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Abstract 

Host selection is a key stage in the lifecycle of parasitoids, and is critical to both 

their function in control and to the maintenance of their population. The solitary 

endoparasitoid Microplitis similis (Hymenoptera: Braconidae), is a potential 

biological control agent of Spodoptera litura larvae (Lepidoptera: Noctuidae). In this 

study, we examined the preference M. similis exhibits for different instars of the host, 

host instar effects on parasitoid development and the weight gain and food 

consumption of different instars of parasitized larvae. In no-choice tests, parasitization 

rates were highest in second and early third instar larvae, and no fourth or fifth instar 

hosts were parasitized. When provided with a choice of first to late third instars host 

larvae, M. similis preferred to parasitize early third instar host larvae (41 %) with a 

selection coefficient of 0.37. All morphometric features of wasp offspring increased 

with increasing age of the host at parasitization. A lower proportion of females 

emerged from first instar larvae than any other instar. Parasitized S. litura larvae 

showed a pronounced reduction in food consumption and weight gain. Microplitis 

similis may have the potential to significantly suppress population growth and the 

damage caused by S. litura. 
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Introduction 

The oriental leafworm moth, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) 

has a worldwide distribution, can migrate long distances, and has a high reproductive 

rate (Shad et al. 2012). Spodoptera litura is a polyphagous insect pest which has been 



recorded from over 100 families and causes extensive damage to tobacco, cotton, 

soybean and cruciferous vegetables (Tuan et al. 2014). Oriental leafworm was 

recently reported to cause economic losses of about $44.7 million to soybean in the 

Kota region of Rajasthan (Dhaliwal et al. 2010). Conventional control of noctuid pests 

chiefly relies on chemical pesticides, and the frequent application of insecticide has 

led to the rapid evolution of insecticide resistance in the field (Ahmad et al. 2007; Su 

et al. 2012).  

Biological control is an important component of successful Integrated Pest 

Management (IPM) programs. The use and enhancement of natural enemies of the 

insect pests plays an important role in IPM, and parasitoids are considered to be 

important biological control agents against Lepidopteran pests (Mills 2009; Barzman 

et al. 2015). He and Liu (2002) list hymenopterous parasitoids of S. litura from China, 

including 29 primary parasitoids and 11 hyperparasitoids. The genus Microplitis 

contains 200 species (Ernandez-Triana et al. 2015) and M. similis Lyle (Hymenoptera: 

Braconidae) is a solitary endoparasitoid, with hosts including Agrotis ypsilon 

(Rottemberg), Spodoptera exigua (Hübner) and S. litura (Fabricius) (Shepard and 

Barrion 1998; Ranjith et al. 2015). Microplitis similis was first recorded in India 

(Wilkinson 1930) and identified as a vector of Heliothis virescens ascovirus 3h only 

recently (Li et al. 2016).  

Host species much influence the behavior of parasitoid wasps (Kapranas and Tena 

2015) and their development within the host (Mawela et al. 2013). In addition, the 

instar of host larvae has received widespread attention, and often influences adult 

oviposition choice and the performance of immatures (Hu and Vinson 2000; 

Nussbaumer and Schopf 2000; Mironidis and Savopoulou-Soultani 2008). Once an 

egg has been laid in the host, many parasitoid larvae grow by feeding on silk glands 



and haemolymph (Jackson et al. 1978), resulting in a reduction of food intake and 

weight gain of host larvae when compared to the non-parasitized larvae (Mironidis 

and Savopoulou-Soultani 2009). 

In this paper, we describe the host instar preference of M. similis, the effects of S. 

litura larval stage on the development of M. similis offspring and weight gain and 

food consumption of parasitized hosts. This study provides knowledge for assessing 

the biological control potential of M. similis against S. litura, and for finding the most 

suitable conditions for mass production of the parasitoid. 

 

Materials and Methods 

Study insects 

Spodopera litura larvae were reared on pinto bean-based diets until pre-pupation at 

30 ± 1 ℃, 60 ± 5 % RH, with a photoperiod of 14: 10 (L: D) h (Burton 1970; Li et 

al. 2015). First to fifth S. litura instars were used for these experiments. 

A colony of M. similis wasps was established in the laboratory in May 2013. 

Cocoons of M. similis were collected from wild second and third instar S. litura larvae 

in a vegetable field near Hunan Agricultural University, Changsha City, Hunan 

Province, China. The parasitoids were reared on S. litura larvae with a 40 % honey 

solution as food at 30 ℃ (Li et al. 2015). For this experiment, M. similis adults were 

cultured with 30 % honey solution at 30 ± 1 ℃, 60 ± 5 % RH, with a 

photoperiod of 14: 10 (L: D). All experiments were conducted under the same 

environmental conditions described above. The species identification of M. similis 

was referenced to Li et al. (2015). Molecular identification based on the barcoding 

co1 sequence following Huang’s methods (Huang et al. 2011) was performed based 

on the co1 sequence of M. similis (GenBank Access Number: KX077544) and the 



Microplitis co1 sequences in NCBI, the phylogenetic relationship of M. similis is 

shown in supplementary figures. There is a growing literature demonstrating that co1 

will reliably discriminate a diverse range of taxa at the species level. Therefore, the 

identification of M. similis was also conducted on the basis of phylogeny using DNA 

barcoding. 

Instar Preferences  

Experimental studies were conducted on four larval stages (third instar larvae were 

split into early and late stages after He et al. (2014)) of S. litura using no-choice and 

choice tests in environmental chambers. In no-choice tests, twenty individual larvae 

of the same instar and one mated female wasp were kept in a plastic tube (10 cm 

length × 3 cm diameter, n = 30 per treatment) containing 30 % honey solution and a 

piece of sweet potato leaf. After 24 h exposure, the host larvae were placed in a 

plastic case (4.5 × 12.0 × 7.0 cm) and provided with the standard diet. The larvae 

were cultured in the environment chambers, and checked daily until they pupated or 

died. Host larvae that died before parasitoid cocooning or pupation were dissected, to 

ascertain whether they contained parasitoid eggs or larvae. The number of parasitoid 

cocoons was recorded. Successful parasitization was defined by a host larvae yielding 

at least one parasitoid, and parasitism was calculated as number of successful 

parasitized larvae/number of larvae tested × 100.  

In choice tests, high densities of fourth and fifth instar S. litura larvae exhibited 

cannibalistic behavior, which resulted in high mortality. Therefore, only first to late 

third instars larvae were provided for the choice test. Eighty hosts (20 of each stage) 

were exposed to 10 parasitoids in a plastic cage (6 ×18 × 12 cm). After 24 h exposure, 

the host larvae were separated and cultured in an environment chamber under the 

same conditions as described above for rearing. The host larvae were checked and 



recorded daily as described above. This experiment was replicated 5 times. Selection 

coefficient of M. similis was calculated as follows (Cock 1978; Chu et al. 2014). 

Selection Coefficient = Ri / 

m

1i
Ri . Where Ri = the percentage parasitism during 

host instars i; m = number of host instars tested. 

Host instar effects on the development of M. similis 

First to late third instar S. litura were tested for their effect on the development and 

body size of M. similis. Adult parasitoid were taken from the culture as described in 

the no-choice tests. The development times from egg to cocoon, cocoon to adult, 

emergence percentage and sex ratio were recorded for each treatment. Adult 

parasitoids which emerged were then checked daily until the host died. Adult body 

length, front wing length and hind-tibia length of each parasitoid were measured 

under Motic Digital Microscope Mutual System (He et al. 2014). 

Food consumption and weight gain of parasitized hosts  

The first, second, early third and late third instar S. litura were exposed 

individually to two mated female wasps in a plastic tube (as above). Once each larvae 

received an oviposition, it was immediately removed. These parasitized host larvae 

were examined for the body weight and food consumption each day until death or 

pre-pupation. These data were compared with corresponding data from 

non-parasitized larvae, which were reared separately from the fifth day. A piece of 

sweet potato leaf was placed in a test tube without larvae to estimate the percentage of 

moisture lost daily from a leaf in the environment chambers .The 

parasitized/unparasitized larvae were weighed on an analytical balance (Mettler 

Toledo, China). The following formula was used to calculate the food consumption 

(Chu et al. 2014).  



Proportion of daily moisture loss = 
fresh weight after dehydrating (mg)

initial fresh weight of leaf (mg)
;  

Food consumption (mg) = initial fresh weight of leaf (mg) × Proportion of daily 

moisture loss - fresh weight after feeding (mg). 

Statistical analysis  

All data analyses were performed using SPSS 16.0 for Windows (SPSS Inc®, MA, 

version 16.0), and checked for normality and homoscedasticity (Qiu et al. 2013). 

When the data did not fit a normal distribution, the parameters, such as host 

parasitism, emergence percentage and female rate were first transformed by arcsin 𝑥, 

and the parameters, such as the developmental durations were first transformed by 

log10 𝑥. The body length and front wings length were first transformed by 

lngamma 𝑥. The Duncan's multiple range test was used as a one way-analysis of 

variance test (α＝0.05) in comparing the means between treatments.  

For weight gain and food consumption of parasitized hosts data, a two way-analysis 

of variance test (α＝0.01) was conducted to show the impact of both instar and level 

parasitism (parasitized and non-parasitized) on the change of weight gain and food 

consumption of parasitized hosts (McLoud 2011).  

 

Results 

Instar preference 

Microplitis similis did not parasitize fourth and fifth instars larvae, which possess 

strong defensive behavioral reactions. Parasitism in no choice experiments was 

highest in second and third instar, and lowest in first instar (F = 49.01; df = 3, 117; P 

＜ 0.05; Fig. 1). When provided with a choice of first to late third instars host larvae 

(Fig. 2), early third and second instars S. litura were parasitized at the highest rates, 



followed by first and late third instars (F = 7.43; df = 3, 20; P ＜ 0.05). There was 

also significant variation in the selection coefficient among instars (F = 26.39; df = 3, 

20; P ＜ 0.05), being highest in the early third instar at and lowest in the late third 

instar (Fig. 3). 

 

Effects of S. litura stage on the development of M. similis offspring 

Egg-cocoon development of M. similis in first instar S. litura was 7.06 ± 0.06 days, 

and increased with successive instars to 8.10 ± 0.08 days in the late third instar of S. 

litura (F = 41.22; df = 3, 504; P ＜ 0.05) (Table 1). Cocoon-adult development in 

late third instar larvae was significantly longer than in other host instars (F = 38.91; df 

= 3, 504; P ＜ 0.05). It just took 4.13 ± 0.06 days for M. similis to develop from 

cocoon-adult in the first instar host. The development duration of the parasitoid from 

egg to adult emergence was longest in the late third instar larvae, followed by the 

early third instar, second instar and finally first instar (F = 110.78; df = 3, 504; P ＜ 

0.05). The stage of the host parasitized had no effect on the percentage of parasitoids 

successfully emerging (F = 0.493; df = 3, 93; P ＝ 0.688).  

The female rate was lower for adults emerging from first instar larvae than from 

other host instars (F = 3.90; df = 3, 35; P ＜ 0.05). The female rate did not differ 

between adults emerging from the older instars (F = 3.90; df = 3, 35; P ＝0.248). In 

the aspect of morphometric features, parasitoid body length, fore wing length, and 

hind tibia length were affected by all host instars (Table 2). All the above 

morphometric features increased with the increase of host instar age at parasitism. All 

of the morphometric features (body length, fore wing length, hind tibia length), were 

greatest in late third instar larvae (body length: F = 102.33; df = 3, 231; P ＜ 0.05; 



fore wing length: F = 79.10; df = 3, 231; P ＜ 0.05; hind tibia length: F = 42.52; df = 

3, 231; P ＜ 0.05 ).. 

 

Weight gain and food consumption of parasitized hosts 

Parasitized S. litura showed a pronounced reduction in weight gain (ANOVA: level 

of parasitism, F = 77.30; df = 1, 255; P ＜ 0.01; host instars, F = 130.07; df = 3, 255; 

P ＜ 0.01, interaction: F = 543.40; df = 1, 255; P ＜ 0.01) (Fig. 4). All instar of S. 

litura larvae were affected, although this was most marked in the late third instar, 

which were the largest when unparasitized. The daily food consumption of parasitized 

hosts showed a clear reduction in the food consumed (ANOVA: level of parasitism, F 

= 86.72; df = 1, 256; P ＜ 0.01; host instar, F = 91.92; df = 3, 256; P ＜ 0.01, 

interaction: F = 548.45; df = 1, 255; P ＜ 0.01) (Fig. 5). All instar of S. litura larvae 

were affected, and this was most notable in the late third instar, which had the highest 

rate of food consumption when unparasitized. The maximum food consumption of the 

host after parasitism was dependent on host instar of S. litura into which the parasite 

had oviposited.  

 

Discussion 

We found that female Microplitis similis were more likely to parasitize second and 

early third instars S. litura larvae in both choice and no-choice tests, and immature M. 

similis grew well in second and early third instars S. litura larvae. Microplitis similis 

had a lower success rate parasitizing late third instar larvae, most likely as an effect of 

the older instar larvae having a strong defensive behavior (Ameri et al. 2014). Early 

third instar hosts ranked higher than other instars in terms of suitability, yielding 



offspring of greater body size, although they required a slightly longer development 

time. Parasitized S. litura larvae exhibited a decreased rate of weight gain and daily 

food consumption in comparison to unparasitized larvae. In summary, M. similis 

females selected the best host stage for the development of their offspring, and had 

the beneficial effect of greatly reducing consumption by host larvae. Thus, it is 

apparent that enhancing M. similis can contribute as a component of an IPM strategy 

for S. litura in economic crops.  

Host evaluation and selection by hymenopteran parasitoids is a key event, because 

high host suitability is critical to the growth and development of parasitoid larvae 

(Vinson 1990; Murillo et al. 2013). Under natural conditions, adult females accept or 

reject host larvae for oviposition, and the success rates of parasitism are low when 

inoculating small and large hosts due to early host death and parasitoid injury, 

respectively (Wei et al. 2014). In our study, we identified the preferred host instar 

range of M. similis to be first to late third instars S. litura larvae. When M. similis 

sought to parasitize the fourth and fifth instars larvae, the larvae demonstrated strong 

defensive behaviors. When the parasitoid used antennae to evaluate fourth and fifth 

instars larvae, the larvae would twist the head and attack the wasp, resulting in 

wounding and even death. Selectivity by parasitoids, in terms of host instar, has been 

demonstrated by He et al. (2014) who found that Euplectrus laphygmae (Ferrière) 

also could parasitize first to late third instars S. litura larvae, but parasitized second 

and third instar hosts at a higher rate in no-choice tests. However, E. laphygmae 

prefer to parasitize early third S. litura larvae when offered a choice of second, early 

third and late third.  

In koinobionts, parasitoid larvae have two kinds of feeding strategies, 

tissue-feeding strategies and hemolymph-feeding (Harvey and Malcicka 2016). The 



vast majority of Microgastrinae parasitoid larvae consume most host tissues, 

including in the genera Microgaster, Apanteles and Dolichogenidea (Harvey and 

Malcicka 2016). The larva of Hyposoter ebeninus consumed the entire Pieris rapae 

larvae (Gauld and Bolton 1988). On the other hand, microgastrines in the genera 

Microplitis and Cotesia are hemolymph feeders (Malcicka and Harvey 2015). 

Different hosts provide quantitative and qualitative variation in nutrition, which 

consequently influence the growth and ultimately the morphometric features of 

parasitoid offspring from different host instars or host species (Harvey 2000; Harvey 

and Strand 2002; Mironidis and Savopoulou-Soultani 2009). In general, larger hosts 

yield more offspring (Harvey 2000; Stockermans and Hardy 2013) and female 

offspring often hatch from large high quality hosts and male offspring from low 

quality hosts (Charnov et al. 1981; Pekas et al. 2016). Strand et al. (1988) also 

reported that Microplitis demolitor achieved larger body size in the larger later instars 

of Heliothis virescens larvae, in a manner similar to that found here for M. similis 

developing in S. litura. The female M. similis laid few fertilized eggs in small early 

instar larvae. The low female ratio obtained from first instar Microplitis tuberculifer 

larvae (Chu et al. 2014) is similar also to this study.  

Harvey et al. (2010) reported that the intensity of resourced-related constraints on 

parasitoid development also varies from one parasitoid species to another. In 

koinobiont parasitoids, the host represents a potentially dynamic resource, koinobiont 

parasitoids attack hosts that continue feeding and growing during immature parasitoid 

development (Harvey 2005; Harvey et al. 2010). In our study, larvae of S. litura 

parasitized by M. similis continue feeding and growing until the mature parasitoid 

larva emerged from the body of the host, and the parasitized herbivores showed 

greatly reduced weight gain and food consumption compared to unparasitized larvae, 



whatever the instar parasitized. This result is similar to larvae of Mythimna separata 

parasitized by M. mediator (Li et al. 2006). In terms of host regulation, early instar 

hosts provide insufficient nutrients to koinobiont parasitoids, so parasitoids do not 

immediately inhibit lepidopteran host growth until the host becomes larger. In contrast, 

koinobiont parasitoids attack later instar lepidopteran hosts greatly reducing host 

growth (Harvey et al. 1994, 2014). In this study, significant decreases in weight gain 

of the first instar S. litura larvae parasitized by M. similis began on the fifth day, 

whereas late third instar host larvae showed a significant decrease in weight gain only 

two days after being parasitized by M. similis. Very similar results were obtained for 

Hyposoter didymator parasitizing Helicoverpa armigera (Mironidis and 

Savopoulou-Soultani 2008). Changes in the food consumption of S. litura parasitized 

by M. similis began on different days after parasitism in different host instars, a result 

similar to that found for M. tuberculifer on S. exigua (Chu et al. 2014). The influence 

of a parasitoid on host feeding is of key importance to the role of parasitoids in IPM 

strategies, and from a plant protection perspective it is clearly an advantage if 

parasitization results in a larvae reducing or halting feeding. In that M. similis results 

in a progressive reduction in feeding over a moderate period, it is less favorable than a 

species which rapidly causes the host to stop feeding. 

We found that M. similis parasitized second and early third instar larvae at a higher 

rate than other larvae, and this was optimal for the parasitoid larvae to develop and 

survive. Most parasitoids can successfully complete their life cycle in different instar 

host larvae, but with different performance in different instars. This is important for 

IPM of the pest, but also is important information for mass-rearing of M. similis. In 

the current study, we found the most suitable host stage for the growth of M. similis to 

be early third instar. However, environmental factors, such as temperature, humidity 



and photoperiod, as well as the host species, body size, and instar would influence 

parasitoid’s mass production. The details to optimize rearing of M. similis will require 

further study, but the control of S. litura with parasitic natural enemies can potentially 

provide a component of an overall IPM strategy. 
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Tables 

Table 1. Mean (±SE) developmental time, percentage of emergence and female rate of M. similis 

in different developmental stage of S. litura 

 

Table 2. The effect of host stages on body size of M. similis (M±SE) 

 

Figure legends 

Figure 1. Mean (±SE) parasitism of M. similis parasitizing S. litura in no-choice tests. Note: The x 

axis values represent 1 = first instar larvae, 2 = second instar larvae, 3E = early third instar larvae, 

3L = late third instar larvae, respectively. The same letters above the same bars represent no 

significant differences in parasitism of the different host instars (Duncan test, P ＜ 0.05) 

 

Figure 2. Mean (+ SE) parasitism of S. litura larvae of various instars when parasitized by M. 

similis in choice tests. Note: The x axis values represent 1 = first instar larvae, 2 = second instar 

larvae, 3E = early third instar larvae, 3L = late third instar larvae, respectively. The same letters 

above the same bars represent no significant differences in parasitism of the different host instars 

(Duncan test, P ＜ 0.05) 

 

Figure 3. Selection coefficient of S. litura larvae of various instars when parasitized by M. similis 

in choice tests. Note: The x axis values represent 1 = first instar larvae, 2 = second instar larvae, 

3E = early third instar larvae, 3L = late third instar larvae, respectively. The same letters above the 

bars represent no significant differences in selection coefficient of the different host instars 

(Duncan test, P ＜ 0.05) 

 

Figure 4. Weight gain by hosts parasitized in different larval instars and un-parasitized hosts. (a) 

Weight of parasitized and un-parasitized first instar S. exigua, (b) Weight of parasitized and 

non-parasitized second instar S. exigua, (c) Weight of parasitized and non-parasitized early third 

instar S. exigua, and (d) Weight of parasitized and non-parasitized late third instar S. exigua, Note: 



1-d-old S. litura larvae were not parasitized, so they were used at 2 days old. Control：

Un-parasitized larvae. Weight gain of parasitized / non-parasitized 1-d-old to 4-d-old larvae was 

measured together, therefore the larvae (1-d-old to 4-d-old) values are mean, and the other values 

are mean﹢SE. 

 

Figure 5. Daily food consumption parasitized in different larval instars and un-parasitized hosts. 

(a) Daily food consumption of parasitized and non-parasitized first instar S. exigua, (b) Daily food 

consumption of parasitized and non-parasitized second instar S. exigua, (c) Daily food 

consumption of parasitized and non-parasitized early third instar S. exigua, and (d) Daily food 

consumption of parasitized and non-parasitized late third instar S. exigua, Note: 1-d-old S. litura 

larvae were not parasitized, so they were used at 2 days old. Control ＝ non-parasitized larvae. 

Daily food consumption of parasitized / non-parasitized 1-d-old to 4-d-old larvae was measured 

together, therefore the larvae (1-d-old to 4-d-old) values are mean, and the other values are mean

﹢SE. 

 


