of the disease. Despite the gen-
erality and the practical importance of this result, the computation of the threshold
needs to be done numerically. Also, the condition obtained hinders the effects of
temporal connectivity patterns on spreading processes. For this reason, in the next
subsections we will consider SIS processes unfolding on a particular type of time-
varying networks. In doing so, we will be able to derive a more explicit condition
for the spreading and thus better understand the efficiency of different immunization
strategies.

3.1 Epidemic threshold on activity-driven networks

In activity-driven networks, each node i is characterized by an activity rate ai. This
quantity encodes the probability per unit time to establish contacts with other nodes.
The activity rates are assigned according to a given probability distribution F(a).
Observations in a wide range of different real-world networks show that activities
follow heavy-tailed distributions [32, 33, 29, 79, 80]. We approximate such dis-
tributions as power-laws, i.e., F(a) = Ba−γ with activities restricted in the region
a ∈ [ε,1] to avoid divergences for a→ 0. In these settings, the generative network
evolution process is defined according to the following rules:

• At each discrete time step t, the network Gt starts with N disconnected vertices;
• With probability ai∆ t, each vertex i becomes active and generates m links that

are connected to m other randomly selected vertices;
• At the next time step t +∆ t, all the edges in the network Gt are deleted.

All interactions have a constant duration ∆ t. In the following, without loss of gener-
ality, we will set ∆ t = 1. Activity-driven networks in their simplest form are random
and memoryless. We refer the reader interested in more realistic extensions of the
model to the following references [29, 79, 80, 81]. The full dynamics of the network
and its ensuing structure is completely encoded in the activity distribution F(a).



Moreover, it is possible to prove that integrating activity driven networks in finite
time windows such that T � N and k� N yield graphs characterized by degree
distributions following the functional form F(a) [32, 82].

Let’s now consider a SIS model unfolding on activity-varying networks. Using
the HMF theory we group nodes according to their activity assuming that nodes in
the same class are statistically equivalent. At the mean-field level, the spreading pro-
cess can be described by the number of infected individuals in the class of activity
a at time t, i.e., It

a [32]. Following Ref. [32], the number of infected individuals of
class a at time t +1 given by:

It+1
a = It

a−µIt
a +αm(Na− It

a)a
∫

da′
It
a′

N
+αm(Na− It

a)
∫

da′
It
a′a
′

N
, (6)

where Na is the total number of individuals with activity rate a (which is constant
over time). Each term in the Eq. (6) has a clear physical interpretation. In fact, the
number of infected nodes in the class a at time t + 1 is given by: the number of
infected nodes in this class at time t (first term), minus the number of nodes that
recover and going back to the class Sa (second term), plus the number of infected
individuals generated when nodes in the class St

a = Na− It
a are active and connect

with infected nodes in the other activity classes (third term), plus the number of
infected nodes generated when nodes in the class St

a are linked by active infected
nodes in other activity classes.
Summing on all of the classes and ignoring the second order terms we can write:∫

daIt+1
a = It+1 = It −µIt +αm〈a〉It +αmθ

t , (7)

where θ t =
∫

da′It
a′a
′. Multiplying both sides of Eq. (6) by a and integrating we

obtain:
θ

t+1 = θ
t −µθ

t +αm〈a2〉It +αm〈a〉θ t . (8)

In the continuous time limit, we can write Eqs. (6) and (8) in a differential form:

∂t I = −µI +αm〈a〉I +αmθ , (9)
∂tθ = −µθ +αm〈a2〉I +αm〈a〉θ . (10)

The Jacobian matrix of this set of linear differential equations takes the form

J =

(
−µ +αm〈a〉 α

αm〈a2〉 −µ +αm〈a〉

)
,

and has eigenvalues

Λ(1,2) = 〈a〉αm−µ±αm
√
〈a2〉. (11)

The threshold is obtained by requiring the largest eigenvalues to be larger than 0,
which leads to:



α

µ
≥ 1

m
1

〈a〉+
√
〈a2〉

. (12)

Considering the per capita spreading rate β = α〈k〉 we can write the threshold for
the SIS process, ξ SIS, as:

β

µ
≥ ξ

SIS ≡ 2〈a〉
〈a〉+

√
〈a2〉

. (13)

In words, the epidemic threshold is function of the first and second moment of the
activity distribution. Due to the co-evolution of the network structure and the spread-
ing processes the threshold is not dependent on time-aggregated metrics such as the
degree. It is defined by the interplay between the time scale of the contagion pro-
cess and the convolution of the network time scales encoded in the moments of the
activity distribution.

3.2 Controlling contagion processes in activity driven networks

We can now study different immunization strategies. Following Ref. [83] and what
presented above for annealed and static networks we will consider three main strate-
gies: random, global and local. In all the cases, we introduce a fraction p of nodes
as immunized. To account for this new class of nodes, we introduce a new compart-
ment, R, in the classic SIS scheme. Thus, the Eq. 6 becomes:

It+1
a = It

a−µIt
a +αm(Na− It

a−Rt
a)a
∫

da′
It
a′

N
+ (14)

+ αm(Na− It
a−Rt

a)
∫

da′
It
a′a
′

N
,

First, let us consider the random strategy (RS) in which a fraction p of nodes is
immunized with an uniform probability [83]. In this case, the system of equations
describing the dynamic process in activity-driven networks can be obtained by set-
ting Ra = pNa. The epidemic threshold condition changes as

β

µ
≥ ξ

RS ≡ 1
1− p

2〈a〉
〈a〉+

√
〈a2〉

=
ξ SIS

1− p
. (15)

Consistently, with what we found for annealed and static networks, when a fraction
p of nodes is randomly immunized, the epidemic threshold can be written as the
threshold with no intervention, ξ SIS, rescaled by the number of nodes still available
to the spreading process. Indeed, immunizing random nodes is equivalent to rescale
the per capita spreading rate by the fraction of available nodes β → β (1− p). An-
other important quantity is the critical value of immunized nodes, pc, necessary to
halt the contagion process. This quantity is a function of network’s structure and the



specific features of the contagion process. The explicit value of pc can be obtained
by inverting Eq. 15. In Fig. 1-A, we show pc as a function of β/µ . The values on the
heat map are the average asymptotic density of infected nodes, Ip

∞. The phase space
of the diffusion process is divided into two different regions separated by the blue
solid line that represents pc as derived by Eq. 15. In the region below the curve, the
spreading process will take over, p < pc. However, in the region above the curve,
the fraction of removed/immunized nodes is enough to completely stop the diffusion
process, p ≥ pc. To assess the efficiency of the immunization strategy in Fig. 1-D
(green triangles) we plot, as a function of the density of removed nodes p, the ratio
Ip
∞/I0

∞ where I0
∞ is the asymptotic density of infected nodes when no-intervention is

implemented. As shown clearly in the figure, the random strategy allows a reduction
in the fraction of infected nodes just for large values of p.

Fig. 1 Panels A, B, and C show the phase space of an SIS process under random, targeted, and
egocentric control strategy, respectively. Considering N = 104, m= 3, ε = 10−3, activity distributed
as F(a) ∼ a−2.2, we plot I∞ as a function of β/µ and p. Blue curves represent the critical value
pc. Panel D shows the comparison of the stationary state of a SIS model with and without control
strategy, Ip

∞/I0
∞, as a function of p when β/µ = 0.81. In green triangles, we consider the random

strategy, in dark blue diamonds the targeted strategy, and in blue circles the egocentric strategy.
Each plot is made averaging 102 independent simulations started with 1% of random seeds.

In activity-driven networks a natural way to implement a global immunization
strategy is to target high activity nodes. Indeed, from the study of the epidemic
threshold without intervention, we saw the importance of the moments of the activ-
ity distribution. By targeting high activity nodes we can reduce the average and the
fluctuations of activity and thus move the threshold to higher values. Following this
strategy we rank nodes in decreasing order of activity, immunizing the top ranking



pN nodes. This method is equivalent to fix a value ac so that any node with activity
a≥ ac is immune to the contagion process 1. Also, for this scheme, it is possible to
derive the analytic expression for the epidemic threshold [83]:

β

µ
≥ ξ

T S ≡ 2〈a〉
〈a〉c +

√
(1− p)〈a2〉c

, (16)

where ξ T S indicates the threshold in the case of the targeted control strategy. In the
above expression, we define 〈an〉c =

∫ ac
ε

anF(a)da as the moments of the activity
distribution discounting the immunized nodes. Consistently to what found for an-
nealed and static networks, Eq. (16) is not a simple rescaling of the original thresh-
old expression and implies a drastic change in the behavior of the contagion process.
In order to define the critical value of p necessary to completely stop the spreading,
we have to invert Eq. 16. The moments of the distribution of the remaining nodes
are a function of p through ac thus it is not possible to derive explicitly pc. However,
it can be easily evaluated numerically by solving the equation ξ T S−β/µ = 0 for
different values of β/µ . In Fig. 1-B, we show pc (blue line) as a function of β/µ .
The efficiency of the targeted strategy is clear, which is also confirmed in Fig. 1-D
(dark blue diamonds) where we plot the ratio Ip

∞/I0
∞. Immunizing a very small frac-

tion of the most active nodes is enough to stop the contagion process. Indeed, by
immunizing just the top 1% of nodes is enough to halt the disease.

As discussed above, the network-wide knowledge required to implement targeted
control strategies is generally not available [11]. In the case of evolving networks,
this issue is even more pronounced as node’s characterization depends on how long
it is possible to observe the network dynamics. It is possible to generalized the ac-
quaintance immunization strategy to activity-driven networks. A fraction f of ran-
domly selected nodes act as “probes”. During an observation time T , we monitor
their egonet generated by their interactions in the network. After the observation
window, we select randomly a node in the egonet of each probe and immunizing it.
For the sake of comparison with the previous control strategies, we define the frac-
tion of actual immunized nodes as p (in general f 6= p 2), and the epidemic starts
after nodes have been immunized. In this scheme, the probability of immunization
for one node with activity a after a time step is:

Pa = a f
∫

da′
mNa′

N
+ f

∫
da′a′

mNa′

N
1
m
. (17)

The first term on the r.h.s. considers the probability that a node of class a is active
and reaches one of the probes; the second term, instead, takes into account the prob-
ability that one node of class a gets a connection from one active probe. Solving the

1 The value of p and ac are linked by the relation p =
∫ 1

ac
F(a)da

2 In order to guarantee that a fraction f of nodes is immunized the systems need to be observed
for more than one time step. We define T ∗ as the average time needed for all the probes to have at
least one interaction with other nodes. For any observation time T < T ∗ the fraction of immunized
nodes will be in general p≤ f .



integrals in Eq. (17), we can write Pa = f (am+ 〈a〉). Thus, the probability of immu-
nization of one node in the activity class a after t time steps is Pt

a = 1−(1−Pa)
t , and

therefore, summing over all the activity classes, we can estimate the total number of
immunized individuals as RT = ∑a NaPT

a = ∑a Na
[
1− (1−Pa)

T
]
. The equation for

Pa does not consider the depletion of nodes in each class due to the immunization
process. The formulation is then a good approximation for small f and T , when
the probability that a probe is selected more than once is very small. Replacing the
expression for the removed/immunized individuals in the basic SIS equations yields
the following epidemic threshold for the egocentric sampling strategy (ESS) [83]:

β

µ
≥ ξ

ESS ≡ 2〈a〉

Ψ T
1 +

√
Ψ T

0 Ψ T
2

, (18)

where we define Ψ T
n =

∫
da an(1−Pa)

T F(a). This last integral is a function of the
observing time window T , the probability of immunization of each class and the ac-
tivity distribution. We evaluate each Ψ term through numerical integration. As done
for the other two cases, we define the critical value of p by solving numerically
the equation ξ ESS−β/µ = 0 for different values of β/µ . In Fig. 1-C, we show pc
(blue solid line) as a function of β/µ , and in Fig. 1-D we plot the ratio Ip

∞/I0
∞ (blue

dots). From these figures it is clear how this strategy is much more efficient than the
random one, although not as performant as the targeted scheme. The efficiency of
this strategy is due to the ability to reach active nodes by a local exploration done
observing the systems for few time steps.

3.3 Controlling contagion processes in real temporal networks

Real world time-varying networks are characterized by a range of complex features
such as heterogeneous activity patterns, correlations among nodes, persistence of
links, and burstiness just to cite a few. For detailed reviews on the topic we refer
the reader to Refs. [41, 42, 43]. Over the last years an increasing body of litera-
ture has been focused on the study of such properties and their relation to effective
controlling strategies. Here, we will summarize some of the main results.

In their work, Prakash et al [77] used their analytical derivation of the epidemic
threshold in a general time-varying network mentioned above, to study the effi-
ciency of different controlling strategies in a real network obtained from the MIT
Reality Mining project [84]. This dataset describes the interactions of 104 students
recorded via Bluetooth. The authors consider several global and local strategies im-
munizing: 1) the top ranked nodes for degree in each temporal snapshot of the net-
work, 2) the top ranked nodes for degree in the average adjacency matrix defined
as Aaverage = T−1

∑i=1,T Ai, 3) nodes selected via the acquaintance method applied
to the average adjacency matrix, 4) the nodes that sequentially (greedy method) in-
duce the largest drop to the largest eigenvalue of the system matrix, 5) nodes in a



sequence that provide the largest (optimal method) reduction to the largest eigen-
value of the system matrix. Interestingly, they found strategies 1, 2 and 4 to have
similar performance respect the optimal strategy. Instead, the acquaintance strategy
was found, not surprisingly, to perform significantly worst. It is important to no-
tice that they used as objective metric to benchmark each strategy the change in the
largest eigenvalue of the system matrix.

Lee et al [85] compared the acquaintance strategy against two variations of it,
they proposed, which include the temporal dynamics on the networks. In particu-
lar, they considered strategies in which either the most recent or the most frequent
contacts of randomly selected nodes are immunized. They studied the efficiency
of each method in four different datasets: i) an online forum describing sexual in-
teractions with prostitutes [86], ii) proximity interactions in hospital wards [87],
email exchanges [88], and online dating [89]. They considered scenarios in which
an immunization campaign can be applied in an initial time window of size ∆T .
Interestingly, they found that the two extensions of the acquaintance method have
a larger impact on the disease spreading. Furthermore, in three of the four datasets
the strategy based on the most recent contacts outperforms the method based on the
most frequent contacts. As objective measure of performance they used Ω defined
as “the average upper bound of outbreak size” obtained running epidemic spreading
with α = 1 i.e. where the probability of infection per contact is one.

Starnini et al [90] studied several immunization strategies in different face-to-
face networks obtained via RFID tags in the SocioPatterns collaboration [91]. As
done by Lee et al [85] they introduced an immunization campaign in the first ∆T
time steps. They considered strategies in which the nodes to be immunized are se-
lected considering: 1) the degree, 2) the betweenness, 3) the acquaintance method,
4) the frequency of activation of each link3, 5) the latest activated contacts in the
time window3, and 6) randomly selected nodes. It is important to notice how this
study contrasts global and local strategies considering both structural and temporal
features. In the comparisons, the authors considered as objective metrics the speed of
the spreading and the final number of infected nodes. Overall they found strategies
that target nodes according to their degree and betweenness centrality to be more
efficient. Furthermore, the authors observed a saturation effect for increasing sizes
of the time window ∆ t. In principle, longer time windows should allow to gather
more information and thus should be linked to better immunization performances.
However, these observations show how this is true up to a certain point. The authors
linked such unexpected behaviour to the emergence of central nodes at early stages
in the system’s dynamics. It is important to notice that even the considered datasets
provide a very high temporal resolution, 20 seconds, they were recorded over typi-
cally a few days, thus they do not provide observations of long temporal trends of
contact networks.

Tang et al [92] studied the spreading of malwares via bluetooth and efficient
way to contain them. They considered three different datasets: the MIT reality min-
ing data mentioned before, the interaction between researchers at the University of

3 As proposed by Lee et al [85]



Cambridge [93], and those between participants of a conference [94]. Interestingly,
they found that strategies based on temporal betweenness centrality do not perform
as expected. Although this metric provides the quantitative measure of the number
of diffusion routes between nodes, the immunization of top ranked nodes does not
necessarily stop the spreading as many alternative routes might exist. They proposed
an immunization strategy in which the patch necessary to protect phones spread in
the network is in competition with the malware. In their approach, the selection
of nodes to immunize is done via the temporal closeness centrality measure which
ranks node considering the speed at which each node can disseminate a message
in the network. They showed how such strategy is consistently more efficient. Effi-
ciency is measured in terms of the consumption of cellular network resources and
time necessary to protect the system.

Liu et al [83] studied the efficiency of the three different strategies introduced
in sub-section 3.2 in a mobile phone call data network. Interestingly, the numerical
simulations confirm qualitatively the analytical results obtained in activity driven
networks. In particular, the strategy that target high active nodes is the most effi-
cient, followed by the generalization of the acquaintance methods: the egocentric
sampling strategy. The objective measure adopted to judge the efficiency of each
strategy is the ratio between the stationary state of a SIS model with and without
control strategy, i.e. Ip

∞/I0
∞.

4 Conclusions and outlook

We presented a summary of strategies to control contagion processes in annealed,
static, and time-varying networks. In doing so, we considered a range of different
analytical and numerical results. We observed how heterogeneities that characterize
many features of real world networks make targeted global strategies extremely
efficient. However, these strategies assume complete knowledge of the networks’
topology and their dynamical evolution. Local strategies based on local exploration
and sample of the networks are in general less efficient that global methods but are
more realistic and provide a higher performance respect to random strategies.

We considered scenarios where the dynamics of networks (temporal evolution
of networks’ structure) affect the dynamics on networks (contagion processes). In
general also the opposite is true. For example, the spreading of an infectious dis-
ease might induce changes in the evolution of a contact network [95, 96] or the
spreading of information on an online social network might affect its structure and
evolution [97]. In this case the dynamics on the networks affect the dynamics of
the network. In the literature the study of this reverse problem (respect to what we
considered here) is found under the umbrella of adaptive networks. We invite the
interested reader to several other chapters of this book [ADD REFERENCES] for
details.

Generally speaking, the dynamics of and on networks are interwinded. Networks
are subject to natural temporal dynamics which are perturbed by contagion pro-



cesses. In turn, contagion processes are subject to the natural evolution of networks
and are affected by the changes they induce. The understanding of these intrica-
cies is still very limited and requires the development of methods to model and
mathematically describe complex coupled dynamics, possibly acting at different
timescales. Furthermore, it requires the availability of high resolution data that cap-
ture all these processes and their interplay. Despite the unprecedented access to
large-scale datasets of human interactions in recent times, the observation of the
feedback loop between the dynamics of and on networks is typically indirect and
thus the casual link between the two, necessary to inform or test model, is often
missing.

We believe that addressing all these challenges is of extreme importance to better
understand the spreading of contagion processes on real networks and to develop
efficient methods to control them. Doing so will require an interdisciplinary effort
from a set of disciplines ranging from network and data science to sociology and
applied mathematics.

Acknowledgements The results presented in section 3.2 are adapted from Ref. [83] and obtained
in collaboration with S. Liu and A. Vespignani.
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17. Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-François Pinton, and
Wouter Van den Broeck. What’s in a crowd? analysis of face-to-face behavioral networks.
J. Theor. Biol, 271:166, 2011.
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