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Abstract

Modeling external perturbations such as chemical control within each gener-
ation of discrete populations is challenging. Based on a method proposed in
the literature, we have extended a discrete single species model with multiple
instantaneous pesticide applications within each generation, and then discuss
the existence and stability of the unique positive equilibrium. Further, the ef-
fects of the timing of pesticide applications and the instantaneous killing rate
on the equilibrium were investigated in more detail and we obtained some
interesting results, including a paradox and the cumulative effects of the in-
correct use of pesticides on pest outbreaks, . In order to show the occurrences
of the paradox and of hormesis, several special models have been extended
and studied. Further, the biological implications of the main results regard-
ing successful pest control are discussed. All of the results obtained confirm
that the cumulative effects of incorrect use of pesticides may result in more
severe pest outbreaks and thus, in order to avoid a paradox in pest control,
control strategies need to be designed with care, including decisions on the
timing and number of pesticide applications in relation to the effectiveness
of the pesticide being used.
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1. Introduction

The continuous Lotka-Volterra model first proposed by Volterra in 1926
which has been widely used in fishery resources management and pest con-
trol [1, 2, 45, 46, 26, 47], and Lotka-Volterra’s famous principle reveals that
an intervention in the Lotka-Volterra model that kills or removes both pest
and natural enemies in proportion to their population densities has the ef-
fect of increasing average pest populations. This conclusion indicates that
control tactics must be designed carefully when an integrated pest manage-
ment (IPM) strategy including chemical and biological controls is employed
in practice.

Much theoretical and practical research has addressed how to mitigate
and control pest outbreaks [9, 10, 11, 12, 13, 14, 15, 16, 17]. Although the
application of pesticides is the most commonly used pest control method and
it can be very effective at the beginning of a campaign, in the later periods
it often results in an outbreak of the pest, a phenomenon known as pest
resurgence [18, 19, 20, 21, 22]. Note that there are two possible reasons for
a resurgence: one is the emergence of a pesticide-resistant strain of the pest,
and the other is a decrease in its enemy population as a result of the pesticide
applications [23]. Furthermore, low doses of a pesticide can enhance a pests
fecundity, while high doses can reduce the pest population density [23, 24],
a phenomenon called hormesis a term which describes generally favorable
biological responses to low exposures to toxins and other stressors [23].

To understand more details about the mechanism of resurgence and horme-
sis for successful pesticide applications in pest control, mathematical models
play an important role in determining the effectiveness of pesticides and the
optimal timing of pesticide applications [44, 7, 8]. As already mentioned,
continuous models including Lotka-Volterra models and pest and natural en-
emy systems with IPM strategies [44, 43, 26, 47] have revealed that human
actions have significant effects on pest resurgence and hormesis.

However, most pests have non-overlapping generations and control action-
s are applied within each generation, thus the question is how to formulate
and involve external perturbations into discrete population models. In order
to address this question, some interesting modeling methods have been pro-
posed recently [5, 4, 25], and the main results indicate that the timing of an
external perturbation and its strength could significantly affect on the dy-
namical behavior. In particular, harvesting/thinning can cause an eventual
increase of the targets population at the equilibrium when incorrect human
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actions have been implemented, which shows that single pesticide applica-
tions within each pest generation may result in a pest outbreak.

Therefore, multiple pesticide applications should be applied once the first
pesticide application has been unable to control the pest population success-
fully, then the most interesting questions are: (1) how to model the multiple
pesticide applications within each generation and analyze the dynamical be-
havior? (2) how do successive applications of pesticide affect each other? (3)
can the cumulative effects of incorrect use of pesticides lead to catastrophic
outbreaks of pests or not? To answer these questions, we first develop a
discrete single species model with multiple pesticide applications within each
population generation, and then the existence and stability of the unique
positive equilibrium was investigated. Furthermore, the effects of the timing
of pesticide applications and the instantaneous killing rate on the equilibrium
have been investigated in more detail, and some interesting results, including
on the cumulative effects of incorrect use of pesticides on pest outbreaks, have
been obtained. In order to show the occurrences of a paradox and hormesis,
several special models discussed in the literature [5, 4, 25] have been ex-
tended and studied, with some new and interesting results contrasting with
those obtained in the cited references. Finally, the biological implications
of the main results for successful pest control are discussed, which can help
us to design successful pest control strategies when the pest population has
non-overlapping generations.

2. Multiple control strategies applied within each pest generation

Recently, the following discrete single species population model [5, 4, 25]

xn+1 = λ(1− q)xn{θg(xn) + (1− θ)g((1− q)xn)} (2.1)

with one control event within generation n and n + 1 has been proposed
and investigated. Here xn ∈ [0,+∞) is the population size at generation
n ∈ N , and N denotes the integer set. The smooth function g(x)(x ≥ 0)
shows the intra-specific density effect on the reproduction rate which satisfies
0 < g(x) ≤ 1. The positive parameter λ represents the intrinsic growth rate,
and then λg(x) with λ > 1 means the per capita reproductive rate with
respect to the intra-specific density [25]. In model (2.1) the control measure
is applied instantaneously within the generation [n, n + 1], which indicates
that there exists a positive constant θ with 0 ≤ θ ≤ 1 such that the control
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measure including spraying pesticide is applied at time point n + θ, and a
proportion q(0 ≤ q < 1) of the pest population has been killed at the moment
of n + θ. Thus after the time point n + θ, the density dependent growth of
the species population depends on (1− q)xn [25].

In particular, if θ = 0 then model (2.1) can be changed to the following
impulsive difference equation{

xn+1 = λxng(xn), n = 0, 1, 2, · · · ,
xn+ = (1− q)xn, n = 0, 1, 2, · · · , (2.2)

which indicates that the chemical control tactics have been applied at the
beginning of each generation or parasitism season. For more details of impul-
sive difference equations, please see the reference [43]. If θ = 1 then model
(2.1) can be changed into the following impulsive difference equation{

xn+1 = λxng(xn), n = 0, 1, 2, · · · ,
x(n+1)+ = (1− q)xn+1, n = 0, 1, 2, · · · , (2.3)

which shows that the chemical control tactics have been applied at the end
of each generation or parasitism season. For convenience, we assume that
the function g(x) affected by the density is twice continuously differentiable,
and for any x > 0 the g(x) satisfies g(0) = 1, limx→∞ g(x) = 0 and g′(x) =
dg(x)
dx

< 0.
In reality, the chemical control tactics could be applied several times with-

in each pest generation, dependent on the pest outbreak frequency and/or
limited resources. Therefore, the main purpose of this work is to introduce
multiple chemical control tactics into model (2.1) and to investigate the ef-
fects of these multiple control measures on the interesting dynamics obtained
in reference [25]. To do this, we assume that pesticides have been applied m
times within generation [n, n + 1] satisfying n ≤ n + θ1 ≤ n + θ2 ≤ · · · ≤
n + θm ≤ n + 1, and at each time point n + θi, a proportion qi (0 ≤ qi < 1)
of the population has been killed, and then 1 − qi denotes the survival rate
at time point n+ θi. Therefore, we have the following model

xn+1 = λ

m∏
i=1

(1− qi)xn

[
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)xn

))]
, (2.4)

where ∆θi = θi+1−θi for i = 0, 1, 2, · · · ,m, and without loss of the generality
we assume that θ0 = 0, θm+1 = 1 and q0 = 0.
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3. Generalized analyses

In this section, we first analyze the existence and stability of the equilib-
rium of model (2.2), and then discuss the effects of the timing of applications
θi and the instantaneous killing rate qi on the equilibrium.

3.1. Existence and stability of non-trivial equilibrium

The equilibrium population size x∗ satisfies the following equation

1 = λ

m∏
i=1

(1− qi)

[
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x
∗

))]
. (3.1)

According to λ > 1 and the properties of the function g(x), we can easily see
that

λ
m∏
i=1

(1− qi) > 1 (3.2)

is the necessary condition for the existence of positive equilibrium x∗. Con-
sequently, if λ

∏m
i=1(1− qi) ≤ 1, i.e.

∏m
i=1(1− qi) ≥ 1− 1

λ
, then Eq.(3.1) does

not have any positive root x∗, and further the population size is gradually
reducing in the [n, n+ 1] generation and becomes extinct eventually.

Define a new function r(x) according to Eq.(3.1) as follows

r(x) =

[
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x

))]
− 1

λ
∏m

i=1(1− qi)
,

and taking the derivative of r(x) with respect to x, yields

r′(x) =

[
m∑
i=0

(
∆θig

′

(
i∏

j=0

(1− qj)x

)(
i∏

j=0

(1− qj)

))]
.

It follows from g′(x) < 0 that r′(x) < 0, indicating that the function r(x) is
a monotonically decreasing function with respect to x > 0.

Based on the basic properties of the function g(x), it follows from the
assumption λ

∏m
i=1(1− qi) > 1 that we have

r(0) = 1− 1

λ
∏m

i=1(1− qi)
> 0,
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lim
x→+∞

r(x) = − 1

λ
∏m

i=1(1− qi)
< 0,

which means that there is a unique x = x∗ ∈ (0,+∞) such that r(x∗) = 0.
That is to say, Eq.(3.1) has a unique positive root provided that λ

∏m
i=1(1−

qi) > 1.
Thus, the equilibrium x = x∗ > 0 uniquely exists if and only if λ

∏m
i=1(1−

qi) > 1. Further, in the case of x∗ > 0, we can have the following result with
the standard local stability analysis, i.e. the equilibrium x = x∗ > 0 is
asymptotically stable if∣∣∣∣∣ ddx

{
x

[
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x

))]}∣∣∣∣∣
x=x∗

< 1. (3.3)

If the inequality is reversed, the equilibrium x = x∗ > 0 is unstable.

3.2. The effects of timing of application pesticide and killing rate on the
equilibrium

Although we cannot solve the equilibrium x∗ analytically, x∗ strictly de-
pends on the timings of the applications of the pesticide θi and the killing
rates qi for i = 1, 2, · · · ,m. Therefore, in this subsection, we address how
the equilibrium x∗ varies as the parameters θi and qi change, which are quite
important for proper pesticide applications.

Firstly, from Eq.(3.1) taking the derivation of x∗ with respect to qk, yields

∂x∗

∂qk
= −Fqk

Fx∗
, k = 1, 2, · · ·m

with

Fx∗ = λ
m∏
i=1

(1− qi)

{
m∑
i=0

(
∆θig

′

(
i∏

j=0

(1− qj)x
∗

)
i∏

j=0

(1− qj)

)}
,

Fqk = −λ
m∏

i=1,i ̸=k

(1− qi)
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x
∗

))
+ A

and

A = λ

m∏
i=1

(1− qi)

{
m∑
i=k

(
∆θig

′

(
i∏

j=0

(1− qj)x
∗

)
i∏

j=0,j ̸=k

(1− qj)(−x∗)

)}
.
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Therefore, we have

∂x∗

∂qk
=

C + (1− qk)
{∑m

i=k

(
∆θig

′
(∏i

j=0(1− qj)x
∗
)∏i

j=0,j ̸=k(1− qj)x
∗
)}

(1− qk)
{∑m

i=0

(
∆θig′

(∏i
j=0(1− qj)x∗

)∏i
j=0(1− qj)

)}
=

C +
{∑m

i=k

(
∆θig

′
(∏i

j=0(1− qj)x
∗
)∏i

j=0(1− qj)x
∗
)}

(1− qk)
{∑m

i=0

(
∆θig′

(∏i
j=0(1− qj)x∗

)∏i
j=0(1− qj)

)}
where C =

∑m
i=0

(
∆θig

(∏i
j=0(1− qj)x

∗
))

. due to

∂

∂qk

[
(1− qk)

m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x
∗

))]

= C +

{
m∑
i=k

(
∆θig

′

(
i∏

j=0

(1− qj)x
∗

)
i∏

j=0

(1− qj)x
∗

)}
.

Thus, we have

∂x∗

∂qk
=

− ∂
∂qk

[
(1− qk)

∑m
i=0

(
∆θig

(∏i
j=0(1− qj)x

∗
))]

(1− qk)
[∑m

i=0

(
∆θi

∏i
j=0(1− qj)g′

(∏i
j=0(1− qj)x∗

))] . (3.4)

It follows from g′(x) < 0 that we have

(1− qk)

[
m∑
i=0

(
∆θi

i∏
j=0

(1− qj)g
′

(
i∏

j=0

(1− qj)x
∗

))]
< 0.

Therefore, we conclude that increasing the instantaneous killing rate qk can
result in increasing the equilibrium population size if and only if the following
condition

∂

∂qk
(1− qk)

[
m∑
i=0

(
∆θig

(
i∏

j=0

(1− qj)x
∗

))]
> 0 (3.5)

holds true.
The condition shown in Eq.(3.5) indicates that, under certain conditions,

the larger the control tactic is the more severe is the outbreak. If so, we
call this an occurrence of the emergence of the paradox. That is to say, the
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reduction of the density of the population by the k-th pesticide application
within each generation can cause the increasing of the population size if
the control tactics have not been properly applied. On the other hand,
if ∂

∂qk
(1 − qk)[

∑m
i=0(∆θig(

∏i
j=0(1 − qj)x

∗))] ≤ 0 for any x∗ > 0, then the
equilibrium population size x∗ is monotonically decreasing with the increasing
of qk(k = 1, 2, · · · ,m), so that the paradox will never occur in this case.

The effects of θk on the equilibrium population size x∗ can be calculated
as follows:

∂x∗

∂θk
= −Fθk

Fx∗
, k = 1, 2, · · ·m

with

Fθk = λ
∏m

i=1(1− qi)
d

dθk

(θk − θk−1)g(
k−1∏
j=0

(1− qj)x
∗) + (θk+1 − θk)g(

k∏
j=0

(1− qj)x
∗)


= λ

∏m
i=1(1− qi)

[
g(
∏k

j=0(1− qj)x
∗)− g(

∏k−1
j=0 (1− qj)x

∗)
]

and

Fx∗ = λ

m∏
i=1

(1− qi)

{
m∑
i=0

(
∆θig

′

(
i∏

j=0

(1− qj)x
∗

)
i∏

j=0

(1− qj)

)}
.

Thus, we have

∂x∗

∂θk
= −

g
(∏k−1

j=0(1− qj)x
∗
)
− g

(∏k
j=0(1− qj)x

∗
)

∑m
i=0

[
∆θi

(∏i
j=0(1− qj)

)
g′
(∏i

j=0(1− qj)x∗
)] .

Then we can see that ∂x∗

∂θk
< 0 due to g′(x) < 0 and

(∏k−1
j=0(1− qj)x

∗
)

>(∏k
j=0(1− qj)x

∗
)
. That is to say, the paradox does not occur at all if we

only consider the x∗ as a function of the timing of pesticide applications.
However, it does affect the value of equilibrium x∗ when we consider the
timing of pesticide applications and the instantaneous killing rate together,
i.e. x∗ is a function of both variables (qk, θk), which will be discussed in more
detail below.

Specially, if m = 1, then we can have the following equation based on
Eq.(3.4)

∂x∗

∂q
=

1

(1− q)Ψ

{
θg(x∗) + (1− θ)

∂

∂x∗ [x
∗g((1− q)x∗)]

}
,
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where Ψ = θg′(x∗) + (1− θ)(1− q)g′((1− q)x∗). Moreover, ∂x∗

∂q
> 0 only if

θg(x∗) + (1− θ)
∂

∂x∗ [x
∗g((1− q)x∗)] < 0 (3.6)

holds true. As a result of that θg(x∗) > 0 and (1− θ) > 0, we can easily find
that when m = 1 the paradox occurs only if ∂

∂x∗ [x
∗g((1− q)x∗)] < 0, which

have been investigated in [25].
It is easy to see that the inequality shown in Eq.(3.6) does not hold for

θ = 1. That is to say, when we apply the pesticide at the later period of the
specific season [n, n+1], the equilibrium population size will be decreased as
the killing rate increases, and then the paradox does not occur. This confirms
that only a sufficiently small θ can ensure the occurrence of the paradox.

The successive applications of pesticides can cause different effects on the
outbreak patterns and result in complex dynamics. In particular, the effects
of the instantaneous killing rate qk on the value of x∗ can be summarised as
in the following main results.

Theorem 1: If we consider the equilibrium x∗ as a function of qk, then
we have

∂x∗

∂qk
≤ 0 ⇒ ∂x∗

∂qk+1

< 0,
∂x∗

∂qk
> 0 ⇒ ∂x∗

∂qk−1

> 0.

Proof: It follows from Eq.(3.4) that we have the following three equations

1. ∂x∗

∂qk−1
=

[
∑m

i=0 ∆θig(
∏i

j=0(1−qj)x
∗)]+[

∑m
i=k−1 ∆θig

′(
∏i

j=0(1−qj)x
∗)

∏i
j=0(1−qj)x

∗]
(1−qk−1)[

∑m
i=0 ∆θig′(

∏i
j=0(1−qj)x∗)

∏i
j=0(1−qj)x∗]

,

2. ∂x∗

∂qk
=

[
∑m

i=0 ∆θig(
∏i

j=0(1−qj)x
∗)]+[

∑m
i=k ∆θig

′(
∏i

j=0(1−qj)x
∗)

∏i
j=0(1−qj)x

∗]
(1−qk)[

∑m
i=0 ∆θig′(

∏i
j=0(1−qj)x∗)

∏i
j=0(1−qj)x∗]

,

3. ∂x∗

∂qk+1
=

[
∑m

i=0 ∆θig(
∏i

j=0(1−qj)x
∗)]+[

∑m
i=k+1 ∆θig

′(
∏i

j=0(1−qj)x
∗)

∏i
j=0(1−qj)x

∗]
(1−qk+1)[

∑m
i=0 ∆θig′(

∏i
j=0(1−qj)x∗)

∏i
j=0(1−qj)x∗]

.

As a result of g′(x) < 0 we have
(1− qk−1)

[∑m
i=0∆θig

′(
∏i

j=0(1− qj)x
∗)
∏i

j=0(1− qj)x
∗
]

< 0,

(1− qk)
[∑m

i=0∆θig
′(
∏i

j=0(1− qj)x
∗)
∏i

j=0(1− qj)x
∗
]

< 0,

(1− qk+1)
[∑m

i=0∆θig
′(
∏i

j=0(1− qj)x
∗)
∏i

j=0(1− qj)x
∗
]

< 0.

Let Ω =
∑m

i=0∆θig(
∏i

j=0(1−qj)x
∗) and it is easy to know Ω > 0. Further,

if ∂x∗

∂qk
≤ 0, then the following inequality

Ω +
[∑m

i=k
∆θig

′(
∏i

j=0
(1− qj)x

∗)
∏i

j=0
(1− qj)x

∗
]
≥ 0 (3.7)
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holds true. The left side of Eq.(3.7) can be rewritten as follows

Ω +
[
∆θkg

′(
∏k

j=0(1− qj)x
∗)(
∏k

j=0(1− qj)x
∗)
]

+
[∑m

i=k+1∆θig
′(
∏i

j=0(1− qj)x
∗)
∏i

j=0(1− qj)x
∗
]
.

It follows from Eq.(3.7) and
[
∆θkg

′(
∏k

j=0(1− qj)x
∗)(
∏k

j=0(1− qj)x
∗)
]
<

0 that {
Ω +

[∑m

i=k+1
∆θig

′(
∏i

j=0
(1− qj)x

∗)
∏i

j=0
(1− qj)x

∗
]}

> 0.

All these confirm that ∂x∗

∂qk
≤ 0 indicates ∂x∗

∂qk+1
< 0.

If ∂x∗

∂qk
> 0, i.e. Eq.(3.7)< 0, then it follows from[

∆θk−1g
′(
∏k−1

j=0
(1− qj)x

∗)(
∏k−1

j=0
(1− qj)x

∗)
]
< 0

that we can get

Ω +
[
∆θk−1g

′(
∏k−1

j=0(1− qj)x
∗)(
∏k−1

j=0(1− qj)x
∗)
]

+
[∑m

i=k ∆θig
′(
∏i

j=0(1− qj)x
∗)
∏i

j=0(1− qj)x
∗
]
< 0.

(3.8)

Further, the left side of Eq.(3.8) can be rewritten as follows:

Ω +
[∑m

i=k−1
∆θig

′(
∏i

j=0
(1− qj)x

∗)
∏i

j=0
(1− qj)x

∗
]
.

This shows that ∂x∗

∂qk
> 0 indicates ∂x∗

∂qk−1
> 0. This completes the proof.

The main results shown in Theorem 1 reveal that if the k-th application
of pesticide cannot cause the paradox, then the (k + 1)-th application of
pesticide also cannot result in the paradox, as shown in Fig.1. However if
the k-th application of pesticide can cause the paradox, then the (k − 1)-th
application of pesticide may also cause the paradox under condition (3.5).
All these results show that the chemical control tactics should be carefully
designed before they are applied in practice, otherwise they will result in
more severe outbreaks in terms of the density of the pest population.

In order to compare the main results obtained in [25] for single pesticide
applications within each generation with the results for the proposed model
in the present work, we employ the following three specific functions of g(x)
which include a Beverton-Holt type function, exponential function and power
function to address how the number of times that the pesticide is applied
per generation and the instantaneous killing rate affect the emergence of the
paradox, and consequently on the control of the pest population.
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4. Application and special cases

4.1. Beverton-Holt type function

In this subsection, the following function of g(x)

g(x) =
1

1 + bx
(4.1)

has been chosen [27, 28, 29], in which b is a positive constant. Substituting
Eq.(4.1) into model (2.2), yields the following Beverton-Holt model with
multiple chemical controls within each generation:

xn+1 = λ
m∏
i=1

(1− qi)xn

{
m∑
i=0

[
∆θi(1 + b

i∏
j=0

(1− qj)xn)
−1

]}
. (4.2)

The equilibrium population size x∗ satisfies the following equation:

1 = λ
m∏
i=1

(1− qi)

{
m∑
i=0

[
∆θi(1 + b

i∏
j=0

(1− qj)x
∗)−1

]}
. (4.3)

For this case, the function of r(x) becomes as follows:

r(x) =

{
m∑
i=0

[
∆θi(1 + b

i∏
j=0

(1− qj)x)
−1

]}
− 1

λ
∏m

i=1(1− qi)
,

which satisfies the following conditions:

1. r′(x) < 0 for all x > 0,

2. r(0) = 1− 1
λ
∏m

i=1(1−qi)
> 0 provided λ

∏m
i=1(1− qi) > 1,

3. lim
x→∞

r(x) = − 1
λ
∏m

i=1(1−qi)
< 0.

It follows from the main results obtain in Section 3.1 that model (4.2)
exists a unique equilibrium x = x∗ provided that λ

∏m
i=1(1− qi) > 1.

Further, we define the function f(x∗) as follows:

f(x∗) = λ

m∏
i=1

(1− qi)x
∗

{
m∑
i=0

[
∆θi(1 + b

i∏
j=0

(1− qj)x
∗)−1

]}

11



and by simple calculation we have

f ′(x∗) = λ

m∏
i=1

(1− qi)

{
m∑
i=0

[
∆θi(1 + b

i∏
j=0

(1− qj)x
∗)−2

]}
.

Obviously f ′(x∗) > 0, and according to (1 + b
∏i

j=0(1 − qj)x
∗)−2 <

(1 + b
∏i

j=0(1 − qj)x
∗)−1, (3.2) and Eq.(4.3), we have f ′(x∗) < 1. This

indicates that |f ′(x∗)| < 1 if the equilibrium x∗ exists, and consequently the
equilibrium x∗ of model (4.2) is locally asymptotically stable.

Whether the paradox for model (4.2) may emerge or not with respect to
the killing rate qk depends on condition (3.4), i.e. it depends on the sign of
the following equation:

∂x∗

∂qk
= −

∑m
i=k(bx · Λ ·

∏i
j=0(1− qj)) +

∑m
i=0((1 + bx ·

∏i
j=0(1− qj)) · Λ)

(1− qk)(
∑m

i=0(b · Λ ·
∏i

j=0(1− qj))

with Λ = ∆θi
(1+bx(

∏i
j=0(1−qj)))2

> 0. It is easy to see that ∂x∗

∂qk
≤ 0, i.e. the

paradox will never occur in model (4.2) for any qk(k = 1, 2, · · · ,m) and x∗ >
0. All these results confirm that if the pest population follows the Beverton-
Holt model, then successive control measures within the n-th generation can
reduce the density of the pest population gradually.

In order to show in more detail how the timings of the pesticide applica-
tions and killing rates affect on equilibrium population size, we carried out
numerical analysis in the rest of this subsection. In particular, we focus on
how the multiple chemical control tactics affect the final size x∗. To do this,
in Fig.2 we fix m = 2 and q1 = q2 = q, θ0 = 0, θ1 = θ0 + θ, θ2 = θ1 + θ.
The main results shown in Fig.2 reveal that increasing the killing rate q can
result in decreasing the equilibrium of population size x∗, and the later the
application (i.e. the larger θ) is, the faster is the reducing effect, when q is
small.

For different killing rates and timings of pesticide applications, the results
shown in Fig.3 indicate that no matter what the values of the θ1 and θ2 are,
the equilibrium of population size x∗ will decrease with the increasing of q1
and q2. But the timings of pesticide applications are crucial in this case, i.e.
with the increasing of θ1 and θ2 the equilibrium of population size x∗ reduces
faster. All these results confirm again that the paradox will never occur if
the pest population follows Beverton-Holt growth.
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4.2. Ricker model or exponential function

In this subsection, we choose another important function, i.e. the expo-
nential function

g(x) = e−βx (4.4)

as a candidate to show the effects of the timing of pesticide applications and
the killing rate on the pest outbreaks, and here the parameter β is a positive
constant. Note that the classical discrete Ricker model and its applications
have been widely investigated [34, 33, 32, 31]. Substituting Eq.(4.4) into
model (2.2), yields the following Ricker model with multiple chemical controls
within each generation:

xn+1 = λ
m∏
i=1

(1− qi)xn

{
m∑
i=0

[
∆θie

−β(
∏i

j=0(1−qj)xn)
]}

. (4.5)

The equilibrium population size x∗ satisfies the following equation:

1 = λ
m∏
i=1

(1− qi)

{
m∑
i=0

[
∆θie

−β(
∏i

j=0(1−qj)x
∗)
]}

. (4.6)

For this case, the function of r(x) becomes as follows:

r(x) =

{
m∑
i=0

[
∆θie

−β(
∏i

j=0(1−qj)x)
]}

− 1

λ
∏m

i=1(1− qi)
,

and it is easy to check that

1. r′(x) < 0 for all x > 0,

2. r(0) = 1− 1
λ
∏m

i=1(1−qi)
> 0 provided that λ

∏m
i=1(1− qi) > 1,

3. lim
x→∞

r(x) = − 1
λ
∏m

i=1(1−qi)
< 0,

which indicates that for model (4.5) there exists a unique equilibrium x = x∗

provided that λ
∏m

i=1(1− qi) > 1.
Next we show the effects of the timings of pesticide applications and the

killing rates on the stability of the equilibrium x = x∗ of Ricker model (4.5).
To do this, it follows from

f(x) = λ
m∏
i=1

(1− qi)x

{
m∑
i=0

[
∆θie

−β(
∏i

j=0(1−qj)x)
]}

13



that we have

f ′(x∗) = λ
m∏
i=1

(1− qi)

{
m∑
i=0

∆θie
−β(

i∏
j=0

(1−qj)x
∗)


−x∗

m∑
i=0

∆θi(
i∏

j=0
(1− qj))βe

−β(
i∏

j=0
(1−qj)x

∗)

}

= 1− βx∗
m∑
i=0

∆θi

(
i∏

j=0
(1− qj)

)
e
−β(

i∏
j=0

(1−qj)x
∗)

 .

(4.7)

Note that |f ′(x∗)| < 1 indicates that the equilibrium x∗ is locally stable,
i.e. we need

0 < βx∗
m∑
i=0

∆θi

(
i∏

j=0

(1− qj)

)
e
−β(

i∏
j=0

(1−qj)x
∗)

 < 2.

It is easy to see that

0 <

m∑
i=0

∆θi

(
i∏

j=0

(1− qj)

)
e
−β(

i∏
j=0

(1−qj)x
∗)

 <

m∑
i=0

[∆θi] = 1,

which indicates that if 0 < βx∗ < 2, then we have |f ′(x∗)| < 1, i.e. the
equilibrium x∗ is locally stable. Moreover, we note that the inequalities
0 < βx∗ < 2 ensure that the equilibrium of the classical Ricker model is
locally stable. The effects of the timings of the pesticide applications and
the killing rates on the stability of the equilibrium x = x∗ can be determined
by the term

m∑
i=0

∆θi

(
i∏

j=0

(1− qj)

)
e
−β(

i∏
j=0

(1−qj)x
∗)

 ,

which is a function of both the timings of the pesticide applications θi and
the killing rates qi. All these results confirm that the application of multiple
control tactics within each generation can enlarge the stable domain of the
equilibrium.

What we want to address in the following is whether the paradox for
Ricker model (4.5) may emerge or not with respect to the killing rate qk based
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on condition (3.4), i.e. the sign of ∂x∗

∂qk
. Denote Φi = ∆θie

−βx∗(
∏i

j=0(1−qj)), and
we have

Fx∗ = λ
m∏
i=1

(1− qi)

[
m∑
i=0

Φi(−β(
i∏

j=0

(1− qj)))

]
,

Fqk = λ
m∏
i=1

(1− qi)(
m∑
i=k

Φi(β(
i∏

j=0,j ̸=k

(1− qj)x
∗)))− λ

m∏
i=1,i ̸=k

(1− qi)(
m∑
i=0

Φi),

which show that

∂x∗

∂qk
= −Fqk

Fx∗
=

(1− qk)(
∑m

i=k Φi · β
∏i

j=0,j ̸=k(1− qj)x
∗)− (

∑m
i=0Φi)

(1− qk)(
∑m

i=0Φi · β
∏i

j=0(1− qj))

=
(
∑m

i=0Φi)− (
∑m

i=k Φi · β
∏i

j=0(1− qj)x
∗)

(qk − 1)(
∑m

i=0 Φi · β
∏i

j=0(1− qj))

=
(
∑k−1

i=0 Φi) + (
∑m

i=k Φi)− (
∑m

i=k Φi · β
∏i

j=0(1− qj)x
∗)

(qk − 1)(
∑m

i=0 Φi · β
∏i

j=0(1− qj))
.

Therefore,

∂x∗

∂qk
=

[
∑k−1

i=0 Φi] + [
∑m

i=k Φi(1− βx∗(
∏i

j=0(1− qj)))]

β(qk − 1)
∑m

i=0Φi(
∏i

j=0(1− qj))
. (4.8)

Based on the condition of the emergence of the paradox, we can easily
find that the sign of [

∑k−1
i=0 Φi]+ [

∑m
i=k Φi(1−βx∗(

∏i
j=0(1−qj)))] determines

the existence of the paradox in the Ricker model (4.5). The problem is that
we cannot obtain the concrete equilibrium x∗ from Eq.(4.6). So we carried
out numerical analyses, as described in the rest of this subsection.

Similarly, for comparative reasons we consider one-time chemical control
in Fig.(4)(a, c, e) with m = 1, θ1 = θ and q1 = q, two-times chemical controls
in Fig.(4)(b, d, f) withm = 2, q1 = q2 = q, ∆θi = θi+1−θi(i = 0, 1, 2), θ0 = 0,
θ1 = θ0 + θ, θ2 = θ1 + θ and θ3 = 1. The effects of the killing rate q and θ
on the stable population level x∗ are shown in Fig.(4) by using bifurcation
analyses.

It follows from the bifurcation diagrams shown in Fig.4 that the paradox
occurs only for relatively small θ values, which means that increasing the
killing rate will result in increasing the stable population level. Meanwhile,
we note that there exists a threshold killing rate qc which monotonically de-
creases with increasing numbers of pesticide applications, such that the stable
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population size x∗ increases with the increasing of q, and consequently the
paradox occurs. Moreover, the numbers of pesticide applications within each
generation also play a key role for pest control, in particular for mitigating
the paradox, as shown in Fig.4(e,f).

To show in more detail how the timing of pesticide applications and the
killing rate affect the stable population size x∗, we fix the parameter values
as those in Fig.5, where we fix m = 2, q1 ̸= q2, θ0 = 0, θ2 = θ1 + 0.25 and
θ3=1. From this figure, we can see significant effects of the timing of pesticide
applications on x∗, and the later the application of the pesticide the greater
the reduction of the population size and consequently leads to avoidance
of the paradox. Besides, effects of increasing the killing rates of different
times of pesticide applications (q1 and q2) affect each other significantly.
Specifically, when the killing rate q1 is large, increasing q2 can greatly reduce
the population size, while when q1 is small, increasing q2 can lead to an
increase of the population size, as shown in Fig.5(a) and Fig.5(b).

In order to show the effects of the numbers of pesticide applications within
each generation on the stable population size x∗ , we fix the parameter values
as those in Fig.6 and Fig.7 with qk = q(k = 1, · · · ,m), θ0 = 0, θm+1 = 1,
θi+1 = θi + θ(i = 1, · · · ,m), and then let both parameters q and θ vary
simultaneously. From Fig.6 we can see that for a relatively small killing rate
(i.e. less than the threshold value qc) and relatively small θ, increasing the
numbers of pesticide applications does not reduce the stable population size
x∗ at all, no matter how many pesticide applications are made within each
generation, which further confirms the main results shown in Theorem 1 and
that the cumulative effects of incorrect use of pesticides may result in more
severe pest outbreaks. However, the numbers of pesticide applications can
contribute significantly to reducing the population size if the killing rate is
large enough, as shown in Fig.6. Besides, the larger the number of pesticide
applications is, the smaller is the value of threshold qc. Moreover, it follows
from Fig.7, we find that the stable population size x∗ at the threshold qc
also decreases with the increase of the number and the timing of pesticide
applications. Therefore, the number of pesticide applications, the timing of
pesticide applications and the effectiveness of the pesticides are all crucial
for pest control.

4.3. Power function

Based on Beverton-Holt and Ricker functions we have discussed the effects
of the timing of pesticide applications and the killing rate on the stable
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population size in the above two subsections, but those effects cannot be
investigated directly as the analytical formula of x∗ could not be obtained.
Therefore, in the following we consider a special case which allows us to
derive the analytical formula for x∗, i.e., the following power function [25]

g(x) = x−γ (4.9)

has been employed which depends on the effectiveness of the density, where
the parameter γ is a positive constant different from 1. Substituting (4.9)
into model (2.4), yields the following model with multiple chemical controls
within each generation

xn+1 = λ

m∏
i=1

(1− qi)xn

{
m∑
i=0

[
∆θi(

i∏
j=0

(1− qj)xn)
−γ

]}
. (4.10)

The equilibrium population size x∗ satisfies the following equation

1 = λ
m∏
i=1

(1− qi)

{
m∑
i=0

[
∆θi(

i∏
j=0

(1− qj)x
∗)−γ

]}
, (4.11)

which can be solved with respect to x∗, and we have

x∗ = γ

√√√√λ

m∏
i=1

(1− qi)
m∑
i=0

(∆θi(
i∏

j=0

(1− qj)−γ). (4.12)

Obviously x∗ is unique and positive under condition (3.2).?? For the
stability of the equilibrium x∗, the function f(x∗) becomes

f(x∗) = λ
m∏
i=1

(1− qi)x
∗

{
m∑
i=0

[
∆θi(

i∏
j=0

(1− qj)x
∗)−γ

]}
, (4.13)

and consequently we have

f ′(x∗) = (1− γ)x∗−γλ
m∏
i=1

(1− qj)

{
m∑
i=0

[
∆θi(

i∏
j=0

(1− qj)
−γ)

]}
. (4.14)

Substituting Eq.(4.12) into Eq.(4.14), we get f ′(x) = 1 − γ? which means
that if 0 < γ < 2(γ ̸= 1) then we have |f ′(x∗)| < 1. Thus the equilibrium
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of population size x∗ > 0 uniquely exists and is locally asymptotically stable
provided that 0 < γ < 2(γ ̸= 1).

It is easy to see that

∂x∗

∂qk
=

−Fqk

Fx

= 0 ⇒ Fqk = 0,

and denote M = λ
∏m

i=1,i ̸=k(1− qi), then we have

Fqk = M(1− qk)

{∑m
i=k ∆θi · γ

(∏i
j=0(1− qj)x

∗
)−γ−1 (∏i

j=0,j ̸=k(1− qj)x
∗
)}

−M
{∑m

i=0

[
∆θi((

∏i
j=0(1− qj)x

∗)−γ)
]}

= M

{∑m
i=k ∆θi · γ

(∏i
j=0(1− qj)x

∗
)−γ−1 (∏i

j=0(1− qj)x
∗
)

−
∑m

i=0

[
∆θi((

∏i
j=0(1− qj)x

∗)−γ)
]}

= M

{∑m
i=k ∆θi · γ

(∏i
j=0(1− qj)x

∗
)−γ

−
∑m

i=0

[
∆θi((

∏i
j=0(1− qj)x

∗)−γ)
]}

= M

{∑m
i=k ∆θi · (γ − 1)

(∏i
j=0(1− qj)x

∗
)−γ

−
∑k−1

i=0

[
∆θi((

∏i
j=0(1− qj)x

∗)−γ)
]}

= 0.

Substituting Eq.(4.12) into Fqk , then we can get that

m∑
i=k

∆θi(γ − 1)(
∏i

j=0(1− qj)
−γ)

λ
∏m

i=1(1− qi)

[∑m
i=0∆θi

(∏i
j=0(1− qj)

)−γ
]

−
k−1∑
i=0

∆θi(
∏i

j=0(1− qj)
−γ)

λ
∏m

i=1(1− qi)

[∑m
i=0∆θi

(∏i
j=0(1− qj)

)−γ
] = 0

⇒
∑m

i=k ∆θi(γ − 1)(
∏i

j=0(1− qj)
−γ)−

∑k−1
i=0 ∆θi(

∏i
j=0(1− qj)

−γ) = 0

⇒ (1− qk)
−γ
∑m

i=k ∆θi(γ − 1)(
∏i

j=0,j ̸=k(1− qj)
−γ) =

∑k−1
i=0 ∆θi(

∏i
j=0(1− qj)

−γ)

⇒ (1− qk)
γ =

(γ−1)
∑m

i=k ∆θi(
∏i

j=0,j ̸=k(1−qj)
−γ)∑k−1

i=0 ∆θi(
∏i

j=0(1−qj)−γ)
.

Therefore, these results confirm that there exists a threshold qc such that

∂x∗

∂qk
= 0 ⇒ qk = qc = 1−

[
(γ − 1)

∑m
i=k ∆θi(

∏i
j=0,j ̸=k(1− qj))

−γ)∑k−1
i=0 (∆θi(

∏i
j=0(1− qj))−γ)

] 1
γ

(4.15)
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and
∂x∗

∂qk
≤ 0 ⇒ qk ≤ qc,

∂x∗

∂qk
> 0 ⇒ qk > qc.

Based on the above discussion, we can conclude that

1. the paradox will occur if 0 < γ < 2(γ ̸= 1) and q > qc;

2. the paradox will not occur if one of the following conditions is admitted:γ ≥
2 or q ≤ qc;

This threshold condition q > qc can also be described as θ < θc. When
m = 1, m = 2, qk = q(k = 1) and θi + 1 = θi + θ the threshold θc can be
expressed as follows:{

θc =
γ−1

γ−1+(1−q)γ
, m = 1,

θc =
(2−2γ)(1−q)−2γ

(γ−2)(1−q)−γ+(4−4γ)(1−q)−2γ−2
, m = 2.

To see the parameter regions in which the paradox will occur clearly, we
carried out numerical analysis, as described in the rest of this subsection. Fig.
8 shows the threshold values when m = 1 and m = 2 in which I represents
the region where no paradox will occur and II represents the region in which
the paradox will occur. From this figure we can see that large θ and small q
are conducive to avoiding the paradox.

According to Eq.(4.11) we can get the contour plot of the equilibrium
population size under some specific parameter values as shown in Fig.9. Fig.9
indicates that the paradox can occur in all of the four circumstances. When
the applications of pesticide are implemented early (as shown in Fig.9(a) and
Fig.9(b)), increasing the killing rate q1 or q2 can only lead to an increase of
the population size. However, when the interventions are implemented later
(as shown in Fig.9(c) and Fig.9(d)), increasing the killing rate can result in
a decrease at first and then an increase of the population size.

In order to show the comprehensive effects of the numbers of pesticide
applications, the timing of pesticide applications and the killing rate on the
stable population size x∗, we fix the parameter values as those in Fig.10
and Fig.11 with λ = 4, γ = 1.3 and m = 1, 2, 3, 4. It follows from Fig.10
and Fig.11 that the later the application of pesticide the greater the reduc-
tion of the population size and the increase of the value of the threshold qc
which consequently helps avoidance of the paradox. Besides, we can see that
increasing the number of pesticide applications can help to avoid the occur-
rence of the paradox(as shown in Fig.11(b)). Moreover, comparing Fig.11(a)
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with Fig.11(b) we find that the effects of increasing the number of pesticide
applications varied with the timing of interventions. In particular, when θ is
small, namely, implementing the pesticide application early, increasing the
number of interventions can lead to an increase of the stable population size
x∗, while when θ is relative large, increasing the number of interventions can
lead to a decrease at first and then an increase of the stable population size
x∗, which is opposite to the results of the Ricker model. Therefore, later and
multiple pesticide applications will benefit pest control but a high killing rate
is a disadvantage.

5. Conclusions

In real life, pesticides are usually applied several times by farmers once the
first pesticide application has failed to maintain the pest population below
a suitably low level. But sometimes things go against farmers wishes, and a
more severe outbreak of the pest may occur. Therefore, in order to reveal this
mechanism from a mathematical point of view, we have extended the discrete
single species model with multiple instantaneous chemical controls within
each pest generation, which allows us to analyse the side-effects of multiple
pesticide applications on pest outbreaks, and consequently to improve the
designs of successful pest control strategies.

The main results shown in Theorem 1 clarify the relations between the
k-th application and the (k+1)-th application, and the relations between the
k-th application and the (k−1)-th application. Under certain conditions, the
occurrence of the paradox in the k-th application of pesticide indicates that
the paradox must occur at the (k−1)-th application of pesticide. While if the
k-th application of pesticide can successfully reduce the density of the pest
population, then the same result can be obtained at the (k+1)-th application
of pesticide. These interesting results indicate that the pesticide applications
should be carefully designed before they are applied in practice, otherwise
more severe outbreaks, in terms of the density of the pest population, will
result.

The results also show that the earlier the pesticide application is, the
more likely it is that the paradox will occur. Moreover, multiple pesticide
applications could cause cumulative effects which result in more severe pest
outbreaks if the pesticides have been used incorrectly. However, the numbers
of pesticide applications can greatly contribute to reductions of the popula-
tion size if the killing rate is large enough and the pesticides have been applied
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correctly, as shown in Fig.6. Thus, we conclude that the number of pesti-
cide applications, the timing of pesticide applications and the effectiveness
of the pesticides are the most important factors which affect the success or
otherwise of pest control.

Compared with the results obtained in [5, 4, 25], we see that the model
with multiple pesticide applications within each pest generation will produce
more interesting and complex results, and can help us to reveal how the
multiple pesticide applications affect each other. Note that the present work
mainly focused on the discrete single species model with multiple chemical
controls, and IPM strategies based on the continuous modelling methods
proposed in [43, 38, 26, 47] will be considered in the near future.
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Figure 1: The illustrations of main results shown in Theorem 1.
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Figure 2: The equilibrium population size x = x∗ for model (4.2) as a function of
killing rate q, with the variation of θ from 0 to 1. The parameter values are fixed
as follows: λ = 4.0, b = 0.02, m = 2, θ0 = 0, ∆θi = θi+1 − θi(i = 0, 1, 2), θ3 = 1
and qk = q(k = 1, 2).

26



0 0.5 1
0

50

100

150

200

q
1

x*

(a) θ
1
=0,θ

2
=0.25

0 0.5 1
0

50

100

150

200

q
1

x*

(b) θ
1
=0.25,θ

2
=0.5

0 0.5 1
0

50

100

150

200

q
1

x*

(c) θ
1
=0.5,θ

2
=0.75

0 0.5 1
0

50

100

150

200

q
1

x*

(d) θ
1
=0.75,θ

2
=1

q
2
=0 q

2
=0

q
2
=0.7q

2
=0.7

q
2
=0 q

2
=0

q
2
=0.7q

2
=0.7

Figure 3: The equilibrium population size x = x∗ for model (4.2) as a function of
killing rate q, with the variation of q2 from 0 to 0.7. The parameter values are
fixed as follows: λ = 4.0, b = 0.02, m = 2, θ0 = 0; a : θ1 = 0 and θ2 = 0.25;
b : θ1 = 0.25 and θ2 = 0.5; c : θ1 = 0.5 and θ2 = 0.75; d : θ1 = 0.75 and θ2 = 1.
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Figure 9: Contour plot of the equilibrium population size x∗ for model (4.10) with
respect to q1 and q2. The parameter values are fixed as follows: λ = 4, γ = 1.3,
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Figure 10: The equilibrium population size x = x∗ for model (4.10) as a function
of killing rate q, with θ varying from 0 to 1/m (with interval 0.1). The parameter
values are fixed as follows: λ = 4, γ = 1.3 and m = 1, 2, 3, 4 in a, b, c, d,
respectively.

34



0 0.5 1
0

1

2

3

4

5

6

7

8

q

x*

(a) θ=0.01

0 0.5 1
0

1

2

3

4

5

6

7

8

q

x*

(b) θ=0.25

m=1

m=1

m=2

m=2

m=3

m=3

m=4

m=4

Figure 11: The equilibrium population size x = x∗ for model (4.10) as a function
of killing rate q. The parameter values are fixed as follows: λ = 4, γ = 1.3
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