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Abstract 

This paper models the bounded learning concept with the learning progress function characterized 
by the degree of efficiency and the specification of the learning progress as a logistic function 
capturing both the slow start-up and the limit in learning progress. We differentiate learning 
efficiency from the technical efficiency. The endogeneity corrected stochastic frontier model is 
then used to decompose the factor productivity growth into components associated with 
technological change, technical efficiency, scale, and learning. This productivity growth 
decomposition provides useful information and policy level insight in firm-level productivity 
analysis. Empirical results based on plant-level panel data on the Colombian food manufacturing 
industry for the period 1982-1998 suggest that productivity growth not only stems from technical 
progress, technical efficiency change, and scale but also from significant learning effect. The 
relative importance of the productivity growth components provides perspective for efficient 
resource allocation within the firm.  
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1 Introduction 

The measurement of productivity dispersion has been the focus of decades-long interest in the 

scholarly literature and among policy makers. In addition to broad structural forces driving 

productivity changes, there is more recent interest in measuring and identifying the heterogeneous 

forces driving these changes.  A major force is learning-by-doing which is used by economists to 

describe the phenomenon of productivity growth arising from the accumulation of a firm’s 

production experience. Production experience yields information that can be translated into 

knowledge, which improves decisions and results in productivity enhancement. This learning-by-

doing process can also lead to a reduction in the future cost of production. The costless by-product 

of a firm’s production activity is passive learning (Rosen, 1972) and the firm’s productivity 

enhancement process in this case is an experience curve. The observed relationship of productivity 

(or unit cost) being an increasing (or decreasing) function of cumulative output is the  progress 

curve, where productivity growth is the result of not only passive learning but also a variety of 

forces encouraging growth such as research, training, capital investment and other unmeasured 

factors. The productivity gain arising from learning is used as a long-run planning and control tool 

in a variety of manufacturing industries. 

The classical learning progress assumes that learning is unbounded and represented by a 

productivity and cumulative experience power relation. Considerable empirical research uses the 

log-linear model to estimate the unbounded learning rates and finds a significant relationship 

between firm productivity and production experience. Empirical studies find that firms and 

industries become more productive as they gain more experience of producing goods and services 

(Arrow, 1962; Rapping, 1965; Lieberman, 1984; Bahk & Gort, 1993; Lucas Jr, 1993; Luh & 

Stefanou, 1993; Irwin & Klenow, 1994; Jarmin, 1994; Benkard, 2000; Thompson, 2001; Thornton 



3 
 
 

& Thompson, 2001). The results from this body of work are varied and, on average, find an 

approximately 10 to 20 percent reduction in the average cost of production for every doubling of 

cumulative output. But are the gains from learning unbounded?  

Organizational knowledge through experience is embedded in individual workers, 

technology, and structure of the organization. When passive learning is the dominant factor in 

learning process, productivity growth is invariably bounded (Rosen, 1972). Conway and Schultz 

(1959), Jovanovic and Nyarko (1995), Baloff (1966, 1971) and Young (1993, p. 445) present 

evidence that productivity reaches a limit, or a “plateau effect”. The recognition of the S-shaped 

learning curve has a long history, having appeared in the literature as early as Carr (1946) and has 

been useful for planning and control methods for new product introduction. Cochran (1960) also 

proposes the learning curve as S-shaped, suggesting that this pattern appears to be more 

appropriate than the classical learning model. The proposition is that during the early stage a firm 

attempts various options, and explores alternative production plans and designs which slow down 

the initial learning rate. After the initial exploration there are fewer changes in the production 

system leading to a higher learning rate (Cochran & Sherman, 1982). Both the learning bound and 

its S-shape character are important in the sense that the learning limit captures the diminishing 

return of learning a given technology and the S-shape replicates the start-up phase of a firm.  

Differences in management, training, and infrastructure lead to varied learning abilities 

across firms, even though different firms may share similar experiences and produce the same 

types of products (Adler & Clark, 1991; Argote, 1999). Hence, the proposition underlying this 

study is that the observed productivity and accumulated experience relationship is the effect of 

both the passive learning and the management and training effort. We attempt to quantify the 
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heterogeneous learning ability inherent across firms in an industry by introducing the notion of 

learning inefficiency.  We define inter-firm learning inefficiency as the inability of a firm to reach 

the optimal plateau relative to the ‘best firm’ from a set of comparable firms. We discern the 

technical inefficiency from the learning inefficiency by characterizing the deviation of a firm’s 

operation from the production frontier given a level of learning as technical inefficiency, while a 

deviation of a firm’s learning progress from the optimal progress curve given a level of technical 

efficiency is measured as a consequence of learning inefficiency. We characterize the learning 

progress function by the degree of efficiency and specify as a logistic function capturing both the 

slow start-up and the limit in learning progress. This specification overcomes the limitation posed 

by the classical learning curve literature. 

Although the ‘Solow residual approach’ assumes technical change is the unique source of 

productivity growth, recent literature acknowledges that along with technical change, change in 

efficiency (both technical and allocative) and scale can contribute to productivity growth 

(Nishimizu & Page, 1982; Bauer, 1990; Kumbhakar, 2000; Kim & Han, 2001). We decompose 

total factor productivity growth into components associated with learning, scale, technical 

efficiency, technological change and change in allocative efficiency. This productivity growth 

decomposition can provide useful information and policy level insight in firm-level productivity 

analysis. 

This study aims at contributing to the literature on measuring the sources of firm-level 

productivity growth that includes not only technological progress, technical efficiency change, and 

scale but also the impact of bounded learning that can provide direction for policy making on firm 

performance.  We draw on a 17-year micro data series as we investigate learning, efficiency and 
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productivity growth on the Colombian food manufacturing industry. This study develops 

framework for decomposing productivity change that accommodates the contribution of the 

learning effect by using the endogeneity corrected stochastic production frontier approach (Shee 

and Stefanou, 2015). This paper extends the conventional learning model by incorporating the 

bounded learning concept with the learning progress function characterized by the degree of 

efficiency. Finally, by identifying the relative importance of various productivity growth 

components this research contributes to decision making for efficient resource allocation within a 

firm.   

The next section presents the concepts of a bounded learning progress function and learning 

inefficiency, how to distinguish learning inefficiency from technical inefficiency, followed by the 

presentation of the analytic framework for productivity growth decomposition where the learning 

effect is a source of productivity growth. Then the structural estimation methodology using the 

endogeneity corrected stochastic production frontier is presented. The next section describes the 

firm-level panel data of the Colombian food manufacturing industry, followed by estimation 

results.  The final section provides policy implications and conclusions drawn from the study.  

2 Bounded learning progress and learning inefficiency 

Learning-by-doing is an empirical phenomenon of productivity growth associated with 

accumulated production experience by a firm. However, learning progress is not costless as it 

involves increased management, training, and infrastructure to lead to better firm learning abilities. 

The plant-level heterogeneity in productivity gains associated with learning-by-doing can be 

captured through the concept of learning efficiency. Stochastic Frontier Analysis is a common 

approach to analyze relative efficiency of economic units and when a firm operates on the 
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production frontier, the firm is called technically efficient and a deviation from the frontier is the 

measure of technical inefficiency of the firm. On the other hand, when a firm achieves the 

maximum feasible productivity due to given production experience, the firm is said to be learning 

efficient and a deviation from the optimal progress curve is measured as the level of learning 

inefficiency. A firm might face both inefficiencies simultaneously. The challenge then arises, how 

to disentangle these two inefficiencies?    

The conventional learning model assumes that the productivity increases with firm’s 

cumulative output and persists indefinitely with production experience (Arrow, 1962; Rapping, 

1965; Lieberman, 1984; Bahk & Gort, 1993; Irwin & Klenow, 1994; Jarmin, 1994; Benkard, 2000; 

Thompson, 2001). Following the arguments similar to Cochran (1960) and Cochran and Sherman 

(1982), we extend the conventional learning model by modeling learning progress as a logistic 

function which explains three stages (slow start-up, acceleration, and plateau) of learning progress 

concept. It is important to note that with a given technology firms gain expertise that allows them 

to operate the technology more efficiently. Once the productivity gain due to learning on a 

particular technology is exhausted, further growth in productivity can only be achieved by moving 

to improved technology. However, firms incur a cost when they adopt an advanced technology. 

The more advanced the adopted technology, the less the firm’s current learning will be relevant to 

operate in new technology. Hence, firms face a tradeoff in the choice of technology (Malerba, 

1992; Jovanovic and Nyarko, 1996). The limit on learning also depends on the firm decisions 

whether to retain the old technology to gain a learning advantage and avoid the cost associated 

with switching to a new technology, or continuous switching to new technologies to obtain long-
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run growth. Even though learning progress can rise and fall in the short run, the smooth S-shaped 

envelope of productivity with respect to cumulative past output results over the long run.  

We specify the logistic differential equation to represent the productivity-experience 

relationship. As the firm produces more and more of a product it increases its stock of knowledge 

according to the differential equation  

 2dA A A
dV a

αα= −  (1) 

with the explicit solution as 

 
0

0

1 exp( )

aA
a a V

a
α

=
 −

+ − 
 

  (2) 

where A is productive knowledge arising through experience, V is cumulative production, 

0( 0)A V a= = is the initial (known) state of knowledge and denotes the height of the progress curve 

at 0V = , 0α > is instantaneous learning rate,  and a is the upper bound of the state of knowledge 

(the production potential) and denotes the height of the progress curve at V →∞ .  

Training and research, quality of the personnel and infrastructure are some reasons why 

some firms learn faster than others. The question is then can we measure the difference in learning 

abilities in a cohort of firms having identical initial productivity or the state of knowledge? The 

difference between the learning progress curve of any firm and that of the ‘best practice firm’ is 

defined as inter-firm learning inefficiency which reflects the inability of a firm to reach the optimal 

production potential. The logistic differential equation for a general firm with a level of learning 

inefficiency η  can be written as  
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 2dA A A A
dV a

αα ηα= − −  (3) 

with the explicit solution is (see Appendix A)   
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− −
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 (4) 

where η  is the level of firm-specific learning inefficiency which prevents the firm from reaching 

the learning progress of the ‘best practice firm’ for any V.  For the purposes of exposition for the 

core concept, we expect [0,1)η∈  and is time-invariant but these restrictions can be relaxed.1  The 

inclusion of the learning inefficiency term identifies η  as having an impact on both the intrinsic 

learning rate ( (1 )α η− ) and the learning bound ( (1 )aη− ) for a general firm. The functional 

representation of the general firm should always be below the learning progress function of the 

best practice firm for all values of V2. Conceptually, the effect of learning inefficiency on both the 

intrinsic learning rate and the learning bound is monotonic which is important to capture the 

heterogeneous learning abilities among firms producing same level of cumulative output in a 

                                                 
1 In fact, η  is a firm-specific component that can vary over time and can reflect changes in the rate of learning.  But 
one should not necessarily exclude the prospect of firm’s unlearning or forgetting.   
2 The differential equation representing the learning progress function of a general firm (with learning inefficiency) is

21dA A A A
dV a

αα ηα= − − , and for the best practice firm is 22dA A A
dV a

αα= − . The difference is

( )1 2
d A A A

dV
ηα− = − . since A>0, [0,1)η∈ and 0α > , the above derivative is always negative which proves 

that the function of the general firm will always be below that of the best practice firm for any value of [0,1)η∈ .  
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homogenous manufacturing sector. These two effects will ensure that a less learning efficient firm 

will have a slower learning growth and quick learning saturation resulting in overall low learning 

effect on productivity growth. The level of inefficiency η for a firm may be a function of research 

and training, infrastructure of the firm, and some unmeasured factors. Appendix B presents a 

simulated plots of the learning progress function of a general firm with different values of the 

inefficiency level in learning. The upper bound of learning progress is assumed to be 1 or 1a = .  

Understanding the difference between maximum potential frontier and potential frontier 

given learning is important to distinguish between learning and technical inefficiency. The learning 

inefficiency parameter η  is firm specific and reflects the inability of a firm to reach the learning 

progress curve of the ‘best practice firm’ given a set of cumulative past output. The deterministic 

kernel of the potential production frontier given learning can be represented as

( ); ( , ; )t iA V f x tη η β= . The maximum potential frontier is the production frontier of the best 

learning progress (100% learning efficient) firm and can be represented as ( ); 0 ( , ; )tA V f x tη β= . 

 Figure 1 depicts the deterministic production function of both the maximum potential 

frontier and potential frontier given learning for a single product and one-variable factor of 

production. Point A depicts a firm producing ty  using input tx  is technically inefficient (from an 

output orientation) because it operates beneath the potential production frontier given learning and 

the deviation AB is measured as technical inefficiency. The impact of learning inefficiency for the 

firm is represented by the deviation of the potential frontier given learning from the maximum 

potential frontier or BC.    
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Technical inefficiency reflects the inability of a firm to obtain the maximum potential output given 

learning, from a given input allocation. Technical efficiency (TE) compares the actual quantity of 

output achieved to the maximum achievable output for certain inputs given the constant learning 

inefficiency for the firm 

 |
( ; ) ( ; )

it

iit
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i v

t it

yTE e
A V f x e η ηη β
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== =   (5) 

Increased education and managerial ability are widely accepted sources of technical efficiency in 

a firm. Leibenstein’s characterization of technical efficiency as X-inefficiency (see Leibenstein, 

1966; Stigler, 1976; Leibenstein, 1978, 1979) involves a theory where the difference in motivation 

among decision makers was considered the source of inefficiency. He also points out that 

differences in knowledge among the firms can lead to firm inefficiency. Mundlak’s (1961) 

                                Figure 1: Technical inefficiency and learning inefficiency 
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covariance analysis to control for managerial bias in production reflects a positive relation between 

managerial ability and technical efficiency. Similarly, Stefanou and Saxena (1988) find a 

significant impact of education and training on allocative efficiency by a non-frontier approach to 

efficiency. Battese and Coelli (1995) find that age and schooling have a positive and negative 

effect on inefficiency, respectively.  

If the source of technical inefficiency is the difference in motivation, efficiency can be 

improved by introducing appropriate incentives. If the difference in knowledge reflects the level 

of technical inefficiency, its improvement is influenced by a sustained learning process suggesting 

that learning inefficiency can lead to technical inefficiency. Hence, learning inefficiency can be 

attributed as a source of technical inefficiency. Learning efficiency allows some firms to benefit 

more than others from an equivalent level of experience (cumulative volume of past output), and 

reflects the failure of a firm to obtain the maximal state of knowledge achievable from the given 

amount of experience. The firm-specific learning inefficiency parameter, η , can be estimated from 

the learning progress function where (1 )η−  is the measure of learning efficiency. The learning 

effect can be realized by the ratio of the actual quantity of output achieved given firm-specific 

learning to the output achieved by the best learning practice firm given a level of technical 

efficiency 

 ( )
( )

; ( , ; )
|

; 0 ( , ; )
t i

i TE
t

A V f x t
LE

A V f x t
η η β
η β
=

=
=

  (6) 

The productivity gain due to learning is not automatic or a costless by-product of experience. 

Sources of firm-specific learning inefficiency are attributed typically to investments in research, 

training, and infrastructure which impacts both the intrinsic learning rate and learning inefficiency.  
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While technical inefficiency varies with time, the learning inefficiency parameter is 

constant for a firm. However, as productivity varies with cumulative past output, the effect of 

learning on production changes over time. The technical efficiency and learning effect over time 

are illustrated in figure 2, in which a single input is used to produce a single output, and a firm 

moves from 
1 1

( , )t tx y at time 1t  to 
2 2

( , )t tx y at time 2t . The technical inefficiency level changes from 

time 1t  to 2t , and at 2t  it is measured as the deviation of the production point from the new potential 

frontier given learning 
2 2( ; ) ( , ; )t iA V f x tη η β= . The effect due to learning inefficiency is captured 

by the difference between this potential frontier to the maximum potential frontier 

2 2( ; 0) ( , ; )tA V f x tη β=  at time 2t .  

  

 

 

 

 

 

 

 

 

 

 

 

Notice that the maximum potential frontiers at the two time periods will be the same if the 

cumulative volume of the output is such that the learning progress function approaches a plateau.  

                                 Figure 2: Technical inefficiency and learning effect over time 
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These two definitions are based on two different reference points; one is the deviation from the 

production frontier given learning and the other is the deviation from the progress curve of the 

‘best practice firm’. A firm might face both inefficiencies simultaneously. The changes in both the 

technical efficiency and learning progress contribute to firm productivity growth.  

 

3 Analytical framework for productivity growth decomposition 

Literature on productivity growth decomposition acknowledges that along with technical change, 

change in efficiency (both technical and allocative) and scale can contribute to productivity growth 

(Denny, Fuss, & Waverman, 1981; Nishimizu & Page, 1982; Bauer, 1990; Kumbhakar, 2000; Kim 

& Han, 2001). But what’s not addressed is the contribution of learning in productivity growth 

decomposition. To make the productivity measure invariant to the intensity of the factor use, the 

concept of total factor productivity (TFP) is used. TFP is represented by the often-used formulation 

of production function where output is the product of a function of inputs and a Hicks-neutral 

shifter. The stochastic production frontier (assuming no data noise) with Hicks-neutral shifter is 

written as 

 ( ) ( , ) itu
it it ity A V f x t e−=  (7) 

 where ity is the scalar output of ith firm at time period t (i = 1,…..,N and t = 1,…..,T), x is input 

vector, the shifter ( )tA V is the TFP contribution due to learning progress, and 0itu ≥  reflects the 

technical inefficiency or the gap between frontier technology (or potential frontier given a level of 

learning) and a firm’s actual production output. Totally differentiating output with respect to time, 

and denoting ‘ z ’ as the rate of change or its logarithmic time derivative, we obtain 
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 1 ln ( , ) ln ( )
( )

j

j j

dxdA dV f x t f x duy
A V dV dt t x dt dt

∂ ∂
= + + −

∂ ∂∑  (8) 

The first term on the right-hand side of (8) measures the change in output growth contribution due 

to learning. The second and third terms measure the change in output driven by technical progress 

(TP) and by change in input use, respectively. The fourth term captures the change in technical 

inefficiency. Hence, the overall change in production is not only affected by technical progress, 

changes in input use, and change in technical inefficiency, but also by the change in learning 

progress. Using ln ( , )f x tTP
t

∂
=

∂
 and the equation of motion in (3), (8) is rewritten as  

 21
j j

j

duy A A A y TP x
A a dt

αα ηα ε = − − + + − 
 

∑   (9) 

where the change in the frontier output due to the change in input use or the output elasticity of 

input j is ln ( )
lnj

j

f x
x

ε ∂
=

∂
 . Total factor productivity growth is defined as output growth less input 

growth, where input growth accounts for all factors of production. With total factor productivity 

defined as output growth less input growth, using  

 j j
j

TFP y s x= −∑

   (10) 

where input growth is the sum of the growth of all inputs weighted by their respective cost shares 

(Denny, et al., 1981), the total factor productivity growth in (10) can be expanded to  

 ( )j j j
j

duTFP A y TP s x
a dt
αα ηα ε = − − + − + − 

 
∑

  (11) 
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The share of marginal product of input j = j j j
j

k k k
k

f x
f x

ε
λ

ε
= =
∑ ∑

 since j j
j j

j

x xdf f
dx f f

ε = =  

Replacing j j jε λ ε= ∑ , (11) yields 

 ( )j j j j
j

duTFP A y y TP s x
a dt
αα ηα λ ε = − − + − + − 

 
∑ ∑

  (12) 

Rearranging the terms and using the definition of returns to scale ( j
j

RTS ε=∑ ), (12) is written as 

 ( ) ( 1) ( )it j j j j j
j j

duTFP y A TP x RTS x s
dt

α η λ λ= − + − + − + −∑ ∑

    (13) 

where (1 )η η= −  is learning efficiency. Hence, productivity growth is influenced by technical 

progress, learning inefficiency, technical inefficiency, and components related to input use 

(namely, the scale and allocative efficiency effects). Technical inefficiency falling 





 <
∂
∂ 0

t
u  

means technical efficiency increases over time or the production point becomes closer to the 

frontier. The first and second components of (12) represent growth and decay in knowledge 

absorption, respectively, and thus, reflect the net knowledge growth accounting for the ability to 

absorb knowledge. The last component of (13) presents the allocative efficiency effect which 

actually depicts the inefficiency in allocating resources resulting from the deviation of input prices 

from the value of their marginal product. In all, productivity change is decomposed into changes 

in efficiency, both technical and allocative efficiency, change in learning progress, technical 

change, and change in scale. The first is measured by how far the firm is from the production 

frontier given learning, the second by the inability of the firm in allocating resources resulting 

from the deviation of the input prices from the value of their marginal product, the third by net 
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knowledge growth due to learning, the fourth by the shift in the frontier, the last by the movement 

of the firm along the curvature of the production frontier. 

 

4 Structural econometric estimation 

Consider a firm operating in a competitive market that has production function 

 ( )( ), ( ), ( ),ty F X t K t A V t=  (14) 

where ( )X t is vector of variable inputs and ( )K t is a vector of quasi-fixed inputs like capital, and 

( )tA V  is learning progress function reflecting a productivity enhancing factor. How ( )tA V enters 

the production function depends on the nature of the learning progress function. The question is 

does ( )tA V  embody the inputs or the organization? Bahk and Gort (1993) decompose the firm 

specific learning by doing into labor, capital and organizational learning by modeling learning 

component as (1) separate arguments in labor and capital augmenting term and (2) productivity 

shift parameter (also see Rapping, 1965). The production frontier for a sample of N firms for T 

time periods, can be written as  

 ( ) ( , ; ) it itv u
it it ity A V f x t eβ −=  (15) 

ity  denotes production of ith firm at time period t, itx  is a vector of input quantities of ith firm at t 

time period, β  is a vector of unknown parameters to be estimated, 2~ (0, )it vv N σ , and 

2~ (0, )it uu N σ+ . ( )A V is a scaling factor  reflecting the state of organizational knowledge which 

depends not only on experience (cumulative volume of output) but also on learning efficiency for 
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a firm. Following (11), a Cobb-Douglas production frontier with time variant technical efficiency 

can be written in log form  

0it l it m it e it k it it it ity l m e k t a v uβ β β β β δ= + + + + + + + −                        (16) 

where y is log output quantity produced, l, m, e, and k are the log of labor, material, energy, and 

capital inputs, respectively, a is the log A, and lβ , mβ , eβ , and kβ are the their respective 

coefficients.  Exogenous technical change is represented by t, technical inefficiency is represented 

by u, and v is random statistical noise.  

It is well documented in the literature (Marschak & Andrews, 1944; Griliches & Mairesse, 

1995; Olley & Pakes, 1996; Levinsohn & Petrin, 2003; Ackerberg, Caves, & Frazer, 2006,2007) 

that quantities of inputs are likely to be correlated with productivity shocks if a firm observes some 

part of its productivity and efficiency leading to a biased estimate of production function 

parameters. Using the same argument, Shee and Stefanou (2015) raise the concern of endogeneity 

issue in stochastic production frontier estimation and develop a two-stage estimation methodology 

to correct for endogeneity issue in the stochastic frontier model. Adapting the Levinsohn and Petrin 

(2003) method of using intermediate input as a proxy to control for unobserved productivity shock, 

consistent estimates of the production parameters and technical efficiency are generated. In the 

first stage, coefficients of freely variable inputs except the intermediate proxy input along with 

technical efficiency are estimated using a semiparametric approach. In the second stage, the 

parameters of the proxy input and capital are estimated using the Generalized Method of Moments 

(GMM) given all estimated parameter values obtained in the first stage. The details of the 
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estimation approach of the endogeneity corrected stochastic production frontier model are 

presented in Shee and Stefanou (2015). 

The productivity term can be recovered from the residual using the estimated coefficients 

obtained from the estimation of the endogeneity corrected stochastic frontier model, 

 ( )0
ˆ ˆ ˆ ˆ ˆ ˆ ˆexpit it l it m it e it k itA y l m e k tβ β β β β δ= − − − − − −  (17) 

which can be viewed as unexplained residual3. Using the estimated parameter values of the 

endogeneity corrected stochastic frontier model, the decomposition of productivity growth 

following (13) is presented below 

1) The learning effect LE A=  .  

2) Rate of technical progress ln ( , )itf x tTP
t

δ∂
= =

∂
.  

3) Technical efficiency change can be obtained by ituTEC
t

∂
= −

∂
, where 

( )exp( ) |it it it it itu TE E u v u= = − . 

                                                 
3 Instantaneous learning rate α and learning inefficiency η  can be estimated from this residual by representing (3) 

as 2
ˆ ˆ ˆ ˆdA A A A

dV a
αα ηα= − − . Using the discrete analogue of the derivative term 1

ˆ ˆˆ
ˆ

it it

it

A AdA
dV y

−−
= , (3) can be 

written as 2
1 1

ˆ ˆ ˆ( )
ˆ

it
i i i i it i i it it

it

dA D A D A
y

α ηα α ε− −= − − +∑ ∑ , where iD  is a dummy variable for individual firm 

in a sector. Using this specification instantaneous learning rate and learning inefficiency parameters can be 
estimated by using the nonlinear least square technique.    
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4) To find the change of scale component, output elasticity with respect to j-th input 

is defined by ln ( , )
lnj j

j

f x t
x

ε β∂
= =

∂
. Share of marginal product of input j is 

j
j RTS

ε
λ =  , where j

j
RTS ε=∑ . The scale component ( 1) j j

j
SC RTS xλ= − ∑  .             

5) Allocative efficiency change can be found by ( )j j j
j

AE x sλ= −∑  where jS can 

be directly calculated from the data if all price information is available.    

 

5 Data and empirical results 

The dataset used for this application is the Colombian Annual Manufacturers Survey (AMS) and 

covers the period 1982 to 1998. Analysis of Colombian manufacturing industries is a relevant 

study for the decomposition of firm level productivity growth as Colombia underwent a substantial 

macroeconomic and market reform process. This decomposition study at the firm level should 

provide a policy guideline on the market reform process that can promote firm-level productivity 

growth.  

The empirical analysis focuses on the Colombian meat, dairy products, bakery products, 

and confectionary industry indicated by 4 digit ISIC code 3111, 3112, 3117, and 3119 respectively. 

These data are annual time-series observations for 93 meat manufacturing firms with 1032 

observations, 99 dairy firms with a total of 1219 observations, 363 bakery firms with 4049 

observations, and 46 chocolate and confectionary firms with 551 observations. The dataset 

contains annual plant-level information on the value of output and prices charged for each product; 

cost and prices paid for each material used; energy consumption in kilowatt per hour and energy 

prices; number of workers and payroll; and book values of capital stock (buildings, structures, 
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machinery, and equipment). The AMS dataset is unique longitudinal data on plants in the sense 

that it has information on both plant-specific physical quantities and prices for both outputs and 

inputs. In contrast to most of the existing literature measuring productivity by deflating sales by 

an industry-level price index, these data eliminate a common source of measurement error in 

production function estimation. The detailed description of the data and variable construction used 

in this study are presented in Shee and Stefanou (2015). Table 1 presents a summary of the data 

used in this study where the means and standard deviations of the logarithm of plant-level physical 

quantity and price of output and input variables are presented. The units for energy consumption 

and labor use are kilowatt hours and hours of employment, respectively. Output, capital, and 

materials are expressed by thousands of pesos based on the constant price index for 1982 being 

100.  
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Table 1: Industry-wise summary statistics of key variables 

Variables 
Butchering 

and  
meat canning 

Dairy 
Products 

Bakery 
products 

Cocoa, 
chocolate and  
confectionary  

All Food 

Output 11.582 12.035 9.779 10.637 10.976 

 (1.580) (1.673) (1.287) (1.937) (1.809) 
Capital 9.259 9.912 7.717 8.633 8.828 

 (1.655) (1.648) (1.558) (2.104) (1.949) 
Labor 11.244 11.541 10.508 10.956 10.881 

 (1.239) (1.086) (1.015) (1.298) (1.198) 
Energy 12.404 13.195 11.183 11.362 12.211 

 (1.580) (1.454) (1.186) (1.961) (1.719) 
Materials 11.276 11.687 9.341 10.140 10.637 

 (1.695) (1.690) (1.252) (1.962) (1.857) 
Output prices -0.109 -0.024 0.110 0.050 0.053 

 (0.299) (0.287) (0.338) (0.432) (0.328) 
Energy prices 0.394 0.365 0.381 0.425 0.349 

 (0.489) (0.430) (0.425) (0.396) (0.455) 
Material prices -0.143 -0.083 0.014 -0.012 -0.018 

 (0.331) (0.223) (0.221) (0.284) (0.268) 
No. of plants 93 99 363 46 1029 

No. of obs. 1032 1219 4049 551 10772 
 

 

Estimation results 

The estimated coefficient of the stochastic production frontier parameter estimates using both the 

traditional and the endogeneity corrected methods are presented in Shee and Stefanou (2015). The 

results show that addressing the endogeneity issue is important in stochastic production frontier to 

generate consistent estimates of production parameters and technical efficiency. The estimate of 

capital coefficient is found to be consistently higher in endogeneity corrected method than in 

traditional stochastic frontier method for all four industries. Similarly point estimates of technical 

efficiency are higher in the endogeneity corrected method compared to the traditional stochastic 
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frontier method. The average technical efficiency for all food industry firms is 62.1% and found 

to be deteriorating over time.  

Productivity change occurs when the rate of output change is different from that of the 

index of inputs. Results regarding firm-level TFP growth and its components for the selected 

Colombian food manufacturing sectors are summarized by quintile in table 2. Since the price 

information for labor and capital is unavailable we cannot calculate the allocative efficiency 

component. Following Kumbhakar and Lovell (2000) we assume the cost share of input j, 

j
j js

RTS
ε

λ= = (share of marginal product of input j) for all j, which serves to eliminate the 

allocative efficiency component. We are left with four possible components impacting 

productivity growth: technical progress, scale component, technical efficiency change, and 

learning effect.  

The TFP growth rates vary greatly across firms and years. Most firms show positive 

productivity growth highest quintile values being 8.7%, 11.9%, 12.1%, and 14.8% for meat, dairy, 

bakery, and confectionary product industries, respectively.  Considering our Cobb-Douglas 

specification technical change component of productivity growth is the same across firms with an 

annual average of 2%, 1.8%, 1.2%, and 1.4% for meat, dairy, bakery, and confectionary industries, 

respectively. Technical efficiency change u
t

∂
−
∂

 is interpreted as the rate at which an inefficient 

firm catches up to the production frontier. Technical efficiency of all the selected food industries 

in our study deteriorated throughout the sample period. Average growth rate of technical efficiency 

change consistently hovers around 1% resulting in a steady negative impact on productivity 
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growth. Hence, policies that promote the efficient use of existing technology to catch up to the 

technology frontier in Colombian food manufacturing industry can be emphasized.      

Given the modest point estimates of increasing returns to scale of production technology, 

the increased scale efficiency of the firms is resulting from the expanding scale of production. The 

change in scale component measures the effects of input changes on the output growth. Scale 

components are higher for confectionary and bakery sector and lower for meat and dairy sector. 

The positive scale effect suggests that productivity growth can be enhanced by scale component, 

whereas negative values imply that those firms are perhaps too large and already exceeded a size 

at which there is no scale economies.  

The learning effects are directly calculated from the estimated residual of the endogeneity 

corrected stochastic frontier model and are found to vary widely across firms. For many firms, 

production experience yields information or knowledge, which improves decisions and results in 

productivity enhancement. On the other hand, organizational knowledge through experience can 

be embedded in individual workers, technology, and structure of the organization, consequently 

knowledge depreciation can happen for some firms due to labor turnover and obsolete technology 

within the firm (Argote, 1999; Benkard, 2000). Approximately 60% of firms in the Colombian 

food sector show a positive learning effect with highest quintile values of LE being 6.8%, 8%, 

8.3%, and 7.4% for meat, dairy, bakery, and confectionary product industries, respectively. Firms 

in the confectionary sector are found to have a comparatively higher learning effect than other 

food sectors. Table 3 presents a pairwise correlation between TFP growth, TEC, SC, and LE at the 

firm level. Although TEC, SC, and LE all have positive correlation with TFP growth, LE has the 

highest correlation with TFP growth for all the food sectors we examined.  
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As noted by Oi (1967), Adler and Clark (1991), and Argote (1999), differences in learning 

efficiency across firms can be attributed to differences in training and infrastructure in Colombian 

food manufacturing firms. Food manufacturing industries are highly labor intensive, particularly 

in developing countries like Colombia. For example, meat production is one of the most labor-

intensive food processing operations, involving considerable hand-work to carve out specialty 

cuts, cleaning, applying sauces and flavoring, marinades etc. Hence, the meat producing firm’s 

learning is embodied in their workers and labor turnover may lead to losses of experience for these 

firms. Argote (1999) finds that fast food firms are labor intensive (and subject to high labor 

turnover) and less technologically sophisticated; hence, they face a rapid knowledge depreciation 

compared to other industries. Benkard (2000) finds that unlearning or forgetting occurs as a result 

of labor turnover in the aircraft industry. To enhance productivity growth in Colombian food 

industry, learning gains must be improved considerably.  

From table 2 we see that many firms in the lower quintiles have negative TFP growth which 

turns out to be a result of a negative learning effect. Thus, the decomposition framework in this 

study that allows for learning effect can explain and interpret empirical findings including negative 

and low TFP growth.   
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Table 2: Firm level productivity growth decomposition for selected Colombian food manufacturing sectors  

  
Quintile Butchering and  

meat canning 
Dairy 

Products Bakery Products Chocolate and 
 confectionary 

TFP growth 1 (lowest) -0.060 -0.026 -0.044 -0.041 

 2 -0.011 -0.004 -0.009 -0.008 

 3 0.006 0.008 0.010 0.013 

 4 0.030 0.034 0.034 0.053 
  5 (highest) 0.087 0.119 0.121 0.148 
TEC 1 (lowest) -0.011 -0.011 -0.011 -0.012 

 2 -0.010 -0.012 -0.011 -0.013 

 3 -0.009 -0.011 -0.010 -0.013 

 4 -0.011 -0.010 -0.009 -0.009 
  5 (highest) -0.008 -0.010 -0.010 -0.011 
TP 1 (lowest) 0.020 0.018 0.012 0.014 

 2 0.020 0.018 0.012 0.014 

 3 0.020 0.018 0.012 0.014 

 4 0.020 0.018 0.012 0.014 
  5 (highest) 0.020 0.018 0.012 0.014 
SC 1 (lowest) 0.005 0.004 0.005 0.017 

 2 0.002 0.008 0.011 0.006 

 3 0.003 0.012 0.015 0.011 

 4 0.009 0.014 0.023 0.034 
  5 (highest) 0.007 0.031 0.036 0.071 
LE 1 (lowest) -0.073 -0.037 -0.050 -0.061 

 2 -0.023 -0.019 -0.022 -0.016 

 3 -0.007 -0.011 -0.008 0.001 

 4 0.012 0.011 0.008 0.014 
  5 (highest) 0.068 0.080 0.083 0.074 
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                                      Table 3: Pair-wise correlations of the decomposition components 

Meat TFP growth TEC SC LE 
TFP growth 1    

TEC 0.3187 1   

SC 0.1732 -0.1227 1  

LE 0.9899 0.2918 0.0417 1 
Dairy     

TFP growth 1    

TEC 0.2196 1   

SC 0.4525 -0.0876 1  

LE 0.9139 0.2441 0.0536 1 
Bakery     

TFP growth 1    

TEC 0.0597 1   

SC 0.4173 -0.101 1  

LE 0.815 0.0836 -0.1848 1 
Confectionary     

TFP growth 1    

TEC 0.1735 1   

SC 0.7077 0.1682 1  

LE 0.8504 0.0505 0.233 1 
 

 

    

  



27 
 
 

Table 4: Industry-level average annual rates of TFP change  

  
Year Butchering and  

meat canning Dairy Products Bakery Products Chocolate and 
 confectionary 

TFP growth 1983 - 86 -0.016 0.018 0.001 0.028 

 1987 - 90 0.022 0.013 0.034 0.021 

 1991 - 94 0.024 0.007 0.014 0.025 

 1995 - 98 0.018 0.030 0.019 0.007 
  1983 - 98 0.012 0.017 0.017 0.020 
TEC 1983 - 86 -0.009 -0.010 -0.009 -0.010 

 1987 - 90 -0.009 -0.011 -0.010 -0.011 

 1991 - 94 -0.010 -0.011 -0.011 -0.012 

 1995 - 98 -0.011 -0.012 -0.011 -0.012 
  1983 - 98 -0.010 -0.011 -0.010 -0.011 
SC 1983 - 86 0.008 0.012 0.017 0.016 

 1987 - 90 0.003 0.008 0.021 0.016 

 1991 - 94 0.005 0.018 0.022 0.044 

 1995 - 98 0.004 0.008 0.013 0.016 
  1983 - 98 0.005 0.012 0.018 0.023 
LE 1983 - 86 -0.036 -0.002 -0.019 0.008 

 1987 - 90 0.008 -0.003 0.011 0.002 

 1991 - 94 0.009 -0.018 -0.010 -0.021 

 1995 - 98 0.004 0.016 0.005 -0.010 
  1983 - 98 -0.003 -0.002 -0.003 -0.005 

 

 

Table 4 presents the average annual industry-wise growth rate of TFP and its components 

over selected time periods. The industry-level annual scale efficiency change fluctuates 

considerably over the periods. Overall, average annual scale component is highest for the 

confectionary sector (2.3%) and lowest for the meat sector (0.5%).  The scale efficiency for the 

four industries is very high during 1991-94 and becomes lower thereafter. Positive scale efficiency 

for all food sectors suggests the possible enhancement of scale efficiency through productivity 

enhancing investment. Technical efficiency change is negative and remains fairly steady over the 
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sample years. All food industries examined here experience deteriorating technical efficiency over 

the sample period annual average TEC roughly being -1%. The Colombian meat industry can 

enhance productivity by focusing on improving technical efficiency.  The industry-wise learning 

component varies considerably over years where the learning component was negative in 1983-

86, then gradually increasing and positive in 1995-98 for meat, dairy, and bakery product sectors.  

In contrast, the LE was positive in 1983-86 and turned negative in 1995-98 for the confectionary 

sector. Overall, the industry-wise learning effects are smaller than those of SC, TEC and TP, with 

TP having the most significant influence. The calculated average TFP growth for the four food 

sectors varies widely across sample years. The overall annual TFP growth is highest (2%) for 

confectionary sector while it is lowest (1.2%) for meat sector. The productivity decomposition 

results show that positive TP is a key factor contributing to TFP growth, and SC and TP offset the 

decline in TEC and LE. 

The productivity changes in Colombian food manufacturing firms over the 17- year period 

are explained by technical change, changes in technical efficiency, scale efficiency, and learning 

effect where all four components have significant influence on firm-level productivity growth. 

Thus, attributing changes in productivity to TP and TEC, as in previous stochastic frontier studies, 

may be misleading. This finding can improve decision-making by firm managers and ultimately 

improve productivity and performance by identifying the relative importance of productivity 

growth components.  
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6 Policy implications and conclusions 

By including the learning effect in firm-level productivity growth analyses, this study provides a 

theoretically consistent basis to evaluate the factors affecting productivity growth and their relative 

importance, which in turn increases the accuracy and policy relevance of productivity and firm 

performance. The decomposition of the productivity change has implications for efficient resource 

allocation within the firm. For firms where low TFP growth is a result of poor learning effect (or 

learning efficiency), the policy recommendation is to invest in training and infrastructure so that 

the firm can advance to the learning progress function of the ‘best practice firm’. On the other 

hand, for firms where low-productivity growth results because of deteriorating technical 

efficiency, as we find in this study, the recommendation is to focus on improved managerial 

practices. The positive scale component at the firm level for Colombian food industry suggests the 

possible enhancement of scale efficiency through productivity enhancing investment. Similarly, 

for bakery and confectionary product firms where slow technological progress leads to low 

productivity growth, government policy should encourage investments that induce technological 

innovation to shift up the production frontier. Hence, the major policy implication of this study is 

identifying the relative importance of the firm-level productivity growth components.   

Empirical results in this study indicate that the learning effect is a major contributor to TFP 

growth where there is evidence of both learning and unlearning (or forgetting) effects at the firm 

level in Colombian food manufacturing sector. Differences in learning across firms can be 

attributed to difference in training, quality of the personnel, and technological infrastructure in the 

firm. Hence, superior training that is grounded in research matters for developing human resource 

for the firm to gain better learning impact. Recent literature (Argote, et al., 1990; Darr, et al., 1995; 

Epple, et al., 1996; Benkard, 2000; Thompson, 2007; Brachet & David, 2011) suggests that 
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unlearning is the result of a mixture of firm- and employee-level experience depreciation. There 

can be manpower development policies oriented to building the expertise capacity in the 

community of the manufacturing facilities.  These programs can serve to provide a stable, well-

trained workforce to the employers, as well as being able to feed properly trained labor entrants as 

expertise departs. The consequence of deteriorating skills in the labor force is also a determinant 

of an ‘unlearning’ effect. For example, Brachet and David (2011) find skill decay and labor 

turnover are the result of unlearning where the former has half the magnitude of the later in the 

service sector. A remedy is for employers to institute a set of programs providing continuing 

education or refresher training.  

The ability of an industry to be competitive supports the growth potential of firms. 

However, a definition of competitiveness focuses on the growth in returns to factors 

employed.  More competitive firms will be able to draw expert labor away from less competitive 

firms.  Thus, market forces can contribute to the observation of ‘unlearning’.  The extent to which 

this can happen depends of the distribution of competitive to less competitive firms within a region, 

the degree of labor mobility and to some extent on the relative competitiveness of one industry 

compared to others.  No strong public policy remedies exist in these cases, beyond policies that 

remove nuisance barriers to firms operating in the economy.  This study quantifies the components 

of firm level productivity growth that suggests policy recommendations in promoting productivity, 

but did not explore the sources resulting in those decomposition results. The factors considered in 

this research are not exhaustive in explaining productivity growth. With appropriate data 

availability we can further investigate on the determinants and their relative importance causing 

learning and unlearning effects.   
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Appendix A 

To solve the differential equation governing the learning progress for a general firm 

 2dA A A A
dV a

αα η= − −  

 ( )( ) adA A A
dV a α

α α η= − −  

Using separation of variables we get,
( )( ) a

dA dV c
A A aα

α
α η

= +
− −∫ ∫  

Partial fraction decomposition, 1 1 1
( ) ( )a a

dA V c
A A aα α

α
α η α η

 
− = + − − − 

∫  

 ( )ln ln ( ) ( )aA A V cαα η α η− − − = − +  

 ( )

( )
V

a

A ke
A

α η

αα η
−=

− −
 

Initial condition, at V=0, 0A a=  hence 0

0( ) a

ak
aαα η

=
− −

 

Putting the value of k we write, ( )( ) ( )
0 0 0( ) ( )V Va aa e a Ae A aα η α η

α αα η α η− −− − = − −  

 
0

0

( )( ) ( )1 exp{ ( ) }

a

aA V a V
a

α

α

α η
α η α η

−
=

− −
+ − −

 

Substituting η  by  ηα the differential equation becomes 2dA A A A
dV a

αα ηα= − −
 

and the solution becomes        (1 )0

0

(1 )( ) (1 )1
t

V

aA V a a e
a

α η

η
η − −

−
=

− −
+

 

 

Appendix B 

Simulated plots of the learning progress function  
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           Figure B1: Simulated learning progress with different level of learning inefficiency 
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