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Abstract 

Index Based Livestock Insurance (IBLI) has emerged as a promising market-based solution for 
insuring livestock against drought related mortality. The objective of this work is to develop an 
explicit spatial econometric framework to estimate insurable indexes that can be integrated 
within a general insurance pricing framework.  We explore the problem of estimating spatial 
panel models when there are missing dependent variable observations and cross-sectional 
dependence, and implement an estimable procedure which employs an iterative method.  We also 
develop an out-of-sample efficient cross-validation mixing method to optimize the degree of 
index aggregation in the context of the spatial index models. 
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1 Introduction 

Index insurance has gained considerable interest during the past decade as a tool for transferring 

weather related market risks to capital markets (Alderman and Haque, 2007; Woodard and 

Garcia, 2008a, Woodard and Garcia, 2008b; Barnett, Barrett, & Skees, 2008). One such product 

in the marketplace is the Index Based Livestock Insurance (IBLI) program. An IBLI pilot was 

commercially launched in the Marsabit district of Kenya in January 2010, and in the Borana 

Zone in southern Ethiopia in July 2012 by the International Livestock Research Institute (ILRI), 

in cooperation with local insurers and global reinsurers.  IBLI safeguards pastoralist livestock 

producers against drought and other vegetation risk.  Considering the high correlation between 

forage loss and livestock mortality, IBLI is designed to insure livestock mortality by 

compensating pastoralists according to an area-average predicted livestock mortality index which 

is established statistically by fitting household-level livestock mortality data to remotely sensed 

normalized difference vegetation indexes (NDVI). 

Bolstered by the potential of the product to manage the key source of vulnerability to 

pastoral communities, ILRI and their partners are currently working to scale up IBLI to 11 arid 

and semi-arid districts in Kenya (108 divisions). Scaling up a small pilot program to such an 

extent is no trivial matter, as area-specific index response functions (i.e., mappings of remotely 

sensed vegetation indexes to mortality) must be constructed for all areas—many of which only 

have sparse mortality data available. Thus, this endeavor necessitates developing a methodology 

that is spatially scalable, feasible, and robust in the presence of sparse data. While the use of 

spatial econometric methods that capture cross-sectional dependence has become the standard in 

many branches of applied economics (see e.g., Anselin, 1988; Elhorst, 2003; Kelejian and 

Prucha, 2007; LeSage and Pace, 2009), its use has been more limited in insurance economics 
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contexts with few exceptions (e.g., Woodard et al., 2012). Yet, spatial methods present a very 

promising route for addressing the challenges that often arise for development economists in 

implementing such programs.   

In contrast to past approaches in the literature on index insurance, the objective of this 

work is to develop an explicit spatial econometric framework in which to estimate insurable 

index response functions that is integrated within a general insurance rating/pricing framework.  

Building on the lessons learned from the IBLI pilot in (Mude et al., 2012), the broader objective 

is also to improve the product design and actuarial credibility of the contract, and to work toward 

developing a platform that can be adapted to other contexts.  We also address several common 

interrelated challenges that often arise in such efforts.   

To this end, we explore and develop an implementable expectation maximization (EM) 

procedure to facilitate the estimation of spatial panel models when there are missing observations 

for the dependent variable (in our case, livestock mortality survey observations) and cross-

sectional dependence by extending the work of LeSage and Pace (2004) to the panel data case 

and articulating an estimation method which employs an iterative procedure.  While other 

methods have been developed recently (see e.g., Wang and Lee, 2013a; Wang and Lee, 2013b), 

including a nonlinear least squares method, a generalized method of moments approach, as well 

as a two-stage least squares procedure, Wang and Lee (2013a) find those methods to be less 

efficient than maximum likelihood estimation implemented under the EM algorithm. 

From a design standpoint, our framework is very desirable in the current context as the 

spatial autoregressive component can capture the influence of spatial dependence in mortality as 

well as other multidirectional feedback processes and unobservables. For example, since herds 

migrate during droughts, and livestock mortality is a function of both rangeland carrying 
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capacity and lagged forage availability, these dynamic feedback effects provide valuable 

information for estimating mortality responses to drought.  Spatial methods also present a formal 

and robust avenue to address the issue of missing data, which can create serious problems for 

standard non-spatial index construction methods.   

Another unique challenge in the development of index insurance is that the remotely 

sensed data are not always continuously available or consistently measured through time, and so 

building up a long time-period of observations involves gathering data from multiple satellites, 

sensors, and databases through time.  Thus, we also address the issue of properly employing 

inter-calibration procedures in order to facilitate integration of such varied data within a cohesive 

insurance rating framework.  In doing so, a bootstrapping methodology is developed to 

appropriately augment the remotely sensed dataset for the period in which index estimation is 

conducted with data from longer running remote sensing platforms, in order to improve rating 

efficiency. 

As it regards optimal contract design and functional form, the determination of the 

optimal degree of contract aggregation is also of great importance—that is, determining whether 

the contract should be designed for a single area in isolation of others, for groupings of areas, or 

a combination thereof.  Unfortunately, this important question has received little treatment in the 

index insurance economics literature to date.  We propose a solution which employs a cross-

validation optimal model mixing approach as motivated by Woodard and Sherrick (2012). The 

methodology developed in the paper is applied to IBLI program in Kenya.  

2 Background and Literature Review 

Livestock are a significant global asset that play an important role in rural livelihoods and 

typically account for 20%-40% of agricultural GDP (Steinfeld et al., 2006; Herrero et al., 2013). 
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In arid and semi-arid lands in Africa—which comprise about two-thirds of the continent—

approximately 20 million pastoralists depend on livestock grazing as their main livelihood. 

Livestock are the key productive assets in these economies as intensive crop production is often 

not possible due to low and risky rainfall, and poor soils.  The occurrence of extreme drought 

threatens the livelihoods of these pastoralists, and much evidence exists to suggest that these 

uninsured weather risks can push households and communities into poverty traps from which 

escape is particularly difficult (Lybbert et al., 2004; Barrett et al., 2006). As a result, producers 

tend to adopt low-risk, low-return economic activities which hamper investment and economic 

growth.  Index based livestock insurance has emerged as a promising market-based solution for 

overcoming some of these problems by transferring correlated weather risk in the community to 

insurance markets and, ultimately, international reinsurance and capital markets.    

Motivation for Index Insurance 

Index based insurance does not insure households directly against individual losses (in our case, 

realized livestock death), but rather indemnifies them against an index that is correlated with the 

loss. Optimally, the index should mirror the underlying risk to be insured, should not be subject 

to moral hazard or adverse selection, and should be easily verifiable at low cost.  While in the 

best case scenario the index would be a perfect mapping to the household's realized losses, this is 

typically not possible. The resulting error between the index and the true loss to the insured is 

known as basis risk. Minimizing basis risk is essential to enhancing the value proposition of the 

insurance offering, and thus it is important to have a firm understanding of the degree and form 

of basis risk.   

 So, why not insure live animals directly?  There are several reasons why insuring live 

animals is typically not feasible, and even in the developed world it is typically not possible due 
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to the inability of the insurer to properly monitor the animal, which opens the door for moral 

hazard.  It would also be expensive to administer such insurance as claims adjustment would 

necessitate onsite visits from veterinarians and insurance agents.  Particularly in regions such as 

Northern Kenya, the institutional infrastructure that would be necessary to accomplish this 

simply does not exist.  Index insurance, on the other hand, avoids most of these problems.   

In our case, NDVI data are published freely and regularly by various government 

agencies, and thus there is a reliable and verifiable data source upon which to structure the 

insurance, a necessary condition.  Second, the claims process is very streamlined and can 

typically be adjusted and paid relatively cheaply and easily. In Kenya, for example, the use of 

mobile money payment systems such as M-PESA are already pervasive throughout the country 

and facilitates an increasing number of financial transfers cost effectively through mobile 

networks (Jack and Suri, 2011). While the density of cellular telephone coverage and usage is 

lower in the remote regions of country that pastoralists reside, it has been rapidly increasing over 

time.  As such, the claims process could eventually utilize such systems, can be mostly 

automated after the sale, and should require very little effort and cost once the delivery system 

infrastructure is in place. 

 Of course, the benefits of index insurance come at the expense of basis risk. As noted, not 

only does the magnitude of basis risk matter, but also the form.  At the most basic level, basis 

risk can be decomposed into a systemic/community component which arises due to design error 

and an idiosyncratic/individual component that is not related to design (Woodard and Garcia, 

2008; Chantarat et al., 2012).  Strong informal social insurance systems typically exist in these 

regions which allow individual households to cope with idiosyncratic losses. Indeed, the index 

insurance product developed here is not equipped nor intended to replace these informal systems.  
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However, severe problems can arise for the community under systemic shocks as the social 

insurance systems will begin to break down.  It is in covering these systemic shocks that index 

insurance provides value. We explore this more formally in later sections. 

3 Motivating Spatial Econometric Approaches in the Design of Index Insurance 

Spatial methods are potentially advantageous in the context of designing and rating/pricing index 

insurance for several reasons. First, the perils to be insured as well as the covariates upon which 

the index insurances are structured are typically spatially correlated and/or dependent (in our 

case, mortality). Ignoring the spatial and dependent nature of the data may result in a less 

efficient set of contracts as well as biased indexes, from econometric point of view.    

 Second, it is often the case—particularly in the developing world—that the data available 

regarding the peril to be insured (e.g., livestock mortality) may be prone to measurement error 

and/or have sparse coverage and missing observations.  In our case, the mortality data are very 

rich, but do not contain mortality observations for all locations and time periods.  Spatial 

methods can allow for maximal information extraction in these missing data cases as information 

from mortality data in neighboring locations can be formally utilized in a spatial context for 

predicting mortality where there are missing observations. The mechanism through which this is 

accomplished is via the link in the spatial parameterization which ties information in non-

missing dependent and independent variables to the independent variables corresponding to the 

locations with missing data for the dependent variable.  This can be accomplished in a spatial lag 

type framework but not typically in standard non-spatial frameworks, as the latter have no 

mechanism by which to incorporate the spatial information content. 

 Third, from an actuarial standpoint, a coherent system-wide spatial approach is 

potentially much more reliable and efficient (in actuarial terms, more “credible”) than would be 
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individual location-by-location estimation of index response functions.  Spatial methods also 

allow for a higher degree of control over the parameterization across locations to be insured and 

often result in a natural smoothing of parameter estimates over space.  This is important in 

insurance contexts since a live contract will be sold in many regions, and so the actual shape and 

integrity of the estimated index at every location is crucial.  In this way, the focus of economical 

insurance structuring differs somewhat from many typical economic investigations where 

inference alone may be the only primary output of interest from the model.  In insurance 

economics applications, there is typically additional concern about whether the estimated model 

is reliable enough upon which to structure financial contracts in each location, and indeed it is 

often the abnormal or "fringe" locations where data are poor that cause the most problems in the 

marketplace. 

 As we comment on more fully below, in the case of a spatial lag model there is a natural 

interpretation for the estimated spatial autoregressive parameter as a type of credibility factor as 

it relates to the index design at any one location as the final contract structured in any given 

location will be a function not only of its own NDVI observations, but also that of neighboring 

observations. Further, if there is in fact spatial dependence in the natural process of the insured 

peril, then spatial models allow for formal quantification of such. For example, it is not 

uncommon for pastoralists to modify their grazing patterns in response to conditions in their own 

and neighboring locations. While a pastoralist typically has a home base—which in our case is 

where the survey data are periodically collected—they can also travel to some degree across 

location boundaries in search of vegetation and water.  This fact provides a strong case for 

expecting spatial dependence in the livestock mortality data generating process. 

4 Data 
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Household-level Mortality Panel Data 

The household-level livestock mortality data are sourced from the Kenya Arid Land Resource 

Management Project (ALRMP) survey. The raw data provide household-level monthly 

observations for livestock herd size and mortality by animal type (sheep, cow, goat, and camel) 

from January 2001 to December 2012, and contain approximately 900,000 survey observations.  

Since the different animal types vary significantly in weight and value, the widely used Tropical 

Livestock Unit (TLU) measure is employed to construct a weighted measure for each 

household/monthly observation where 1 TLU = 1 cow = 0.7 camel = 10 goats = 10 sheep. 

 The ALRMP data represent an unbalanced panel. We focus on data that span 108 

divisions within 11 districts in the arid lands of Northern Kenya.  There are two seasons in 

northern Kenya, a short rain/short dry (SRSD) season running from October to February, and a 

long rain/long dry (LRLD) season which runs from March to September. Division-level seasonal 

TLU mortality rates are constructed by first calculating a seasonal TLU herd mortality rate for 

each household as the sum of deaths for all months in the season, divided by the maximum 

beginning herd size at the beginning of the month; second, a TLU weighted average mortality is 

calculated across households in a division within a season to arrive at the division-level seasonal 

mortality figure.  It is not uncommon to have several seasons and locations with no data, and in 

fact about 40% of divisions/seasons in our data have no corresponding survey observations.   

Remotely Sensed Vegetation Data 

We employ normalized difference vegetation index (NDVI) data derived from remote sensing 

platforms—which is an indicator of the level of photosynthetic activity in the vegetation - as our 

measure of forage scarcity to predict livestock mortality. There are several different NDVI 

datasets available, many of come from different satellites/sensors and have different temporal 
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coverage and spatial resolution. We employ data from NASA's eMODIS dataset, which is 

available from 2000 to the present1. The data are published in raster format (essentially, pixel 

data) as 10-day, 250-meter composites.  

 The data processing employed is explained in more detail in Vrieling et al. (2013), but we 

provide an overview of the processing here. First, the NDVI data are temporally filtered to 

correct errors from atmospheric effects and residual noise, as is standard in the remote sensing 

field. The pixel values for each 10-day time period are then aggregated and averaged by division.  

In general, NDVI is not a standardized measure and cannot be meaningfully compared across 

locations due to differences in hydrology, elevation, etc. So, in order to create a meaningful 

measure that can be compared across space and time, some sort of standardization must be 

employed. We employ a z-score measure, whereby for each division and each 10-day period of 

the year, a 12-year average and standard deviation are calculated and used to arrive at a z-score 

for each observation. Next, to arrive at a season level measure, cumulative z-score (CzNDVI) 

indexes are constructed as the sum of the 10-day z-scores within each season. We also include 

lagged NDVI measures in the model to control for the state of rangeland condition at the 

commencement of the contract.  Explicitly, we construct two measures, one for previous season 

CzNDVI , and one for CzNDVI within the insured season (i.e., post contract commencement) for 

each division and time period/season as
( 1)

ns np
p s

pre CzNDVI zNDVI
∈ −

− = ∑ and

ns np
p s

post CzNDVI zNDVI
∈

− = ∑ where p s∈ are the 10 day periods within the respective season 

and n is the division/location subscript. It is important to note that these NDVI data are employed 

as proxies for mortality as they present a data source that can be independently validated, a 

                                                           
1 eMODIS data for East Africa are downloaded from FEWS-NET 
http://earlywarning.usgs.gov/fews/africa/web/imgbrowsc2.php?extent=eazd 

http://earlywarning.usgs.gov/fews/africa/web/imgbrowsc2.php?extent=eazd
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requirement of index insurance. It is not the intent of the response function to exactly replicate 

the bio-physical process of mortality per se, but rather is a proxy model. This is essentially 

always the case with index insurance. 

 To obtain a broader range of NDVI measurements for the pricing of the contract, we also 

employ an inter-calibrated set of data from the GIMMS AVHRR NDVI3g sensor which runs 

from 1981-2012 and is published in 8-kilometer, 15-day composites. GIMMS AVHRR data are 

processed similarly, and are also temporally filtered using an iterative Savitzky-Golay filter as 

described by Chen et al. (2004).  While longer time series of data are typically preferred for 

insurance pricing purposes for efficiency reasons, care must be taken in the calibration of data 

from different sensors. Considering the different spatiotemporal resolution of the datasets, it is 

important to adjust for both time and spatial aggregation differences since higher resolution 

sensors provide cumulative z-indexes that result from the aggregation of more pixels and time 

periods. For each division, regressions between the cumulative z-indexes of both sensors for the 

period in which the two have common data (2000-2012) are estimated and then used to calculate 

inter-calibrated AVHRR observations for the out-of-sample period (1981-2000) in which 

eMODIS data do not exist. Since the fit is not perfect between the two sensors, the volatilities of 

the fitted/inter-calibrated GIMMS AVHRR CzNDVI values will not be comparable to those of 

the eMODIS CzNDVI values (although in expectation the conditional means will be). We 

address the implications of this and corrections that must be made if the inter-calibrated data are 

to be used to augment the rating structure further below in the rating section. 

5 Spatial Mortality Index Estimation Procedure in the Presence of Missing Observations 

Consider the standard spatial panel model with a spatial autoregressive lag, 

ρ ⊗T Ny = (I W )y + Xβ + ε                                      (1) 
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where y is an 1NT × vector of mortality observations which is sorted by time then division for N

locations (in our case, divisions) and T time periods, TI is a T T× identity matrix, NW is an 

N N×  spatial weight matrix which is row standardized (i.e., all rows sum to one) specifying the 

relative location of each location (see, Anselin, 1988), ρ is a scalar spatial autoregressive 

coefficient that reflects the magnitude of spatial dependence, X  is an NT K× design matrix, β is 

a 1K × vector of coefficients, ⊗ is the Kronecker product operator, and ε is a vector of random 

innovations.  Note that we estimate separate models for the SRSD and LRLD seasons.  This 

model requires a balanced panel for estimation (i.e., no missing observations for any 

location/time period) and in such cases can be estimated using maximum likelihood estimators 

(Elhorst, 2003), as well as via others approaches.  The ρ ⊗T N(I W ) term acts as a precursor to a 

spatial filter, and thus interpretation of marginal effects and the calculation of fitted values in 

spatial lag model is not as straightforward as in standard regressions.  This can be seen by noting 

that Equation 1 can be rewritten as ( )ρ⊗ − ⊗T N T NI I (I W )y = Xβ + ε  , or 

1( ) ( )ρ −⊗ − ⊗T N T Ny = I I (I W ) Xβ + ε .  We construct the spatial weight matrix NW  as a queen 

contiguity matrix and hence is sparse, while the spatial filter 1( )ρ −⊗ − ⊗T N T NI I (I W ) is not.  

The implication of the spatial filter is that each cross-section represents a spatial network and 

thus every location is a function of its own explanatory variables and innovations, as well as 

those of all other locations. This is analogous to cross-section case where 1( )ρ −−TI W  is non-

sparse, and so every observation is a function of itself, its neighbors, and its neighbors' neighbors 

(with influence decaying with distance), whereby the magnitude of the spatial dependence is 

moderated by the spatial lag coefficient ρ .2   

                                                           
2 In typical applications testing is conducted to determine the likely form of the spatial dependence, however to our 
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Estimation with Missing Dependent Variable Observations  

Before delving into the construction of the design matrix and the implications for index 

insurance design, we first articulate the estimation procedure with missing data as motivated by 

LeSage and Pace (2004).3 Lesage and Pace investigate a similar estimator in the context of a 

cross-sectional hedonic home pricing model and find that such an approach can improve 

prediction, increase estimation efficiency for the missing-at-random case, and reduce self-

selection bias in the non-missing-at-random case. They develop a solution in the cross-section 

case that provides valuable guidance to extending to the panel data case.   

As Lesage and Pace point out, the improved performance of the spatial model with 

missing data has nothing to do per se with the imputed missing dependent variable values, but 

rather results from utilization of additional information in the independent variable values 

corresponding to the missing values and the relationship and dependence among them in space.  

Intuitively, information content among the non-missing dependent variables and the independent 

variables corresponding to missing observations are linked via the spatial filter, which in turn 

allows for useful extraction of information embedded in the spatial nature of the data. 

 While the estimation approach employed here is similar in concept to that of Lesage and 

Pace (2004), we depart in two ways.  First and most obvious, we extend to the panel data case. 

Second, we employ an approach that does not require manipulation of the standard spatial 

estimator to implement.  On the other hand, LeSage and Pace derive the likelihood function for 

the model by partitioning the data and components of the covariance matrix into their respective 

                                                                                                                                                                                           
knowledge no such tests exist in the missing data case so we proceed with the lag model for a variety of credibility 
reasons. Note that the fitted values from a spatial error type model will not be spatially smoothed necessarily, thus 
further motivating the lag approach. We comment on this further below in the contract design section. 
3 While other methods exist as developed by Wang and Lee (2013a and 2013b), those works were not published and 
the code not available when this pilot was designed. We would not anticipate large differences from employing 
different methods. Nevertheless, further investigation of those alternative estimators is beyond the scope of this 
work and is left as an area of future investigation. 
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missing and non-missing components. They then substitute into the concentrated log-likelihood 

the missing dependent variable values with their expected values conditional on the observed 

sample information. A variety of computational techniques are then employed in order to 

facilitate estimation of the model using either MLE or Bayesian MCMC methods.  

 Replicating the approach of LeSage and Pace for the panel data case increases the level 

of complexity of the estimator and presentation of such substantially, thus motivating our 

approach.  We also recognize that even in the cross-section case, most applied researchers would 

likely find it quite a challenge to reengineer the approach derived in that work, and would likely 

face great difficulty in operationalizing the embedded missing value concentrated likelihood 

estimator presented in that work.  Our approach, on the other hand, is feasible and easily 

implementable to any researcher who is able to estimate the standard spatial model without 

missing data, and simply involves replacing the initial missing dependent variable values with a 

set of reasonable starting values, and then iteratively replacing those missing values with a 

specific set of fitted values at each iteration and repeating the process until convergence.4  

Explicitly, the steps to estimate are as follows: 

                                                           
4 LeSage and Pace (2004) also explain how the traditional approach of using the vectorized concentrated log-
likelihood can be used to operationalize their approach by iteratively optimizing the concentrated log-likelihood 
over the single spatial autoregressive parameter ρ  , then constructing new estimates of β  , then estimating a new 
value for σ  (using only non-missing data), and then constructing a new conditional expectation of missing values 
that is conditional on the last iteration estimation of ρ  , β and σ  (using only non-missing values in the estimated 
error terms) to create a "repaired" dependent variable vector, and then iterating this process until convergence. 
Essentially, what we propose is similar except that our method does not require manipulation of the concentrated 
log-likelihood function. However, similar to how LeSage and Pace iteratively estimate  using only non-missing data 
when recalculating theσ  the constructing the "repaired" dependent variable vector, we simply recalculate the 
missing dependent variable values at each iteration using the equation for the fitted values conditional on the 
estimated errors, replacing those that correspond to missing values with zero. To our understanding, our proposed 
method and the iterative method articulated by Lesage and Pace are mathematically similar but implemented slightly 
differently computationally. Indeed, the logic behind both approaches is similar conceptually, although we go about 
it in an albeit more direct and simple manner from an implementation standpoint. It is also not apparent that the 
methods proposed by LeSage and Pace involve choosing starting values for missing observations in the initial 
estimation, whereas our approach explicitly does require the analyst to pick a set of starting values for the missing 
observations. 
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1.) Fill in missing dependent variable observations in y  with reasonable starting values (e.g., the 

mean of non-missing y  observations, or fitted values using a standard imputation model). 

2.) Apply a standard spatial panel estimator to the data (e.g., Elhorst, 2003) to obtain estimates of 

β ,ε , and ρ . 

3.) Construct a new vector y by replacing the original missing values with their expectations 

conditioned on the innovation terms which correspond to the non-missing data only, as well as 

on β and ρ as,   

1( )) ( )ρ −⊗ − ⊗T N T Ny = I I (I W Xβ + ε , where Miss

NoMiss

 
=  
 

0
ε

ε






 is the vector that 

contains the estimated innovations from the model in Step (2) for those that correspond to non-

missing dependent variable observations, and zero for innovations corresponding to the missing 

observations. 

4.) Return to Step 2 and employ the new vector y in the estimation in Step (2). Iterate until 

convergence.5 

 Note that in Step 3, the calculation of ε is crucial. If one were to also include in Step 3 the 

estimated innovation values in the calculation of ε with those that correspond to missing values 

from the estimated model in the previous step, the result would be downward biased final 

estimates of ρ  from employing this procedure. Further, if one were to use only the fitted values 

at each iteration (i.e., not conditioning on the innovations for the non-missing values and simply 

replacing the entire ε vector with values of zero in Step 3) a similar problem would emerge. 

                                                           
5 We conducted Monte Carlo simulations to evaluate the performance of this technique and found results similar to 
those in LeSage and Pace (2004).  We found that the model typically converged to a reasonable level in less than 15-
20 iterations.  We would caution that while our Monte Carlo results and those in this paper for the mortality models 
did not appear to have any issues converging, there could be cases in which this might not occur.  Monte Carlo 
results and code are available from the authors upon request. 
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Functional Form Considerations 

The primary risk to livestock in northern Kenya is drought. However, there are also some 

indications from speaking with pastoralists and extension agents in the region that conditions 

which are too wet or cold, coming directly after lengthy spells of dryness when livestock begin 

to weaken, can increase mortality incidence.  Furthermore, past research on livestock mortality in 

Kenya suggest the presence of non-linearities in the response of mortality to NDVI (Chantarrat et 

al., 2012).  We employ a quadratic functional form on the CzNDVI terms to take account of these 

non-linearities.  Past research and field intelligence also suggests the presence of time 

dependence in the mortality process, as a very dry prior season can weaken the animals and leave 

them more prone to dying in the next season. Thus, we also include the lagged season CzNDVI 

(pre-CzNDVI) as a regressor, as well as its square. 

Determining the Optimal Level of Contract Aggregation 

The insurance market offering necessitates developing, for each division, an individual index 

upon which to structure insurance (which may or may not be unique of other divisions).  Chief 

among concerns in selecting an appropriate modeling framework is determining the level of 

aggregation to be used when constructing the design matrix (explanatory variables) and 

estimating the mortality index response function, as the existence of heterogeneity in the 

underlying spatial processes across regions classified as one spatial unit could lead to biased 

estimates. On the other hand, if there is a high degree of spatial congruence, then application of a 

model with location specific terms will lead to less efficient parameter estimates and resulting 

indexes than would a model parameterized at a higher of aggregation. For example, suppose we 

have one NDVI/weather variable. Should each division get its own response parameter? Should 

each district get its own? Or, should we just impose the same parameter for the system? 
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 There are many potential variations that one could employ in parameterizing the index. 

This could range from treating all of the 108 divisions as if each has the same intercept and 

mortality response with respect to changes in NDVI, or alternatively we could impose all 

divisions to have the their own response and intercept.  For example, one could pool all data 

analogous to the pooled OLS panel model and structure X to have one intercept and one 

parameter for explanatory variable.  This would result in a contract that has the same response 

function in each division, albeit each division would be conditional on its own data more heavily 

than on data in other locations.  At the other extreme, the design matrix could be structured as a 

fixed effects model where each location has its own intercept, and further could also allow for 

fixed effects on the explanatory variable responses.  If we choose an extremely restrictive model, 

this would likely lead to biased estimates due to underlying heterogeneity in the system.  

However, choosing a parameterization that is too flexible is likely to lead to over-fitting and low 

predictive efficiency. 

 We explore two competing models here, one with division-level fixed effects on the 

intercept and explanatory variable NDVI response terms, and the second which employs district-

level fixed effects for the intercept and response terms. Note that we do not intend to canonize 

any particular functional form as it regards index insurance more generally, and the choice of 

functional form in the models presented here is motivated primarily out of expositional 

considerations. To illustrate for the division level model, for example, we can partition the 

design matrix into the intercept and NDVI specific components as 4[ ]Int CzNDVI
NT N NT N× ×=X X X . In the 

case of Int
NT N×X , the value of the element in row i t⋅ , column n, equals zero if the corresponding 

division mortality observation in y is not the nth division, and is equal to one if the 

corresponding division mortality observation in y is the nth division.  The case is similar for the 
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CzNDVI terms, except that the elements in 4
CzNDVI
NT N×X are either equal to zero or the value of the 

variable depending on if the observation is in the respective division.  

 Obviously, the trade-off relates to one between bias and efficiency.  In practice, a 

common problem is that analysts are often inclined to adopt a model at the lowest-level of 

space/time aggregation possible given their data since the more highly parameterized model will 

always show itself to have better in-sample fit. This results oftentimes, unfortunately, is a very 

inefficient set of indexes that are of little use. This problem is compounded when there are 

missing data or many explanatory variables.  Consideration of this relationship between bias and 

efficiency, and the task of finding some sort of optimal trade-off between the two, is an activity 

that is well known to those working in actuarial fields, the study of which is the subject of 

credibility theory, a branch of actuarial mathematics.   

 Determining the optimal level of contract aggregation is important not only for index 

construction, but also for rating/pricing efficiency.  As a practical matter, it can also create real 

problems in perception among potential insureds. It is not unusual for  rogue information in the 

marketplace to take hold and create crises of confidence. Issues of equity and fairness can also 

arise if structures, prices, or products vary too markedly in neighboring locations, for obvious 

reasons. These conditions are untenable for market development, regardless of how strongly the 

econometrician believes in their model. Thus, ideally an optimal weighting between a model 

with a division specific (local) parameterization and a district or country specific (global) 

parameterization would be employed as opposed to a digital choice between on or the other.  

Estimation of such a weight is difficult, however, as a division-level fixed effects model will 

always have more parameters and thus will always appear to have superior fit in-sample (but 

potentially be less efficient out-of-sample).   
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 To address this we employ a leave-one-out cross-validation (CV) optimization procedure 

to estimate optimal model weights, as motivated by Woodard and Sherrick (2012). Woodard and 

Sherrick develop this method in the context of univariate unconditional probability distribution 

estimation in pricing yield insurance, although the method extends in a straightforward manner 

to any scenario in which there are sets of competing models, including regression models (which 

are in essence simply a characterization of a conditional distribution).  

Cross Validation Optimized Model Mixing Procedure 

The CV optimization estimator is implemented as follows.  Each model is successively re-

estimated whereby one year worth of observations are left out at each iteration.  Thus, each 

model above is estimated T = 11 times, one for each hold-out year.  At each iteration, a forecast 

is calculated for the observations which are held-out, conditional on the CzNDVI values in the 

hold-out year.  Last, an optimal weight can be estimated for each model by maximizing the out-

of-sample log-likelihood (or in the case of normally distributed errors, minimizing the out-of-

sample sum-of-squared error between the predicted values and the actual values).  Note that we 

only employ data for non-missing values in optimizing the weights.  Explicitly, we calculate 

1 1 2 2ˆ ˆ ˆ[ ]ω ω= ⋅ + ⋅ −ε y y y , where , 1 , 2 ,ˆ ˆ ˆ ˆ[ ', ',..., '] 'm m m m T− − −=y y y y  is the stacked vector of the out-of-

sample mortality predictions for each model, { , }m District Model Division Model= , and ,ˆ m t−y  is 

the out-of-sample estimate from the t-th CV iteration for model m . In order for the resulting 

model to be a valid mixture model the restriction that 1m
m
ω =∑  is also imposed.  Optimal 

weights are then estimated as ( )1 2ˆ ˆ ˆ ˆ( , , ) arg min '=*

ω
ω y y y ε ε . 

 With the estimate of *ω in hand, the final index model is then constructed as the weighted 

sum of the estimated component models, where each component model is estimated using all 
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data. Note that this framework can extend to any arbitrary number of component/competing 

models and model weights. The optimization of weights at the out-of-sample stage does not 

affect the estimation of the model parameters of the underlying candidate distributions; rather, it 

optimizes the weight given to each model itself.  The insight of the approach is that in the case of 

a mixture distribution the weights can be optimized within the out-of-sample likelihood function 

as a linear weighted sum of the component models independent of the model parameters 

themselves, and that doing so explicitly takes into account the impact of out-of-sample 

inefficiency which is ignored by other in-sample and EM type algorithms.  Other objective 

functions could also be employed (e.g., downside risk measure).  As it relates to credibility 

theory, the optimal weights have a natural interpretation as credibility parameters for each 

model. 

Contract Structure and Pricing 

The IBLI insurance pilot is structured as a call option on the estimated mortality index for each 

season, where the strike price/deductible is an election of either 10% or 15%. The contract sold 

covers the next 2 seasons. For example, if a pastoralist buys insurance in time for LRLD sales 

closing, he/she is sold a bundled contract that provides coverage for the next season (i.e., LRLD) 

as well as the following SRSD season. The indemnity function for each season is defined as, 

*
,

ˆ ˆˆIndemnity [ ( | , , ) ,0] _t n n tMax y Deductible p TLU Unitsρ= − × ×CzNDVI β ω            (2) 

where, _TLU Units are the number of TLUs insured, p is the fixed indemnity price per TLU 

insured (20,000 or 25,000 shillings currently), [10%,15%]Deductible∈ , t  is the time 

period/season, n is the division subscript, and the predicted mortality index in region n,

*ˆ ˆˆ ( | , , )n ty ρCzNDVI β ω , is the nth element of the predicted mortality vector for the period 
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conditioned on the realized NDVI measurements in period t and the estimated parameters that 

define the index, *ˆ ˆˆ ( | , , )t ρ =y CzNDVI β ω  

 ( )  ( )* 1 * 1
1 21 1 ,1 1 2 2 ,2 2( ) [ ] ( ) [ ]Int CzNDVI Int CzNDVI

t tω ρ ω ρ− −⋅ − + ⋅ −N N N NI W X X β I W X X β .    (3) 

where subscript 1 and 2 are district and division models, respectively. 

 Note that ,ˆt ny is a function of its own NDVI realizations as well as all other divisions 

because of the spatial network nature of the model.  The actuarially fair premium (or price) for 

each season is calculated as, 

*ˆ ˆˆPrem ( [ ( | , , ) ,0] _ ) ( )n nMax y Deductible p TLU Units fρ= − × ×∫ V β ω V dV            (4) 

where, ( )f V is the joint pdf of the pre-CzNDVI and post-CzNDVI values, which in our case is 

estimated using the historical eMODIS data and inter-calibrated AVHRR data.  For this paper we 

focus on unconditional insurance prices, but in practice if the season being rated is the first to be 

insured, then specific conditioning on current NDVI conditions in the rating integration would be 

prudent.  Note that the premium rate is PremRate Prem / ( _ )n n p TLU Units= × , and that there is 

a unique contract and premium for each seasons (i.e., LRLD and SRSD); we drop the subscript 

for ease of exposition.   

 In order to adjust for the downward biased variance of the inter-calibrated AVHRR data, 

a bootstrapping procedure is employed to numerically integrate over the AVHRR data whereby a 

vector of residuals are sampled with replacement from the original calibration regression (the 

common period, which spans 2000-2012) one year at a time, and matched to each respective 

division) and added to the fitted value for the out of sample inter-calibrated value (spanning 

1981-2000) before passing to the indemnity function. These are then averaged for each year to 

obtain an unbiased indemnity estimate for each of the historical AVHRR year observations. 
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These are then weighted equally by year with the eMODIS historical indemnities to arrive at the 

final premium. 

 Another item that must be taken into account is that for any given live contract offering 

the pre-CzNDVI values upon which the index is also conditioned for the first season contract will 

have already been observed by the insureds prior to purchase.  Thus, these realized pre-CzNDVI 

values should be employed to condition the index function (i.e., instead using the actual 

historical values for pre-CzNDVI when performing the integration) when pricing in order to 

reduce adverse selection. 

6 Results 

To focus the presentation of results, we only present those for the SRSD season here. Figure 1 

presents average mortality rates constructed from the ALRMP data for the divisions in Kenya 

under investigation.  The maps indicate that average mortality rates vary by region, with regions 

in the far north typically experiencing higher mortality. A clear pattern of spatial autocorrelation 

is also observed. Figure 2 displays percentiles for the raw mortality data by year (note, not all 

years have representation from the same divisions). The percentiles indicate a high degree of 

catastrophic risk in the underlying process, reflecting severe droughts in 2005 and 2009, and also 

indicate that the mortality observations tend to be correlated with each other across time periods, 

indicating a high degree of spatial autocorrelation. This is not unexpected since the processes 

driving mortality are related primarily to weather, which is highly spatially correlated. 
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Figure 1-Kenya Average Livestock Mortality Rates (SRSD, 108 Divisions), 2001-2011 

 

Note: Left panel displays average mortality for the original data with missing observations, 
while the right panel displays the average mortality for the fitted index with all year/location 
missing observations imputed with the model implied index estimate. 
 

 

 

Figure 2-Mortality Rates by Year, Raw Data Percentiles (SRSD, 108 Divisions), 2001-2011 
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Figure 3-Mortality Index Fitted Paths at each Estimator Iteration (SRSD, 2003) 

 

 Table 1 presents regression results for the division level and district level spatial models 

using the missing data estimator described previously. The results are presented for the final 

iteration of the procedure. The table is split into panels which contain averages and standard 

deviations for the fixed parameters of the respective type (i.e., intercept,  pre-CzNDVI, post 

CzNDVI, and their squares) as well as the number of parameters in each group and the 

percentage of the parameters in each group that are significant at the 5% level.  The R-square 

values are 0.9804 and 0.4050 for the division and district level fixed effects models, respectively 

(note that we calculate these considering only the non-missing values using their fitted values to 

calculate the residuals). As expected, the more highly parameterized division model has a much 

higher in-sample R-square, however the out-of-sample model weighting is lower for the division 

model ( *
1ω = 0.2776) versus the district model ( *

2ω = 0.7224) indicating that the out-of-sample 
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properties favor the district model.6  The spatial dependence parameters were also significantly 

greater than zero for both the division ( ρ = 0.4950) and district ( ρ = 0.1800) level models. 

 To illustrate convergence of the estimator, Figure 3 provides an example of the fitted 

mortality index values for one year for the district model. In practice, numerical rules would be 

implemented to determine convergence. Note that the straight lines are observations for which 

data exist, while the others represent those values that were missing. Note that all missing values 

start at an initial average value, and then diverge by each subsequent iteration.  Values typically 

converged after about 10 iterations in our application and appeared stable. Similar results were 

found when inspecting the estimated parameters. 

 Figure 4 provides select fitted and historical CzNDVI and mortality figures for the 

Oldonyiro division (which is a representative division in our sample) in the Isiolo district to 

illustrate the historical fitted indexes.  The first panel displays the estimated marginal index 

response according to the optimized model over various values of the cumulative post-CzNDVI 

value. Note that the fitted values do not lie perfectly on the plotted line as the fitted impact is a 

function of not only the division’s own CzNDVI but also its neighbors through the spatial filter, 

where the impact plotted for each year equals the element corresponding to the division in the 

vector 

( )* 1
,

ˆ ( ) CzNDVI Post CzNDVI Post
mt m t m m

m
ω ρ − − −= ⋅ −∑ N NΔy I W X β . The second panel provides the 

historical fitted index according to the optimized model by year (2001-2011), the indemnity 

payment per unit of shillings insured  for a contract with a 10% trigger, as well as the original 

data points for non-missing values. The third provides the corresponding post-CzNDVI values by 

year. 

                                                           
6 We also investigated a model with division fixed effects for the intercept and district fixed effects for the NDVI 
terms and this model outperformed both competing models. For clarity and ease of exposition, we present these 
models though for illustration. 
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 Several observations stand out. First, from panel 2 in Figure 4 it is observed that the fitted 

values correspond closely to the historical values, indicating that the index provides a reasonable 

proxy to mortality. Second, the estimated index is consistent as it regards response to CzNDVI 

and illustrates that the model is predictive and stable, which is attractive given the severe lack of 

data available upon which to fit the models. 

 Table 2 provides premium rate estimate summary statistics (mean, standard deviation, 

and percentiles) across all divisions for a 10% trigger/deductible contract, for the final premium 

rate as well as for the rates calculated using only eMODIS and AVHRR data.  Recall, the final 

rate is an average of the eMODIS and AVHRR rates, weighted by the number of years 

represented by each.  Figure 5 presents the same information in graphical format, and Figure 6 

presents a map of the final weighted premium rate. There is a high degree of heterogeneity 

across divisions due to the fact that the volatility of the CzNDVI measures vary widely across 

districts (note, the cumulative measure does not standardize variance across regions, nor would 

that likely be desirable in our context), and also due to the fact that the index averages relative to 

the trigger point vary markedly across divisions as well (see Figure 1).  In practice, careful 

determination would need to be made as to which deductible levels should be offered in various 

regions to maximize salability.  The mean final weighted rate across all districts was about 5.7%, 

and ranged from about 2% to 13% across districts. In our case, the eMODIS rates were lower on 

average than those using the AVHRR data, indicating that the eMODIS period (2000-2012) had 

a lower frequency/severity of loss events relative to the time period covering the intercalibrated 

AVHRR data (1981-2000).  Note also that use of the bootstrapping procedure to correct for 

variance deflation in the inter-calibrated series also resulted in higher rates, as expected. 
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Table 1-Spatial Panel Regression Results 

 
 

 

 

 

Statistic/Model
Division Intercept 
& NDVI

District Intercept 
& NDVI

Raw R-Squared 0.9926 0.5933
Non-Missing Value R-Squared 0.9804 0.4050
σ2 0.0007 0.0037
ω* 0.2776 0.7224
ρ 0.4950 0.1800

p-value 0.0000 0.0000
Intercept Parameters

# of parameters 108 11
mean 0.0501 0.0742
st. dev. 0.0745 0.0287
% significant at α= 5% 69.4% 100.0%

pre-CzNDVI Parameter
# of parameters 108 11
mean -0.0005 -0.0011
st. dev. 0.0040 0.0014
% significant at α= 5% 50.0% 36.4%

pre-CzNDVI 2  Parameter
# of parameters 108 11
mean 0.0001 0.0001
st. dev. 0.0003 0.0001
% significant at α= 5% 45.4% 63.6%

CzNDVI Parameter
# of parameters 108 11
mean -0.0023 -0.0049
st. dev. 0.0059 0.0028
% significant at α= 5% 50.0% 90.9%

post-CzNDVI 2  Parameter
# of parameters 108 11
mean 0.0001 0.0002
st. dev. 0.0004 0.0002
% significant at α= 5% 57.4% 72.7%
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Figure 4-Fitted and Historical Mortality and CzNDVI, Isiolo District, Oldonyiro Division 
 

 
Note: Figure provides select fitted and historical CzNDVI and mortality figures for one division. 
The first panel displays the cumulative CzNDVI post value (i.e., during insured season) and the 
estimated marginal index response according to the optimized model. The second panel provides 
the historical fitted index according to the optimized model and the historical non-missing 
mortality data points. The third displays the corresponding CzNDVI post values. 
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Table 2-Rate Results and Summary Statistics, 10% Trigger 

 

Figure 5-Estimated Premium Rates, 10% Trigger, Percentiles by Division 

 
 
Figure 6- Estimated Final Premium Rates 10% Trigger

 

Statistic Final Rate eMODIS Only
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Inter-Calibrated 
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7 Conclusion 

Index insurance products have the potential to revolutionize risk management for low income 

populations, and furthering the appropriate development of such products will have significant 

developmental impacts.  IBLI in particular has gained popularity in pastoral areas where it 

provides protection against drought related mortality risk, and there is tremendous potential to 

expand such livestock insurance throughout the Horn of Africa and elsewhere.  This study 

presents a methodology to product design that facilitates the scaling up of such products in the 

presence of missing data and cross-sectional spatial dependence, and provides an application to 

the IBLI program in Kenya.  We also propose a cross-validated model mixing approach to 

optimize the degree of index aggregation, and also provide treatment of some key issues in the 

design and rating of index insurance.  Insurance offerings derived from this methodology have 

been operationalized in the arid areas in Kenya since the fall of 2013. While the methodology for 

scalable index construction presented here pertains only to Kenya, it provides a framework that 

should be easily adaptable to other index insurance programs around the world that typically face 

similar data, spatial, and cross-sectional dependence issues.  

  A key takeaway is that the use of spatial econometric methods are attractive in 

such contexts as they allow for maximal information extraction--particularly in common missing 

data cases--and also provides a natural framework for scalability in index construction and 

market development.  Incorporation of precise information regarding space arguably allows for 

more efficient index estimation which improves not only the utility of the insurance, but also 

allows for more efficient contract pricing. The improved pricing efficiency should increase the 

confidence of insurers and reinsurers in the resulting products, and thus motivate them to 
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decrease risk-loadings for model uncertainty and, ultimately, enable insurers to offer more 

competitive insurance offerings and expand delivery to wider areas. 

 Some qualifications are in order. While it is our intent propose a scalable method to index 

insurance design that we believe has broad appeal and potential, we do not put it up as a be-all-

end-all solution to all cases.  In practice, care must be taken to carefully assess the performance 

of estimated indexes for each offering/location. Indeed in our case, a thorough individual review 

of each division where insurance was to be offered was conducted to ensure plausibility and 

evaluate behavior of the insured indexes. Thus, we caution practitioners from naively applying 

these methods--or any modeling approach, for that matter--without carefully validating the 

empirics of the end product. 

 Future research could investigate alternative functional forms, animal specific contracts, 

or the use of other weather variables and remotely sensed data in index construction. Future 

research could also investigate further the conditioning of the underlying NDVI dynamics in the 

pricing/rating of the contracts, which could include, for example, evaluating effects of ENSO, 

climate change, or other space-time dynamics to further improve pricing efficiency. 
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