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Abstract— In this paper, we proposed a generative model
for feature selection under the unsupervised learning context.
The model assumes that data are independently and identically
sampled from a finite mixture of Student’s t distributions, which
can reduce the sensitiveness to outliers. Latent random variables
that represent the features’ salience are included in the model for
the indication of the relevance of features. As a result, the model
is expected to simultaneously realize clustering, feature selection,
and outlier detection. Inference is carried out by a tree-structured
variational Bayes algorithm. Full Bayesian treatment is adopted
in the model to realize automatic model selection. Controlled
experimental studies showed that the developed model is capable
of modeling the data set with outliers accurately. Further-
more, experiment results showed that the developed algorithm
compares favorably against existing unsupervised probability
model-based Bayesian feature selection algorithms on artificial
and real data sets. Moreover, the application of the developed
algorithm on real leukemia gene expression data indicated that
it is able to identify the discriminating genes successfully.

Index Terms— Bayesian inference, feature selection, robust
clustering, tree-structured variational Bayes (VB).

I. INTRODUCTION

COMPETITIVE performances of clustering algorithms
cannot be expected on high-dimensional data sets due

to the curse of dimensionality and the impact of redun-
dancy and noise. Fortunately, the intrinsic dimensionality of a
high-dimensional data set is usually much less than original
feature space [1]–[3]. The performance of a learning algorithm
could be improved significantly if a subset of features or
a combination of features is properly selected [4]. Feature
selection is to select a subset of most informative features
(or attributes, variables) rather than selecting a combination
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of features (which is usually referred to as feature extraction),
such as in principal component analysis and independent
component analysis.

Existing feature selection algorithm can be categorized
as supervised feature selection (on data with full class
labels) [5]–[9], unsupervised feature selection (on data
without class labels) [10]–[15], and semisupervised feature
selection (on data with partial labels) [14], [16], [17]. Feature
selection in unsupervised context is considered to be more
difficult than the other two cases, since there is no target
information available for training. The selected informative
features must greatly preserve the distribution and the manifold
structure of the data space. In this paper, we focused on
unsupervised feature selection.

Various feature selection methods for unsupervised learning
have been developed, which can be categorized according
to different feature selection criteria. Criteria scores, such
as Laplacian score [18], eigenvalue sensitive criteria [19],
information entropy [20], and correlation [21], have been
proposed. In [22], consistency-based feature selection methods
were proposed and evaluated. To preserve pairwise similarity
along data samples in the original data space, a similarity
preserving feature selection framework is proposed in [11].
Local learning-based feature selection methods [13] have been
extensively studied recently. For examples, in [23] and [24],
subspace learning based on nonnegative matrix factorization is
developed, where the loading matrix is penalized by L2 and/or
L1 norms. Moreover, L2, L1, and L2,1-norms have been
widely applied in various feature selection methods, such as
in [25]–[27]. In [17], a global and local structure preservation
framework that integrates global pairwise sample similarity
and local geometric data structure is proposed for feature
selection. In [15] and [28]–[31], spectral learning aiming
to preserve the underlying manifold structure is applied
for selecting proper features. In [32], embedding learning
and sparse regression are jointly applied to perform feature
selection. A discrimination analysis based on a property of
Fourier transform of the data density distribution is applied for
feature selection via optic diffraction principle [10]. A theo-
retically optimal criterion, namely, the discriminative optimal
criterion, has been developed for feature selection in [33].

Apart from these mentioned algorithms, clustering (which
aims to discover data structure) can also be used as a criterion.
Intuitively, informative feature subsets that greatly preserve the
sample data distribution should vary at different clusters. In the
wrapper method proposed in [4], a clustering algorithm is used
to evaluate the candidate feature subsets. The performance
of the wrapper method highly depends on the employed



clustering algorithms. Alternatively, clustering and feature
selection are embedded together with a proper objective
function. Subset features can be obtained by optimizing the
objective function. It is well acknowledged that the choosing
of feature subsets and the clustering estimation (including the
cluster statistics and the optimal number of components) are
highly dependent problem [34]. This clearly suggests that the
two problems should be considered simultaneously.

Most of clustering-based feature selection methods were
developed on finite Gaussian mixtures. Carbonetto et al. [35]
proposed a Bayesian shrinkage approach where shrinkage
hyperpriors are placed over the component means. The shrink-
age hyperpriors can lead to automatic feature selection.
Pan et al. [36] proposed a penalized likelihood approach
where a L1 penalty is imposed on the cluster means. The
proposed approach can automatically realize feature selection
through thresholding and model selection through the BIC
criterion. Law et al. [37] defined the saliency of feature as
a probability, which is to quantify whether the data distribu-
tion with respect to the saliency features can be sufficiently
represented. They proposed to fit the Gaussian mixture model
to the sample data distribution using the EM algorithm, while
the MML criterion is employed for model selection. Moreover,
a Bayesian treatment to the finite Gaussian mixture model
that benefits from automatic model selection was proposed
in [34]. Li et al. [38] improved their work by utilizing
“localized” feature saliency to address the local intrinsic
property of data.

Outliers or scattered objects exist elsewhere in real data
sets. As well known, Gaussian mixture models are not able
to deal with outliers properly. The outliers, if exist, should
seriously deteriorate the performances of Gaussian-based
clustering algorithms. Moreover, the presence of outliers could
also lead to selecting a false model complexity, and make the
optimal selection of a subset of informative features get much
more difficult. Therefore, previous clustering-based feature
selection methods cannot be expected to perform well on data
with outliers. It is thus indispensable to propose a principled
approach to realize the selection of the most informative
features and the improvement on the clustering performance,
while eliminating the bad effect of outlying data. This motives
us to propose a finite mixture model that is able to deal with
outliers; and to develop a Bayesian inference algorithm that
can carry out unsupervised clustering, feature selection, and
outlier detection simultaneously.

Specifically, in this paper, we propose a hierarchical latent
variable model to address the three tasks. First of all, it has
been a common practice to adopt heavy-tailed distributions
for handling outlier data in the literature. The Student’s t
distribution is such a heavy-tail distribution, and has been
widely used [39], [40]. In our model, we adopt a finite mixture
of Student’s t distributions as the backbone. Fig. 1 shows the
difference between a Student’s t distribution and a Gaussian
distribution with the same mean and variance, but with
different parameters (ν, also called the degree of freedom).
There are other heavy-tail distribution is available, such as the
Laplace distribution and the Pearson type-VII distribution [40],
which can also be adopted for handling outliers. Note that the

Fig. 1. Demonstration of the Student t-distribution with different parameters
ν = 0.01, 0.1, 1, 2,∞. Note that the Student t-distribution becomes the
Gaussian distribution in case ν = ∞.

Student’s t is a scalar mixture of Gaussians. This property
makes the Student’s t distribution convenient for inference,
and hence popular for outlier detection.

Second, regarding feature selection, we propose to use a
localized feature saliency similar to the approach developed
in [38]. The feature saliency characterizes the importance of
the feature and can be used as criterion for the selection
of the most informative features. Localization of the feature
saliency addresses the cluster effect on relevant feature subsets.
Finally, to carry out model selection, we adopt a full Bayesian
treatment to the model, where proper prior distributions are
assumed for the parameters, including the number of clusters,
the mixing proportions, and the parameters of the cluster com-
ponents. To carry out inference, we resort to a tree-structured
variational Bayesian (VB), since the likelihood function of
the training data with respect to the proposed model is not
tractable.

In the rest of this paper, Section II presents the
proposed latent variable model. The inference is presented in
Section III-A–III-F, in which the tree-structured VB algorithm
is described. Moreover, the interpretation of the model is
described in Section III-G. The experimental study is presented
in Section IV. In this paper, controlled experiments were first
carried out to justify the out performance of the developed
models over the model using Gaussian distributions on syn-
thetic data sets and another state-of-the-art feature selection
algorithms. Then, the developed algorithm was compared with
them on some real data sets. Section V concludes this paper.

II. MODEL

In this section, we present the proposed hierarchical latent
variable model step by step starting from the introduction of
saliency features to variables that are modeled to follow the
mixture of Student’s t. To make the description clear, Table I
shows the notations used.

Suppose that a vector of random variable Y =
(Y1, . . . ,Yd ) ∈ R

d , where d is the dimensionality of the input
data, and denote Y� as the �th feature. In the sequel, we use
y to represent the realization of Y . To represent if a feature
is relevant or not, we use a vector of random binary variable
� = (φ1, . . . , φd ). That is, if φ� = 1, we say that the �th
feature is relevant, and 0 otherwise.



TABLE I

NOTATIONS USED IN MODELING

To handle outliers, heavy-tailed probability distributions,
such as Student’s t distribution [41] or Pearson type-VII
distribution [40] can be used. Taking the features’ relevancy
into consideration in the Student’s t distribution, we result in
the following model:

p(y|�;�) =
d∏

�=1

[St (y�|θ�)]φ�[St (y�|γ�)]1−φ� (1)

where St represents the Student’s t distribution.
To realize clustering, a finite mixture of p(y|�;�) can be

applied. That is

p(y|�;�) =
K∑

j=1

π j p(y|�,� j)

where � = {� j } and � j = {θ j�, γ j�, 1 ≤ � ≤ d} are
the parameters of the cluster components. To this end, we
can introduce a discrete latent variable z to specify which
cluster that the data belongs to, and a Bernoulli prior over �
with parameter β to characterize the importance of features.
To account for the case that in different clusters, features might
have different relevance, we propose to impose that � depends
on the latent variable z. As a result, β j�, 1 ≤ j ≤ K , 1 ≤
� ≤ d are the parameters associated with the Bernoulli prior
over � depending on z, which are called feature saliency [37].
Mathematically, the model can be written hierarchically for a
set of training data yn, 1 ≤ n ≤ N as follows:

p(yn|�n, zn)

=
K∏

j=1

[
d∏

�=1

[St (yn�|θ j�)]φn� [St (yn�|γ j�)]1−φn�

]δzn , j

p(�n|zn, β)

=
K∏

j=1

[
d∏

�=1

β
φn�
j� (1 − β j�)

1−φn�

]δzn , j

where �n and zn are latent variables associated with each data
point yn , and δzn, j is the Kronecker delta function. Note that
a similar idea has been implemented in [38] which is termed

as “localized feature saliency.” The difference between their
work and our work is that we impose dependencies between
�n to zn and yn , while in [38], the dependence is implemented
by introducing different feature saliency variables in different
classes (which results in φnj� for 1 ≤ j ≤ K rather than
just φn� as in our implementation). Note that the Student’s t
distribution can be written as a convolution of a Gaussian and
a gamma distribution as follows:

St (y|θ) =
∫

N (y|μ, σu)G
(

u|ν
2
,
ν

2

)
du

where σ is the precision (inverse variance) and θ = (μ, σ, ν)
is the parameters, and

G(x |a, b) = baxa−1 exp(−bx)

(a)
.

If we introduce un = (un1, . . . , und ) and vn = (vn1, . . . , vnd )
as latent variables for the Student’s t components with
and without relevant features, respectively, we can obtain a
distribution of p(yn|�n,un, vn, zn) as follows:

p(yn|�n,un , vn, zn)

=
K∏

j=1

⎡

⎣
d∏

�=1

N (yn�|μ j�, un�σ j�)
φn�

× N (yn�|χ j�, vn�τ j�)
1−φn�

⎤

⎦
δzn , j

.

The hierarchical latent variable model is completed by
introducing conjugate prior over zn,un and vn as follows:

p(un |zn) =
K∏

j=1

[
d∏

�=1

G
(

un�

∣∣∣∣
ν j�

2
,
ν j�

2

)]δzn , j

p(vn|zn) =
K∏

j=1

[
d∏

�=1

G
(
vn�

∣∣∣∣
γ j�

2
,
γ j�

2

)]δzn , j

p(zn) =
K∏

j=1

π
δzn , j
j .

To realize model selection, i.e., selecting the optimal number
of components, we adopt the full Bayesian treatment, which
means that we need to specify conjugate priors for the parame-
ters (i.e., �). The conjugate priors associated with the model
parameters are as follows:

p(β) =
K∏

j=1

d∏

�=1

B(β j�|κ1, κ2)

p(σ ) =
∏

j

∏

�

p(σ j�) =
∏

j

∏

�

G
(
σ j�

∣∣∣
η0

2
,
ω0

2

)

p(μ) =
∏

j

∏

�

p(μ j�) =
∏

j

∏

�

N (μ j�|m0, λ0)

p(χ) =
∏

j

∏

�

p(χ j�) =
∏

j

∏

�

N (χ j�|m0, λ0)

p(τ ) =
∏

j

∏

�

p(τ j�) =
∏

j

∏

�

G
(
τ j�

∣∣∣
η0

2
,
ω0

2

)

p(π) = D(π |α0) (2)



Fig. 2. Plate diagram of the proposed hierarchical graphical model.

where B(x |a, b) represents the Beta density function

B(x |a, b) = xa−1(1 − x)b−1

B(a, b)

and B(a, b) is the beta function, G(x |a, b) is the gamma
distribution, and

D(π |α0) = 
(∑K

k=1 α
0
k

)
∏K

k=1 
(
α0

k

)
K∏

k=1

π
α0

k −1
k

is the Dirichlet distribution. The parameters in the priors,
including κ1, κ2, η0, ω0,m0, λ0, and α0 are considered as
hyperparameters. Note that in the priors, we assume the
same hyperparameters for σ j� and τ j� and for μ j� and χ j�,
respectively. The resultant model can be depicted using the
plate diagram shown in Fig. 2. In a rectangle of the plate
diagram, the bold typeset indicates the dimensions of the
circled variables. For example, Kd means that there are K ×d
variables of ν j�, 1 ≤ j ≤ K , 1 ≤ � ≤ N . The arrows in the
diagram indicate the variable dependencies, e.g., the arrow
pointing to U from Z means that U depends on Z .

In the following, we use n, �, and j to denote the index
of the data point, the features, and the mixing component.
We omit the typeset of parameters in the formula.

In the proposed model, bear in mind that the joint
probability distribution is written as

p(yn,un, vn,�n, zn|�)
where � = {μ, σ, χ, τ, π, β, ν, γ } and it can be factorized as

p(yn|�n,un, vn, zn)p(�n|zn)p(un|zn)p(vn|zn)p(zn)

and are fully factorized over the dimensions. In the sequel,
we denote the latent variables as hn = {un, vn, zn,�n, 1 ≤
n ≤ N}. According to the model, the complete likelihood of
a data yn can be written as follows:

LC(yn,hn,�) = p(yn,hn |�)p(�) (3)

where p(�) = p(μ)p(σ )p(β)p(π)p(χ)p(τ ). Note that we
assume the same hyperparameters of the prior distributions
corresponding to the parameters with respect to all the com-
ponents. We do not assume any priors for ν and γ , since there
are no conjugate priors.

TABLE II

NOTATIONS USED IN THE INFERENCE

III. INFERENCE

In this section, we first define some notations as listed
in Table II. These notations will be used in the inference.
A brief introduction to the VB method is given, while the
detailed inference follows. The algorithm is then summarized
and interpreted.

A. Brief Introduction to VB

The integration of p(yn,un, vn,�n, zn |�)p(�) over the
latent variables and the parameters is not tractable. Therefore,
exact inference is impossible. We adopt the VB algorithm
for model inference [42]. To apply the VB algorithm, the
evidence, obtained by integrating out the latent variables
(denoted by H) and the parameters (denoted by �) given
a model structure M, is approximated by introducing an
auxiliary distribution q . The lower bound to the evidence is
as follows:

log p(X|M) ≥
∫

�

∫

H
q(H,�) log

p(Y,H,�|M)

q(H,�) dHd�

= 〈log p(Y,H,�|M)〉q − 〈log q(H,�)〉q

� F(q(H), q(�),Y,M) (4)

where p(Y,H,�|M) is the complete data likelihood and
q(H,�) = q(H)q(�) is the auxiliary posterior distribution,
F(q(H), q(�),Y,M) is called the free energy. In the equa-
tions, we use 〈·〉q to denote the expectation with respect to q .
It is obvious that maximizing the evidence is equivalent to
maximizing the free energy F .

To maximize the free energy, we apply coordinate
ascent search as adopted in [43]. Applying the coordinate
ascent search, the auxiliary distributions of latent variable
H and parameters � are optimized alternatively as
follows:

q(t+1)(H) = arg max
q(H)

F(q(H), qt(�),Y,M)

q(t+1)(�) = arg max
q(�)

F(qt+1(H), q(�),Y,M).



B. Tree-Like Factorization of the Random Variables

We propose a tree-like factorization over the latent variables
for the auxiliary posteriors (i.e., q(H)). Tree-like structural
factorization in VB has been shown to be superior over the
full factorization scheme [44], [45]. The factorization can be
summarized as follows:

q(hn, π, {β j�}, {μ j�, σ j�}, {χ j�, τ j�})
= q(un|zn)q(�n|zn)q(vn|zn)q(zn)︸ ︷︷ ︸

× q(π)q({β j�})q
({μ j�, σ j�}

)
q
({χ j�, τ j�}

)
.

The tree-like factorization is reflected on the dependences
between un, vn,�n , and zn . Specifically, due to the full
factorization over the features and the conjugate prior we used,
it can be seen that

q(hn,�) = q(zn)
∏

n

∏

�

q(vn�|zn)q(un�|zn)q(φn�|zn)

× q(π)
∏

j

∏

�

q(χ j�)q(τ j�)q(β j�)q(μ j�)q(σ j�).

The auxiliary posteriors of the latent variables and the
parameters can be obtained by maximizing the free energy
associated with the proposed model

F = 〈log LC (yn,hn,�)〉q − 〈log q(hn)〉q (5)

where 〈·〉q is the expectation with respect to the auxiliary
posterior q .

C. Auxiliary Posteriors of the Latent Variables

The free energy associated with the auxiliary posterior
q(un|zn) can be read as follows:

F = 〈log[p(yn, hn)] − log q(un|zn)〉q .

According to the KKT condition, and using the Lagrange
multiplier, we obtain (see the Appendix for details)

q(unzn) ∝
d∏

�=1

exp〈log[p(yn�|un�, zn)p(un�|zn)]〉q .

This shows that q(un|zn) = ∏d
�=1 q(un�|zn). Through

mathematical manipulation, we can obtain

q(un�|zn = j) = G(un�|ānj�, b̄nj�) (6)

where

ānj� = ν j� + 1

2
; b̄nj� = ν j� + 〈(yn� − μ j�)

2σ j�〉
2

.

Similarly to the above calculation, the other posteriors can be
computed. We find that the posterior of the latent variable vn�,
i.e., q(vn�|zn), is of the following form:

q(vn�) = G(vn�|s̄n j�, t̄n j�) (7)

where

s̄n j� = γ j� + 1

2
; t̄n� = γ j� + 〈(yn� − χ j�)

2τ j�〉
2

.

Note that 〈(yn� − μ j�)
2〉 = (yn� − 〈μ j�〉)2 + σ̄ j� and

〈(yn� − χ j�)
2〉 = (yn� − 〈χ j�〉)2 + ς̄ j�, where σ̄ j� and ς̄ j� are

the standard deviations of the posterior q(μ j�) and q(χ j�),
respectively. If we let

A = [〈log p(yn�|un�, j)〉 + 〈log p(un�| j)〉]
+ 〈logβ j�〉 − 〈log q(un�| j)〉

and

B = [〈log p(yn�|vn�, j)〉 + 〈log p(vn�| j)〉]
+ 〈log(1 − β j�)〉 − 〈log q(vn�| j)〉

then q(φn� = 1| j) can be written as

q(φn� = 1| j) = exp{A}
exp{A} + exp{B} (8)

and q(φn� = 0| j) = 1 − q(φn� = 1| j).
If we define the quantity

Rn, j =
∑

�

(〈φn�〉1
j 〈log p(yn�|un�, j)〉)

+
∑

�

(〈φn�〉0
j 〈log p(yn�|vn�, j)〉) + 〈logπ j 〉

+
∑

�

(〈φn�〉1
j log p(un�| j)〉 + 〈φn�〉0

j log p(vn�| j)
)

+
∑

�

(〈φn�〉1
j 〈log β j�〉 + 〈φn�〉0

j 〈log(1 − β j�)〉
)

−
∑

�

(〈φn�〉1
j 〈log q(un�| j)〉 + 〈φn�〉0

j 〈log q(vn�| j)〉).

Then, the responsibility q(zn = j) can be calculated as
follows:

q(zn = j) = exp{Rn, j }∑
k exp{Rn,k} . (9)

In the sequel, we use 〈zn〉 j to denote q(zn = j).

D. Auxiliary Posteriors of the Parameters

The posterior of the mixing proportion π is

q(π) = D(π |α̂) (10)

where α̂ j = ∑
n q(zn = j)+ α0 and α̂0 = ∑

j α̂ j and

〈logπ j 〉 = �(α̂ j )−�(α̂0).

The posterior of the feature saliency β is

q(β) =
∏

j

∏

�

q(β�) =
∏

j

∏

�

B(β j�|κ̄1 j�, κ̄2 j�) (11)

where κ̄1 j� = κ1 + ∑
n〈φn�〉1

j 〈zn〉 j and κ̄2 j� = κ2 +∑
n〈φn�〉0

j 〈zn〉 j . The expectation 〈logβ j�〉 and 〈log(1 − β j�)〉
as used in the calculation of q(�n| j) can be obtained as

〈logβ j�〉 = ψ(κ̄1 j�)− ψ(κ̄1 j� + κ̄2 j�)

〈log(1 − β j�)〉 = ψ(κ̄2 j�)− ψ(κ̄1 j� + κ̄2 j�).

The posterior of variance σ j is

q(σ j ) =
∏

�

q(σ j�) =
∏

�

G(σ j�|η̄ j�, ω̄ j�) (12)



where

η̄ j� = η0 + ∑
n〈zn〉 j 〈φn�〉1

j

2

ω̄ j� = ω0 + ∑
n〈zn〉 j 〈φn�〉1

j 〈(yn� − μ j�)
2〉〈un�〉 j

2
.

The posterior of variance of the common distribution τ is

q(τ ) =
∏

j

∏

�

q(τ j�) =
∏

�

G(τ j�|ψ̄ j�, ξ̄ j�) (13)

where

ψ̄ j� = η0 + ∑
n〈zn〉 j 〈φn�〉0

j

2

ξ̄ j� = ω0 + ∑
n〈zn〉 j 〈φn�〉0

j 〈(yn� − χ j�)
2〉〈vn�〉 j

2
.

The posterior of μ j is

q(μ j ) =
∏

�

q(μ j�) =
∏

�

N (μ j�|μ̄ j�, σ̄ j�) (14)

where

σ̄ j� = 〈σ j�〉
∑

n

〈zn〉 j 〈φn�〉1
j 〈un�〉 j + λ0

μ̄ j� = σ̄−1
j�

(
〈σ j�〉

∑

n

〈zn〉 j 〈φn�〉1
j 〈un�〉 j yn� + λ0μ0

)
.

The posterior of χ is

q(χ) =
∏

�

∏

j

q(χ j�) =
∏

�

∏

j

N (χ j�|�̄ j�, ς̄ j�) (15)

where

ς̄ j� = 〈τ j�〉
∑

n

〈zn〉 j 〈φn�〉0
j 〈vn�〉 j + λ0

�̄ j� = ς̄−1
j�

(
〈τ j�〉

∑

n

〈zn〉 j 〈φn�〉0
j 〈vn�〉 j yn� + λ0μ0

)
.

The degree of freedom ν j�, 1 ≤ j ≤ d , γ j�, 1 ≤ � ≤ d
can be obtained by solving the following nonlinear equations,
where 〈log vn�〉 j and 〈log un�〉 j denote the expectations of
log q(vn�| j) and log q(un�| j), respectively:
∑

n

〈zn〉 j 〈φn�〉1
j

×
[
1 + log

ν j�

2
+ 〈log un�〉 j − 〈un�〉 j − ψ

(ν j�

2

)]
= 0

∑

n, j

〈zn〉 j 〈φn�〉0
j

×
[
〈log vn� − vn�〉 j + 1 + log

γ j�

2
− ψ

(γ j�

2

)]
= 0

where ψ(·) is the digamma function.

Algorithm 1 Proposed Tree-Like VB Algorithm for
Clustering, Feature Selection, and Outlier Detection
Require: training data yn, 1 ≤ n ≤ N , a cluster number K ;
Ensure: the centroids, the saliency of the features and the

outlier criteria;
1: while the free energy F increases less than ε do
2: VB E-step
3: Update q(un|zn) according to (6)
4: Update q(vn) according to (7)
5: Update q(�n|zn) according to (8)
6: Update q(zn) according to (9)
7: VB M-Step
8: Update q(π) according to (10)
9: Update q(β) according to (11)

10: Update q(σ j ), 1 ≤ j ≤ K according to (12)
11: Update q(τ ) according to (13)
12: Update q(μ j ), 1 ≤ j ≤ K according to (14)
13: Update q(ξ) according to (15)
14: Calculate the log-likelihood bound using (16)
15: end while

E. Log-Likelihood Bound

The optimization process can be monitored by the log-
likelihood bound as shown in (5), which can be evaluated in
the following. The evaluation of the expectations of the log-
likelihood bound (i.e., the free energy) is summarized in the
Appendix

F =
∑

n, j

〈zn〉 j

∑

�

〈φn�〉1
j 〈log[p(yn�|un�, j)p(un�| j)]〉

+
∑

n, j

〈zn〉 j

∑

�

〈φn�〉0
j 〈log[p(yn�|vn�, j)p(vn�| j)]〉

+
∑

n, j

〈zn〉 j

∑

�

〈log p(φn�|β j�)〉 j +
∑

n, j

〈zn〉 j 〈logπ j 〉

+
∑

j

〈log p(μ j )+ log p(σ j )− log q(μ j )− log q(σ j )〉

+〈log p(χ)+ log p(τ )− log q(χ)− log q(τ )〉
+〈log p(π)− log q(π)〉 + 〈log p(β)− log q(β)〉
−

∑

n, j

〈zn〉 j

∑

�

〈log q(un�| j)〉 j −
∑

n�

〈log q(vn�| j)〉

−
∑

n, j

〈zn〉 j

∑

�

〈log q(φn�| j)〉 j −
∑

nj

〈zn〉 j log〈zn〉 j .

(16)

F. Algorithm

The developed VB algorithm can be summarized in
Algorithm 1. To start the run, in the beginning, a large number
of clusters K are given. The K -mean clustering is carried out,
while the resulting centroids are used as the initial value for
q(μ). Note also that the adopted Bayesian framework allows
us to realize model selection, i.e., to find the optimal number
of clusters. Initializing a large K cluster number, some clusters
that do not have enough evidence will be pruned during the
optimization process. The automatic pruning can be observed
in the demo, as shown in Fig. 3.



Fig. 3. Typical run of the developed algorithm on the example data set, while the black circles represent q(μ1|k), and the red circles denote q(μ0).
The first plot shows the data set on the first two dimensions, while the last plot shows the estimation of the third and fourth dimensions.

Since the VB algorithm is proven to be monotonically
increasing, it is thus able to terminate the algorithm if there is
a small difference (ε in line 1) between consecutive iterations.
In our implementation, we set ε = 1.0−7.

G. Interpreting the Model

Considering the time complexity of the algorithm, per
iteration, computing the parameters of the posteriors of un, zn ,
and �n are O(Nd K ), while for q(vn|zn), the time complexity
is O(Nd). Therefore, the total time complexity is of O(N K d).

As claimed, the proposed model is supposed to deal with
outliers, and to find most informative features. To detect
outliers, the weighted expectation of the posteriors of un
and vn can be used as the outlier criterion. That is, if we
define

cn =
∑

j

〈zn〉 j

∑

�

[
〈φn�〉1

j
ān j�

b̄nj�
+ 〈φn�〉0

j
s̄n j�

t̄n j�

]

then the smaller the value of cn with respect to yn , the higher
chance that the datum is an outlier.

As stated in the model, the expectation of the feature
saliency variable β j�, 1 ≤ � ≤ d can be applied to show the
informative degree of the features for each cluster, which can
be obtained as follows:

〈β j�〉 = κ̄1 j�

κ̄1 j� + κ̄2 j�
.

The higher the 〈β j�〉 value, the more important of feature � in
class j .

For the overall feature saliency, we can use the following
quantity to specify:

ς� =
∑

j

〈π j 〉q〈β j�〉 =
∑

j

α̂ j∑
k α̂k

〈β j�〉

which is a weighted average over the feature saliency for each
cluster. The higher the ς� value, the more relevant the feature.

IV. EXPERIMENTS

A. Synthetic Data

In this section, we justify the developed model and the
tree-like VB algorithm using controlled experiments. Synthetic
data sets are generated that are able to accommodate the data
characteristics for the justification. The proposed model and
the algorithm were compared with the semi-Bayesian feature
selection model and algorithm, called varFnMS [34], in which
a finite mixture of Gaussian is adopted and a full-factorized
VB is applied.

Synthetic data are generated by first sampling a set of data
points from four well-separated bivariate clusters. The centers
and the variance–covariance matrices are [0 3]ᵀ, [1 9]ᵀ,
[6 4]ᵀ, [7 10]ᵀ, and an identity matrix. Eight “noisy” features
[sampled from N (0, 1)] are then appended to this data,
resulting in a 10-D patterns. 800 data points are generated,
and a set of outliers uniformly sampled from [−10 30]10 are
added to the data set. Various percentages of outliers are added
to the main data sets to test the performance of the algorithm
on outlier detection.

The proposed algorithm was carried out for ten times with
an initial cluster number K = 10. The K -means clustering
algorithm is used to initialize the mean of the posterior q(μ j ),



Fig. 4. Left: typical run of the semi-Bayesian feature selection algorithm, and first and second features are shown. Right: AUC values obtained by the
developed algorithm and varFnMS for different percentages of outliers with standard deviations shown.

Fig. 5. Feature saliencies for the synthetic data with 5% percentage of outliers by the proposed algorithm (on the left) and the semi-Bayesian algorithm
(on the right). The standard deviations of the ten runs were also shown in the plots.

and the feature saliency variable is initialized to be 0.5. The
hyperparameters κ1, κ2, λ0, and α0 are set to be 10−5, and
m0 is set to be the mean of all data. The algorithm terminates
when the difference of log-likelihood bound is less than 10−7.

Fig. 3 shows a typical run of the developed algorithm, while
the estimated mean and covariance of q(μ) in the first break
two-dimension is shown at certain iterations. From the figure,
we can see that the developed algorithm groups the data accu-
rately. Moreover, it can be seen that unnecessary components
are pruned automatically during the optimization process. The
last plot shows the data in the third and fourth variables.
The red circle demonstrates the contour of the posterior q(χ)
at the third and fourth features. Fig. 4(a) shows the results
obtained by varFnMS at the first and second features. From
the figure, it can be seen that varFnMS is not able to eliminate
the effects of the outliers, and the number of clusters has not
been estimated accurately.

To test the outlier detection performance, the area under
curve (AUC) values obtained through the ROC analysis can
be used. The higher the AUC values, the better the perfor-
mance of outlier detection. Fig. 4(b) shows the obtained AUC

values with standard deviation by the developed algorithm for
different percentages of outliers in ten runs. Unfortunately,
no statistics can be derived by varFnMS for the purpose of
outlier detection. From the figure, it can be observed that the
developed algorithm is able to pick outliers successfully. This
shows that the proposed algorithm is able to simultaneously
pickup outliers from the data, and discover clusters accurately.

Fig. 5 shows the feature saliency retrieved by the proposed
algorithm and varFnMS. From the figure, we can see that
the saliency of the noisy variables (Y3 − Y8) obtained by the
proposed algorithm is closer to the ground truth than that of
the semi-Bayesian algorithm.

B. Experiments on Real Data Sets

In this section, we used the “multiple feature database” [34],
[46], which consists of features of handwritten numerals
(“0”–“9”) extracted from a collection of Dutch utility maps.
There are a total of 2000 images with 200 for each numerals.
Numerals are represented in different feature sets. We used
the same three data sets as in [34], that is, the Zernike
moments (47 features), the Fourier coefficients (76 features),



TABLE III

AVERAGED CLASSIFICATION ERROR AND THE NUMBER OF COMPONENTS OBTAINED BY varFnMS AND THE PROPOSED
ALGORITHM USING 30 AND 50 INITIAL COMPONENTS

Fig. 6. Saliencies of different feature sets. (a) Fourier coefficients,
(b) Zernike moments, and (c) profile correlations using the developed
algorithm for models initialized with 30 components.

and profile correlations (216 features). The classification error
is used to measure the performance. For each data point,
it is assigned to the class with the largest responsibility. The
proposed algorithm was run 20 times, where the data set is
split into half to create the training and test data set. The
estimated classification error and the number of components
are summarized in Table III, where the components were
initialized to be 30 and 50.

From Table III, we can see that our algorithm outperforms
varFnMS and FnMS [46] in terms of classification error.
It can be seen that the developed algorithm uses less num-
ber of components than that of varFnMS, which is closer

TABLE IV

CONFUSION MATRIX OBTAINED BY THE DEVELOPED

ALGORITHM ON THE LEUKEMIA DATA

TABLE V

CORRELATION BETWEEN THE STATISTICS OBTAINED IN [47] AND THE
FEATURE SALIENCIES WITH RESPECT TO THE LEUKEMIA SUBTYPES

to the true number of components. This suggests that the
developed algorithm performs better in terms of recovering
the true parameters. Fig. 6 shows the error bar plots of the
saliencies obtained for the proposed model initialized with
30 components. As an comparison, Fig. 7 showed the salien-
cies by using varFnMS with the same experimental settings as
the developed algorithm. From the figure, we can see that on
the Fourier coefficient data set and the profile correlation data
set, the feature saliency obtained by the developed algorithm
has similar trends as that of varFnMS, but of smaller variances.
On the Zernike moments data set, we can see that the variances
of the feature saliency revealed by the developed algorithm are
much less than those obtained by varFnMS. This shows that
the developed algorithm is more robust than that of varFnMS.

C. Application on High-Dimensional Gene Expression Data

In this section, we apply the developed algorithm to a
large-scale gene expression data set on leukemia [47]. The
data were obtained through the diagnostic of bone mar-
row samples from pediatric acute leukemia (ALL) patients
corresponding to six prognostically important leukemia
subtypes, including 43 T-lineage ALL, 27 E2A-PBX1,
15 BCR-ABL, 79 TEL-AML1, and 20 MLL rearrangements
and 64 “hyperdiploid > 50” chromosomes, and containing
more than 12 600 probe sets. The resultant data set contains
248 samples, and 12 625 gene expressions. Note that in [47],



Fig. 7. Saliencies of different feature sets. (a) Fourier coefficients, (b) Zernike moments, and (c) profile correlations using varFnMS for models initialized
with 30 components; reproduced from [34].

TABLE VI

EVALUATION OF THE LOG-LIKELIHOOD BOUND

a 2-D hierarchical clustering algorithm is first performed. The
six subtypes are then recognized through the clustering results.
A variety of statistical metrics (including χ2 and t-statistics)
are used to select discriminating genes for the subtypes.

We apply the developed algorithm to the data set to test if
the developed algorithm is able to cluster the data accurately,
and to find out the discriminating genes in the subtypes.
Table IV shows the confusion matrix obtained by the devel-
oped algorithm given K = 6. From Table IV, we can see
that the developed algorithm agrees with the clustering results
in [47] quite accurately.

On the other hand, we want to justify whether the feature
saliency criterion 〈β j�〉, 1 ≤ � ≤ d can be used to discriminate
the genes in each class j .1 Since these values are defined
to show the relevance of the features, or in the leukemia

1Note that in our method, we use a localized feature saliency rather than
a global feature saliency as developed in [34] and [37]. This enables us to
discriminate genes at different clusters.

clustering context, these values indicate the relevance of the
genes to describe the clusters. Thus, it is expected that the
feature saliency values obtained by the developed algorithm
can also be used to discriminate genes for the cancer subtypes.
Here, we use the correlation between the feature saliency
and the statistics to evaluate the usefulness of the feature
saliency values on discriminate the clusters, which will imply
the performance of the developed algorithm.

To measure the correlation between the feature saliency
values and the statistics, we use the Pearson correlation
coefficients. Table V lists the average coefficients obtained
by running the developed algorithm for ten times. From the
table, we can see that the absolute values of these statistics
and the feature saliency obtained by the developed algorithm
for the genes have fairly strong correlation; the average of
the coefficients is as high as 0.851, and no less than 0.613.
This implies a coherence between the developed method
and the method in [47] in terms of selecting discriminating
genes.



V. CONCLUSION

In this paper, we developed a hierarchical latent variable
model for feature selection and robust clustering. A full
Bayesian treatment was adopted for model selection. A VB
framework was used for inference. To make the inference
much efficient, a tree-structured factorization of the auxiliary
posteriors for the latent variables was adopted which has been
shown better than the widely used full factorization approach.
Quantities are proposed to detect outliers and estimate feature
saliency. Controlled experiments on synthetic and real data
showed that the proposed model is able to realize outlier
detection and feature selection more robustly than a semi-
Bayesian mixture of Gaussians model. The application of
the developed algorithm to real high-dimensional data shows
its applicability. In the future, unsupervised feature selection
analysis on data with “big dimensionality” (i.e., the feature
size is normally far beyond 10k as reviewed in [3]) is our
primary research avenue. The development and the application
of feature selection algorithms in broadcasting [48], cloud
computing [49], image processing [50], and other areas are
another avenue.

APPENDIX A

In this section, we present the derivation of the posterior
distribution with respect to un, 1 ≤ n ≤ N . The derivation for
the other latent variables and parameters is similar.

To derive q(un|zn = k) (or briefly q(un|k)), we need to
maximize the free energy with respect to q(un|k), subject to
the constraint

∫
q(un|k)dun = 1. The free energy associated

with the auxiliary posterior q(un|k) can be written as follows:
Fq(un |k) = 〈log p(yn, hn)〉q − 〈log q(un|zn)〉q .

Discarding terms that are independent of un , and using the
Lagrange multiplier method, the functional to be maximized
is the following:
Fun |k = q(zn = k)〈log p(yn|un, k)p(un |k)〉q

− q(zn = k)〈log q(un|k)〉q + λ

(∫
q(un|k)dun − 1

)
.

Note here the expectation is computed with respect to the
probability density functions of the parameters

Taking derivatives of Fun |k with respect to q(un|k) and λ,
we have

∂Fun |k
∂q(un|k) = −q(zn = k)

[
1 + log q(un|k)

]

+ q(zn = k) log[p(yn|un, k)p(un|k)] + λ
∂Fun |k
∂λ

=
∫

q(un|k)dun − 1.

If we let

E(un, k) = 〈log p(yn|un, k)p(un |k)〉
=

∑

�

〈log p(yn�|un�, k)p(un�|k)〉 (17)

and equating these to zero, then according to the Karush–
Kuhn–Tucker conditions, we have

q(un|k) = exp(E(un, k))

exp
{
1 − λ

q(zn=k)

} (18)

then taking integral with respect to q(un|k) on both sides, we
have

λ = q(zn = k)

(
1 − log

[∫
exp(E(un, k))

])
. (19)

Finally, replacing (19) into (18), we obtain

q(un|k) = exp(E(un, k))∫
exp(E(un, k))dun

.

Note that the dimensions of the latent variable un are inde-
pendent, we can then obtain

q(un|k) =
d∏

�=1

exp〈log p(yn�|un�, k)p(un�|k)〉∫
exp〈log p(yn�|un�, k)p(un�|k)〉dun�

which leads to the posterior presented in the main context.

APPENDIX B

The evaluation of the free energy is presented here.
Note that the main evaluation is on the computation of
the expectations of the logarithms of the prior distribu-
tions for the latent variables [including p(yn|un, j), p(un| j),
p(yn|vn), p(vn), p(�n|β)]; the parameters [including p(β),
p(π), p(σ ), p(μ), p(ξ), p(τ )]; the posteriors [includ-
ing q(un|zn), q(vn), q(zn), q(π), q(β), q(τ ), q(μ), q(σ ), and
q(χ)]. The evaluation of these expectations is summarized in
Table VI.
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